Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2015 Broadcom
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 */
   8
   9/**
  10 * DOC: VC4 CRTC module
  11 *
  12 * In VC4, the Pixel Valve is what most closely corresponds to the
  13 * DRM's concept of a CRTC.  The PV generates video timings from the
  14 * output's clock plus its configuration.  It pulls scaled pixels from
  15 * the HVS at that timing, and feeds it to the encoder.
  16 *
  17 * However, the DRM CRTC also collects the configuration of all the
  18 * DRM planes attached to it.  As a result, this file also manages
  19 * setup of the VC4 HVS's display elements on the CRTC.
  20 *
  21 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  23 * image domain can feed either HDMI or the SDTV controller.  The
  24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  25 * SDTV, etc.) according to which output type is chosen in the mux.
  26 *
  27 * For power management, the pixel valve's registers are all clocked
  28 * by the AXI clock, while the timings and FIFOs make use of the
  29 * output-specific clock.  Since the encoders also directly consume
  30 * the CPRMAN clocks, and know what timings they need, they are the
  31 * ones that set the clock.
  32 */
  33
  34#include "drm_atomic.h"
  35#include "drm_atomic_helper.h"
  36#include "drm_crtc_helper.h"
  37#include "linux/clk.h"
  38#include "drm_fb_cma_helper.h"
  39#include "linux/component.h"
  40#include "linux/of_device.h"
  41#include "vc4_drv.h"
  42#include "vc4_regs.h"
  43
  44struct vc4_crtc {
  45	struct drm_crtc base;
  46	const struct vc4_crtc_data *data;
  47	void __iomem *regs;
  48
  49	/* Timestamp at start of vblank irq - unaffected by lock delays. */
  50	ktime_t t_vblank;
  51
  52	/* Which HVS channel we're using for our CRTC. */
  53	int channel;
  54
  55	u8 lut_r[256];
  56	u8 lut_g[256];
  57	u8 lut_b[256];
  58	/* Size in pixels of the COB memory allocated to this CRTC. */
  59	u32 cob_size;
  60
  61	struct drm_pending_vblank_event *event;
  62};
  63
  64struct vc4_crtc_state {
  65	struct drm_crtc_state base;
  66	/* Dlist area for this CRTC configuration. */
  67	struct drm_mm_node mm;
  68};
  69
  70static inline struct vc4_crtc *
  71to_vc4_crtc(struct drm_crtc *crtc)
  72{
  73	return (struct vc4_crtc *)crtc;
  74}
  75
  76static inline struct vc4_crtc_state *
  77to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  78{
  79	return (struct vc4_crtc_state *)crtc_state;
  80}
  81
  82struct vc4_crtc_data {
  83	/* Which channel of the HVS this pixelvalve sources from. */
  84	int hvs_channel;
  85
  86	enum vc4_encoder_type encoder_types[4];
  87};
  88
  89#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  90#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  91
  92#define CRTC_REG(reg) { reg, #reg }
  93static const struct {
  94	u32 reg;
  95	const char *name;
  96} crtc_regs[] = {
  97	CRTC_REG(PV_CONTROL),
  98	CRTC_REG(PV_V_CONTROL),
  99	CRTC_REG(PV_VSYNCD_EVEN),
 100	CRTC_REG(PV_HORZA),
 101	CRTC_REG(PV_HORZB),
 102	CRTC_REG(PV_VERTA),
 103	CRTC_REG(PV_VERTB),
 104	CRTC_REG(PV_VERTA_EVEN),
 105	CRTC_REG(PV_VERTB_EVEN),
 106	CRTC_REG(PV_INTEN),
 107	CRTC_REG(PV_INTSTAT),
 108	CRTC_REG(PV_STAT),
 109	CRTC_REG(PV_HACT_ACT),
 110};
 111
 112static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
 113{
 114	int i;
 115
 116	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
 117		DRM_INFO("0x%04x (%s): 0x%08x\n",
 118			 crtc_regs[i].reg, crtc_regs[i].name,
 119			 CRTC_READ(crtc_regs[i].reg));
 120	}
 121}
 122
 123#ifdef CONFIG_DEBUG_FS
 124int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
 125{
 126	struct drm_info_node *node = (struct drm_info_node *)m->private;
 127	struct drm_device *dev = node->minor->dev;
 128	int crtc_index = (uintptr_t)node->info_ent->data;
 129	struct drm_crtc *crtc;
 130	struct vc4_crtc *vc4_crtc;
 131	int i;
 132
 133	i = 0;
 134	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
 135		if (i == crtc_index)
 136			break;
 137		i++;
 138	}
 139	if (!crtc)
 140		return 0;
 141	vc4_crtc = to_vc4_crtc(crtc);
 142
 143	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
 144		seq_printf(m, "%s (0x%04x): 0x%08x\n",
 145			   crtc_regs[i].name, crtc_regs[i].reg,
 146			   CRTC_READ(crtc_regs[i].reg));
 147	}
 148
 149	return 0;
 150}
 151#endif
 152
 153int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
 154			    unsigned int flags, int *vpos, int *hpos,
 155			    ktime_t *stime, ktime_t *etime,
 156			    const struct drm_display_mode *mode)
 157{
 158	struct vc4_dev *vc4 = to_vc4_dev(dev);
 159	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
 160	u32 val;
 161	int fifo_lines;
 162	int vblank_lines;
 163	int ret = 0;
 164
 165	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 166
 167	/* Get optional system timestamp before query. */
 168	if (stime)
 169		*stime = ktime_get();
 170
 171	/*
 172	 * Read vertical scanline which is currently composed for our
 173	 * pixelvalve by the HVS, and also the scaler status.
 174	 */
 175	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
 176
 177	/* Get optional system timestamp after query. */
 178	if (etime)
 179		*etime = ktime_get();
 180
 181	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 182
 183	/* Vertical position of hvs composed scanline. */
 184	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 185	*hpos = 0;
 186
 187	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 188		*vpos /= 2;
 189
 190		/* Use hpos to correct for field offset in interlaced mode. */
 191		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
 192			*hpos += mode->crtc_htotal / 2;
 193	}
 194
 195	/* This is the offset we need for translating hvs -> pv scanout pos. */
 196	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
 197
 198	if (fifo_lines > 0)
 199		ret |= DRM_SCANOUTPOS_VALID;
 200
 201	/* HVS more than fifo_lines into frame for compositing? */
 202	if (*vpos > fifo_lines) {
 203		/*
 204		 * We are in active scanout and can get some meaningful results
 205		 * from HVS. The actual PV scanout can not trail behind more
 206		 * than fifo_lines as that is the fifo's capacity. Assume that
 207		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 208		 * refilling the fifo and PV consuming from the fifo, ie.
 209		 * whenever the PV consumes and frees up a scanline in the
 210		 * fifo, the HVS will immediately refill it, therefore
 211		 * incrementing vpos. Therefore we choose HVS read position -
 212		 * fifo size in scanlines as a estimate of the real scanout
 213		 * position of the PV.
 214		 */
 215		*vpos -= fifo_lines + 1;
 216
 217		ret |= DRM_SCANOUTPOS_ACCURATE;
 218		return ret;
 219	}
 220
 221	/*
 222	 * Less: This happens when we are in vblank and the HVS, after getting
 223	 * the VSTART restart signal from the PV, just started refilling its
 224	 * fifo with new lines from the top-most lines of the new framebuffers.
 225	 * The PV does not scan out in vblank, so does not remove lines from
 226	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 227	 * We can't get meaningful readings wrt. scanline position of the PV
 228	 * and need to make things up in a approximative but consistent way.
 229	 */
 230	ret |= DRM_SCANOUTPOS_IN_VBLANK;
 231	vblank_lines = mode->vtotal - mode->vdisplay;
 232
 233	if (flags & DRM_CALLED_FROM_VBLIRQ) {
 234		/*
 235		 * Assume the irq handler got called close to first
 236		 * line of vblank, so PV has about a full vblank
 237		 * scanlines to go, and as a base timestamp use the
 238		 * one taken at entry into vblank irq handler, so it
 239		 * is not affected by random delays due to lock
 240		 * contention on event_lock or vblank_time lock in
 241		 * the core.
 242		 */
 243		*vpos = -vblank_lines;
 244
 245		if (stime)
 246			*stime = vc4_crtc->t_vblank;
 247		if (etime)
 248			*etime = vc4_crtc->t_vblank;
 249
 250		/*
 251		 * If the HVS fifo is not yet full then we know for certain
 252		 * we are at the very beginning of vblank, as the hvs just
 253		 * started refilling, and the stime and etime timestamps
 254		 * truly correspond to start of vblank.
 255		 */
 256		if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
 257			ret |= DRM_SCANOUTPOS_ACCURATE;
 258	} else {
 259		/*
 260		 * No clue where we are inside vblank. Return a vpos of zero,
 261		 * which will cause calling code to just return the etime
 262		 * timestamp uncorrected. At least this is no worse than the
 263		 * standard fallback.
 264		 */
 265		*vpos = 0;
 266	}
 267
 268	return ret;
 269}
 270
 271int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
 272				  int *max_error, struct timeval *vblank_time,
 273				  unsigned flags)
 274{
 275	struct vc4_dev *vc4 = to_vc4_dev(dev);
 276	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
 277	struct drm_crtc *crtc = &vc4_crtc->base;
 278	struct drm_crtc_state *state = crtc->state;
 279
 280	/* Helper routine in DRM core does all the work: */
 281	return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
 282						     vblank_time, flags,
 283						     &state->adjusted_mode);
 284}
 285
 286static void vc4_crtc_destroy(struct drm_crtc *crtc)
 287{
 288	drm_crtc_cleanup(crtc);
 289}
 290
 291static void
 292vc4_crtc_lut_load(struct drm_crtc *crtc)
 293{
 294	struct drm_device *dev = crtc->dev;
 295	struct vc4_dev *vc4 = to_vc4_dev(dev);
 296	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 297	u32 i;
 298
 299	/* The LUT memory is laid out with each HVS channel in order,
 300	 * each of which takes 256 writes for R, 256 for G, then 256
 301	 * for B.
 302	 */
 303	HVS_WRITE(SCALER_GAMADDR,
 304		  SCALER_GAMADDR_AUTOINC |
 305		  (vc4_crtc->channel * 3 * crtc->gamma_size));
 306
 307	for (i = 0; i < crtc->gamma_size; i++)
 308		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
 309	for (i = 0; i < crtc->gamma_size; i++)
 310		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
 311	for (i = 0; i < crtc->gamma_size; i++)
 312		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
 313}
 314
 315static int
 316vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
 317		   uint32_t size)
 318{
 319	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 320	u32 i;
 321
 322	for (i = 0; i < size; i++) {
 323		vc4_crtc->lut_r[i] = r[i] >> 8;
 324		vc4_crtc->lut_g[i] = g[i] >> 8;
 325		vc4_crtc->lut_b[i] = b[i] >> 8;
 326	}
 327
 328	vc4_crtc_lut_load(crtc);
 329
 330	return 0;
 331}
 332
 333static u32 vc4_get_fifo_full_level(u32 format)
 334{
 335	static const u32 fifo_len_bytes = 64;
 336	static const u32 hvs_latency_pix = 6;
 337
 338	switch (format) {
 339	case PV_CONTROL_FORMAT_DSIV_16:
 340	case PV_CONTROL_FORMAT_DSIC_16:
 341		return fifo_len_bytes - 2 * hvs_latency_pix;
 342	case PV_CONTROL_FORMAT_DSIV_18:
 343		return fifo_len_bytes - 14;
 344	case PV_CONTROL_FORMAT_24:
 345	case PV_CONTROL_FORMAT_DSIV_24:
 346	default:
 347		return fifo_len_bytes - 3 * hvs_latency_pix;
 348	}
 349}
 350
 351/*
 352 * Returns the clock select bit for the connector attached to the
 353 * CRTC.
 354 */
 355static int vc4_get_clock_select(struct drm_crtc *crtc)
 356{
 357	struct drm_connector *connector;
 358
 359	drm_for_each_connector(connector, crtc->dev) {
 360		if (connector->state->crtc == crtc) {
 361			struct drm_encoder *encoder = connector->encoder;
 362			struct vc4_encoder *vc4_encoder =
 363				to_vc4_encoder(encoder);
 364
 365			return vc4_encoder->clock_select;
 366		}
 367	}
 368
 369	return -1;
 370}
 371
 372static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
 373{
 374	struct drm_device *dev = crtc->dev;
 375	struct vc4_dev *vc4 = to_vc4_dev(dev);
 376	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 377	struct drm_crtc_state *state = crtc->state;
 378	struct drm_display_mode *mode = &state->adjusted_mode;
 379	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 380	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
 381	u32 format = PV_CONTROL_FORMAT_24;
 382	bool debug_dump_regs = false;
 383	int clock_select = vc4_get_clock_select(crtc);
 384
 385	if (debug_dump_regs) {
 386		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
 387		vc4_crtc_dump_regs(vc4_crtc);
 388	}
 389
 390	/* Reset the PV fifo. */
 391	CRTC_WRITE(PV_CONTROL, 0);
 392	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
 393	CRTC_WRITE(PV_CONTROL, 0);
 394
 395	CRTC_WRITE(PV_HORZA,
 396		   VC4_SET_FIELD((mode->htotal -
 397				  mode->hsync_end) * pixel_rep,
 398				 PV_HORZA_HBP) |
 399		   VC4_SET_FIELD((mode->hsync_end -
 400				  mode->hsync_start) * pixel_rep,
 401				 PV_HORZA_HSYNC));
 402	CRTC_WRITE(PV_HORZB,
 403		   VC4_SET_FIELD((mode->hsync_start -
 404				  mode->hdisplay) * pixel_rep,
 405				 PV_HORZB_HFP) |
 406		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
 407
 408	CRTC_WRITE(PV_VERTA,
 409		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
 410				 PV_VERTA_VBP) |
 411		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
 412				 PV_VERTA_VSYNC));
 413	CRTC_WRITE(PV_VERTB,
 414		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
 415				 PV_VERTB_VFP) |
 416		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 417
 418	if (interlace) {
 419		CRTC_WRITE(PV_VERTA_EVEN,
 420			   VC4_SET_FIELD(mode->crtc_vtotal -
 421					 mode->crtc_vsync_end - 1,
 422					 PV_VERTA_VBP) |
 423			   VC4_SET_FIELD(mode->crtc_vsync_end -
 424					 mode->crtc_vsync_start,
 425					 PV_VERTA_VSYNC));
 426		CRTC_WRITE(PV_VERTB_EVEN,
 427			   VC4_SET_FIELD(mode->crtc_vsync_start -
 428					 mode->crtc_vdisplay,
 429					 PV_VERTB_VFP) |
 430			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 431
 432		/* We set up first field even mode for HDMI.  VEC's
 433		 * NTSC mode would want first field odd instead, once
 434		 * we support it (to do so, set ODD_FIRST and put the
 435		 * delay in VSYNCD_EVEN instead).
 436		 */
 437		CRTC_WRITE(PV_V_CONTROL,
 438			   PV_VCONTROL_CONTINUOUS |
 439			   PV_VCONTROL_INTERLACE |
 440			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
 441					 PV_VCONTROL_ODD_DELAY));
 442		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 443	} else {
 444		CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
 445	}
 446
 447	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 448
 449
 450	CRTC_WRITE(PV_CONTROL,
 451		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 452		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
 453				 PV_CONTROL_FIFO_LEVEL) |
 454		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 455		   PV_CONTROL_CLR_AT_START |
 456		   PV_CONTROL_TRIGGER_UNDERFLOW |
 457		   PV_CONTROL_WAIT_HSTART |
 458		   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
 459		   PV_CONTROL_FIFO_CLR |
 460		   PV_CONTROL_EN);
 461
 462	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 463		  SCALER_DISPBKGND_AUTOHS |
 464		  SCALER_DISPBKGND_GAMMA |
 465		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 466
 467	/* Reload the LUT, since the SRAMs would have been disabled if
 468	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
 469	 */
 470	vc4_crtc_lut_load(crtc);
 471
 472	if (debug_dump_regs) {
 473		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
 474		vc4_crtc_dump_regs(vc4_crtc);
 475	}
 476}
 477
 478static void require_hvs_enabled(struct drm_device *dev)
 479{
 480	struct vc4_dev *vc4 = to_vc4_dev(dev);
 481
 482	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 483		     SCALER_DISPCTRL_ENABLE);
 484}
 485
 486static void vc4_crtc_disable(struct drm_crtc *crtc)
 487{
 488	struct drm_device *dev = crtc->dev;
 489	struct vc4_dev *vc4 = to_vc4_dev(dev);
 490	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 491	u32 chan = vc4_crtc->channel;
 492	int ret;
 493	require_hvs_enabled(dev);
 494
 495	/* Disable vblank irq handling before crtc is disabled. */
 496	drm_crtc_vblank_off(crtc);
 497
 498	CRTC_WRITE(PV_V_CONTROL,
 499		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 500	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 501	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 502
 503	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
 504	    SCALER_DISPCTRLX_ENABLE) {
 505		HVS_WRITE(SCALER_DISPCTRLX(chan),
 506			  SCALER_DISPCTRLX_RESET);
 507
 508		/* While the docs say that reset is self-clearing, it
 509		 * seems it doesn't actually.
 510		 */
 511		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 512	}
 513
 514	/* Once we leave, the scaler should be disabled and its fifo empty. */
 515
 516	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 517
 518	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 519				   SCALER_DISPSTATX_MODE) !=
 520		     SCALER_DISPSTATX_MODE_DISABLED);
 521
 522	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 523		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 524		     SCALER_DISPSTATX_EMPTY);
 525}
 526
 527static void vc4_crtc_enable(struct drm_crtc *crtc)
 528{
 529	struct drm_device *dev = crtc->dev;
 530	struct vc4_dev *vc4 = to_vc4_dev(dev);
 531	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 532	struct drm_crtc_state *state = crtc->state;
 533	struct drm_display_mode *mode = &state->adjusted_mode;
 534
 535	require_hvs_enabled(dev);
 536
 537	/* Turn on the scaler, which will wait for vstart to start
 538	 * compositing.
 539	 */
 540	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
 541		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
 542		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
 543		  SCALER_DISPCTRLX_ENABLE);
 544
 545	/* Turn on the pixel valve, which will emit the vstart signal. */
 546	CRTC_WRITE(PV_V_CONTROL,
 547		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 548
 549	/* Enable vblank irq handling after crtc is started. */
 550	drm_crtc_vblank_on(crtc);
 551}
 552
 553static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
 554				const struct drm_display_mode *mode,
 555				struct drm_display_mode *adjusted_mode)
 556{
 557	/* Do not allow doublescan modes from user space */
 558	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 559		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 560			      crtc->base.id);
 561		return false;
 562	}
 563
 564	return true;
 565}
 566
 567static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 568				 struct drm_crtc_state *state)
 569{
 570	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 571	struct drm_device *dev = crtc->dev;
 572	struct vc4_dev *vc4 = to_vc4_dev(dev);
 573	struct drm_plane *plane;
 574	unsigned long flags;
 575	const struct drm_plane_state *plane_state;
 576	u32 dlist_count = 0;
 577	int ret;
 578
 579	/* The pixelvalve can only feed one encoder (and encoders are
 580	 * 1:1 with connectors.)
 581	 */
 582	if (hweight32(state->connector_mask) > 1)
 583		return -EINVAL;
 584
 585	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
 586		dlist_count += vc4_plane_dlist_size(plane_state);
 587
 588	dlist_count++; /* Account for SCALER_CTL0_END. */
 589
 590	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 591	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 592				 dlist_count, 1, 0);
 593	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 594	if (ret)
 595		return ret;
 596
 597	return 0;
 598}
 599
 600static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
 601				  struct drm_crtc_state *old_state)
 602{
 603	struct drm_device *dev = crtc->dev;
 604	struct vc4_dev *vc4 = to_vc4_dev(dev);
 605	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 606	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 607	struct drm_plane *plane;
 608	bool debug_dump_regs = false;
 609	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 610	u32 __iomem *dlist_next = dlist_start;
 611
 612	if (debug_dump_regs) {
 613		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 614		vc4_hvs_dump_state(dev);
 615	}
 616
 617	/* Copy all the active planes' dlist contents to the hardware dlist. */
 618	drm_atomic_crtc_for_each_plane(plane, crtc) {
 619		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 620	}
 621
 622	writel(SCALER_CTL0_END, dlist_next);
 623	dlist_next++;
 624
 625	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 626
 627	if (crtc->state->event) {
 628		unsigned long flags;
 629
 630		crtc->state->event->pipe = drm_crtc_index(crtc);
 631
 632		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 633
 634		spin_lock_irqsave(&dev->event_lock, flags);
 635		vc4_crtc->event = crtc->state->event;
 636		crtc->state->event = NULL;
 637
 638		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 639			  vc4_state->mm.start);
 640
 641		spin_unlock_irqrestore(&dev->event_lock, flags);
 642	} else {
 643		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 644			  vc4_state->mm.start);
 645	}
 646
 647	if (debug_dump_regs) {
 648		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 649		vc4_hvs_dump_state(dev);
 650	}
 651}
 652
 653int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
 654{
 655	struct vc4_dev *vc4 = to_vc4_dev(dev);
 656	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
 657
 658	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 659
 660	return 0;
 661}
 662
 663void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
 664{
 665	struct vc4_dev *vc4 = to_vc4_dev(dev);
 666	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
 667
 668	CRTC_WRITE(PV_INTEN, 0);
 669}
 670
 671/* Must be called with the event lock held */
 672bool vc4_event_pending(struct drm_crtc *crtc)
 673{
 674	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 675
 676	return !!vc4_crtc->event;
 677}
 678
 679static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 680{
 681	struct drm_crtc *crtc = &vc4_crtc->base;
 682	struct drm_device *dev = crtc->dev;
 683	struct vc4_dev *vc4 = to_vc4_dev(dev);
 684	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 685	u32 chan = vc4_crtc->channel;
 686	unsigned long flags;
 687
 688	spin_lock_irqsave(&dev->event_lock, flags);
 689	if (vc4_crtc->event &&
 690	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
 691		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 692		vc4_crtc->event = NULL;
 693		drm_crtc_vblank_put(crtc);
 694	}
 695	spin_unlock_irqrestore(&dev->event_lock, flags);
 696}
 697
 698static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 699{
 700	struct vc4_crtc *vc4_crtc = data;
 701	u32 stat = CRTC_READ(PV_INTSTAT);
 702	irqreturn_t ret = IRQ_NONE;
 703
 704	if (stat & PV_INT_VFP_START) {
 705		vc4_crtc->t_vblank = ktime_get();
 706		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 707		drm_crtc_handle_vblank(&vc4_crtc->base);
 708		vc4_crtc_handle_page_flip(vc4_crtc);
 709		ret = IRQ_HANDLED;
 710	}
 711
 712	return ret;
 713}
 714
 715struct vc4_async_flip_state {
 716	struct drm_crtc *crtc;
 717	struct drm_framebuffer *fb;
 718	struct drm_pending_vblank_event *event;
 719
 720	struct vc4_seqno_cb cb;
 721};
 722
 723/* Called when the V3D execution for the BO being flipped to is done, so that
 724 * we can actually update the plane's address to point to it.
 725 */
 726static void
 727vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 728{
 729	struct vc4_async_flip_state *flip_state =
 730		container_of(cb, struct vc4_async_flip_state, cb);
 731	struct drm_crtc *crtc = flip_state->crtc;
 732	struct drm_device *dev = crtc->dev;
 733	struct vc4_dev *vc4 = to_vc4_dev(dev);
 734	struct drm_plane *plane = crtc->primary;
 735
 736	vc4_plane_async_set_fb(plane, flip_state->fb);
 737	if (flip_state->event) {
 738		unsigned long flags;
 739
 740		spin_lock_irqsave(&dev->event_lock, flags);
 741		drm_crtc_send_vblank_event(crtc, flip_state->event);
 742		spin_unlock_irqrestore(&dev->event_lock, flags);
 743	}
 744
 745	drm_crtc_vblank_put(crtc);
 746	drm_framebuffer_unreference(flip_state->fb);
 747	kfree(flip_state);
 748
 749	up(&vc4->async_modeset);
 750}
 751
 752/* Implements async (non-vblank-synced) page flips.
 753 *
 754 * The page flip ioctl needs to return immediately, so we grab the
 755 * modeset semaphore on the pipe, and queue the address update for
 756 * when V3D is done with the BO being flipped to.
 757 */
 758static int vc4_async_page_flip(struct drm_crtc *crtc,
 759			       struct drm_framebuffer *fb,
 760			       struct drm_pending_vblank_event *event,
 761			       uint32_t flags)
 762{
 763	struct drm_device *dev = crtc->dev;
 764	struct vc4_dev *vc4 = to_vc4_dev(dev);
 765	struct drm_plane *plane = crtc->primary;
 766	int ret = 0;
 767	struct vc4_async_flip_state *flip_state;
 768	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 769	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 770
 771	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 772	if (!flip_state)
 773		return -ENOMEM;
 774
 775	drm_framebuffer_reference(fb);
 776	flip_state->fb = fb;
 777	flip_state->crtc = crtc;
 778	flip_state->event = event;
 779
 780	/* Make sure all other async modesetes have landed. */
 781	ret = down_interruptible(&vc4->async_modeset);
 782	if (ret) {
 783		drm_framebuffer_unreference(fb);
 784		kfree(flip_state);
 785		return ret;
 786	}
 787
 788	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 789
 790	/* Immediately update the plane's legacy fb pointer, so that later
 791	 * modeset prep sees the state that will be present when the semaphore
 792	 * is released.
 793	 */
 794	drm_atomic_set_fb_for_plane(plane->state, fb);
 795	plane->fb = fb;
 796
 797	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 798			   vc4_async_page_flip_complete);
 799
 800	/* Driver takes ownership of state on successful async commit. */
 801	return 0;
 802}
 803
 804static int vc4_page_flip(struct drm_crtc *crtc,
 805			 struct drm_framebuffer *fb,
 806			 struct drm_pending_vblank_event *event,
 807			 uint32_t flags)
 808{
 809	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 810		return vc4_async_page_flip(crtc, fb, event, flags);
 811	else
 812		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
 813}
 814
 815static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 816{
 817	struct vc4_crtc_state *vc4_state;
 818
 819	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 820	if (!vc4_state)
 821		return NULL;
 822
 823	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 824	return &vc4_state->base;
 825}
 826
 827static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 828				   struct drm_crtc_state *state)
 829{
 830	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 831	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 832
 833	if (vc4_state->mm.allocated) {
 834		unsigned long flags;
 835
 836		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 837		drm_mm_remove_node(&vc4_state->mm);
 838		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 839
 840	}
 841
 842	drm_atomic_helper_crtc_destroy_state(crtc, state);
 843}
 844
 845static void
 846vc4_crtc_reset(struct drm_crtc *crtc)
 847{
 848	if (crtc->state)
 849		__drm_atomic_helper_crtc_destroy_state(crtc->state);
 850
 851	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
 852	if (crtc->state)
 853		crtc->state->crtc = crtc;
 854}
 855
 856static const struct drm_crtc_funcs vc4_crtc_funcs = {
 857	.set_config = drm_atomic_helper_set_config,
 858	.destroy = vc4_crtc_destroy,
 859	.page_flip = vc4_page_flip,
 860	.set_property = NULL,
 861	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
 862	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
 863	.reset = vc4_crtc_reset,
 864	.atomic_duplicate_state = vc4_crtc_duplicate_state,
 865	.atomic_destroy_state = vc4_crtc_destroy_state,
 866	.gamma_set = vc4_crtc_gamma_set,
 867};
 868
 869static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
 870	.mode_set_nofb = vc4_crtc_mode_set_nofb,
 871	.disable = vc4_crtc_disable,
 872	.enable = vc4_crtc_enable,
 873	.mode_fixup = vc4_crtc_mode_fixup,
 874	.atomic_check = vc4_crtc_atomic_check,
 875	.atomic_flush = vc4_crtc_atomic_flush,
 876};
 877
 878static const struct vc4_crtc_data pv0_data = {
 879	.hvs_channel = 0,
 880	.encoder_types = {
 881		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
 882		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
 883	},
 884};
 885
 886static const struct vc4_crtc_data pv1_data = {
 887	.hvs_channel = 2,
 888	.encoder_types = {
 889		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
 890		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
 891	},
 892};
 893
 894static const struct vc4_crtc_data pv2_data = {
 895	.hvs_channel = 1,
 896	.encoder_types = {
 897		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
 898		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
 899	},
 900};
 901
 902static const struct of_device_id vc4_crtc_dt_match[] = {
 903	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
 904	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
 905	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
 906	{}
 907};
 908
 909static void vc4_set_crtc_possible_masks(struct drm_device *drm,
 910					struct drm_crtc *crtc)
 911{
 912	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 913	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
 914	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
 915	struct drm_encoder *encoder;
 916
 917	drm_for_each_encoder(encoder, drm) {
 918		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 919		int i;
 920
 921		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
 922			if (vc4_encoder->type == encoder_types[i]) {
 923				vc4_encoder->clock_select = i;
 924				encoder->possible_crtcs |= drm_crtc_mask(crtc);
 925				break;
 926			}
 927		}
 928	}
 929}
 930
 931static void
 932vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
 933{
 934	struct drm_device *drm = vc4_crtc->base.dev;
 935	struct vc4_dev *vc4 = to_vc4_dev(drm);
 936	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
 937	/* Top/base are supposed to be 4-pixel aligned, but the
 938	 * Raspberry Pi firmware fills the low bits (which are
 939	 * presumably ignored).
 940	 */
 941	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
 942	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
 943
 944	vc4_crtc->cob_size = top - base + 4;
 945}
 946
 947static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
 948{
 949	struct platform_device *pdev = to_platform_device(dev);
 950	struct drm_device *drm = dev_get_drvdata(master);
 951	struct vc4_dev *vc4 = to_vc4_dev(drm);
 952	struct vc4_crtc *vc4_crtc;
 953	struct drm_crtc *crtc;
 954	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
 955	const struct of_device_id *match;
 956	int ret, i;
 957
 958	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
 959	if (!vc4_crtc)
 960		return -ENOMEM;
 961	crtc = &vc4_crtc->base;
 962
 963	match = of_match_device(vc4_crtc_dt_match, dev);
 964	if (!match)
 965		return -ENODEV;
 966	vc4_crtc->data = match->data;
 967
 968	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
 969	if (IS_ERR(vc4_crtc->regs))
 970		return PTR_ERR(vc4_crtc->regs);
 971
 972	/* For now, we create just the primary and the legacy cursor
 973	 * planes.  We should be able to stack more planes on easily,
 974	 * but to do that we would need to compute the bandwidth
 975	 * requirement of the plane configuration, and reject ones
 976	 * that will take too much.
 977	 */
 978	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
 979	if (IS_ERR(primary_plane)) {
 980		dev_err(dev, "failed to construct primary plane\n");
 981		ret = PTR_ERR(primary_plane);
 982		goto err;
 983	}
 984
 985	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
 986				  &vc4_crtc_funcs, NULL);
 987	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
 988	primary_plane->crtc = crtc;
 989	vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
 990	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
 991	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
 992
 993	/* Set up some arbitrary number of planes.  We're not limited
 994	 * by a set number of physical registers, just the space in
 995	 * the HVS (16k) and how small an plane can be (28 bytes).
 996	 * However, each plane we set up takes up some memory, and
 997	 * increases the cost of looping over planes, which atomic
 998	 * modesetting does quite a bit.  As a result, we pick a
 999	 * modest number of planes to expose, that should hopefully
1000	 * still cover any sane usecase.
1001	 */
1002	for (i = 0; i < 8; i++) {
1003		struct drm_plane *plane =
1004			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1005
1006		if (IS_ERR(plane))
1007			continue;
1008
1009		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1010	}
1011
1012	/* Set up the legacy cursor after overlay initialization,
1013	 * since we overlay planes on the CRTC in the order they were
1014	 * initialized.
1015	 */
1016	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1017	if (!IS_ERR(cursor_plane)) {
1018		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1019		cursor_plane->crtc = crtc;
1020		crtc->cursor = cursor_plane;
1021	}
1022
1023	vc4_crtc_get_cob_allocation(vc4_crtc);
1024
1025	CRTC_WRITE(PV_INTEN, 0);
1026	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1027	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1028			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1029	if (ret)
1030		goto err_destroy_planes;
1031
1032	vc4_set_crtc_possible_masks(drm, crtc);
1033
1034	for (i = 0; i < crtc->gamma_size; i++) {
1035		vc4_crtc->lut_r[i] = i;
1036		vc4_crtc->lut_g[i] = i;
1037		vc4_crtc->lut_b[i] = i;
1038	}
1039
1040	platform_set_drvdata(pdev, vc4_crtc);
1041
1042	return 0;
1043
1044err_destroy_planes:
1045	list_for_each_entry_safe(destroy_plane, temp,
1046				 &drm->mode_config.plane_list, head) {
1047		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1048		    destroy_plane->funcs->destroy(destroy_plane);
1049	}
1050err:
1051	return ret;
1052}
1053
1054static void vc4_crtc_unbind(struct device *dev, struct device *master,
1055			    void *data)
1056{
1057	struct platform_device *pdev = to_platform_device(dev);
1058	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1059
1060	vc4_crtc_destroy(&vc4_crtc->base);
1061
1062	CRTC_WRITE(PV_INTEN, 0);
1063
1064	platform_set_drvdata(pdev, NULL);
1065}
1066
1067static const struct component_ops vc4_crtc_ops = {
1068	.bind   = vc4_crtc_bind,
1069	.unbind = vc4_crtc_unbind,
1070};
1071
1072static int vc4_crtc_dev_probe(struct platform_device *pdev)
1073{
1074	return component_add(&pdev->dev, &vc4_crtc_ops);
1075}
1076
1077static int vc4_crtc_dev_remove(struct platform_device *pdev)
1078{
1079	component_del(&pdev->dev, &vc4_crtc_ops);
1080	return 0;
1081}
1082
1083struct platform_driver vc4_crtc_driver = {
1084	.probe = vc4_crtc_dev_probe,
1085	.remove = vc4_crtc_dev_remove,
1086	.driver = {
1087		.name = "vc4_crtc",
1088		.of_match_table = vc4_crtc_dt_match,
1089	},
1090};