Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24#include <linux/firmware.h>
  25#include <linux/circ_buf.h>
  26#include <linux/debugfs.h>
  27#include <linux/relay.h>
  28#include "i915_drv.h"
  29#include "intel_guc.h"
  30
  31/**
  32 * DOC: GuC-based command submission
  33 *
  34 * i915_guc_client:
  35 * We use the term client to avoid confusion with contexts. A i915_guc_client is
  36 * equivalent to GuC object guc_context_desc. This context descriptor is
  37 * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell
  38 * and workqueue for it. Also the process descriptor (guc_process_desc), which
  39 * is mapped to client space. So the client can write Work Item then ring the
  40 * doorbell.
  41 *
  42 * To simplify the implementation, we allocate one gem object that contains all
  43 * pages for doorbell, process descriptor and workqueue.
  44 *
  45 * The Scratch registers:
  46 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
  47 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
  48 * triggers an interrupt on the GuC via another register write (0xC4C8).
  49 * Firmware writes a success/fail code back to the action register after
  50 * processes the request. The kernel driver polls waiting for this update and
  51 * then proceeds.
  52 * See host2guc_action()
  53 *
  54 * Doorbells:
  55 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
  56 * mapped into process space.
  57 *
  58 * Work Items:
  59 * There are several types of work items that the host may place into a
  60 * workqueue, each with its own requirements and limitations. Currently only
  61 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
  62 * represents in-order queue. The kernel driver packs ring tail pointer and an
  63 * ELSP context descriptor dword into Work Item.
  64 * See guc_wq_item_append()
  65 *
  66 */
  67
  68/*
  69 * Read GuC command/status register (SOFT_SCRATCH_0)
  70 * Return true if it contains a response rather than a command
  71 */
  72static inline bool host2guc_action_response(struct drm_i915_private *dev_priv,
  73					    u32 *status)
  74{
  75	u32 val = I915_READ(SOFT_SCRATCH(0));
  76	*status = val;
  77	return GUC2HOST_IS_RESPONSE(val);
  78}
  79
  80static int host2guc_action(struct intel_guc *guc, u32 *data, u32 len)
  81{
  82	struct drm_i915_private *dev_priv = guc_to_i915(guc);
  83	u32 status;
  84	int i;
  85	int ret;
  86
  87	if (WARN_ON(len < 1 || len > 15))
  88		return -EINVAL;
  89
  90	mutex_lock(&guc->action_lock);
  91	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  92
  93	dev_priv->guc.action_count += 1;
  94	dev_priv->guc.action_cmd = data[0];
  95
  96	for (i = 0; i < len; i++)
  97		I915_WRITE(SOFT_SCRATCH(i), data[i]);
  98
  99	POSTING_READ(SOFT_SCRATCH(i - 1));
 100
 101	I915_WRITE(HOST2GUC_INTERRUPT, HOST2GUC_TRIGGER);
 102
 103	/*
 104	 * Fast commands should complete in less than 10us, so sample quickly
 105	 * up to that length of time, then switch to a slower sleep-wait loop.
 106	 * No HOST2GUC command should ever take longer than 10ms.
 107	 */
 108	ret = wait_for_us(host2guc_action_response(dev_priv, &status), 10);
 109	if (ret)
 110		ret = wait_for(host2guc_action_response(dev_priv, &status), 10);
 111	if (status != GUC2HOST_STATUS_SUCCESS) {
 112		/*
 113		 * Either the GuC explicitly returned an error (which
 114		 * we convert to -EIO here) or no response at all was
 115		 * received within the timeout limit (-ETIMEDOUT)
 116		 */
 117		if (ret != -ETIMEDOUT)
 118			ret = -EIO;
 119
 120		DRM_WARN("Action 0x%X failed; ret=%d status=0x%08X response=0x%08X\n",
 121			 data[0], ret, status, I915_READ(SOFT_SCRATCH(15)));
 122
 123		dev_priv->guc.action_fail += 1;
 124		dev_priv->guc.action_err = ret;
 125	}
 126	dev_priv->guc.action_status = status;
 127
 128	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 129	mutex_unlock(&guc->action_lock);
 130
 131	return ret;
 132}
 133
 134/*
 135 * Tell the GuC to allocate or deallocate a specific doorbell
 136 */
 137
 138static int host2guc_allocate_doorbell(struct intel_guc *guc,
 139				      struct i915_guc_client *client)
 140{
 141	u32 data[2];
 142
 143	data[0] = HOST2GUC_ACTION_ALLOCATE_DOORBELL;
 144	data[1] = client->ctx_index;
 145
 146	return host2guc_action(guc, data, 2);
 147}
 148
 149static int host2guc_release_doorbell(struct intel_guc *guc,
 150				     struct i915_guc_client *client)
 151{
 152	u32 data[2];
 153
 154	data[0] = HOST2GUC_ACTION_DEALLOCATE_DOORBELL;
 155	data[1] = client->ctx_index;
 156
 157	return host2guc_action(guc, data, 2);
 158}
 159
 160static int host2guc_sample_forcewake(struct intel_guc *guc,
 161				     struct i915_guc_client *client)
 162{
 163	struct drm_i915_private *dev_priv = guc_to_i915(guc);
 164	u32 data[2];
 165
 166	data[0] = HOST2GUC_ACTION_SAMPLE_FORCEWAKE;
 167	/* WaRsDisableCoarsePowerGating:skl,bxt */
 168	if (!intel_enable_rc6() || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
 169		data[1] = 0;
 170	else
 171		/* bit 0 and 1 are for Render and Media domain separately */
 172		data[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
 173
 174	return host2guc_action(guc, data, ARRAY_SIZE(data));
 175}
 176
 177static int host2guc_logbuffer_flush_complete(struct intel_guc *guc)
 178{
 179	u32 data[1];
 180
 181	data[0] = HOST2GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE;
 182
 183	return host2guc_action(guc, data, 1);
 184}
 185
 186static int host2guc_force_logbuffer_flush(struct intel_guc *guc)
 187{
 188	u32 data[2];
 189
 190	data[0] = HOST2GUC_ACTION_FORCE_LOG_BUFFER_FLUSH;
 191	data[1] = 0;
 192
 193	return host2guc_action(guc, data, 2);
 194}
 195
 196static int host2guc_logging_control(struct intel_guc *guc, u32 control_val)
 197{
 198	u32 data[2];
 199
 200	data[0] = HOST2GUC_ACTION_UK_LOG_ENABLE_LOGGING;
 201	data[1] = control_val;
 202
 203	return host2guc_action(guc, data, 2);
 204}
 205
 206/*
 207 * Initialise, update, or clear doorbell data shared with the GuC
 208 *
 209 * These functions modify shared data and so need access to the mapped
 210 * client object which contains the page being used for the doorbell
 211 */
 212
 213static int guc_update_doorbell_id(struct intel_guc *guc,
 214				  struct i915_guc_client *client,
 215				  u16 new_id)
 216{
 217	struct sg_table *sg = guc->ctx_pool_vma->pages;
 218	void *doorbell_bitmap = guc->doorbell_bitmap;
 219	struct guc_doorbell_info *doorbell;
 220	struct guc_context_desc desc;
 221	size_t len;
 222
 223	doorbell = client->vaddr + client->doorbell_offset;
 224
 225	if (client->doorbell_id != GUC_INVALID_DOORBELL_ID &&
 226	    test_bit(client->doorbell_id, doorbell_bitmap)) {
 227		/* Deactivate the old doorbell */
 228		doorbell->db_status = GUC_DOORBELL_DISABLED;
 229		(void)host2guc_release_doorbell(guc, client);
 230		__clear_bit(client->doorbell_id, doorbell_bitmap);
 231	}
 232
 233	/* Update the GuC's idea of the doorbell ID */
 234	len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
 235			     sizeof(desc) * client->ctx_index);
 236	if (len != sizeof(desc))
 237		return -EFAULT;
 238	desc.db_id = new_id;
 239	len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
 240			     sizeof(desc) * client->ctx_index);
 241	if (len != sizeof(desc))
 242		return -EFAULT;
 243
 244	client->doorbell_id = new_id;
 245	if (new_id == GUC_INVALID_DOORBELL_ID)
 246		return 0;
 247
 248	/* Activate the new doorbell */
 249	__set_bit(new_id, doorbell_bitmap);
 250	doorbell->cookie = 0;
 251	doorbell->db_status = GUC_DOORBELL_ENABLED;
 252	return host2guc_allocate_doorbell(guc, client);
 253}
 254
 255static int guc_init_doorbell(struct intel_guc *guc,
 256			      struct i915_guc_client *client,
 257			      uint16_t db_id)
 258{
 259	return guc_update_doorbell_id(guc, client, db_id);
 260}
 261
 262static void guc_disable_doorbell(struct intel_guc *guc,
 263				 struct i915_guc_client *client)
 264{
 265	(void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID);
 266
 267	/* XXX: wait for any interrupts */
 268	/* XXX: wait for workqueue to drain */
 269}
 270
 271static uint16_t
 272select_doorbell_register(struct intel_guc *guc, uint32_t priority)
 273{
 274	/*
 275	 * The bitmap tracks which doorbell registers are currently in use.
 276	 * It is split into two halves; the first half is used for normal
 277	 * priority contexts, the second half for high-priority ones.
 278	 * Note that logically higher priorities are numerically less than
 279	 * normal ones, so the test below means "is it high-priority?"
 280	 */
 281	const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH);
 282	const uint16_t half = GUC_MAX_DOORBELLS / 2;
 283	const uint16_t start = hi_pri ? half : 0;
 284	const uint16_t end = start + half;
 285	uint16_t id;
 286
 287	id = find_next_zero_bit(guc->doorbell_bitmap, end, start);
 288	if (id == end)
 289		id = GUC_INVALID_DOORBELL_ID;
 290
 291	DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n",
 292			hi_pri ? "high" : "normal", id);
 293
 294	return id;
 295}
 296
 297/*
 298 * Select, assign and relase doorbell cachelines
 299 *
 300 * These functions track which doorbell cachelines are in use.
 301 * The data they manipulate is protected by the host2guc lock.
 302 */
 303
 304static uint32_t select_doorbell_cacheline(struct intel_guc *guc)
 305{
 306	const uint32_t cacheline_size = cache_line_size();
 307	uint32_t offset;
 308
 309	/* Doorbell uses a single cache line within a page */
 310	offset = offset_in_page(guc->db_cacheline);
 311
 312	/* Moving to next cache line to reduce contention */
 313	guc->db_cacheline += cacheline_size;
 314
 315	DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n",
 316			offset, guc->db_cacheline, cacheline_size);
 317
 318	return offset;
 319}
 320
 321/*
 322 * Initialise the process descriptor shared with the GuC firmware.
 323 */
 324static void guc_proc_desc_init(struct intel_guc *guc,
 325			       struct i915_guc_client *client)
 326{
 327	struct guc_process_desc *desc;
 328
 329	desc = client->vaddr + client->proc_desc_offset;
 330
 331	memset(desc, 0, sizeof(*desc));
 332
 333	/*
 334	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
 335	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
 336	 * space for kernel clients (map on demand instead? May make debug
 337	 * easier to have it mapped).
 338	 */
 339	desc->wq_base_addr = 0;
 340	desc->db_base_addr = 0;
 341
 342	desc->context_id = client->ctx_index;
 343	desc->wq_size_bytes = client->wq_size;
 344	desc->wq_status = WQ_STATUS_ACTIVE;
 345	desc->priority = client->priority;
 346}
 347
 348/*
 349 * Initialise/clear the context descriptor shared with the GuC firmware.
 350 *
 351 * This descriptor tells the GuC where (in GGTT space) to find the important
 352 * data structures relating to this client (doorbell, process descriptor,
 353 * write queue, etc).
 354 */
 355
 356static void guc_ctx_desc_init(struct intel_guc *guc,
 357			      struct i915_guc_client *client)
 358{
 359	struct drm_i915_private *dev_priv = guc_to_i915(guc);
 360	struct intel_engine_cs *engine;
 361	struct i915_gem_context *ctx = client->owner;
 362	struct guc_context_desc desc;
 363	struct sg_table *sg;
 364	unsigned int tmp;
 365	u32 gfx_addr;
 366
 367	memset(&desc, 0, sizeof(desc));
 368
 369	desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL;
 370	desc.context_id = client->ctx_index;
 371	desc.priority = client->priority;
 372	desc.db_id = client->doorbell_id;
 373
 374	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
 375		struct intel_context *ce = &ctx->engine[engine->id];
 376		uint32_t guc_engine_id = engine->guc_id;
 377		struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id];
 378
 379		/* TODO: We have a design issue to be solved here. Only when we
 380		 * receive the first batch, we know which engine is used by the
 381		 * user. But here GuC expects the lrc and ring to be pinned. It
 382		 * is not an issue for default context, which is the only one
 383		 * for now who owns a GuC client. But for future owner of GuC
 384		 * client, need to make sure lrc is pinned prior to enter here.
 385		 */
 386		if (!ce->state)
 387			break;	/* XXX: continue? */
 388
 389		lrc->context_desc = lower_32_bits(ce->lrc_desc);
 390
 391		/* The state page is after PPHWSP */
 392		lrc->ring_lcra =
 393			i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
 394		lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
 395				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
 396
 397		lrc->ring_begin = i915_ggtt_offset(ce->ring->vma);
 398		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
 399		lrc->ring_next_free_location = lrc->ring_begin;
 400		lrc->ring_current_tail_pointer_value = 0;
 401
 402		desc.engines_used |= (1 << guc_engine_id);
 403	}
 404
 405	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
 406			client->engines, desc.engines_used);
 407	WARN_ON(desc.engines_used == 0);
 408
 409	/*
 410	 * The doorbell, process descriptor, and workqueue are all parts
 411	 * of the client object, which the GuC will reference via the GGTT
 412	 */
 413	gfx_addr = i915_ggtt_offset(client->vma);
 414	desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
 415				client->doorbell_offset;
 416	desc.db_trigger_cpu =
 417		(uintptr_t)client->vaddr + client->doorbell_offset;
 418	desc.db_trigger_uk = gfx_addr + client->doorbell_offset;
 419	desc.process_desc = gfx_addr + client->proc_desc_offset;
 420	desc.wq_addr = gfx_addr + client->wq_offset;
 421	desc.wq_size = client->wq_size;
 422
 423	/*
 424	 * XXX: Take LRCs from an existing context if this is not an
 425	 * IsKMDCreatedContext client
 426	 */
 427	desc.desc_private = (uintptr_t)client;
 428
 429	/* Pool context is pinned already */
 430	sg = guc->ctx_pool_vma->pages;
 431	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
 432			     sizeof(desc) * client->ctx_index);
 433}
 434
 435static void guc_ctx_desc_fini(struct intel_guc *guc,
 436			      struct i915_guc_client *client)
 437{
 438	struct guc_context_desc desc;
 439	struct sg_table *sg;
 440
 441	memset(&desc, 0, sizeof(desc));
 442
 443	sg = guc->ctx_pool_vma->pages;
 444	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
 445			     sizeof(desc) * client->ctx_index);
 446}
 447
 448/**
 449 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
 450 * @request:	request associated with the commands
 451 *
 452 * Return:	0 if space is available
 453 *		-EAGAIN if space is not currently available
 454 *
 455 * This function must be called (and must return 0) before a request
 456 * is submitted to the GuC via i915_guc_submit() below. Once a result
 457 * of 0 has been returned, it must be balanced by a corresponding
 458 * call to submit().
 459 *
 460 * Reservation allows the caller to determine in advance that space
 461 * will be available for the next submission before committing resources
 462 * to it, and helps avoid late failures with complicated recovery paths.
 463 */
 464int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
 465{
 466	const size_t wqi_size = sizeof(struct guc_wq_item);
 467	struct i915_guc_client *gc = request->i915->guc.execbuf_client;
 468	struct guc_process_desc *desc = gc->vaddr + gc->proc_desc_offset;
 469	u32 freespace;
 470	int ret;
 471
 472	spin_lock(&gc->wq_lock);
 473	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
 474	freespace -= gc->wq_rsvd;
 475	if (likely(freespace >= wqi_size)) {
 476		gc->wq_rsvd += wqi_size;
 477		ret = 0;
 478	} else {
 479		gc->no_wq_space++;
 480		ret = -EAGAIN;
 481	}
 482	spin_unlock(&gc->wq_lock);
 483
 484	return ret;
 485}
 486
 487void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
 488{
 489	const size_t wqi_size = sizeof(struct guc_wq_item);
 490	struct i915_guc_client *gc = request->i915->guc.execbuf_client;
 491
 492	GEM_BUG_ON(READ_ONCE(gc->wq_rsvd) < wqi_size);
 493
 494	spin_lock(&gc->wq_lock);
 495	gc->wq_rsvd -= wqi_size;
 496	spin_unlock(&gc->wq_lock);
 497}
 498
 499/* Construct a Work Item and append it to the GuC's Work Queue */
 500static void guc_wq_item_append(struct i915_guc_client *gc,
 501			       struct drm_i915_gem_request *rq)
 502{
 503	/* wqi_len is in DWords, and does not include the one-word header */
 504	const size_t wqi_size = sizeof(struct guc_wq_item);
 505	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
 506	struct intel_engine_cs *engine = rq->engine;
 507	struct guc_process_desc *desc;
 508	struct guc_wq_item *wqi;
 509	u32 freespace, tail, wq_off;
 510
 511	desc = gc->vaddr + gc->proc_desc_offset;
 512
 513	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
 514	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
 515	GEM_BUG_ON(freespace < wqi_size);
 516
 517	/* The GuC firmware wants the tail index in QWords, not bytes */
 518	tail = rq->tail;
 519	GEM_BUG_ON(tail & 7);
 520	tail >>= 3;
 521	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
 522
 523	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
 524	 * should not have the case where structure wqi is across page, neither
 525	 * wrapped to the beginning. This simplifies the implementation below.
 526	 *
 527	 * XXX: if not the case, we need save data to a temp wqi and copy it to
 528	 * workqueue buffer dw by dw.
 529	 */
 530	BUILD_BUG_ON(wqi_size != 16);
 531	GEM_BUG_ON(gc->wq_rsvd < wqi_size);
 532
 533	/* postincrement WQ tail for next time */
 534	wq_off = gc->wq_tail;
 535	GEM_BUG_ON(wq_off & (wqi_size - 1));
 536	gc->wq_tail += wqi_size;
 537	gc->wq_tail &= gc->wq_size - 1;
 538	gc->wq_rsvd -= wqi_size;
 539
 540	/* WQ starts from the page after doorbell / process_desc */
 541	wqi = gc->vaddr + wq_off + GUC_DB_SIZE;
 542
 543	/* Now fill in the 4-word work queue item */
 544	wqi->header = WQ_TYPE_INORDER |
 545			(wqi_len << WQ_LEN_SHIFT) |
 546			(engine->guc_id << WQ_TARGET_SHIFT) |
 547			WQ_NO_WCFLUSH_WAIT;
 548
 549	/* The GuC wants only the low-order word of the context descriptor */
 550	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
 551
 552	wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT;
 553	wqi->fence_id = rq->global_seqno;
 554}
 555
 556static int guc_ring_doorbell(struct i915_guc_client *gc)
 557{
 558	struct guc_process_desc *desc;
 559	union guc_doorbell_qw db_cmp, db_exc, db_ret;
 560	union guc_doorbell_qw *db;
 561	int attempt = 2, ret = -EAGAIN;
 562
 563	desc = gc->vaddr + gc->proc_desc_offset;
 564
 565	/* Update the tail so it is visible to GuC */
 566	desc->tail = gc->wq_tail;
 567
 568	/* current cookie */
 569	db_cmp.db_status = GUC_DOORBELL_ENABLED;
 570	db_cmp.cookie = gc->cookie;
 571
 572	/* cookie to be updated */
 573	db_exc.db_status = GUC_DOORBELL_ENABLED;
 574	db_exc.cookie = gc->cookie + 1;
 575	if (db_exc.cookie == 0)
 576		db_exc.cookie = 1;
 577
 578	/* pointer of current doorbell cacheline */
 579	db = gc->vaddr + gc->doorbell_offset;
 580
 581	while (attempt--) {
 582		/* lets ring the doorbell */
 583		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
 584			db_cmp.value_qw, db_exc.value_qw);
 585
 586		/* if the exchange was successfully executed */
 587		if (db_ret.value_qw == db_cmp.value_qw) {
 588			/* db was successfully rung */
 589			gc->cookie = db_exc.cookie;
 590			ret = 0;
 591			break;
 592		}
 593
 594		/* XXX: doorbell was lost and need to acquire it again */
 595		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
 596			break;
 597
 598		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
 599			 db_cmp.cookie, db_ret.cookie);
 600
 601		/* update the cookie to newly read cookie from GuC */
 602		db_cmp.cookie = db_ret.cookie;
 603		db_exc.cookie = db_ret.cookie + 1;
 604		if (db_exc.cookie == 0)
 605			db_exc.cookie = 1;
 606	}
 607
 608	return ret;
 609}
 610
 611/**
 612 * i915_guc_submit() - Submit commands through GuC
 613 * @rq:		request associated with the commands
 614 *
 615 * Return:	0 on success, otherwise an errno.
 616 * 		(Note: nonzero really shouldn't happen!)
 617 *
 618 * The caller must have already called i915_guc_wq_reserve() above with
 619 * a result of 0 (success), guaranteeing that there is space in the work
 620 * queue for the new request, so enqueuing the item cannot fail.
 621 *
 622 * Bad Things Will Happen if the caller violates this protocol e.g. calls
 623 * submit() when _reserve() says there's no space, or calls _submit()
 624 * a different number of times from (successful) calls to _reserve().
 625 *
 626 * The only error here arises if the doorbell hardware isn't functioning
 627 * as expected, which really shouln't happen.
 628 */
 629static void i915_guc_submit(struct drm_i915_gem_request *rq)
 630{
 631	struct drm_i915_private *dev_priv = rq->i915;
 632	struct intel_engine_cs *engine = rq->engine;
 633	unsigned int engine_id = engine->id;
 634	struct intel_guc *guc = &rq->i915->guc;
 635	struct i915_guc_client *client = guc->execbuf_client;
 636	int b_ret;
 637
 638	/* We keep the previous context alive until we retire the following
 639	 * request. This ensures that any the context object is still pinned
 640	 * for any residual writes the HW makes into it on the context switch
 641	 * into the next object following the breadcrumb. Otherwise, we may
 642	 * retire the context too early.
 643	 */
 644	rq->previous_context = engine->last_context;
 645	engine->last_context = rq->ctx;
 646
 647	i915_gem_request_submit(rq);
 648
 649	spin_lock(&client->wq_lock);
 650	guc_wq_item_append(client, rq);
 651
 652	/* WA to flush out the pending GMADR writes to ring buffer. */
 653	if (i915_vma_is_map_and_fenceable(rq->ring->vma))
 654		POSTING_READ_FW(GUC_STATUS);
 655
 656	b_ret = guc_ring_doorbell(client);
 657
 658	client->submissions[engine_id] += 1;
 659	client->retcode = b_ret;
 660	if (b_ret)
 661		client->b_fail += 1;
 662
 663	guc->submissions[engine_id] += 1;
 664	guc->last_seqno[engine_id] = rq->global_seqno;
 665	spin_unlock(&client->wq_lock);
 666}
 667
 668/*
 669 * Everything below here is concerned with setup & teardown, and is
 670 * therefore not part of the somewhat time-critical batch-submission
 671 * path of i915_guc_submit() above.
 672 */
 673
 674/**
 675 * guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
 676 * @guc:	the guc
 677 * @size:	size of area to allocate (both virtual space and memory)
 678 *
 679 * This is a wrapper to create an object for use with the GuC. In order to
 680 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 681 * both some backing storage and a range inside the Global GTT. We must pin
 682 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 683 * range is reserved inside GuC.
 684 *
 685 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
 686 */
 687static struct i915_vma *guc_allocate_vma(struct intel_guc *guc, u32 size)
 688{
 689	struct drm_i915_private *dev_priv = guc_to_i915(guc);
 690	struct drm_i915_gem_object *obj;
 691	struct i915_vma *vma;
 692	int ret;
 693
 694	obj = i915_gem_object_create(&dev_priv->drm, size);
 695	if (IS_ERR(obj))
 696		return ERR_CAST(obj);
 697
 698	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
 699	if (IS_ERR(vma))
 700		goto err;
 701
 702	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
 703			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
 704	if (ret) {
 705		vma = ERR_PTR(ret);
 706		goto err;
 707	}
 708
 709	/* Invalidate GuC TLB to let GuC take the latest updates to GTT. */
 710	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
 711
 712	return vma;
 713
 714err:
 715	i915_gem_object_put(obj);
 716	return vma;
 717}
 718
 719static void
 720guc_client_free(struct drm_i915_private *dev_priv,
 721		struct i915_guc_client *client)
 722{
 723	struct intel_guc *guc = &dev_priv->guc;
 724
 725	if (!client)
 726		return;
 727
 728	/*
 729	 * XXX: wait for any outstanding submissions before freeing memory.
 730	 * Be sure to drop any locks
 731	 */
 732
 733	if (client->vaddr) {
 734		/*
 735		 * If we got as far as setting up a doorbell, make sure we
 736		 * shut it down before unmapping & deallocating the memory.
 737		 */
 738		guc_disable_doorbell(guc, client);
 739
 740		i915_gem_object_unpin_map(client->vma->obj);
 741	}
 742
 743	i915_vma_unpin_and_release(&client->vma);
 744
 745	if (client->ctx_index != GUC_INVALID_CTX_ID) {
 746		guc_ctx_desc_fini(guc, client);
 747		ida_simple_remove(&guc->ctx_ids, client->ctx_index);
 748	}
 749
 750	kfree(client);
 751}
 752
 753/* Check that a doorbell register is in the expected state */
 754static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id)
 755{
 756	struct drm_i915_private *dev_priv = guc_to_i915(guc);
 757	i915_reg_t drbreg = GEN8_DRBREGL(db_id);
 758	uint32_t value = I915_READ(drbreg);
 759	bool enabled = (value & GUC_DOORBELL_ENABLED) != 0;
 760	bool expected = test_bit(db_id, guc->doorbell_bitmap);
 761
 762	if (enabled == expected)
 763		return true;
 764
 765	DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n",
 766			 db_id, drbreg.reg, value,
 767			 expected ? "active" : "inactive");
 768
 769	return false;
 770}
 771
 772/*
 773 * Borrow the first client to set up & tear down each unused doorbell
 774 * in turn, to ensure that all doorbell h/w is (re)initialised.
 775 */
 776static void guc_init_doorbell_hw(struct intel_guc *guc)
 777{
 778	struct i915_guc_client *client = guc->execbuf_client;
 779	uint16_t db_id;
 780	int i, err;
 781
 782	/* Save client's original doorbell selection */
 783	db_id = client->doorbell_id;
 784
 785	for (i = 0; i < GUC_MAX_DOORBELLS; ++i) {
 786		/* Skip if doorbell is OK */
 787		if (guc_doorbell_check(guc, i))
 788			continue;
 789
 790		err = guc_update_doorbell_id(guc, client, i);
 791		if (err)
 792			DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n",
 793					i, err);
 794	}
 795
 796	/* Restore to original value */
 797	err = guc_update_doorbell_id(guc, client, db_id);
 798	if (err)
 799		DRM_WARN("Failed to restore doorbell to %d, err %d\n",
 800			 db_id, err);
 801
 802	/* Read back & verify all doorbell registers */
 803	for (i = 0; i < GUC_MAX_DOORBELLS; ++i)
 804		(void)guc_doorbell_check(guc, i);
 805}
 806
 807/**
 808 * guc_client_alloc() - Allocate an i915_guc_client
 809 * @dev_priv:	driver private data structure
 810 * @engines:	The set of engines to enable for this client
 811 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 812 * 		The kernel client to replace ExecList submission is created with
 813 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 814 * 		while a preemption context can use CRITICAL.
 815 * @ctx:	the context that owns the client (we use the default render
 816 * 		context)
 817 *
 818 * Return:	An i915_guc_client object if success, else NULL.
 819 */
 820static struct i915_guc_client *
 821guc_client_alloc(struct drm_i915_private *dev_priv,
 822		 uint32_t engines,
 823		 uint32_t priority,
 824		 struct i915_gem_context *ctx)
 825{
 826	struct i915_guc_client *client;
 827	struct intel_guc *guc = &dev_priv->guc;
 828	struct i915_vma *vma;
 829	void *vaddr;
 830	uint16_t db_id;
 831
 832	client = kzalloc(sizeof(*client), GFP_KERNEL);
 833	if (!client)
 834		return NULL;
 835
 836	client->owner = ctx;
 837	client->guc = guc;
 838	client->engines = engines;
 839	client->priority = priority;
 840	client->doorbell_id = GUC_INVALID_DOORBELL_ID;
 841
 842	client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0,
 843			GUC_MAX_GPU_CONTEXTS, GFP_KERNEL);
 844	if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) {
 845		client->ctx_index = GUC_INVALID_CTX_ID;
 846		goto err;
 847	}
 848
 849	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
 850	vma = guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
 851	if (IS_ERR(vma))
 852		goto err;
 853
 854	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
 855	client->vma = vma;
 856
 857	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
 858	if (IS_ERR(vaddr))
 859		goto err;
 860
 861	client->vaddr = vaddr;
 862
 863	spin_lock_init(&client->wq_lock);
 864	client->wq_offset = GUC_DB_SIZE;
 865	client->wq_size = GUC_WQ_SIZE;
 866
 867	db_id = select_doorbell_register(guc, client->priority);
 868	if (db_id == GUC_INVALID_DOORBELL_ID)
 869		/* XXX: evict a doorbell instead? */
 870		goto err;
 871
 872	client->doorbell_offset = select_doorbell_cacheline(guc);
 873
 874	/*
 875	 * Since the doorbell only requires a single cacheline, we can save
 876	 * space by putting the application process descriptor in the same
 877	 * page. Use the half of the page that doesn't include the doorbell.
 878	 */
 879	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
 880		client->proc_desc_offset = 0;
 881	else
 882		client->proc_desc_offset = (GUC_DB_SIZE / 2);
 883
 884	guc_proc_desc_init(guc, client);
 885	guc_ctx_desc_init(guc, client);
 886	if (guc_init_doorbell(guc, client, db_id))
 887		goto err;
 888
 889	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n",
 890		priority, client, client->engines, client->ctx_index);
 891	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n",
 892		client->doorbell_id, client->doorbell_offset);
 893
 894	return client;
 895
 896err:
 897	guc_client_free(dev_priv, client);
 898	return NULL;
 899}
 900
 901/*
 902 * Sub buffer switch callback. Called whenever relay has to switch to a new
 903 * sub buffer, relay stays on the same sub buffer if 0 is returned.
 904 */
 905static int subbuf_start_callback(struct rchan_buf *buf,
 906				 void *subbuf,
 907				 void *prev_subbuf,
 908				 size_t prev_padding)
 909{
 910	/* Use no-overwrite mode by default, where relay will stop accepting
 911	 * new data if there are no empty sub buffers left.
 912	 * There is no strict synchronization enforced by relay between Consumer
 913	 * and Producer. In overwrite mode, there is a possibility of getting
 914	 * inconsistent/garbled data, the producer could be writing on to the
 915	 * same sub buffer from which Consumer is reading. This can't be avoided
 916	 * unless Consumer is fast enough and can always run in tandem with
 917	 * Producer.
 918	 */
 919	if (relay_buf_full(buf))
 920		return 0;
 921
 922	return 1;
 923}
 924
 925/*
 926 * file_create() callback. Creates relay file in debugfs.
 927 */
 928static struct dentry *create_buf_file_callback(const char *filename,
 929					       struct dentry *parent,
 930					       umode_t mode,
 931					       struct rchan_buf *buf,
 932					       int *is_global)
 933{
 934	struct dentry *buf_file;
 935
 936	/* This to enable the use of a single buffer for the relay channel and
 937	 * correspondingly have a single file exposed to User, through which
 938	 * it can collect the logs in order without any post-processing.
 939	 * Need to set 'is_global' even if parent is NULL for early logging.
 940	 */
 941	*is_global = 1;
 942
 943	if (!parent)
 944		return NULL;
 945
 946	/* Not using the channel filename passed as an argument, since for each
 947	 * channel relay appends the corresponding CPU number to the filename
 948	 * passed in relay_open(). This should be fine as relay just needs a
 949	 * dentry of the file associated with the channel buffer and that file's
 950	 * name need not be same as the filename passed as an argument.
 951	 */
 952	buf_file = debugfs_create_file("guc_log", mode,
 953				       parent, buf, &relay_file_operations);
 954	return buf_file;
 955}
 956
 957/*
 958 * file_remove() default callback. Removes relay file in debugfs.
 959 */
 960static int remove_buf_file_callback(struct dentry *dentry)
 961{
 962	debugfs_remove(dentry);
 963	return 0;
 964}
 965
 966/* relay channel callbacks */
 967static struct rchan_callbacks relay_callbacks = {
 968	.subbuf_start = subbuf_start_callback,
 969	.create_buf_file = create_buf_file_callback,
 970	.remove_buf_file = remove_buf_file_callback,
 971};
 972
 973static void guc_log_remove_relay_file(struct intel_guc *guc)
 974{
 975	relay_close(guc->log.relay_chan);
 976}
 977
 978static int guc_log_create_relay_channel(struct intel_guc *guc)
 979{
 980	struct drm_i915_private *dev_priv = guc_to_i915(guc);
 981	struct rchan *guc_log_relay_chan;
 982	size_t n_subbufs, subbuf_size;
 983
 984	/* Keep the size of sub buffers same as shared log buffer */
 985	subbuf_size = guc->log.vma->obj->base.size;
 986
 987	/* Store up to 8 snapshots, which is large enough to buffer sufficient
 988	 * boot time logs and provides enough leeway to User, in terms of
 989	 * latency, for consuming the logs from relay. Also doesn't take
 990	 * up too much memory.
 991	 */
 992	n_subbufs = 8;
 993
 994	guc_log_relay_chan = relay_open(NULL, NULL, subbuf_size,
 995					n_subbufs, &relay_callbacks, dev_priv);
 996	if (!guc_log_relay_chan) {
 997		DRM_ERROR("Couldn't create relay chan for GuC logging\n");
 998		return -ENOMEM;
 999	}
1000
1001	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
1002	guc->log.relay_chan = guc_log_relay_chan;
1003	return 0;
1004}
1005
1006static int guc_log_create_relay_file(struct intel_guc *guc)
1007{
1008	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1009	struct dentry *log_dir;
1010	int ret;
1011
1012	/* For now create the log file in /sys/kernel/debug/dri/0 dir */
1013	log_dir = dev_priv->drm.primary->debugfs_root;
1014
1015	/* If /sys/kernel/debug/dri/0 location do not exist, then debugfs is
1016	 * not mounted and so can't create the relay file.
1017	 * The relay API seems to fit well with debugfs only, for availing relay
1018	 * there are 3 requirements which can be met for debugfs file only in a
1019	 * straightforward/clean manner :-
1020	 * i)   Need the associated dentry pointer of the file, while opening the
1021	 *      relay channel.
1022	 * ii)  Should be able to use 'relay_file_operations' fops for the file.
1023	 * iii) Set the 'i_private' field of file's inode to the pointer of
1024	 *	relay channel buffer.
1025	 */
1026	if (!log_dir) {
1027		DRM_ERROR("Debugfs dir not available yet for GuC log file\n");
1028		return -ENODEV;
1029	}
1030
1031	ret = relay_late_setup_files(guc->log.relay_chan, "guc_log", log_dir);
1032	if (ret) {
1033		DRM_ERROR("Couldn't associate relay chan with file %d\n", ret);
1034		return ret;
1035	}
1036
1037	return 0;
1038}
1039
1040static void guc_move_to_next_buf(struct intel_guc *guc)
1041{
1042	/* Make sure the updates made in the sub buffer are visible when
1043	 * Consumer sees the following update to offset inside the sub buffer.
1044	 */
1045	smp_wmb();
1046
1047	/* All data has been written, so now move the offset of sub buffer. */
1048	relay_reserve(guc->log.relay_chan, guc->log.vma->obj->base.size);
1049
1050	/* Switch to the next sub buffer */
1051	relay_flush(guc->log.relay_chan);
1052}
1053
1054static void *guc_get_write_buffer(struct intel_guc *guc)
1055{
1056	if (!guc->log.relay_chan)
1057		return NULL;
1058
1059	/* Just get the base address of a new sub buffer and copy data into it
1060	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
1061	 * buffers are full. Could have used the relay_write() to indirectly
1062	 * copy the data, but that would have been bit convoluted, as we need to
1063	 * write to only certain locations inside a sub buffer which cannot be
1064	 * done without using relay_reserve() along with relay_write(). So its
1065	 * better to use relay_reserve() alone.
1066	 */
1067	return relay_reserve(guc->log.relay_chan, 0);
1068}
1069
1070static bool
1071guc_check_log_buf_overflow(struct intel_guc *guc,
1072			   enum guc_log_buffer_type type, unsigned int full_cnt)
1073{
1074	unsigned int prev_full_cnt = guc->log.prev_overflow_count[type];
1075	bool overflow = false;
1076
1077	if (full_cnt != prev_full_cnt) {
1078		overflow = true;
1079
1080		guc->log.prev_overflow_count[type] = full_cnt;
1081		guc->log.total_overflow_count[type] += full_cnt - prev_full_cnt;
1082
1083		if (full_cnt < prev_full_cnt) {
1084			/* buffer_full_cnt is a 4 bit counter */
1085			guc->log.total_overflow_count[type] += 16;
1086		}
1087		DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
1088	}
1089
1090	return overflow;
1091}
1092
1093static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
1094{
1095	switch (type) {
1096	case GUC_ISR_LOG_BUFFER:
1097		return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE;
1098	case GUC_DPC_LOG_BUFFER:
1099		return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE;
1100	case GUC_CRASH_DUMP_LOG_BUFFER:
1101		return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE;
1102	default:
1103		MISSING_CASE(type);
1104	}
1105
1106	return 0;
1107}
1108
1109static void guc_read_update_log_buffer(struct intel_guc *guc)
1110{
1111	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
1112	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
1113	struct guc_log_buffer_state log_buf_state_local;
1114	enum guc_log_buffer_type type;
1115	void *src_data, *dst_data;
1116	bool new_overflow;
1117
1118	if (WARN_ON(!guc->log.buf_addr))
1119		return;
1120
1121	/* Get the pointer to shared GuC log buffer */
1122	log_buf_state = src_data = guc->log.buf_addr;
1123
1124	/* Get the pointer to local buffer to store the logs */
1125	log_buf_snapshot_state = dst_data = guc_get_write_buffer(guc);
1126
1127	/* Actual logs are present from the 2nd page */
1128	src_data += PAGE_SIZE;
1129	dst_data += PAGE_SIZE;
1130
1131	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
1132		/* Make a copy of the state structure, inside GuC log buffer
1133		 * (which is uncached mapped), on the stack to avoid reading
1134		 * from it multiple times.
1135		 */
1136		memcpy(&log_buf_state_local, log_buf_state,
1137		       sizeof(struct guc_log_buffer_state));
1138		buffer_size = guc_get_log_buffer_size(type);
1139		read_offset = log_buf_state_local.read_ptr;
1140		write_offset = log_buf_state_local.sampled_write_ptr;
1141		full_cnt = log_buf_state_local.buffer_full_cnt;
1142
1143		/* Bookkeeping stuff */
1144		guc->log.flush_count[type] += log_buf_state_local.flush_to_file;
1145		new_overflow = guc_check_log_buf_overflow(guc, type, full_cnt);
1146
1147		/* Update the state of shared log buffer */
1148		log_buf_state->read_ptr = write_offset;
1149		log_buf_state->flush_to_file = 0;
1150		log_buf_state++;
1151
1152		if (unlikely(!log_buf_snapshot_state))
1153			continue;
1154
1155		/* First copy the state structure in snapshot buffer */
1156		memcpy(log_buf_snapshot_state, &log_buf_state_local,
1157		       sizeof(struct guc_log_buffer_state));
1158
1159		/* The write pointer could have been updated by GuC firmware,
1160		 * after sending the flush interrupt to Host, for consistency
1161		 * set write pointer value to same value of sampled_write_ptr
1162		 * in the snapshot buffer.
1163		 */
1164		log_buf_snapshot_state->write_ptr = write_offset;
1165		log_buf_snapshot_state++;
1166
1167		/* Now copy the actual logs. */
1168		if (unlikely(new_overflow)) {
1169			/* copy the whole buffer in case of overflow */
1170			read_offset = 0;
1171			write_offset = buffer_size;
1172		} else if (unlikely((read_offset > buffer_size) ||
1173				    (write_offset > buffer_size))) {
1174			DRM_ERROR("invalid log buffer state\n");
1175			/* copy whole buffer as offsets are unreliable */
1176			read_offset = 0;
1177			write_offset = buffer_size;
1178		}
1179
1180		/* Just copy the newly written data */
1181		if (read_offset > write_offset) {
1182			i915_memcpy_from_wc(dst_data, src_data, write_offset);
1183			bytes_to_copy = buffer_size - read_offset;
1184		} else {
1185			bytes_to_copy = write_offset - read_offset;
1186		}
1187		i915_memcpy_from_wc(dst_data + read_offset,
1188				    src_data + read_offset, bytes_to_copy);
1189
1190		src_data += buffer_size;
1191		dst_data += buffer_size;
1192	}
1193
1194	if (log_buf_snapshot_state)
1195		guc_move_to_next_buf(guc);
1196	else {
1197		/* Used rate limited to avoid deluge of messages, logs might be
1198		 * getting consumed by User at a slow rate.
1199		 */
1200		DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
1201		guc->log.capture_miss_count++;
1202	}
1203}
1204
1205static void guc_capture_logs_work(struct work_struct *work)
1206{
1207	struct drm_i915_private *dev_priv =
1208		container_of(work, struct drm_i915_private, guc.log.flush_work);
1209
1210	i915_guc_capture_logs(dev_priv);
1211}
1212
1213static void guc_log_cleanup(struct intel_guc *guc)
1214{
1215	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1216
1217	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1218
1219	/* First disable the flush interrupt */
1220	gen9_disable_guc_interrupts(dev_priv);
1221
1222	if (guc->log.flush_wq)
1223		destroy_workqueue(guc->log.flush_wq);
1224
1225	guc->log.flush_wq = NULL;
1226
1227	if (guc->log.relay_chan)
1228		guc_log_remove_relay_file(guc);
1229
1230	guc->log.relay_chan = NULL;
1231
1232	if (guc->log.buf_addr)
1233		i915_gem_object_unpin_map(guc->log.vma->obj);
1234
1235	guc->log.buf_addr = NULL;
1236}
1237
1238static int guc_log_create_extras(struct intel_guc *guc)
1239{
1240	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1241	void *vaddr;
1242	int ret;
1243
1244	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1245
1246	/* Nothing to do */
1247	if (i915.guc_log_level < 0)
1248		return 0;
1249
1250	if (!guc->log.buf_addr) {
1251		/* Create a WC (Uncached for read) vmalloc mapping of log
1252		 * buffer pages, so that we can directly get the data
1253		 * (up-to-date) from memory.
1254		 */
1255		vaddr = i915_gem_object_pin_map(guc->log.vma->obj, I915_MAP_WC);
1256		if (IS_ERR(vaddr)) {
1257			ret = PTR_ERR(vaddr);
1258			DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
1259			return ret;
1260		}
1261
1262		guc->log.buf_addr = vaddr;
1263	}
1264
1265	if (!guc->log.relay_chan) {
1266		/* Create a relay channel, so that we have buffers for storing
1267		 * the GuC firmware logs, the channel will be linked with a file
1268		 * later on when debugfs is registered.
1269		 */
1270		ret = guc_log_create_relay_channel(guc);
1271		if (ret)
1272			return ret;
1273	}
1274
1275	if (!guc->log.flush_wq) {
1276		INIT_WORK(&guc->log.flush_work, guc_capture_logs_work);
1277
1278		 /*
1279		 * GuC log buffer flush work item has to do register access to
1280		 * send the ack to GuC and this work item, if not synced before
1281		 * suspend, can potentially get executed after the GFX device is
1282		 * suspended.
1283		 * By marking the WQ as freezable, we don't have to bother about
1284		 * flushing of this work item from the suspend hooks, the pending
1285		 * work item if any will be either executed before the suspend
1286		 * or scheduled later on resume. This way the handling of work
1287		 * item can be kept same between system suspend & rpm suspend.
1288		 */
1289		guc->log.flush_wq = alloc_ordered_workqueue("i915-guc_log",
1290							    WQ_HIGHPRI | WQ_FREEZABLE);
1291		if (guc->log.flush_wq == NULL) {
1292			DRM_ERROR("Couldn't allocate the wq for GuC logging\n");
1293			return -ENOMEM;
1294		}
1295	}
1296
1297	return 0;
1298}
1299
1300static void guc_log_create(struct intel_guc *guc)
1301{
1302	struct i915_vma *vma;
1303	unsigned long offset;
1304	uint32_t size, flags;
1305
1306	if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX)
1307		i915.guc_log_level = GUC_LOG_VERBOSITY_MAX;
1308
1309	/* The first page is to save log buffer state. Allocate one
1310	 * extra page for others in case for overlap */
1311	size = (1 + GUC_LOG_DPC_PAGES + 1 +
1312		GUC_LOG_ISR_PAGES + 1 +
1313		GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT;
1314
1315	vma = guc->log.vma;
1316	if (!vma) {
1317		/* We require SSE 4.1 for fast reads from the GuC log buffer and
1318		 * it should be present on the chipsets supporting GuC based
1319		 * submisssions.
1320		 */
1321		if (WARN_ON(!i915_memcpy_from_wc(NULL, NULL, 0))) {
1322			/* logging will not be enabled */
1323			i915.guc_log_level = -1;
1324			return;
1325		}
1326
1327		vma = guc_allocate_vma(guc, size);
1328		if (IS_ERR(vma)) {
1329			/* logging will be off */
1330			i915.guc_log_level = -1;
1331			return;
1332		}
1333
1334		guc->log.vma = vma;
1335
1336		if (guc_log_create_extras(guc)) {
1337			guc_log_cleanup(guc);
1338			i915_vma_unpin_and_release(&guc->log.vma);
1339			i915.guc_log_level = -1;
1340			return;
1341		}
1342	}
1343
1344	/* each allocated unit is a page */
1345	flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
1346		(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
1347		(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
1348		(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);
1349
1350	offset = i915_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */
1351	guc->log.flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
1352}
1353
1354static int guc_log_late_setup(struct intel_guc *guc)
1355{
1356	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1357	int ret;
1358
1359	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1360
1361	if (i915.guc_log_level < 0)
1362		return -EINVAL;
1363
1364	/* If log_level was set as -1 at boot time, then setup needed to
1365	 * handle log buffer flush interrupts would not have been done yet,
1366	 * so do that now.
1367	 */
1368	ret = guc_log_create_extras(guc);
1369	if (ret)
1370		goto err;
1371
1372	ret = guc_log_create_relay_file(guc);
1373	if (ret)
1374		goto err;
1375
1376	return 0;
1377err:
1378	guc_log_cleanup(guc);
1379	/* logging will remain off */
1380	i915.guc_log_level = -1;
1381	return ret;
1382}
1383
1384static void guc_policies_init(struct guc_policies *policies)
1385{
1386	struct guc_policy *policy;
1387	u32 p, i;
1388
1389	policies->dpc_promote_time = 500000;
1390	policies->max_num_work_items = POLICY_MAX_NUM_WI;
1391
1392	for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) {
1393		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
1394			policy = &policies->policy[p][i];
1395
1396			policy->execution_quantum = 1000000;
1397			policy->preemption_time = 500000;
1398			policy->fault_time = 250000;
1399			policy->policy_flags = 0;
1400		}
1401	}
1402
1403	policies->is_valid = 1;
1404}
1405
1406static void guc_addon_create(struct intel_guc *guc)
1407{
1408	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1409	struct i915_vma *vma;
1410	struct guc_ads *ads;
1411	struct guc_policies *policies;
1412	struct guc_mmio_reg_state *reg_state;
1413	struct intel_engine_cs *engine;
1414	enum intel_engine_id id;
1415	struct page *page;
1416	u32 size;
1417
1418	/* The ads obj includes the struct itself and buffers passed to GuC */
1419	size = sizeof(struct guc_ads) + sizeof(struct guc_policies) +
1420			sizeof(struct guc_mmio_reg_state) +
1421			GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE;
1422
1423	vma = guc->ads_vma;
1424	if (!vma) {
1425		vma = guc_allocate_vma(guc, PAGE_ALIGN(size));
1426		if (IS_ERR(vma))
1427			return;
1428
1429		guc->ads_vma = vma;
1430	}
1431
1432	page = i915_vma_first_page(vma);
1433	ads = kmap(page);
1434
1435	/*
1436	 * The GuC requires a "Golden Context" when it reinitialises
1437	 * engines after a reset. Here we use the Render ring default
1438	 * context, which must already exist and be pinned in the GGTT,
1439	 * so its address won't change after we've told the GuC where
1440	 * to find it.
1441	 */
1442	engine = dev_priv->engine[RCS];
1443	ads->golden_context_lrca = engine->status_page.ggtt_offset;
1444
1445	for_each_engine(engine, dev_priv, id)
1446		ads->eng_state_size[engine->guc_id] = intel_lr_context_size(engine);
1447
1448	/* GuC scheduling policies */
1449	policies = (void *)ads + sizeof(struct guc_ads);
1450	guc_policies_init(policies);
1451
1452	ads->scheduler_policies =
1453		i915_ggtt_offset(vma) + sizeof(struct guc_ads);
1454
1455	/* MMIO reg state */
1456	reg_state = (void *)policies + sizeof(struct guc_policies);
1457
1458	for_each_engine(engine, dev_priv, id) {
1459		reg_state->mmio_white_list[engine->guc_id].mmio_start =
1460			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1461
1462		/* Nothing to be saved or restored for now. */
1463		reg_state->mmio_white_list[engine->guc_id].count = 0;
1464	}
1465
1466	ads->reg_state_addr = ads->scheduler_policies +
1467			sizeof(struct guc_policies);
1468
1469	ads->reg_state_buffer = ads->reg_state_addr +
1470			sizeof(struct guc_mmio_reg_state);
1471
1472	kunmap(page);
1473}
1474
1475/*
1476 * Set up the memory resources to be shared with the GuC.  At this point,
1477 * we require just one object that can be mapped through the GGTT.
1478 */
1479int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1480{
1481	const size_t ctxsize = sizeof(struct guc_context_desc);
1482	const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize;
1483	const size_t gemsize = round_up(poolsize, PAGE_SIZE);
1484	struct intel_guc *guc = &dev_priv->guc;
1485	struct i915_vma *vma;
1486
1487	/* Wipe bitmap & delete client in case of reinitialisation */
1488	bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS);
1489	i915_guc_submission_disable(dev_priv);
1490
1491	if (!i915.enable_guc_submission)
1492		return 0; /* not enabled  */
1493
1494	if (guc->ctx_pool_vma)
1495		return 0; /* already allocated */
1496
1497	vma = guc_allocate_vma(guc, gemsize);
1498	if (IS_ERR(vma))
1499		return PTR_ERR(vma);
1500
1501	guc->ctx_pool_vma = vma;
1502	ida_init(&guc->ctx_ids);
1503	mutex_init(&guc->action_lock);
1504	guc_log_create(guc);
1505	guc_addon_create(guc);
1506
1507	return 0;
1508}
1509
1510int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1511{
1512	struct intel_guc *guc = &dev_priv->guc;
1513	struct drm_i915_gem_request *request;
1514	struct i915_guc_client *client;
1515	struct intel_engine_cs *engine;
1516	enum intel_engine_id id;
1517
1518	/* client for execbuf submission */
1519	client = guc_client_alloc(dev_priv,
1520				  INTEL_INFO(dev_priv)->ring_mask,
1521				  GUC_CTX_PRIORITY_KMD_NORMAL,
1522				  dev_priv->kernel_context);
1523	if (!client) {
1524		DRM_ERROR("Failed to create normal GuC client!\n");
1525		return -ENOMEM;
1526	}
1527
1528	guc->execbuf_client = client;
1529	host2guc_sample_forcewake(guc, client);
1530	guc_init_doorbell_hw(guc);
1531
1532	/* Take over from manual control of ELSP (execlists) */
1533	for_each_engine(engine, dev_priv, id) {
1534		engine->submit_request = i915_guc_submit;
1535		engine->schedule = NULL;
1536
1537		/* Replay the current set of previously submitted requests */
1538		list_for_each_entry(request,
1539				    &engine->timeline->requests, link) {
1540			client->wq_rsvd += sizeof(struct guc_wq_item);
1541			if (i915_sw_fence_done(&request->submit))
1542				i915_guc_submit(request);
1543		}
1544	}
1545
1546	return 0;
1547}
1548
1549void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1550{
1551	struct intel_guc *guc = &dev_priv->guc;
1552
1553	if (!guc->execbuf_client)
1554		return;
1555
1556	/* Revert back to manual ELSP submission */
1557	intel_execlists_enable_submission(dev_priv);
1558
1559	guc_client_free(dev_priv, guc->execbuf_client);
1560	guc->execbuf_client = NULL;
1561}
1562
1563void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
1564{
1565	struct intel_guc *guc = &dev_priv->guc;
1566
1567	i915_vma_unpin_and_release(&guc->ads_vma);
1568	i915_vma_unpin_and_release(&guc->log.vma);
1569
1570	if (guc->ctx_pool_vma)
1571		ida_destroy(&guc->ctx_ids);
1572	i915_vma_unpin_and_release(&guc->ctx_pool_vma);
1573}
1574
1575/**
1576 * intel_guc_suspend() - notify GuC entering suspend state
1577 * @dev:	drm device
1578 */
1579int intel_guc_suspend(struct drm_device *dev)
1580{
1581	struct drm_i915_private *dev_priv = to_i915(dev);
1582	struct intel_guc *guc = &dev_priv->guc;
1583	struct i915_gem_context *ctx;
1584	u32 data[3];
1585
1586	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1587		return 0;
1588
1589	gen9_disable_guc_interrupts(dev_priv);
1590
1591	ctx = dev_priv->kernel_context;
1592
1593	data[0] = HOST2GUC_ACTION_ENTER_S_STATE;
1594	/* any value greater than GUC_POWER_D0 */
1595	data[1] = GUC_POWER_D1;
1596	/* first page is shared data with GuC */
1597	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1598
1599	return host2guc_action(guc, data, ARRAY_SIZE(data));
1600}
1601
1602
1603/**
1604 * intel_guc_resume() - notify GuC resuming from suspend state
1605 * @dev:	drm device
1606 */
1607int intel_guc_resume(struct drm_device *dev)
1608{
1609	struct drm_i915_private *dev_priv = to_i915(dev);
1610	struct intel_guc *guc = &dev_priv->guc;
1611	struct i915_gem_context *ctx;
1612	u32 data[3];
1613
1614	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1615		return 0;
1616
1617	if (i915.guc_log_level >= 0)
1618		gen9_enable_guc_interrupts(dev_priv);
1619
1620	ctx = dev_priv->kernel_context;
1621
1622	data[0] = HOST2GUC_ACTION_EXIT_S_STATE;
1623	data[1] = GUC_POWER_D0;
1624	/* first page is shared data with GuC */
1625	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1626
1627	return host2guc_action(guc, data, ARRAY_SIZE(data));
1628}
1629
1630void i915_guc_capture_logs(struct drm_i915_private *dev_priv)
1631{
1632	guc_read_update_log_buffer(&dev_priv->guc);
1633
1634	/* Generally device is expected to be active only at this
1635	 * time, so get/put should be really quick.
1636	 */
1637	intel_runtime_pm_get(dev_priv);
1638	host2guc_logbuffer_flush_complete(&dev_priv->guc);
1639	intel_runtime_pm_put(dev_priv);
1640}
1641
1642void i915_guc_flush_logs(struct drm_i915_private *dev_priv)
1643{
1644	if (!i915.enable_guc_submission || (i915.guc_log_level < 0))
1645		return;
1646
1647	/* First disable the interrupts, will be renabled afterwards */
1648	gen9_disable_guc_interrupts(dev_priv);
1649
1650	/* Before initiating the forceful flush, wait for any pending/ongoing
1651	 * flush to complete otherwise forceful flush may not actually happen.
1652	 */
1653	flush_work(&dev_priv->guc.log.flush_work);
1654
1655	/* Ask GuC to update the log buffer state */
1656	host2guc_force_logbuffer_flush(&dev_priv->guc);
1657
1658	/* GuC would have updated log buffer by now, so capture it */
1659	i915_guc_capture_logs(dev_priv);
1660}
1661
1662void i915_guc_unregister(struct drm_i915_private *dev_priv)
1663{
1664	if (!i915.enable_guc_submission)
1665		return;
1666
1667	mutex_lock(&dev_priv->drm.struct_mutex);
1668	guc_log_cleanup(&dev_priv->guc);
1669	mutex_unlock(&dev_priv->drm.struct_mutex);
1670}
1671
1672void i915_guc_register(struct drm_i915_private *dev_priv)
1673{
1674	if (!i915.enable_guc_submission)
1675		return;
1676
1677	mutex_lock(&dev_priv->drm.struct_mutex);
1678	guc_log_late_setup(&dev_priv->guc);
1679	mutex_unlock(&dev_priv->drm.struct_mutex);
1680}
1681
1682int i915_guc_log_control(struct drm_i915_private *dev_priv, u64 control_val)
1683{
1684	union guc_log_control log_param;
1685	int ret;
1686
1687	log_param.value = control_val;
1688
1689	if (log_param.verbosity < GUC_LOG_VERBOSITY_MIN ||
1690	    log_param.verbosity > GUC_LOG_VERBOSITY_MAX)
1691		return -EINVAL;
1692
1693	/* This combination doesn't make sense & won't have any effect */
1694	if (!log_param.logging_enabled && (i915.guc_log_level < 0))
1695		return 0;
1696
1697	ret = host2guc_logging_control(&dev_priv->guc, log_param.value);
1698	if (ret < 0) {
1699		DRM_DEBUG_DRIVER("host2guc action failed %d\n", ret);
1700		return ret;
1701	}
1702
1703	i915.guc_log_level = log_param.verbosity;
1704
1705	/* If log_level was set as -1 at boot time, then the relay channel file
1706	 * wouldn't have been created by now and interrupts also would not have
1707	 * been enabled.
1708	 */
1709	if (!dev_priv->guc.log.relay_chan) {
1710		ret = guc_log_late_setup(&dev_priv->guc);
1711		if (!ret)
1712			gen9_enable_guc_interrupts(dev_priv);
1713	} else if (!log_param.logging_enabled) {
1714		/* Once logging is disabled, GuC won't generate logs & send an
1715		 * interrupt. But there could be some data in the log buffer
1716		 * which is yet to be captured. So request GuC to update the log
1717		 * buffer state and then collect the left over logs.
1718		 */
1719		i915_guc_flush_logs(dev_priv);
1720
1721		/* As logging is disabled, update log level to reflect that */
1722		i915.guc_log_level = -1;
1723	} else {
1724		/* In case interrupts were disabled, enable them now */
1725		gen9_enable_guc_interrupts(dev_priv);
1726	}
1727
1728	return ret;
1729}