Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright © 2012-2014 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#include <drm/drmP.h>
 26#include <drm/i915_drm.h>
 27#include "i915_drv.h"
 28#include "i915_trace.h"
 29#include "intel_drv.h"
 30#include <linux/mmu_context.h>
 31#include <linux/mmu_notifier.h>
 32#include <linux/mempolicy.h>
 33#include <linux/swap.h>
 34
 35struct i915_mm_struct {
 36	struct mm_struct *mm;
 37	struct drm_i915_private *i915;
 38	struct i915_mmu_notifier *mn;
 39	struct hlist_node node;
 40	struct kref kref;
 41	struct work_struct work;
 42};
 43
 44#if defined(CONFIG_MMU_NOTIFIER)
 45#include <linux/interval_tree.h>
 46
 47struct i915_mmu_notifier {
 48	spinlock_t lock;
 49	struct hlist_node node;
 50	struct mmu_notifier mn;
 51	struct rb_root objects;
 52	struct workqueue_struct *wq;
 53};
 54
 55struct i915_mmu_object {
 56	struct i915_mmu_notifier *mn;
 57	struct drm_i915_gem_object *obj;
 58	struct interval_tree_node it;
 59	struct list_head link;
 60	struct work_struct work;
 61	bool attached;
 62};
 63
 64static void cancel_userptr(struct work_struct *work)
 65{
 66	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
 67	struct drm_i915_gem_object *obj = mo->obj;
 68	struct drm_device *dev = obj->base.dev;
 69
 70	i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
 71
 72	mutex_lock(&dev->struct_mutex);
 73	/* Cancel any active worker and force us to re-evaluate gup */
 74	obj->userptr.work = NULL;
 75
 76	/* We are inside a kthread context and can't be interrupted */
 77	if (i915_gem_object_unbind(obj) == 0)
 78		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
 79	WARN_ONCE(obj->mm.pages,
 80		  "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_display=%d\n",
 81		  obj->bind_count,
 82		  atomic_read(&obj->mm.pages_pin_count),
 83		  obj->pin_display);
 84
 85	i915_gem_object_put(obj);
 86	mutex_unlock(&dev->struct_mutex);
 87}
 88
 89static void add_object(struct i915_mmu_object *mo)
 90{
 91	if (mo->attached)
 92		return;
 93
 94	interval_tree_insert(&mo->it, &mo->mn->objects);
 95	mo->attached = true;
 96}
 97
 98static void del_object(struct i915_mmu_object *mo)
 99{
100	if (!mo->attached)
101		return;
102
103	interval_tree_remove(&mo->it, &mo->mn->objects);
104	mo->attached = false;
105}
106
107static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
108						       struct mm_struct *mm,
109						       unsigned long start,
110						       unsigned long end)
111{
112	struct i915_mmu_notifier *mn =
113		container_of(_mn, struct i915_mmu_notifier, mn);
114	struct i915_mmu_object *mo;
115	struct interval_tree_node *it;
116	LIST_HEAD(cancelled);
117
118	if (RB_EMPTY_ROOT(&mn->objects))
119		return;
120
121	/* interval ranges are inclusive, but invalidate range is exclusive */
122	end--;
123
124	spin_lock(&mn->lock);
125	it = interval_tree_iter_first(&mn->objects, start, end);
126	while (it) {
127		/* The mmu_object is released late when destroying the
128		 * GEM object so it is entirely possible to gain a
129		 * reference on an object in the process of being freed
130		 * since our serialisation is via the spinlock and not
131		 * the struct_mutex - and consequently use it after it
132		 * is freed and then double free it. To prevent that
133		 * use-after-free we only acquire a reference on the
134		 * object if it is not in the process of being destroyed.
135		 */
136		mo = container_of(it, struct i915_mmu_object, it);
137		if (kref_get_unless_zero(&mo->obj->base.refcount))
138			queue_work(mn->wq, &mo->work);
139
140		list_add(&mo->link, &cancelled);
141		it = interval_tree_iter_next(it, start, end);
142	}
143	list_for_each_entry(mo, &cancelled, link)
144		del_object(mo);
145	spin_unlock(&mn->lock);
146
147	flush_workqueue(mn->wq);
148}
149
150static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
151	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
152};
153
154static struct i915_mmu_notifier *
155i915_mmu_notifier_create(struct mm_struct *mm)
156{
157	struct i915_mmu_notifier *mn;
158	int ret;
159
160	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
161	if (mn == NULL)
162		return ERR_PTR(-ENOMEM);
163
164	spin_lock_init(&mn->lock);
165	mn->mn.ops = &i915_gem_userptr_notifier;
166	mn->objects = RB_ROOT;
167	mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
168	if (mn->wq == NULL) {
169		kfree(mn);
170		return ERR_PTR(-ENOMEM);
171	}
172
173	 /* Protected by mmap_sem (write-lock) */
174	ret = __mmu_notifier_register(&mn->mn, mm);
175	if (ret) {
176		destroy_workqueue(mn->wq);
177		kfree(mn);
178		return ERR_PTR(ret);
179	}
180
181	return mn;
182}
183
184static void
185i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
186{
187	struct i915_mmu_object *mo;
188
189	mo = obj->userptr.mmu_object;
190	if (mo == NULL)
191		return;
192
193	spin_lock(&mo->mn->lock);
194	del_object(mo);
195	spin_unlock(&mo->mn->lock);
196	kfree(mo);
197
198	obj->userptr.mmu_object = NULL;
199}
200
201static struct i915_mmu_notifier *
202i915_mmu_notifier_find(struct i915_mm_struct *mm)
203{
204	struct i915_mmu_notifier *mn = mm->mn;
205
206	mn = mm->mn;
207	if (mn)
208		return mn;
209
210	down_write(&mm->mm->mmap_sem);
211	mutex_lock(&mm->i915->mm_lock);
212	if ((mn = mm->mn) == NULL) {
213		mn = i915_mmu_notifier_create(mm->mm);
214		if (!IS_ERR(mn))
215			mm->mn = mn;
216	}
217	mutex_unlock(&mm->i915->mm_lock);
218	up_write(&mm->mm->mmap_sem);
219
220	return mn;
221}
222
223static int
224i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
225				    unsigned flags)
226{
227	struct i915_mmu_notifier *mn;
228	struct i915_mmu_object *mo;
229
230	if (flags & I915_USERPTR_UNSYNCHRONIZED)
231		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
232
233	if (WARN_ON(obj->userptr.mm == NULL))
234		return -EINVAL;
235
236	mn = i915_mmu_notifier_find(obj->userptr.mm);
237	if (IS_ERR(mn))
238		return PTR_ERR(mn);
239
240	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
241	if (mo == NULL)
242		return -ENOMEM;
243
244	mo->mn = mn;
245	mo->obj = obj;
246	mo->it.start = obj->userptr.ptr;
247	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
248	INIT_WORK(&mo->work, cancel_userptr);
249
250	obj->userptr.mmu_object = mo;
251	return 0;
252}
253
254static void
255i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
256		       struct mm_struct *mm)
257{
258	if (mn == NULL)
259		return;
260
261	mmu_notifier_unregister(&mn->mn, mm);
262	destroy_workqueue(mn->wq);
263	kfree(mn);
264}
265
266#else
267
268static void
269i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
270{
271}
272
273static int
274i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
275				    unsigned flags)
276{
277	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
278		return -ENODEV;
279
280	if (!capable(CAP_SYS_ADMIN))
281		return -EPERM;
282
283	return 0;
284}
285
286static void
287i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
288		       struct mm_struct *mm)
289{
290}
291
292#endif
293
294static struct i915_mm_struct *
295__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
296{
297	struct i915_mm_struct *mm;
298
299	/* Protected by dev_priv->mm_lock */
300	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
301		if (mm->mm == real)
302			return mm;
303
304	return NULL;
305}
306
307static int
308i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
309{
310	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
311	struct i915_mm_struct *mm;
312	int ret = 0;
313
314	/* During release of the GEM object we hold the struct_mutex. This
315	 * precludes us from calling mmput() at that time as that may be
316	 * the last reference and so call exit_mmap(). exit_mmap() will
317	 * attempt to reap the vma, and if we were holding a GTT mmap
318	 * would then call drm_gem_vm_close() and attempt to reacquire
319	 * the struct mutex. So in order to avoid that recursion, we have
320	 * to defer releasing the mm reference until after we drop the
321	 * struct_mutex, i.e. we need to schedule a worker to do the clean
322	 * up.
323	 */
324	mutex_lock(&dev_priv->mm_lock);
325	mm = __i915_mm_struct_find(dev_priv, current->mm);
326	if (mm == NULL) {
327		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
328		if (mm == NULL) {
329			ret = -ENOMEM;
330			goto out;
331		}
332
333		kref_init(&mm->kref);
334		mm->i915 = to_i915(obj->base.dev);
335
336		mm->mm = current->mm;
337		atomic_inc(&current->mm->mm_count);
338
339		mm->mn = NULL;
340
341		/* Protected by dev_priv->mm_lock */
342		hash_add(dev_priv->mm_structs,
343			 &mm->node, (unsigned long)mm->mm);
344	} else
345		kref_get(&mm->kref);
346
347	obj->userptr.mm = mm;
348out:
349	mutex_unlock(&dev_priv->mm_lock);
350	return ret;
351}
352
353static void
354__i915_mm_struct_free__worker(struct work_struct *work)
355{
356	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
357	i915_mmu_notifier_free(mm->mn, mm->mm);
358	mmdrop(mm->mm);
359	kfree(mm);
360}
361
362static void
363__i915_mm_struct_free(struct kref *kref)
364{
365	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
366
367	/* Protected by dev_priv->mm_lock */
368	hash_del(&mm->node);
369	mutex_unlock(&mm->i915->mm_lock);
370
371	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
372	schedule_work(&mm->work);
373}
374
375static void
376i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
377{
378	if (obj->userptr.mm == NULL)
379		return;
380
381	kref_put_mutex(&obj->userptr.mm->kref,
382		       __i915_mm_struct_free,
383		       &to_i915(obj->base.dev)->mm_lock);
384	obj->userptr.mm = NULL;
385}
386
387struct get_pages_work {
388	struct work_struct work;
389	struct drm_i915_gem_object *obj;
390	struct task_struct *task;
391};
392
393#if IS_ENABLED(CONFIG_SWIOTLB)
394#define swiotlb_active() swiotlb_nr_tbl()
395#else
396#define swiotlb_active() 0
397#endif
398
399static int
400st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
401{
402	struct scatterlist *sg;
403	int ret, n;
404
405	*st = kmalloc(sizeof(**st), GFP_KERNEL);
406	if (*st == NULL)
407		return -ENOMEM;
408
409	if (swiotlb_active()) {
410		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
411		if (ret)
412			goto err;
413
414		for_each_sg((*st)->sgl, sg, num_pages, n)
415			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
416	} else {
417		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
418						0, num_pages << PAGE_SHIFT,
419						GFP_KERNEL);
420		if (ret)
421			goto err;
422	}
423
424	return 0;
425
426err:
427	kfree(*st);
428	*st = NULL;
429	return ret;
430}
431
432static struct sg_table *
433__i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
434			     struct page **pvec, int num_pages)
435{
436	struct sg_table *pages;
437	int ret;
438
439	ret = st_set_pages(&pages, pvec, num_pages);
440	if (ret)
441		return ERR_PTR(ret);
442
443	ret = i915_gem_gtt_prepare_pages(obj, pages);
444	if (ret) {
445		sg_free_table(pages);
446		kfree(pages);
447		return ERR_PTR(ret);
448	}
449
450	return pages;
451}
452
453static int
454__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
455			      bool value)
456{
457	int ret = 0;
458
459	/* During mm_invalidate_range we need to cancel any userptr that
460	 * overlaps the range being invalidated. Doing so requires the
461	 * struct_mutex, and that risks recursion. In order to cause
462	 * recursion, the user must alias the userptr address space with
463	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
464	 * to invalidate that mmaping, mm_invalidate_range is called with
465	 * the userptr address *and* the struct_mutex held.  To prevent that
466	 * we set a flag under the i915_mmu_notifier spinlock to indicate
467	 * whether this object is valid.
468	 */
469#if defined(CONFIG_MMU_NOTIFIER)
470	if (obj->userptr.mmu_object == NULL)
471		return 0;
472
473	spin_lock(&obj->userptr.mmu_object->mn->lock);
474	/* In order to serialise get_pages with an outstanding
475	 * cancel_userptr, we must drop the struct_mutex and try again.
476	 */
477	if (!value)
478		del_object(obj->userptr.mmu_object);
479	else if (!work_pending(&obj->userptr.mmu_object->work))
480		add_object(obj->userptr.mmu_object);
481	else
482		ret = -EAGAIN;
483	spin_unlock(&obj->userptr.mmu_object->mn->lock);
484#endif
485
486	return ret;
487}
488
489static void
490__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
491{
492	struct get_pages_work *work = container_of(_work, typeof(*work), work);
493	struct drm_i915_gem_object *obj = work->obj;
494	const int npages = obj->base.size >> PAGE_SHIFT;
495	struct page **pvec;
496	int pinned, ret;
497
498	ret = -ENOMEM;
499	pinned = 0;
500
501	pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
502	if (pvec != NULL) {
503		struct mm_struct *mm = obj->userptr.mm->mm;
504		unsigned int flags = 0;
505
506		if (!obj->userptr.read_only)
507			flags |= FOLL_WRITE;
508
509		ret = -EFAULT;
510		if (atomic_inc_not_zero(&mm->mm_users)) {
511			down_read(&mm->mmap_sem);
512			while (pinned < npages) {
513				ret = get_user_pages_remote
514					(work->task, mm,
515					 obj->userptr.ptr + pinned * PAGE_SIZE,
516					 npages - pinned,
517					 flags,
518					 pvec + pinned, NULL, NULL);
519				if (ret < 0)
520					break;
521
522				pinned += ret;
523			}
524			up_read(&mm->mmap_sem);
525			mmput(mm);
526		}
527	}
528
529	mutex_lock(&obj->mm.lock);
530	if (obj->userptr.work == &work->work) {
531		struct sg_table *pages = ERR_PTR(ret);
532
533		if (pinned == npages) {
534			pages = __i915_gem_userptr_set_pages(obj, pvec, npages);
535			if (!IS_ERR(pages)) {
536				__i915_gem_object_set_pages(obj, pages);
537				pinned = 0;
538				pages = NULL;
539			}
540		}
541
542		obj->userptr.work = ERR_CAST(pages);
543	}
544	mutex_unlock(&obj->mm.lock);
545
546	release_pages(pvec, pinned, 0);
547	drm_free_large(pvec);
548
549	i915_gem_object_put(obj);
550	put_task_struct(work->task);
551	kfree(work);
552}
553
554static struct sg_table *
555__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
556				      bool *active)
557{
558	struct get_pages_work *work;
559
560	/* Spawn a worker so that we can acquire the
561	 * user pages without holding our mutex. Access
562	 * to the user pages requires mmap_sem, and we have
563	 * a strict lock ordering of mmap_sem, struct_mutex -
564	 * we already hold struct_mutex here and so cannot
565	 * call gup without encountering a lock inversion.
566	 *
567	 * Userspace will keep on repeating the operation
568	 * (thanks to EAGAIN) until either we hit the fast
569	 * path or the worker completes. If the worker is
570	 * cancelled or superseded, the task is still run
571	 * but the results ignored. (This leads to
572	 * complications that we may have a stray object
573	 * refcount that we need to be wary of when
574	 * checking for existing objects during creation.)
575	 * If the worker encounters an error, it reports
576	 * that error back to this function through
577	 * obj->userptr.work = ERR_PTR.
578	 */
579	work = kmalloc(sizeof(*work), GFP_KERNEL);
580	if (work == NULL)
581		return ERR_PTR(-ENOMEM);
582
583	obj->userptr.work = &work->work;
584
585	work->obj = i915_gem_object_get(obj);
586
587	work->task = current;
588	get_task_struct(work->task);
589
590	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
591	schedule_work(&work->work);
592
593	*active = true;
594	return ERR_PTR(-EAGAIN);
595}
596
597static struct sg_table *
598i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
599{
600	const int num_pages = obj->base.size >> PAGE_SHIFT;
601	struct page **pvec;
602	struct sg_table *pages;
603	int pinned, ret;
604	bool active;
605
606	/* If userspace should engineer that these pages are replaced in
607	 * the vma between us binding this page into the GTT and completion
608	 * of rendering... Their loss. If they change the mapping of their
609	 * pages they need to create a new bo to point to the new vma.
610	 *
611	 * However, that still leaves open the possibility of the vma
612	 * being copied upon fork. Which falls under the same userspace
613	 * synchronisation issue as a regular bo, except that this time
614	 * the process may not be expecting that a particular piece of
615	 * memory is tied to the GPU.
616	 *
617	 * Fortunately, we can hook into the mmu_notifier in order to
618	 * discard the page references prior to anything nasty happening
619	 * to the vma (discard or cloning) which should prevent the more
620	 * egregious cases from causing harm.
621	 */
622
623	if (obj->userptr.work) {
624		/* active flag should still be held for the pending work */
625		if (IS_ERR(obj->userptr.work))
626			return ERR_CAST(obj->userptr.work);
627		else
628			return ERR_PTR(-EAGAIN);
629	}
630
631	/* Let the mmu-notifier know that we have begun and need cancellation */
632	ret = __i915_gem_userptr_set_active(obj, true);
633	if (ret)
634		return ERR_PTR(ret);
635
636	pvec = NULL;
637	pinned = 0;
638	if (obj->userptr.mm->mm == current->mm) {
639		pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
640				      GFP_TEMPORARY);
641		if (pvec == NULL) {
642			__i915_gem_userptr_set_active(obj, false);
643			return ERR_PTR(-ENOMEM);
644		}
645
646		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
647					       !obj->userptr.read_only, pvec);
648	}
649
650	active = false;
651	if (pinned < 0)
652		pages = ERR_PTR(pinned), pinned = 0;
653	else if (pinned < num_pages)
654		pages = __i915_gem_userptr_get_pages_schedule(obj, &active);
655	else
656		pages = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
657	if (IS_ERR(pages)) {
658		__i915_gem_userptr_set_active(obj, active);
659		release_pages(pvec, pinned, 0);
660	}
661	drm_free_large(pvec);
662	return pages;
663}
664
665static void
666i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
667			   struct sg_table *pages)
668{
669	struct sgt_iter sgt_iter;
670	struct page *page;
671
672	BUG_ON(obj->userptr.work != NULL);
673	__i915_gem_userptr_set_active(obj, false);
674
675	if (obj->mm.madv != I915_MADV_WILLNEED)
676		obj->mm.dirty = false;
677
678	i915_gem_gtt_finish_pages(obj, pages);
679
680	for_each_sgt_page(page, sgt_iter, pages) {
681		if (obj->mm.dirty)
682			set_page_dirty(page);
683
684		mark_page_accessed(page);
685		put_page(page);
686	}
687	obj->mm.dirty = false;
688
689	sg_free_table(pages);
690	kfree(pages);
691}
692
693static void
694i915_gem_userptr_release(struct drm_i915_gem_object *obj)
695{
696	i915_gem_userptr_release__mmu_notifier(obj);
697	i915_gem_userptr_release__mm_struct(obj);
698}
699
700static int
701i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
702{
703	if (obj->userptr.mmu_object)
704		return 0;
705
706	return i915_gem_userptr_init__mmu_notifier(obj, 0);
707}
708
709static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
710	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
711		 I915_GEM_OBJECT_IS_SHRINKABLE,
712	.get_pages = i915_gem_userptr_get_pages,
713	.put_pages = i915_gem_userptr_put_pages,
714	.dmabuf_export = i915_gem_userptr_dmabuf_export,
715	.release = i915_gem_userptr_release,
716};
717
718/**
719 * Creates a new mm object that wraps some normal memory from the process
720 * context - user memory.
721 *
722 * We impose several restrictions upon the memory being mapped
723 * into the GPU.
724 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
725 * 2. It must be normal system memory, not a pointer into another map of IO
726 *    space (e.g. it must not be a GTT mmapping of another object).
727 * 3. We only allow a bo as large as we could in theory map into the GTT,
728 *    that is we limit the size to the total size of the GTT.
729 * 4. The bo is marked as being snoopable. The backing pages are left
730 *    accessible directly by the CPU, but reads and writes by the GPU may
731 *    incur the cost of a snoop (unless you have an LLC architecture).
732 *
733 * Synchronisation between multiple users and the GPU is left to userspace
734 * through the normal set-domain-ioctl. The kernel will enforce that the
735 * GPU relinquishes the VMA before it is returned back to the system
736 * i.e. upon free(), munmap() or process termination. However, the userspace
737 * malloc() library may not immediately relinquish the VMA after free() and
738 * instead reuse it whilst the GPU is still reading and writing to the VMA.
739 * Caveat emptor.
740 *
741 * Also note, that the object created here is not currently a "first class"
742 * object, in that several ioctls are banned. These are the CPU access
743 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
744 * direct access via your pointer rather than use those ioctls. Another
745 * restriction is that we do not allow userptr surfaces to be pinned to the
746 * hardware and so we reject any attempt to create a framebuffer out of a
747 * userptr.
748 *
749 * If you think this is a good interface to use to pass GPU memory between
750 * drivers, please use dma-buf instead. In fact, wherever possible use
751 * dma-buf instead.
752 */
753int
754i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
755{
756	struct drm_i915_private *dev_priv = to_i915(dev);
757	struct drm_i915_gem_userptr *args = data;
758	struct drm_i915_gem_object *obj;
759	int ret;
760	u32 handle;
761
762	if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
763		/* We cannot support coherent userptr objects on hw without
764		 * LLC and broken snooping.
765		 */
766		return -ENODEV;
767	}
768
769	if (args->flags & ~(I915_USERPTR_READ_ONLY |
770			    I915_USERPTR_UNSYNCHRONIZED))
771		return -EINVAL;
772
773	if (offset_in_page(args->user_ptr | args->user_size))
774		return -EINVAL;
775
776	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
777		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
778		return -EFAULT;
779
780	if (args->flags & I915_USERPTR_READ_ONLY) {
781		/* On almost all of the current hw, we cannot tell the GPU that a
782		 * page is readonly, so this is just a placeholder in the uAPI.
783		 */
784		return -ENODEV;
785	}
786
787	obj = i915_gem_object_alloc(dev);
788	if (obj == NULL)
789		return -ENOMEM;
790
791	drm_gem_private_object_init(dev, &obj->base, args->user_size);
792	i915_gem_object_init(obj, &i915_gem_userptr_ops);
793	obj->cache_level = I915_CACHE_LLC;
794	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
795	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
796
797	obj->userptr.ptr = args->user_ptr;
798	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
799
800	/* And keep a pointer to the current->mm for resolving the user pages
801	 * at binding. This means that we need to hook into the mmu_notifier
802	 * in order to detect if the mmu is destroyed.
803	 */
804	ret = i915_gem_userptr_init__mm_struct(obj);
805	if (ret == 0)
806		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
807	if (ret == 0)
808		ret = drm_gem_handle_create(file, &obj->base, &handle);
809
810	/* drop reference from allocate - handle holds it now */
811	i915_gem_object_put(obj);
812	if (ret)
813		return ret;
814
815	args->handle = handle;
816	return 0;
817}
818
819void i915_gem_init_userptr(struct drm_i915_private *dev_priv)
820{
821	mutex_init(&dev_priv->mm_lock);
822	hash_init(dev_priv->mm_structs);
823}