Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright © 2010 Daniel Vetter
 
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#include "drmP.h"
 26#include "drm.h"
 27#include "i915_drm.h"
 
 28#include "i915_drv.h"
 
 29#include "i915_trace.h"
 30#include "intel_drv.h"
 
 31
 32/* XXX kill agp_type! */
 33static unsigned int cache_level_to_agp_type(struct drm_device *dev,
 34					    enum i915_cache_level cache_level)
 35{
 36	switch (cache_level) {
 37	case I915_CACHE_LLC_MLC:
 38		if (INTEL_INFO(dev)->gen >= 6)
 39			return AGP_USER_CACHED_MEMORY_LLC_MLC;
 40		/* Older chipsets do not have this extra level of CPU
 41		 * cacheing, so fallthrough and request the PTE simply
 42		 * as cached.
 43		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44	case I915_CACHE_LLC:
 45		return AGP_USER_CACHED_MEMORY;
 
 
 
 
 46	default:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47	case I915_CACHE_NONE:
 48		return AGP_USER_MEMORY;
 
 
 
 
 
 
 49	}
 
 
 50}
 51
 52void i915_gem_restore_gtt_mappings(struct drm_device *dev)
 
 53{
 54	struct drm_i915_private *dev_priv = dev->dev_private;
 55	struct drm_i915_gem_object *obj;
 56
 57	/* First fill our portion of the GTT with scratch pages */
 58	intel_gtt_clear_range(dev_priv->mm.gtt_start / PAGE_SIZE,
 59			      (dev_priv->mm.gtt_end - dev_priv->mm.gtt_start) / PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60
 61	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
 62		i915_gem_clflush_object(obj);
 63		i915_gem_gtt_rebind_object(obj, obj->cache_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64	}
 65
 66	intel_gtt_chipset_flush();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67}
 68
 69int i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj)
 
 70{
 71	struct drm_device *dev = obj->base.dev;
 72	struct drm_i915_private *dev_priv = dev->dev_private;
 73	unsigned int agp_type = cache_level_to_agp_type(dev, obj->cache_level);
 74	int ret;
 75
 76	if (dev_priv->mm.gtt->needs_dmar) {
 77		ret = intel_gtt_map_memory(obj->pages,
 78					   obj->base.size >> PAGE_SHIFT,
 79					   &obj->sg_list,
 80					   &obj->num_sg);
 81		if (ret != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 82			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83
 84		intel_gtt_insert_sg_entries(obj->sg_list,
 85					    obj->num_sg,
 86					    obj->gtt_space->start >> PAGE_SHIFT,
 87					    agp_type);
 88	} else
 89		intel_gtt_insert_pages(obj->gtt_space->start >> PAGE_SHIFT,
 90				       obj->base.size >> PAGE_SHIFT,
 91				       obj->pages,
 92				       agp_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93
 94	return 0;
 95}
 96
 97void i915_gem_gtt_rebind_object(struct drm_i915_gem_object *obj,
 98				enum i915_cache_level cache_level)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 99{
100	struct drm_device *dev = obj->base.dev;
101	struct drm_i915_private *dev_priv = dev->dev_private;
102	unsigned int agp_type = cache_level_to_agp_type(dev, cache_level);
 
 
 
103
104	if (dev_priv->mm.gtt->needs_dmar) {
105		BUG_ON(!obj->sg_list);
 
 
 
 
 
 
 
106
107		intel_gtt_insert_sg_entries(obj->sg_list,
108					    obj->num_sg,
109					    obj->gtt_space->start >> PAGE_SHIFT,
110					    agp_type);
111	} else
112		intel_gtt_insert_pages(obj->gtt_space->start >> PAGE_SHIFT,
113				       obj->base.size >> PAGE_SHIFT,
114				       obj->pages,
115				       agp_type);
116}
117
118void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
 
 
 
119{
120	intel_gtt_clear_range(obj->gtt_space->start >> PAGE_SHIFT,
121			      obj->base.size >> PAGE_SHIFT);
122
123	if (obj->sg_list) {
124		intel_gtt_unmap_memory(obj->sg_list, obj->num_sg);
125		obj->sg_list = NULL;
 
 
 
 
126	}
 
 
 
127}
v4.10.11
   1/*
   2 * Copyright © 2010 Daniel Vetter
   3 * Copyright © 2011-2014 Intel Corporation
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice (including the next
  13 * paragraph) shall be included in all copies or substantial portions of the
  14 * Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  22 * IN THE SOFTWARE.
  23 *
  24 */
  25
  26#include <linux/seq_file.h>
  27#include <linux/stop_machine.h>
  28#include <drm/drmP.h>
  29#include <drm/i915_drm.h>
  30#include "i915_drv.h"
  31#include "i915_vgpu.h"
  32#include "i915_trace.h"
  33#include "intel_drv.h"
  34#include "intel_frontbuffer.h"
  35
  36#define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
  37
  38/**
  39 * DOC: Global GTT views
  40 *
  41 * Background and previous state
  42 *
  43 * Historically objects could exists (be bound) in global GTT space only as
  44 * singular instances with a view representing all of the object's backing pages
  45 * in a linear fashion. This view will be called a normal view.
  46 *
  47 * To support multiple views of the same object, where the number of mapped
  48 * pages is not equal to the backing store, or where the layout of the pages
  49 * is not linear, concept of a GGTT view was added.
  50 *
  51 * One example of an alternative view is a stereo display driven by a single
  52 * image. In this case we would have a framebuffer looking like this
  53 * (2x2 pages):
  54 *
  55 *    12
  56 *    34
  57 *
  58 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
  59 * rendering. In contrast, fed to the display engine would be an alternative
  60 * view which could look something like this:
  61 *
  62 *   1212
  63 *   3434
  64 *
  65 * In this example both the size and layout of pages in the alternative view is
  66 * different from the normal view.
  67 *
  68 * Implementation and usage
  69 *
  70 * GGTT views are implemented using VMAs and are distinguished via enum
  71 * i915_ggtt_view_type and struct i915_ggtt_view.
  72 *
  73 * A new flavour of core GEM functions which work with GGTT bound objects were
  74 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
  75 * renaming  in large amounts of code. They take the struct i915_ggtt_view
  76 * parameter encapsulating all metadata required to implement a view.
  77 *
  78 * As a helper for callers which are only interested in the normal view,
  79 * globally const i915_ggtt_view_normal singleton instance exists. All old core
  80 * GEM API functions, the ones not taking the view parameter, are operating on,
  81 * or with the normal GGTT view.
  82 *
  83 * Code wanting to add or use a new GGTT view needs to:
  84 *
  85 * 1. Add a new enum with a suitable name.
  86 * 2. Extend the metadata in the i915_ggtt_view structure if required.
  87 * 3. Add support to i915_get_vma_pages().
  88 *
  89 * New views are required to build a scatter-gather table from within the
  90 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
  91 * exists for the lifetime of an VMA.
  92 *
  93 * Core API is designed to have copy semantics which means that passed in
  94 * struct i915_ggtt_view does not need to be persistent (left around after
  95 * calling the core API functions).
  96 *
  97 */
  98
  99static int
 100i915_get_ggtt_vma_pages(struct i915_vma *vma);
 101
 102const struct i915_ggtt_view i915_ggtt_view_normal = {
 103	.type = I915_GGTT_VIEW_NORMAL,
 104};
 105const struct i915_ggtt_view i915_ggtt_view_rotated = {
 106	.type = I915_GGTT_VIEW_ROTATED,
 107};
 108
 109int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
 110			       	int enable_ppgtt)
 111{
 112	bool has_aliasing_ppgtt;
 113	bool has_full_ppgtt;
 114	bool has_full_48bit_ppgtt;
 115
 116	has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
 117	has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
 118	has_full_48bit_ppgtt =
 119	       	IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
 120
 121	if (intel_vgpu_active(dev_priv)) {
 122		/* emulation is too hard */
 123		has_full_ppgtt = false;
 124		has_full_48bit_ppgtt = false;
 125	}
 126
 127	if (!has_aliasing_ppgtt)
 128		return 0;
 129
 130	/*
 131	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
 132	 * execlists, the sole mechanism available to submit work.
 133	 */
 134	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
 135		return 0;
 136
 137	if (enable_ppgtt == 1)
 138		return 1;
 139
 140	if (enable_ppgtt == 2 && has_full_ppgtt)
 141		return 2;
 142
 143	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
 144		return 3;
 145
 146#ifdef CONFIG_INTEL_IOMMU
 147	/* Disable ppgtt on SNB if VT-d is on. */
 148	if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
 149		DRM_INFO("Disabling PPGTT because VT-d is on\n");
 150		return 0;
 151	}
 152#endif
 153
 154	/* Early VLV doesn't have this */
 155	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
 156		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
 157		return 0;
 158	}
 159
 160	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
 161		return has_full_48bit_ppgtt ? 3 : 2;
 162	else
 163		return has_aliasing_ppgtt ? 1 : 0;
 164}
 165
 166static int ppgtt_bind_vma(struct i915_vma *vma,
 167			  enum i915_cache_level cache_level,
 168			  u32 unused)
 169{
 170	u32 pte_flags = 0;
 171
 172	vma->pages = vma->obj->mm.pages;
 173
 174	/* Currently applicable only to VLV */
 175	if (vma->obj->gt_ro)
 176		pte_flags |= PTE_READ_ONLY;
 177
 178	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
 179				cache_level, pte_flags);
 180
 181	return 0;
 182}
 183
 184static void ppgtt_unbind_vma(struct i915_vma *vma)
 185{
 186	vma->vm->clear_range(vma->vm,
 187			     vma->node.start,
 188			     vma->size);
 189}
 190
 191static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
 192				  enum i915_cache_level level)
 193{
 194	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
 195	pte |= addr;
 196
 197	switch (level) {
 198	case I915_CACHE_NONE:
 199		pte |= PPAT_UNCACHED_INDEX;
 200		break;
 201	case I915_CACHE_WT:
 202		pte |= PPAT_DISPLAY_ELLC_INDEX;
 203		break;
 204	default:
 205		pte |= PPAT_CACHED_INDEX;
 206		break;
 207	}
 208
 209	return pte;
 210}
 211
 212static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
 213				  const enum i915_cache_level level)
 214{
 215	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
 216	pde |= addr;
 217	if (level != I915_CACHE_NONE)
 218		pde |= PPAT_CACHED_PDE_INDEX;
 219	else
 220		pde |= PPAT_UNCACHED_INDEX;
 221	return pde;
 222}
 223
 224#define gen8_pdpe_encode gen8_pde_encode
 225#define gen8_pml4e_encode gen8_pde_encode
 226
 227static gen6_pte_t snb_pte_encode(dma_addr_t addr,
 228				 enum i915_cache_level level,
 229				 u32 unused)
 230{
 231	gen6_pte_t pte = GEN6_PTE_VALID;
 232	pte |= GEN6_PTE_ADDR_ENCODE(addr);
 233
 234	switch (level) {
 235	case I915_CACHE_L3_LLC:
 236	case I915_CACHE_LLC:
 237		pte |= GEN6_PTE_CACHE_LLC;
 238		break;
 239	case I915_CACHE_NONE:
 240		pte |= GEN6_PTE_UNCACHED;
 241		break;
 242	default:
 243		MISSING_CASE(level);
 244	}
 245
 246	return pte;
 247}
 248
 249static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
 250				 enum i915_cache_level level,
 251				 u32 unused)
 252{
 253	gen6_pte_t pte = GEN6_PTE_VALID;
 254	pte |= GEN6_PTE_ADDR_ENCODE(addr);
 255
 256	switch (level) {
 257	case I915_CACHE_L3_LLC:
 258		pte |= GEN7_PTE_CACHE_L3_LLC;
 259		break;
 260	case I915_CACHE_LLC:
 261		pte |= GEN6_PTE_CACHE_LLC;
 262		break;
 263	case I915_CACHE_NONE:
 264		pte |= GEN6_PTE_UNCACHED;
 265		break;
 266	default:
 267		MISSING_CASE(level);
 268	}
 269
 270	return pte;
 271}
 272
 273static gen6_pte_t byt_pte_encode(dma_addr_t addr,
 274				 enum i915_cache_level level,
 275				 u32 flags)
 276{
 277	gen6_pte_t pte = GEN6_PTE_VALID;
 278	pte |= GEN6_PTE_ADDR_ENCODE(addr);
 279
 280	if (!(flags & PTE_READ_ONLY))
 281		pte |= BYT_PTE_WRITEABLE;
 282
 283	if (level != I915_CACHE_NONE)
 284		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
 285
 286	return pte;
 287}
 288
 289static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
 290				 enum i915_cache_level level,
 291				 u32 unused)
 292{
 293	gen6_pte_t pte = GEN6_PTE_VALID;
 294	pte |= HSW_PTE_ADDR_ENCODE(addr);
 295
 296	if (level != I915_CACHE_NONE)
 297		pte |= HSW_WB_LLC_AGE3;
 298
 299	return pte;
 300}
 301
 302static gen6_pte_t iris_pte_encode(dma_addr_t addr,
 303				  enum i915_cache_level level,
 304				  u32 unused)
 305{
 306	gen6_pte_t pte = GEN6_PTE_VALID;
 307	pte |= HSW_PTE_ADDR_ENCODE(addr);
 308
 309	switch (level) {
 310	case I915_CACHE_NONE:
 311		break;
 312	case I915_CACHE_WT:
 313		pte |= HSW_WT_ELLC_LLC_AGE3;
 314		break;
 315	default:
 316		pte |= HSW_WB_ELLC_LLC_AGE3;
 317		break;
 318	}
 319
 320	return pte;
 321}
 322
 323static int __setup_page_dma(struct drm_i915_private *dev_priv,
 324			    struct i915_page_dma *p, gfp_t flags)
 325{
 326	struct device *kdev = &dev_priv->drm.pdev->dev;
 
 327
 328	p->page = alloc_page(flags);
 329	if (!p->page)
 330		return -ENOMEM;
 331
 332	p->daddr = dma_map_page(kdev,
 333				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
 334
 335	if (dma_mapping_error(kdev, p->daddr)) {
 336		__free_page(p->page);
 337		return -EINVAL;
 338	}
 339
 340	return 0;
 341}
 342
 343static int setup_page_dma(struct drm_i915_private *dev_priv,
 344			  struct i915_page_dma *p)
 345{
 346	return __setup_page_dma(dev_priv, p, I915_GFP_DMA);
 347}
 348
 349static void cleanup_page_dma(struct drm_i915_private *dev_priv,
 350			     struct i915_page_dma *p)
 351{
 352	struct pci_dev *pdev = dev_priv->drm.pdev;
 353
 354	if (WARN_ON(!p->page))
 355		return;
 356
 357	dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
 358	__free_page(p->page);
 359	memset(p, 0, sizeof(*p));
 360}
 361
 362static void *kmap_page_dma(struct i915_page_dma *p)
 363{
 364	return kmap_atomic(p->page);
 365}
 366
 367/* We use the flushing unmap only with ppgtt structures:
 368 * page directories, page tables and scratch pages.
 369 */
 370static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr)
 371{
 372	/* There are only few exceptions for gen >=6. chv and bxt.
 373	 * And we are not sure about the latter so play safe for now.
 374	 */
 375	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
 376		drm_clflush_virt_range(vaddr, PAGE_SIZE);
 377
 378	kunmap_atomic(vaddr);
 379}
 380
 381#define kmap_px(px) kmap_page_dma(px_base(px))
 382#define kunmap_px(ppgtt, vaddr) \
 383		kunmap_page_dma(to_i915((ppgtt)->base.dev), (vaddr))
 384
 385#define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px))
 386#define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px))
 387#define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v))
 388#define fill32_px(dev_priv, px, v) \
 389		fill_page_dma_32((dev_priv), px_base(px), (v))
 390
 391static void fill_page_dma(struct drm_i915_private *dev_priv,
 392			  struct i915_page_dma *p, const uint64_t val)
 393{
 394	int i;
 395	uint64_t * const vaddr = kmap_page_dma(p);
 396
 397	for (i = 0; i < 512; i++)
 398		vaddr[i] = val;
 399
 400	kunmap_page_dma(dev_priv, vaddr);
 401}
 402
 403static void fill_page_dma_32(struct drm_i915_private *dev_priv,
 404			     struct i915_page_dma *p, const uint32_t val32)
 405{
 406	uint64_t v = val32;
 407
 408	v = v << 32 | val32;
 409
 410	fill_page_dma(dev_priv, p, v);
 411}
 412
 413static int
 414setup_scratch_page(struct drm_i915_private *dev_priv,
 415		   struct i915_page_dma *scratch,
 416		   gfp_t gfp)
 417{
 418	return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO);
 419}
 420
 421static void cleanup_scratch_page(struct drm_i915_private *dev_priv,
 422				 struct i915_page_dma *scratch)
 423{
 424	cleanup_page_dma(dev_priv, scratch);
 425}
 426
 427static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv)
 428{
 429	struct i915_page_table *pt;
 430	const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES;
 431	int ret = -ENOMEM;
 432
 433	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
 434	if (!pt)
 435		return ERR_PTR(-ENOMEM);
 436
 437	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
 438				GFP_KERNEL);
 439
 440	if (!pt->used_ptes)
 441		goto fail_bitmap;
 442
 443	ret = setup_px(dev_priv, pt);
 444	if (ret)
 445		goto fail_page_m;
 446
 447	return pt;
 448
 449fail_page_m:
 450	kfree(pt->used_ptes);
 451fail_bitmap:
 452	kfree(pt);
 453
 454	return ERR_PTR(ret);
 455}
 456
 457static void free_pt(struct drm_i915_private *dev_priv,
 458		    struct i915_page_table *pt)
 459{
 460	cleanup_px(dev_priv, pt);
 461	kfree(pt->used_ptes);
 462	kfree(pt);
 463}
 464
 465static void gen8_initialize_pt(struct i915_address_space *vm,
 466			       struct i915_page_table *pt)
 467{
 468	gen8_pte_t scratch_pte;
 469
 470	scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
 471				      I915_CACHE_LLC);
 472
 473	fill_px(to_i915(vm->dev), pt, scratch_pte);
 474}
 475
 476static void gen6_initialize_pt(struct i915_address_space *vm,
 477			       struct i915_page_table *pt)
 478{
 479	gen6_pte_t scratch_pte;
 480
 481	WARN_ON(vm->scratch_page.daddr == 0);
 482
 483	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
 484				     I915_CACHE_LLC, 0);
 485
 486	fill32_px(to_i915(vm->dev), pt, scratch_pte);
 487}
 488
 489static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv)
 490{
 491	struct i915_page_directory *pd;
 492	int ret = -ENOMEM;
 493
 494	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 495	if (!pd)
 496		return ERR_PTR(-ENOMEM);
 497
 498	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
 499				sizeof(*pd->used_pdes), GFP_KERNEL);
 500	if (!pd->used_pdes)
 501		goto fail_bitmap;
 502
 503	ret = setup_px(dev_priv, pd);
 504	if (ret)
 505		goto fail_page_m;
 506
 507	return pd;
 508
 509fail_page_m:
 510	kfree(pd->used_pdes);
 511fail_bitmap:
 512	kfree(pd);
 513
 514	return ERR_PTR(ret);
 515}
 516
 517static void free_pd(struct drm_i915_private *dev_priv,
 518		    struct i915_page_directory *pd)
 519{
 520	if (px_page(pd)) {
 521		cleanup_px(dev_priv, pd);
 522		kfree(pd->used_pdes);
 523		kfree(pd);
 524	}
 525}
 526
 527static void gen8_initialize_pd(struct i915_address_space *vm,
 528			       struct i915_page_directory *pd)
 529{
 530	gen8_pde_t scratch_pde;
 531
 532	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
 533
 534	fill_px(to_i915(vm->dev), pd, scratch_pde);
 535}
 536
 537static int __pdp_init(struct drm_i915_private *dev_priv,
 538		      struct i915_page_directory_pointer *pdp)
 539{
 540	size_t pdpes = I915_PDPES_PER_PDP(dev_priv);
 541
 542	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
 543				  sizeof(unsigned long),
 544				  GFP_KERNEL);
 545	if (!pdp->used_pdpes)
 546		return -ENOMEM;
 547
 548	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
 549				      GFP_KERNEL);
 550	if (!pdp->page_directory) {
 551		kfree(pdp->used_pdpes);
 552		/* the PDP might be the statically allocated top level. Keep it
 553		 * as clean as possible */
 554		pdp->used_pdpes = NULL;
 555		return -ENOMEM;
 556	}
 557
 558	return 0;
 559}
 560
 561static void __pdp_fini(struct i915_page_directory_pointer *pdp)
 562{
 563	kfree(pdp->used_pdpes);
 564	kfree(pdp->page_directory);
 565	pdp->page_directory = NULL;
 566}
 567
 568static struct
 569i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv)
 570{
 571	struct i915_page_directory_pointer *pdp;
 572	int ret = -ENOMEM;
 573
 574	WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv));
 575
 576	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
 577	if (!pdp)
 578		return ERR_PTR(-ENOMEM);
 579
 580	ret = __pdp_init(dev_priv, pdp);
 581	if (ret)
 582		goto fail_bitmap;
 583
 584	ret = setup_px(dev_priv, pdp);
 585	if (ret)
 586		goto fail_page_m;
 587
 588	return pdp;
 589
 590fail_page_m:
 591	__pdp_fini(pdp);
 592fail_bitmap:
 593	kfree(pdp);
 594
 595	return ERR_PTR(ret);
 596}
 597
 598static void free_pdp(struct drm_i915_private *dev_priv,
 599		     struct i915_page_directory_pointer *pdp)
 600{
 601	__pdp_fini(pdp);
 602	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
 603		cleanup_px(dev_priv, pdp);
 604		kfree(pdp);
 605	}
 606}
 607
 608static void gen8_initialize_pdp(struct i915_address_space *vm,
 609				struct i915_page_directory_pointer *pdp)
 610{
 611	gen8_ppgtt_pdpe_t scratch_pdpe;
 612
 613	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
 614
 615	fill_px(to_i915(vm->dev), pdp, scratch_pdpe);
 616}
 617
 618static void gen8_initialize_pml4(struct i915_address_space *vm,
 619				 struct i915_pml4 *pml4)
 620{
 621	gen8_ppgtt_pml4e_t scratch_pml4e;
 622
 623	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
 624					  I915_CACHE_LLC);
 625
 626	fill_px(to_i915(vm->dev), pml4, scratch_pml4e);
 627}
 628
 629static void
 630gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
 631			  struct i915_page_directory_pointer *pdp,
 632			  struct i915_page_directory *pd,
 633			  int index)
 634{
 635	gen8_ppgtt_pdpe_t *page_directorypo;
 636
 637	if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)))
 638		return;
 639
 640	page_directorypo = kmap_px(pdp);
 641	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
 642	kunmap_px(ppgtt, page_directorypo);
 643}
 644
 645static void
 646gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
 647				  struct i915_pml4 *pml4,
 648				  struct i915_page_directory_pointer *pdp,
 649				  int index)
 650{
 651	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
 652
 653	WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)));
 654	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
 655	kunmap_px(ppgtt, pagemap);
 656}
 657
 658/* Broadwell Page Directory Pointer Descriptors */
 659static int gen8_write_pdp(struct drm_i915_gem_request *req,
 660			  unsigned entry,
 661			  dma_addr_t addr)
 662{
 663	struct intel_ring *ring = req->ring;
 664	struct intel_engine_cs *engine = req->engine;
 665	int ret;
 666
 667	BUG_ON(entry >= 4);
 668
 669	ret = intel_ring_begin(req, 6);
 670	if (ret)
 671		return ret;
 672
 673	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
 674	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
 675	intel_ring_emit(ring, upper_32_bits(addr));
 676	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
 677	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
 678	intel_ring_emit(ring, lower_32_bits(addr));
 679	intel_ring_advance(ring);
 680
 681	return 0;
 682}
 683
 684static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
 685				 struct drm_i915_gem_request *req)
 686{
 687	int i, ret;
 688
 689	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
 690		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
 691
 692		ret = gen8_write_pdp(req, i, pd_daddr);
 693		if (ret)
 694			return ret;
 695	}
 696
 697	return 0;
 698}
 699
 700static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
 701			      struct drm_i915_gem_request *req)
 702{
 703	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
 704}
 705
 706/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 707 * the page table structures, we mark them dirty so that
 708 * context switching/execlist queuing code takes extra steps
 709 * to ensure that tlbs are flushed.
 710 */
 711static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
 712{
 713	ppgtt->pd_dirty_rings = INTEL_INFO(to_i915(ppgtt->base.dev))->ring_mask;
 714}
 715
 716/* Removes entries from a single page table, releasing it if it's empty.
 717 * Caller can use the return value to update higher-level entries.
 718 */
 719static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
 720				struct i915_page_table *pt,
 721				uint64_t start,
 722				uint64_t length)
 723{
 724	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
 725	unsigned int num_entries = gen8_pte_count(start, length);
 726	unsigned int pte = gen8_pte_index(start);
 727	unsigned int pte_end = pte + num_entries;
 728	gen8_pte_t *pt_vaddr;
 729	gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
 730						 I915_CACHE_LLC);
 731
 732	if (WARN_ON(!px_page(pt)))
 733		return false;
 734
 735	GEM_BUG_ON(pte_end > GEN8_PTES);
 736
 737	bitmap_clear(pt->used_ptes, pte, num_entries);
 738	if (USES_FULL_PPGTT(vm->i915)) {
 739		if (bitmap_empty(pt->used_ptes, GEN8_PTES))
 740			return true;
 741	}
 742
 743	pt_vaddr = kmap_px(pt);
 744
 745	while (pte < pte_end)
 746		pt_vaddr[pte++] = scratch_pte;
 747
 748	kunmap_px(ppgtt, pt_vaddr);
 749
 750	return false;
 751}
 752
 753/* Removes entries from a single page dir, releasing it if it's empty.
 754 * Caller can use the return value to update higher-level entries
 755 */
 756static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
 757				struct i915_page_directory *pd,
 758				uint64_t start,
 759				uint64_t length)
 760{
 761	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
 762	struct i915_page_table *pt;
 763	uint64_t pde;
 764	gen8_pde_t *pde_vaddr;
 765	gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt),
 766						 I915_CACHE_LLC);
 767
 768	gen8_for_each_pde(pt, pd, start, length, pde) {
 769		if (WARN_ON(!pd->page_table[pde]))
 770			break;
 771
 772		if (gen8_ppgtt_clear_pt(vm, pt, start, length)) {
 773			__clear_bit(pde, pd->used_pdes);
 774			pde_vaddr = kmap_px(pd);
 775			pde_vaddr[pde] = scratch_pde;
 776			kunmap_px(ppgtt, pde_vaddr);
 777			free_pt(to_i915(vm->dev), pt);
 778		}
 779	}
 780
 781	if (bitmap_empty(pd->used_pdes, I915_PDES))
 782		return true;
 783
 784	return false;
 785}
 786
 787/* Removes entries from a single page dir pointer, releasing it if it's empty.
 788 * Caller can use the return value to update higher-level entries
 789 */
 790static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
 791				 struct i915_page_directory_pointer *pdp,
 792				 uint64_t start,
 793				 uint64_t length)
 794{
 795	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
 796	struct i915_page_directory *pd;
 797	uint64_t pdpe;
 798	gen8_ppgtt_pdpe_t *pdpe_vaddr;
 799	gen8_ppgtt_pdpe_t scratch_pdpe =
 800		gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
 801
 802	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
 803		if (WARN_ON(!pdp->page_directory[pdpe]))
 804			break;
 805
 806		if (gen8_ppgtt_clear_pd(vm, pd, start, length)) {
 807			__clear_bit(pdpe, pdp->used_pdpes);
 808			if (USES_FULL_48BIT_PPGTT(dev_priv)) {
 809				pdpe_vaddr = kmap_px(pdp);
 810				pdpe_vaddr[pdpe] = scratch_pdpe;
 811				kunmap_px(ppgtt, pdpe_vaddr);
 812			}
 813			free_pd(to_i915(vm->dev), pd);
 814		}
 815	}
 816
 817	mark_tlbs_dirty(ppgtt);
 818
 819	if (bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)))
 820		return true;
 821
 822	return false;
 823}
 824
 825/* Removes entries from a single pml4.
 826 * This is the top-level structure in 4-level page tables used on gen8+.
 827 * Empty entries are always scratch pml4e.
 828 */
 829static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm,
 830				  struct i915_pml4 *pml4,
 831				  uint64_t start,
 832				  uint64_t length)
 833{
 834	struct drm_i915_private *dev_priv = to_i915(vm->dev);
 835	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
 836	struct i915_page_directory_pointer *pdp;
 837	uint64_t pml4e;
 838	gen8_ppgtt_pml4e_t *pml4e_vaddr;
 839	gen8_ppgtt_pml4e_t scratch_pml4e =
 840		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC);
 841
 842	GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(to_i915(vm->dev)));
 843
 844	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
 845		if (WARN_ON(!pml4->pdps[pml4e]))
 846			break;
 847
 848		if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) {
 849			__clear_bit(pml4e, pml4->used_pml4es);
 850			pml4e_vaddr = kmap_px(pml4);
 851			pml4e_vaddr[pml4e] = scratch_pml4e;
 852			kunmap_px(ppgtt, pml4e_vaddr);
 853			free_pdp(dev_priv, pdp);
 854		}
 855	}
 856}
 857
 858static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
 859				   uint64_t start, uint64_t length)
 860{
 861	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
 862
 863	if (USES_FULL_48BIT_PPGTT(to_i915(vm->dev)))
 864		gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length);
 865	else
 866		gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length);
 867}
 868
 869static void
 870gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
 871			      struct i915_page_directory_pointer *pdp,
 872			      struct sg_page_iter *sg_iter,
 873			      uint64_t start,
 874			      enum i915_cache_level cache_level)
 875{
 876	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
 877	gen8_pte_t *pt_vaddr;
 878	unsigned pdpe = gen8_pdpe_index(start);
 879	unsigned pde = gen8_pde_index(start);
 880	unsigned pte = gen8_pte_index(start);
 881
 882	pt_vaddr = NULL;
 883
 884	while (__sg_page_iter_next(sg_iter)) {
 885		if (pt_vaddr == NULL) {
 886			struct i915_page_directory *pd = pdp->page_directory[pdpe];
 887			struct i915_page_table *pt = pd->page_table[pde];
 888			pt_vaddr = kmap_px(pt);
 889		}
 890
 891		pt_vaddr[pte] =
 892			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
 893					cache_level);
 894		if (++pte == GEN8_PTES) {
 895			kunmap_px(ppgtt, pt_vaddr);
 896			pt_vaddr = NULL;
 897			if (++pde == I915_PDES) {
 898				if (++pdpe == I915_PDPES_PER_PDP(to_i915(vm->dev)))
 899					break;
 900				pde = 0;
 901			}
 902			pte = 0;
 903		}
 904	}
 905
 906	if (pt_vaddr)
 907		kunmap_px(ppgtt, pt_vaddr);
 908}
 909
 910static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
 911				      struct sg_table *pages,
 912				      uint64_t start,
 913				      enum i915_cache_level cache_level,
 914				      u32 unused)
 915{
 916	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
 917	struct sg_page_iter sg_iter;
 918
 919	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
 920
 921	if (!USES_FULL_48BIT_PPGTT(to_i915(vm->dev))) {
 922		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
 923					      cache_level);
 924	} else {
 925		struct i915_page_directory_pointer *pdp;
 926		uint64_t pml4e;
 927		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
 928
 929		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
 930			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
 931						      start, cache_level);
 932		}
 933	}
 934}
 935
 936static void gen8_free_page_tables(struct drm_i915_private *dev_priv,
 937				  struct i915_page_directory *pd)
 938{
 939	int i;
 940
 941	if (!px_page(pd))
 942		return;
 943
 944	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
 945		if (WARN_ON(!pd->page_table[i]))
 946			continue;
 947
 948		free_pt(dev_priv, pd->page_table[i]);
 949		pd->page_table[i] = NULL;
 950	}
 951}
 952
 953static int gen8_init_scratch(struct i915_address_space *vm)
 954{
 955	struct drm_i915_private *dev_priv = to_i915(vm->dev);
 956	int ret;
 957
 958	ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
 959	if (ret)
 960		return ret;
 961
 962	vm->scratch_pt = alloc_pt(dev_priv);
 963	if (IS_ERR(vm->scratch_pt)) {
 964		ret = PTR_ERR(vm->scratch_pt);
 965		goto free_scratch_page;
 966	}
 967
 968	vm->scratch_pd = alloc_pd(dev_priv);
 969	if (IS_ERR(vm->scratch_pd)) {
 970		ret = PTR_ERR(vm->scratch_pd);
 971		goto free_pt;
 972	}
 973
 974	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
 975		vm->scratch_pdp = alloc_pdp(dev_priv);
 976		if (IS_ERR(vm->scratch_pdp)) {
 977			ret = PTR_ERR(vm->scratch_pdp);
 978			goto free_pd;
 979		}
 980	}
 981
 982	gen8_initialize_pt(vm, vm->scratch_pt);
 983	gen8_initialize_pd(vm, vm->scratch_pd);
 984	if (USES_FULL_48BIT_PPGTT(dev_priv))
 985		gen8_initialize_pdp(vm, vm->scratch_pdp);
 986
 987	return 0;
 988
 989free_pd:
 990	free_pd(dev_priv, vm->scratch_pd);
 991free_pt:
 992	free_pt(dev_priv, vm->scratch_pt);
 993free_scratch_page:
 994	cleanup_scratch_page(dev_priv, &vm->scratch_page);
 995
 996	return ret;
 997}
 998
 999static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1000{
1001	enum vgt_g2v_type msg;
1002	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1003	int i;
1004
1005	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1006		u64 daddr = px_dma(&ppgtt->pml4);
1007
1008		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1009		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1010
1011		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1012				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1013	} else {
1014		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
1015			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1016
1017			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1018			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1019		}
1020
1021		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1022				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1023	}
1024
1025	I915_WRITE(vgtif_reg(g2v_notify), msg);
1026
1027	return 0;
1028}
1029
1030static void gen8_free_scratch(struct i915_address_space *vm)
1031{
1032	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1033
1034	if (USES_FULL_48BIT_PPGTT(dev_priv))
1035		free_pdp(dev_priv, vm->scratch_pdp);
1036	free_pd(dev_priv, vm->scratch_pd);
1037	free_pt(dev_priv, vm->scratch_pt);
1038	cleanup_scratch_page(dev_priv, &vm->scratch_page);
1039}
1040
1041static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv,
1042				    struct i915_page_directory_pointer *pdp)
1043{
1044	int i;
1045
1046	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) {
1047		if (WARN_ON(!pdp->page_directory[i]))
1048			continue;
1049
1050		gen8_free_page_tables(dev_priv, pdp->page_directory[i]);
1051		free_pd(dev_priv, pdp->page_directory[i]);
1052	}
1053
1054	free_pdp(dev_priv, pdp);
1055}
1056
1057static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1058{
1059	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1060	int i;
1061
1062	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
1063		if (WARN_ON(!ppgtt->pml4.pdps[i]))
1064			continue;
1065
1066		gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]);
1067	}
1068
1069	cleanup_px(dev_priv, &ppgtt->pml4);
1070}
1071
1072static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1073{
1074	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1075	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1076
1077	if (intel_vgpu_active(dev_priv))
1078		gen8_ppgtt_notify_vgt(ppgtt, false);
1079
1080	if (!USES_FULL_48BIT_PPGTT(dev_priv))
1081		gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp);
1082	else
1083		gen8_ppgtt_cleanup_4lvl(ppgtt);
1084
1085	gen8_free_scratch(vm);
1086}
1087
1088/**
1089 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1090 * @vm:	Master vm structure.
1091 * @pd:	Page directory for this address range.
1092 * @start:	Starting virtual address to begin allocations.
1093 * @length:	Size of the allocations.
1094 * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1095 *		caller to free on error.
1096 *
1097 * Allocate the required number of page tables. Extremely similar to
1098 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1099 * the page directory boundary (instead of the page directory pointer). That
1100 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1101 * possible, and likely that the caller will need to use multiple calls of this
1102 * function to achieve the appropriate allocation.
1103 *
1104 * Return: 0 if success; negative error code otherwise.
1105 */
1106static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1107				     struct i915_page_directory *pd,
1108				     uint64_t start,
1109				     uint64_t length,
1110				     unsigned long *new_pts)
1111{
1112	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1113	struct i915_page_table *pt;
1114	uint32_t pde;
1115
1116	gen8_for_each_pde(pt, pd, start, length, pde) {
1117		/* Don't reallocate page tables */
1118		if (test_bit(pde, pd->used_pdes)) {
1119			/* Scratch is never allocated this way */
1120			WARN_ON(pt == vm->scratch_pt);
1121			continue;
1122		}
1123
1124		pt = alloc_pt(dev_priv);
1125		if (IS_ERR(pt))
1126			goto unwind_out;
1127
1128		gen8_initialize_pt(vm, pt);
1129		pd->page_table[pde] = pt;
1130		__set_bit(pde, new_pts);
1131		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1132	}
1133
1134	return 0;
1135
1136unwind_out:
1137	for_each_set_bit(pde, new_pts, I915_PDES)
1138		free_pt(dev_priv, pd->page_table[pde]);
1139
1140	return -ENOMEM;
1141}
1142
1143/**
1144 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1145 * @vm:	Master vm structure.
1146 * @pdp:	Page directory pointer for this address range.
1147 * @start:	Starting virtual address to begin allocations.
1148 * @length:	Size of the allocations.
1149 * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1150 *		caller to free on error.
1151 *
1152 * Allocate the required number of page directories starting at the pde index of
1153 * @start, and ending at the pde index @start + @length. This function will skip
1154 * over already allocated page directories within the range, and only allocate
1155 * new ones, setting the appropriate pointer within the pdp as well as the
1156 * correct position in the bitmap @new_pds.
1157 *
1158 * The function will only allocate the pages within the range for a give page
1159 * directory pointer. In other words, if @start + @length straddles a virtually
1160 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1161 * required by the caller, This is not currently possible, and the BUG in the
1162 * code will prevent it.
1163 *
1164 * Return: 0 if success; negative error code otherwise.
1165 */
1166static int
1167gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1168				  struct i915_page_directory_pointer *pdp,
1169				  uint64_t start,
1170				  uint64_t length,
1171				  unsigned long *new_pds)
1172{
1173	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1174	struct i915_page_directory *pd;
1175	uint32_t pdpe;
1176	uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1177
1178	WARN_ON(!bitmap_empty(new_pds, pdpes));
1179
1180	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1181		if (test_bit(pdpe, pdp->used_pdpes))
1182			continue;
1183
1184		pd = alloc_pd(dev_priv);
1185		if (IS_ERR(pd))
1186			goto unwind_out;
1187
1188		gen8_initialize_pd(vm, pd);
1189		pdp->page_directory[pdpe] = pd;
1190		__set_bit(pdpe, new_pds);
1191		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1192	}
1193
1194	return 0;
1195
1196unwind_out:
1197	for_each_set_bit(pdpe, new_pds, pdpes)
1198		free_pd(dev_priv, pdp->page_directory[pdpe]);
1199
1200	return -ENOMEM;
1201}
1202
1203/**
1204 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1205 * @vm:	Master vm structure.
1206 * @pml4:	Page map level 4 for this address range.
1207 * @start:	Starting virtual address to begin allocations.
1208 * @length:	Size of the allocations.
1209 * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1210 *		caller to free on error.
1211 *
1212 * Allocate the required number of page directory pointers. Extremely similar to
1213 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1214 * The main difference is here we are limited by the pml4 boundary (instead of
1215 * the page directory pointer).
1216 *
1217 * Return: 0 if success; negative error code otherwise.
1218 */
1219static int
1220gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1221				  struct i915_pml4 *pml4,
1222				  uint64_t start,
1223				  uint64_t length,
1224				  unsigned long *new_pdps)
1225{
1226	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1227	struct i915_page_directory_pointer *pdp;
1228	uint32_t pml4e;
1229
1230	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1231
1232	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1233		if (!test_bit(pml4e, pml4->used_pml4es)) {
1234			pdp = alloc_pdp(dev_priv);
1235			if (IS_ERR(pdp))
1236				goto unwind_out;
1237
1238			gen8_initialize_pdp(vm, pdp);
1239			pml4->pdps[pml4e] = pdp;
1240			__set_bit(pml4e, new_pdps);
1241			trace_i915_page_directory_pointer_entry_alloc(vm,
1242								      pml4e,
1243								      start,
1244								      GEN8_PML4E_SHIFT);
1245		}
1246	}
1247
1248	return 0;
1249
1250unwind_out:
1251	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1252		free_pdp(dev_priv, pml4->pdps[pml4e]);
1253
1254	return -ENOMEM;
1255}
1256
1257static void
1258free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1259{
1260	kfree(new_pts);
1261	kfree(new_pds);
1262}
1263
1264/* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1265 * of these are based on the number of PDPEs in the system.
1266 */
1267static
1268int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1269					 unsigned long **new_pts,
1270					 uint32_t pdpes)
1271{
1272	unsigned long *pds;
1273	unsigned long *pts;
1274
1275	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1276	if (!pds)
1277		return -ENOMEM;
1278
1279	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1280		      GFP_TEMPORARY);
1281	if (!pts)
1282		goto err_out;
1283
1284	*new_pds = pds;
1285	*new_pts = pts;
1286
1287	return 0;
1288
1289err_out:
1290	free_gen8_temp_bitmaps(pds, pts);
1291	return -ENOMEM;
1292}
1293
1294static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1295				    struct i915_page_directory_pointer *pdp,
1296				    uint64_t start,
1297				    uint64_t length)
1298{
1299	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1300	unsigned long *new_page_dirs, *new_page_tables;
1301	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1302	struct i915_page_directory *pd;
1303	const uint64_t orig_start = start;
1304	const uint64_t orig_length = length;
1305	uint32_t pdpe;
1306	uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1307	int ret;
1308
1309	/* Wrap is never okay since we can only represent 48b, and we don't
1310	 * actually use the other side of the canonical address space.
1311	 */
1312	if (WARN_ON(start + length < start))
1313		return -ENODEV;
1314
1315	if (WARN_ON(start + length > vm->total))
1316		return -ENODEV;
1317
1318	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1319	if (ret)
1320		return ret;
1321
1322	/* Do the allocations first so we can easily bail out */
1323	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1324						new_page_dirs);
1325	if (ret) {
1326		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1327		return ret;
1328	}
1329
1330	/* For every page directory referenced, allocate page tables */
1331	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1332		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1333						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1334		if (ret)
1335			goto err_out;
1336	}
1337
1338	start = orig_start;
1339	length = orig_length;
1340
1341	/* Allocations have completed successfully, so set the bitmaps, and do
1342	 * the mappings. */
1343	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1344		gen8_pde_t *const page_directory = kmap_px(pd);
1345		struct i915_page_table *pt;
1346		uint64_t pd_len = length;
1347		uint64_t pd_start = start;
1348		uint32_t pde;
1349
1350		/* Every pd should be allocated, we just did that above. */
1351		WARN_ON(!pd);
1352
1353		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1354			/* Same reasoning as pd */
1355			WARN_ON(!pt);
1356			WARN_ON(!pd_len);
1357			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1358
1359			/* Set our used ptes within the page table */
1360			bitmap_set(pt->used_ptes,
1361				   gen8_pte_index(pd_start),
1362				   gen8_pte_count(pd_start, pd_len));
1363
1364			/* Our pde is now pointing to the pagetable, pt */
1365			__set_bit(pde, pd->used_pdes);
1366
1367			/* Map the PDE to the page table */
1368			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1369							      I915_CACHE_LLC);
1370			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1371							gen8_pte_index(start),
1372							gen8_pte_count(start, length),
1373							GEN8_PTES);
1374
1375			/* NB: We haven't yet mapped ptes to pages. At this
1376			 * point we're still relying on insert_entries() */
1377		}
1378
1379		kunmap_px(ppgtt, page_directory);
1380		__set_bit(pdpe, pdp->used_pdpes);
1381		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1382	}
1383
1384	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1385	mark_tlbs_dirty(ppgtt);
1386	return 0;
1387
1388err_out:
1389	while (pdpe--) {
1390		unsigned long temp;
1391
1392		for_each_set_bit(temp, new_page_tables + pdpe *
1393				BITS_TO_LONGS(I915_PDES), I915_PDES)
1394			free_pt(dev_priv,
1395				pdp->page_directory[pdpe]->page_table[temp]);
1396	}
1397
1398	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1399		free_pd(dev_priv, pdp->page_directory[pdpe]);
1400
1401	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1402	mark_tlbs_dirty(ppgtt);
1403	return ret;
1404}
1405
1406static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1407				    struct i915_pml4 *pml4,
1408				    uint64_t start,
1409				    uint64_t length)
1410{
1411	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1412	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1413	struct i915_page_directory_pointer *pdp;
1414	uint64_t pml4e;
1415	int ret = 0;
1416
1417	/* Do the pml4 allocations first, so we don't need to track the newly
1418	 * allocated tables below the pdp */
1419	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1420
1421	/* The pagedirectory and pagetable allocations are done in the shared 3
1422	 * and 4 level code. Just allocate the pdps.
1423	 */
1424	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1425						new_pdps);
1426	if (ret)
1427		return ret;
1428
1429	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1430	     "The allocation has spanned more than 512GB. "
1431	     "It is highly likely this is incorrect.");
1432
1433	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1434		WARN_ON(!pdp);
1435
1436		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1437		if (ret)
1438			goto err_out;
1439
1440		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1441	}
1442
1443	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1444		  GEN8_PML4ES_PER_PML4);
1445
1446	return 0;
1447
1448err_out:
1449	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1450		gen8_ppgtt_cleanup_3lvl(to_i915(vm->dev), pml4->pdps[pml4e]);
1451
1452	return ret;
1453}
1454
1455static int gen8_alloc_va_range(struct i915_address_space *vm,
1456			       uint64_t start, uint64_t length)
1457{
1458	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1459
1460	if (USES_FULL_48BIT_PPGTT(to_i915(vm->dev)))
1461		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1462	else
1463		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1464}
1465
1466static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1467			  uint64_t start, uint64_t length,
1468			  gen8_pte_t scratch_pte,
1469			  struct seq_file *m)
1470{
1471	struct i915_page_directory *pd;
1472	uint32_t pdpe;
1473
1474	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1475		struct i915_page_table *pt;
1476		uint64_t pd_len = length;
1477		uint64_t pd_start = start;
1478		uint32_t pde;
1479
1480		if (!test_bit(pdpe, pdp->used_pdpes))
1481			continue;
1482
1483		seq_printf(m, "\tPDPE #%d\n", pdpe);
1484		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1485			uint32_t  pte;
1486			gen8_pte_t *pt_vaddr;
1487
1488			if (!test_bit(pde, pd->used_pdes))
1489				continue;
1490
1491			pt_vaddr = kmap_px(pt);
1492			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1493				uint64_t va =
1494					(pdpe << GEN8_PDPE_SHIFT) |
1495					(pde << GEN8_PDE_SHIFT) |
1496					(pte << GEN8_PTE_SHIFT);
1497				int i;
1498				bool found = false;
1499
1500				for (i = 0; i < 4; i++)
1501					if (pt_vaddr[pte + i] != scratch_pte)
1502						found = true;
1503				if (!found)
1504					continue;
1505
1506				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1507				for (i = 0; i < 4; i++) {
1508					if (pt_vaddr[pte + i] != scratch_pte)
1509						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1510					else
1511						seq_puts(m, "  SCRATCH ");
1512				}
1513				seq_puts(m, "\n");
1514			}
1515			/* don't use kunmap_px, it could trigger
1516			 * an unnecessary flush.
1517			 */
1518			kunmap_atomic(pt_vaddr);
1519		}
1520	}
1521}
1522
1523static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1524{
1525	struct i915_address_space *vm = &ppgtt->base;
1526	uint64_t start = ppgtt->base.start;
1527	uint64_t length = ppgtt->base.total;
1528	gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1529						 I915_CACHE_LLC);
1530
1531	if (!USES_FULL_48BIT_PPGTT(to_i915(vm->dev))) {
1532		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1533	} else {
1534		uint64_t pml4e;
1535		struct i915_pml4 *pml4 = &ppgtt->pml4;
1536		struct i915_page_directory_pointer *pdp;
1537
1538		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1539			if (!test_bit(pml4e, pml4->used_pml4es))
1540				continue;
1541
1542			seq_printf(m, "    PML4E #%llu\n", pml4e);
1543			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1544		}
1545	}
1546}
1547
1548static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1549{
1550	unsigned long *new_page_dirs, *new_page_tables;
1551	uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev));
1552	int ret;
1553
1554	/* We allocate temp bitmap for page tables for no gain
1555	 * but as this is for init only, lets keep the things simple
1556	 */
1557	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1558	if (ret)
1559		return ret;
1560
1561	/* Allocate for all pdps regardless of how the ppgtt
1562	 * was defined.
1563	 */
1564	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1565						0, 1ULL << 32,
1566						new_page_dirs);
1567	if (!ret)
1568		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1569
1570	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1571
1572	return ret;
1573}
1574
1575/*
1576 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1577 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1578 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1579 * space.
1580 *
1581 */
1582static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1583{
1584	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1585	int ret;
1586
1587	ret = gen8_init_scratch(&ppgtt->base);
1588	if (ret)
1589		return ret;
1590
1591	ppgtt->base.start = 0;
1592	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1593	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1594	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1595	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1596	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1597	ppgtt->base.bind_vma = ppgtt_bind_vma;
1598	ppgtt->debug_dump = gen8_dump_ppgtt;
1599
1600	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1601		ret = setup_px(dev_priv, &ppgtt->pml4);
1602		if (ret)
1603			goto free_scratch;
1604
1605		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1606
1607		ppgtt->base.total = 1ULL << 48;
1608		ppgtt->switch_mm = gen8_48b_mm_switch;
1609	} else {
1610		ret = __pdp_init(dev_priv, &ppgtt->pdp);
1611		if (ret)
1612			goto free_scratch;
1613
1614		ppgtt->base.total = 1ULL << 32;
1615		ppgtt->switch_mm = gen8_legacy_mm_switch;
1616		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1617							      0, 0,
1618							      GEN8_PML4E_SHIFT);
1619
1620		if (intel_vgpu_active(dev_priv)) {
1621			ret = gen8_preallocate_top_level_pdps(ppgtt);
1622			if (ret)
1623				goto free_scratch;
1624		}
1625	}
1626
1627	if (intel_vgpu_active(dev_priv))
1628		gen8_ppgtt_notify_vgt(ppgtt, true);
1629
1630	return 0;
1631
1632free_scratch:
1633	gen8_free_scratch(&ppgtt->base);
1634	return ret;
1635}
1636
1637static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1638{
1639	struct i915_address_space *vm = &ppgtt->base;
1640	struct i915_page_table *unused;
1641	gen6_pte_t scratch_pte;
1642	uint32_t pd_entry;
1643	uint32_t  pte, pde;
1644	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1645
1646	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1647				     I915_CACHE_LLC, 0);
1648
1649	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1650		u32 expected;
1651		gen6_pte_t *pt_vaddr;
1652		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1653		pd_entry = readl(ppgtt->pd_addr + pde);
1654		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1655
1656		if (pd_entry != expected)
1657			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1658				   pde,
1659				   pd_entry,
1660				   expected);
1661		seq_printf(m, "\tPDE: %x\n", pd_entry);
1662
1663		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1664
1665		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1666			unsigned long va =
1667				(pde * PAGE_SIZE * GEN6_PTES) +
1668				(pte * PAGE_SIZE);
1669			int i;
1670			bool found = false;
1671			for (i = 0; i < 4; i++)
1672				if (pt_vaddr[pte + i] != scratch_pte)
1673					found = true;
1674			if (!found)
1675				continue;
1676
1677			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1678			for (i = 0; i < 4; i++) {
1679				if (pt_vaddr[pte + i] != scratch_pte)
1680					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1681				else
1682					seq_puts(m, "  SCRATCH ");
1683			}
1684			seq_puts(m, "\n");
1685		}
1686		kunmap_px(ppgtt, pt_vaddr);
1687	}
1688}
1689
1690/* Write pde (index) from the page directory @pd to the page table @pt */
1691static void gen6_write_pde(struct i915_page_directory *pd,
1692			    const int pde, struct i915_page_table *pt)
1693{
1694	/* Caller needs to make sure the write completes if necessary */
1695	struct i915_hw_ppgtt *ppgtt =
1696		container_of(pd, struct i915_hw_ppgtt, pd);
1697	u32 pd_entry;
1698
1699	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1700	pd_entry |= GEN6_PDE_VALID;
1701
1702	writel(pd_entry, ppgtt->pd_addr + pde);
1703}
1704
1705/* Write all the page tables found in the ppgtt structure to incrementing page
1706 * directories. */
1707static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1708				  struct i915_page_directory *pd,
1709				  uint32_t start, uint32_t length)
1710{
1711	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1712	struct i915_page_table *pt;
1713	uint32_t pde;
1714
1715	gen6_for_each_pde(pt, pd, start, length, pde)
1716		gen6_write_pde(pd, pde, pt);
1717
1718	/* Make sure write is complete before other code can use this page
1719	 * table. Also require for WC mapped PTEs */
1720	readl(ggtt->gsm);
1721}
1722
1723static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1724{
1725	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1726
1727	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1728}
1729
1730static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1731			 struct drm_i915_gem_request *req)
1732{
1733	struct intel_ring *ring = req->ring;
1734	struct intel_engine_cs *engine = req->engine;
1735	int ret;
1736
1737	/* NB: TLBs must be flushed and invalidated before a switch */
1738	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1739	if (ret)
1740		return ret;
1741
1742	ret = intel_ring_begin(req, 6);
1743	if (ret)
1744		return ret;
1745
1746	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1747	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1748	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1749	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1750	intel_ring_emit(ring, get_pd_offset(ppgtt));
1751	intel_ring_emit(ring, MI_NOOP);
1752	intel_ring_advance(ring);
1753
1754	return 0;
1755}
1756
1757static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1758			  struct drm_i915_gem_request *req)
1759{
1760	struct intel_ring *ring = req->ring;
1761	struct intel_engine_cs *engine = req->engine;
 
1762	int ret;
1763
1764	/* NB: TLBs must be flushed and invalidated before a switch */
1765	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1766	if (ret)
1767		return ret;
1768
1769	ret = intel_ring_begin(req, 6);
1770	if (ret)
1771		return ret;
1772
1773	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1774	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1775	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1776	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1777	intel_ring_emit(ring, get_pd_offset(ppgtt));
1778	intel_ring_emit(ring, MI_NOOP);
1779	intel_ring_advance(ring);
1780
1781	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1782	if (engine->id != RCS) {
1783		ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1784		if (ret)
1785			return ret;
1786	}
1787
1788	return 0;
1789}
1790
1791static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1792			  struct drm_i915_gem_request *req)
1793{
1794	struct intel_engine_cs *engine = req->engine;
1795	struct drm_i915_private *dev_priv = req->i915;
1796
1797	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1798	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1799	return 0;
1800}
1801
1802static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1803{
1804	struct intel_engine_cs *engine;
1805	enum intel_engine_id id;
1806
1807	for_each_engine(engine, dev_priv, id) {
1808		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1809				 GEN8_GFX_PPGTT_48B : 0;
1810		I915_WRITE(RING_MODE_GEN7(engine),
1811			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1812	}
1813}
1814
1815static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1816{
1817	struct intel_engine_cs *engine;
1818	uint32_t ecochk, ecobits;
1819	enum intel_engine_id id;
1820
1821	ecobits = I915_READ(GAC_ECO_BITS);
1822	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1823
1824	ecochk = I915_READ(GAM_ECOCHK);
1825	if (IS_HASWELL(dev_priv)) {
1826		ecochk |= ECOCHK_PPGTT_WB_HSW;
1827	} else {
1828		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1829		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1830	}
1831	I915_WRITE(GAM_ECOCHK, ecochk);
1832
1833	for_each_engine(engine, dev_priv, id) {
1834		/* GFX_MODE is per-ring on gen7+ */
1835		I915_WRITE(RING_MODE_GEN7(engine),
1836			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1837	}
1838}
1839
1840static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1841{
1842	uint32_t ecochk, gab_ctl, ecobits;
1843
1844	ecobits = I915_READ(GAC_ECO_BITS);
1845	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1846		   ECOBITS_PPGTT_CACHE64B);
1847
1848	gab_ctl = I915_READ(GAB_CTL);
1849	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1850
1851	ecochk = I915_READ(GAM_ECOCHK);
1852	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1853
1854	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1855}
1856
1857/* PPGTT support for Sandybdrige/Gen6 and later */
1858static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1859				   uint64_t start,
1860				   uint64_t length)
1861{
1862	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1863	gen6_pte_t *pt_vaddr, scratch_pte;
1864	unsigned first_entry = start >> PAGE_SHIFT;
1865	unsigned num_entries = length >> PAGE_SHIFT;
1866	unsigned act_pt = first_entry / GEN6_PTES;
1867	unsigned first_pte = first_entry % GEN6_PTES;
1868	unsigned last_pte, i;
1869
1870	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1871				     I915_CACHE_LLC, 0);
1872
1873	while (num_entries) {
1874		last_pte = first_pte + num_entries;
1875		if (last_pte > GEN6_PTES)
1876			last_pte = GEN6_PTES;
1877
1878		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1879
1880		for (i = first_pte; i < last_pte; i++)
1881			pt_vaddr[i] = scratch_pte;
1882
1883		kunmap_px(ppgtt, pt_vaddr);
1884
1885		num_entries -= last_pte - first_pte;
1886		first_pte = 0;
1887		act_pt++;
1888	}
1889}
1890
1891static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1892				      struct sg_table *pages,
1893				      uint64_t start,
1894				      enum i915_cache_level cache_level, u32 flags)
1895{
1896	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1897	unsigned first_entry = start >> PAGE_SHIFT;
1898	unsigned act_pt = first_entry / GEN6_PTES;
1899	unsigned act_pte = first_entry % GEN6_PTES;
1900	gen6_pte_t *pt_vaddr = NULL;
1901	struct sgt_iter sgt_iter;
1902	dma_addr_t addr;
1903
1904	for_each_sgt_dma(addr, sgt_iter, pages) {
1905		if (pt_vaddr == NULL)
1906			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1907
1908		pt_vaddr[act_pte] =
1909			vm->pte_encode(addr, cache_level, flags);
1910
1911		if (++act_pte == GEN6_PTES) {
1912			kunmap_px(ppgtt, pt_vaddr);
1913			pt_vaddr = NULL;
1914			act_pt++;
1915			act_pte = 0;
1916		}
1917	}
1918
1919	if (pt_vaddr)
1920		kunmap_px(ppgtt, pt_vaddr);
1921}
1922
1923static int gen6_alloc_va_range(struct i915_address_space *vm,
1924			       uint64_t start_in, uint64_t length_in)
1925{
1926	DECLARE_BITMAP(new_page_tables, I915_PDES);
1927	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1928	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1929	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1930	struct i915_page_table *pt;
1931	uint32_t start, length, start_save, length_save;
1932	uint32_t pde;
1933	int ret;
1934
1935	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1936		return -ENODEV;
1937
1938	start = start_save = start_in;
1939	length = length_save = length_in;
1940
1941	bitmap_zero(new_page_tables, I915_PDES);
1942
1943	/* The allocation is done in two stages so that we can bail out with
1944	 * minimal amount of pain. The first stage finds new page tables that
1945	 * need allocation. The second stage marks use ptes within the page
1946	 * tables.
1947	 */
1948	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1949		if (pt != vm->scratch_pt) {
1950			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1951			continue;
1952		}
1953
1954		/* We've already allocated a page table */
1955		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1956
1957		pt = alloc_pt(dev_priv);
1958		if (IS_ERR(pt)) {
1959			ret = PTR_ERR(pt);
1960			goto unwind_out;
1961		}
1962
1963		gen6_initialize_pt(vm, pt);
1964
1965		ppgtt->pd.page_table[pde] = pt;
1966		__set_bit(pde, new_page_tables);
1967		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1968	}
1969
1970	start = start_save;
1971	length = length_save;
1972
1973	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1974		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1975
1976		bitmap_zero(tmp_bitmap, GEN6_PTES);
1977		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1978			   gen6_pte_count(start, length));
1979
1980		if (__test_and_clear_bit(pde, new_page_tables))
1981			gen6_write_pde(&ppgtt->pd, pde, pt);
1982
1983		trace_i915_page_table_entry_map(vm, pde, pt,
1984					 gen6_pte_index(start),
1985					 gen6_pte_count(start, length),
1986					 GEN6_PTES);
1987		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1988				GEN6_PTES);
1989	}
1990
1991	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1992
1993	/* Make sure write is complete before other code can use this page
1994	 * table. Also require for WC mapped PTEs */
1995	readl(ggtt->gsm);
1996
1997	mark_tlbs_dirty(ppgtt);
1998	return 0;
1999
2000unwind_out:
2001	for_each_set_bit(pde, new_page_tables, I915_PDES) {
2002		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
2003
2004		ppgtt->pd.page_table[pde] = vm->scratch_pt;
2005		free_pt(dev_priv, pt);
2006	}
2007
2008	mark_tlbs_dirty(ppgtt);
2009	return ret;
2010}
2011
2012static int gen6_init_scratch(struct i915_address_space *vm)
2013{
2014	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2015	int ret;
2016
2017	ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
2018	if (ret)
2019		return ret;
2020
2021	vm->scratch_pt = alloc_pt(dev_priv);
2022	if (IS_ERR(vm->scratch_pt)) {
2023		cleanup_scratch_page(dev_priv, &vm->scratch_page);
2024		return PTR_ERR(vm->scratch_pt);
2025	}
2026
2027	gen6_initialize_pt(vm, vm->scratch_pt);
2028
2029	return 0;
2030}
2031
2032static void gen6_free_scratch(struct i915_address_space *vm)
2033{
2034	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2035
2036	free_pt(dev_priv, vm->scratch_pt);
2037	cleanup_scratch_page(dev_priv, &vm->scratch_page);
2038}
2039
2040static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2041{
2042	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
2043	struct i915_page_directory *pd = &ppgtt->pd;
2044	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2045	struct i915_page_table *pt;
2046	uint32_t pde;
2047
2048	drm_mm_remove_node(&ppgtt->node);
2049
2050	gen6_for_all_pdes(pt, pd, pde)
2051		if (pt != vm->scratch_pt)
2052			free_pt(dev_priv, pt);
2053
2054	gen6_free_scratch(vm);
2055}
2056
2057static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2058{
2059	struct i915_address_space *vm = &ppgtt->base;
2060	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
2061	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2062	bool retried = false;
2063	int ret;
2064
2065	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2066	 * allocator works in address space sizes, so it's multiplied by page
2067	 * size. We allocate at the top of the GTT to avoid fragmentation.
2068	 */
2069	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2070
2071	ret = gen6_init_scratch(vm);
2072	if (ret)
2073		return ret;
2074
2075alloc:
2076	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2077						  &ppgtt->node, GEN6_PD_SIZE,
2078						  GEN6_PD_ALIGN, 0,
2079						  0, ggtt->base.total,
2080						  DRM_MM_TOPDOWN);
2081	if (ret == -ENOSPC && !retried) {
2082		ret = i915_gem_evict_something(&ggtt->base,
2083					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2084					       I915_CACHE_NONE,
2085					       0, ggtt->base.total,
2086					       0);
2087		if (ret)
2088			goto err_out;
2089
2090		retried = true;
2091		goto alloc;
2092	}
2093
2094	if (ret)
2095		goto err_out;
2096
2097
2098	if (ppgtt->node.start < ggtt->mappable_end)
2099		DRM_DEBUG("Forced to use aperture for PDEs\n");
2100
2101	return 0;
2102
2103err_out:
2104	gen6_free_scratch(vm);
2105	return ret;
2106}
2107
2108static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2109{
2110	return gen6_ppgtt_allocate_page_directories(ppgtt);
2111}
2112
2113static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2114				  uint64_t start, uint64_t length)
2115{
2116	struct i915_page_table *unused;
2117	uint32_t pde;
2118
2119	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2120		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2121}
2122
2123static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2124{
2125	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
2126	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2127	int ret;
2128
2129	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2130	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2131		ppgtt->switch_mm = gen6_mm_switch;
2132	else if (IS_HASWELL(dev_priv))
2133		ppgtt->switch_mm = hsw_mm_switch;
2134	else if (IS_GEN7(dev_priv))
2135		ppgtt->switch_mm = gen7_mm_switch;
2136	else
2137		BUG();
2138
2139	ret = gen6_ppgtt_alloc(ppgtt);
2140	if (ret)
2141		return ret;
2142
2143	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2144	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2145	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2146	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2147	ppgtt->base.bind_vma = ppgtt_bind_vma;
2148	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2149	ppgtt->base.start = 0;
2150	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2151	ppgtt->debug_dump = gen6_dump_ppgtt;
2152
2153	ppgtt->pd.base.ggtt_offset =
2154		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2155
2156	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2157		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2158
2159	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2160
2161	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2162
2163	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2164			 ppgtt->node.size >> 20,
2165			 ppgtt->node.start / PAGE_SIZE);
2166
2167	DRM_DEBUG("Adding PPGTT at offset %x\n",
2168		  ppgtt->pd.base.ggtt_offset << 10);
2169
2170	return 0;
2171}
2172
2173static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2174			   struct drm_i915_private *dev_priv)
2175{
2176	ppgtt->base.dev = &dev_priv->drm;
2177
2178	if (INTEL_INFO(dev_priv)->gen < 8)
2179		return gen6_ppgtt_init(ppgtt);
2180	else
2181		return gen8_ppgtt_init(ppgtt);
2182}
2183
2184static void i915_address_space_init(struct i915_address_space *vm,
2185				    struct drm_i915_private *dev_priv,
2186				    const char *name)
2187{
2188	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2189	drm_mm_init(&vm->mm, vm->start, vm->total);
2190	INIT_LIST_HEAD(&vm->active_list);
2191	INIT_LIST_HEAD(&vm->inactive_list);
2192	INIT_LIST_HEAD(&vm->unbound_list);
2193	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2194}
2195
2196static void i915_address_space_fini(struct i915_address_space *vm)
2197{
2198	i915_gem_timeline_fini(&vm->timeline);
2199	drm_mm_takedown(&vm->mm);
2200	list_del(&vm->global_link);
2201}
2202
2203static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2204{
2205	/* This function is for gtt related workarounds. This function is
2206	 * called on driver load and after a GPU reset, so you can place
2207	 * workarounds here even if they get overwritten by GPU reset.
2208	 */
2209	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2210	if (IS_BROADWELL(dev_priv))
2211		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2212	else if (IS_CHERRYVIEW(dev_priv))
2213		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2214	else if (IS_SKYLAKE(dev_priv))
2215		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2216	else if (IS_BROXTON(dev_priv))
2217		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2218}
2219
2220static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2221			   struct drm_i915_private *dev_priv,
2222			   struct drm_i915_file_private *file_priv,
2223			   const char *name)
2224{
2225	int ret;
2226
2227	ret = __hw_ppgtt_init(ppgtt, dev_priv);
2228	if (ret == 0) {
2229		kref_init(&ppgtt->ref);
2230		i915_address_space_init(&ppgtt->base, dev_priv, name);
2231		ppgtt->base.file = file_priv;
2232	}
2233
2234	return ret;
2235}
2236
2237int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2238{
2239	gtt_write_workarounds(dev_priv);
2240
2241	/* In the case of execlists, PPGTT is enabled by the context descriptor
2242	 * and the PDPs are contained within the context itself.  We don't
2243	 * need to do anything here. */
2244	if (i915.enable_execlists)
2245		return 0;
2246
2247	if (!USES_PPGTT(dev_priv))
2248		return 0;
2249
2250	if (IS_GEN6(dev_priv))
2251		gen6_ppgtt_enable(dev_priv);
2252	else if (IS_GEN7(dev_priv))
2253		gen7_ppgtt_enable(dev_priv);
2254	else if (INTEL_GEN(dev_priv) >= 8)
2255		gen8_ppgtt_enable(dev_priv);
2256	else
2257		MISSING_CASE(INTEL_GEN(dev_priv));
2258
2259	return 0;
2260}
2261
2262struct i915_hw_ppgtt *
2263i915_ppgtt_create(struct drm_i915_private *dev_priv,
2264		  struct drm_i915_file_private *fpriv,
2265		  const char *name)
2266{
2267	struct i915_hw_ppgtt *ppgtt;
2268	int ret;
2269
2270	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2271	if (!ppgtt)
2272		return ERR_PTR(-ENOMEM);
2273
2274	ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name);
2275	if (ret) {
2276		kfree(ppgtt);
2277		return ERR_PTR(ret);
2278	}
2279
2280	trace_i915_ppgtt_create(&ppgtt->base);
2281
2282	return ppgtt;
2283}
2284
2285void i915_ppgtt_release(struct kref *kref)
2286{
2287	struct i915_hw_ppgtt *ppgtt =
2288		container_of(kref, struct i915_hw_ppgtt, ref);
2289
2290	trace_i915_ppgtt_release(&ppgtt->base);
2291
2292	/* vmas should already be unbound and destroyed */
2293	WARN_ON(!list_empty(&ppgtt->base.active_list));
2294	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2295	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2296
2297	i915_address_space_fini(&ppgtt->base);
2298
2299	ppgtt->base.cleanup(&ppgtt->base);
2300	kfree(ppgtt);
2301}
2302
2303/* Certain Gen5 chipsets require require idling the GPU before
2304 * unmapping anything from the GTT when VT-d is enabled.
2305 */
2306static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2307{
2308#ifdef CONFIG_INTEL_IOMMU
2309	/* Query intel_iommu to see if we need the workaround. Presumably that
2310	 * was loaded first.
2311	 */
2312	if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2313		return true;
2314#endif
2315	return false;
2316}
2317
2318void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2319{
2320	struct intel_engine_cs *engine;
2321	enum intel_engine_id id;
2322
2323	if (INTEL_INFO(dev_priv)->gen < 6)
2324		return;
2325
2326	for_each_engine(engine, dev_priv, id) {
2327		u32 fault_reg;
2328		fault_reg = I915_READ(RING_FAULT_REG(engine));
2329		if (fault_reg & RING_FAULT_VALID) {
2330			DRM_DEBUG_DRIVER("Unexpected fault\n"
2331					 "\tAddr: 0x%08lx\n"
2332					 "\tAddress space: %s\n"
2333					 "\tSource ID: %d\n"
2334					 "\tType: %d\n",
2335					 fault_reg & PAGE_MASK,
2336					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2337					 RING_FAULT_SRCID(fault_reg),
2338					 RING_FAULT_FAULT_TYPE(fault_reg));
2339			I915_WRITE(RING_FAULT_REG(engine),
2340				   fault_reg & ~RING_FAULT_VALID);
2341		}
2342	}
2343
2344	/* Engine specific init may not have been done till this point. */
2345	if (dev_priv->engine[RCS])
2346		POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2347}
2348
2349static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2350{
2351	if (INTEL_INFO(dev_priv)->gen < 6) {
2352		intel_gtt_chipset_flush();
2353	} else {
2354		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2355		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2356	}
2357}
2358
2359void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2360{
2361	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2362
2363	/* Don't bother messing with faults pre GEN6 as we have little
2364	 * documentation supporting that it's a good idea.
2365	 */
2366	if (INTEL_GEN(dev_priv) < 6)
2367		return;
2368
2369	i915_check_and_clear_faults(dev_priv);
2370
2371	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
2372
2373	i915_ggtt_flush(dev_priv);
2374}
2375
2376int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2377			       struct sg_table *pages)
2378{
2379	if (dma_map_sg(&obj->base.dev->pdev->dev,
2380		       pages->sgl, pages->nents,
2381		       PCI_DMA_BIDIRECTIONAL))
2382		return 0;
2383
2384	return -ENOSPC;
2385}
2386
2387static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2388{
2389	writeq(pte, addr);
2390}
2391
2392static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2393				  dma_addr_t addr,
2394				  uint64_t offset,
2395				  enum i915_cache_level level,
2396				  u32 unused)
2397{
2398	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2399	gen8_pte_t __iomem *pte =
2400		(gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2401		(offset >> PAGE_SHIFT);
2402
2403	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2404
2405	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2406	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2407}
2408
2409static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2410				     struct sg_table *st,
2411				     uint64_t start,
2412				     enum i915_cache_level level, u32 unused)
2413{
2414	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2415	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2416	struct sgt_iter sgt_iter;
2417	gen8_pte_t __iomem *gtt_entries;
2418	gen8_pte_t gtt_entry;
2419	dma_addr_t addr;
2420	int i = 0;
2421
2422	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2423
2424	for_each_sgt_dma(addr, sgt_iter, st) {
2425		gtt_entry = gen8_pte_encode(addr, level);
2426		gen8_set_pte(&gtt_entries[i++], gtt_entry);
2427	}
2428
2429	/*
2430	 * XXX: This serves as a posting read to make sure that the PTE has
2431	 * actually been updated. There is some concern that even though
2432	 * registers and PTEs are within the same BAR that they are potentially
2433	 * of NUMA access patterns. Therefore, even with the way we assume
2434	 * hardware should work, we must keep this posting read for paranoia.
2435	 */
2436	if (i != 0)
2437		WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2438
2439	/* This next bit makes the above posting read even more important. We
2440	 * want to flush the TLBs only after we're certain all the PTE updates
2441	 * have finished.
2442	 */
2443	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2444	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2445}
2446
2447struct insert_entries {
2448	struct i915_address_space *vm;
2449	struct sg_table *st;
2450	uint64_t start;
2451	enum i915_cache_level level;
2452	u32 flags;
2453};
2454
2455static int gen8_ggtt_insert_entries__cb(void *_arg)
2456{
2457	struct insert_entries *arg = _arg;
2458	gen8_ggtt_insert_entries(arg->vm, arg->st,
2459				 arg->start, arg->level, arg->flags);
2460	return 0;
2461}
2462
2463static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2464					  struct sg_table *st,
2465					  uint64_t start,
2466					  enum i915_cache_level level,
2467					  u32 flags)
2468{
2469	struct insert_entries arg = { vm, st, start, level, flags };
2470	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2471}
2472
2473static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2474				  dma_addr_t addr,
2475				  uint64_t offset,
2476				  enum i915_cache_level level,
2477				  u32 flags)
2478{
2479	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2480	gen6_pte_t __iomem *pte =
2481		(gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2482		(offset >> PAGE_SHIFT);
2483
2484	iowrite32(vm->pte_encode(addr, level, flags), pte);
2485
2486	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2487	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2488}
2489
2490/*
2491 * Binds an object into the global gtt with the specified cache level. The object
2492 * will be accessible to the GPU via commands whose operands reference offsets
2493 * within the global GTT as well as accessible by the GPU through the GMADR
2494 * mapped BAR (dev_priv->mm.gtt->gtt).
2495 */
2496static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2497				     struct sg_table *st,
2498				     uint64_t start,
2499				     enum i915_cache_level level, u32 flags)
2500{
2501	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2502	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2503	struct sgt_iter sgt_iter;
2504	gen6_pte_t __iomem *gtt_entries;
2505	gen6_pte_t gtt_entry;
2506	dma_addr_t addr;
2507	int i = 0;
2508
2509	gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2510
2511	for_each_sgt_dma(addr, sgt_iter, st) {
2512		gtt_entry = vm->pte_encode(addr, level, flags);
2513		iowrite32(gtt_entry, &gtt_entries[i++]);
2514	}
2515
2516	/* XXX: This serves as a posting read to make sure that the PTE has
2517	 * actually been updated. There is some concern that even though
2518	 * registers and PTEs are within the same BAR that they are potentially
2519	 * of NUMA access patterns. Therefore, even with the way we assume
2520	 * hardware should work, we must keep this posting read for paranoia.
2521	 */
2522	if (i != 0)
2523		WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2524
2525	/* This next bit makes the above posting read even more important. We
2526	 * want to flush the TLBs only after we're certain all the PTE updates
2527	 * have finished.
2528	 */
2529	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2530	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2531}
2532
2533static void nop_clear_range(struct i915_address_space *vm,
2534			    uint64_t start, uint64_t length)
2535{
2536}
2537
2538static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2539				  uint64_t start, uint64_t length)
2540{
2541	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2542	unsigned first_entry = start >> PAGE_SHIFT;
2543	unsigned num_entries = length >> PAGE_SHIFT;
2544	gen8_pte_t scratch_pte, __iomem *gtt_base =
2545		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2546	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2547	int i;
2548
2549	if (WARN(num_entries > max_entries,
2550		 "First entry = %d; Num entries = %d (max=%d)\n",
2551		 first_entry, num_entries, max_entries))
2552		num_entries = max_entries;
2553
2554	scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2555				      I915_CACHE_LLC);
2556	for (i = 0; i < num_entries; i++)
2557		gen8_set_pte(&gtt_base[i], scratch_pte);
2558	readl(gtt_base);
2559}
2560
2561static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2562				  uint64_t start,
2563				  uint64_t length)
2564{
2565	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2566	unsigned first_entry = start >> PAGE_SHIFT;
2567	unsigned num_entries = length >> PAGE_SHIFT;
2568	gen6_pte_t scratch_pte, __iomem *gtt_base =
2569		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2570	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2571	int i;
2572
2573	if (WARN(num_entries > max_entries,
2574		 "First entry = %d; Num entries = %d (max=%d)\n",
2575		 first_entry, num_entries, max_entries))
2576		num_entries = max_entries;
2577
2578	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2579				     I915_CACHE_LLC, 0);
2580
2581	for (i = 0; i < num_entries; i++)
2582		iowrite32(scratch_pte, &gtt_base[i]);
2583	readl(gtt_base);
2584}
2585
2586static void i915_ggtt_insert_page(struct i915_address_space *vm,
2587				  dma_addr_t addr,
2588				  uint64_t offset,
2589				  enum i915_cache_level cache_level,
2590				  u32 unused)
2591{
2592	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2593		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2594
2595	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2596}
2597
2598static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2599				     struct sg_table *pages,
2600				     uint64_t start,
2601				     enum i915_cache_level cache_level, u32 unused)
2602{
2603	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2604		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2605
2606	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2607
2608}
2609
2610static void i915_ggtt_clear_range(struct i915_address_space *vm,
2611				  uint64_t start,
2612				  uint64_t length)
2613{
2614	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2615}
2616
2617static int ggtt_bind_vma(struct i915_vma *vma,
2618			 enum i915_cache_level cache_level,
2619			 u32 flags)
2620{
2621	struct drm_i915_private *i915 = to_i915(vma->vm->dev);
2622	struct drm_i915_gem_object *obj = vma->obj;
2623	u32 pte_flags = 0;
2624	int ret;
2625
2626	ret = i915_get_ggtt_vma_pages(vma);
2627	if (ret)
2628		return ret;
2629
2630	/* Currently applicable only to VLV */
2631	if (obj->gt_ro)
2632		pte_flags |= PTE_READ_ONLY;
2633
2634	intel_runtime_pm_get(i915);
2635	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2636				cache_level, pte_flags);
2637	intel_runtime_pm_put(i915);
2638
2639	/*
2640	 * Without aliasing PPGTT there's no difference between
2641	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2642	 * upgrade to both bound if we bind either to avoid double-binding.
2643	 */
2644	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2645
2646	return 0;
2647}
2648
2649static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2650				 enum i915_cache_level cache_level,
2651				 u32 flags)
2652{
2653	struct drm_i915_private *i915 = to_i915(vma->vm->dev);
2654	u32 pte_flags;
2655	int ret;
2656
2657	ret = i915_get_ggtt_vma_pages(vma);
2658	if (ret)
2659		return ret;
2660
2661	/* Currently applicable only to VLV */
2662	pte_flags = 0;
2663	if (vma->obj->gt_ro)
2664		pte_flags |= PTE_READ_ONLY;
2665
2666
2667	if (flags & I915_VMA_GLOBAL_BIND) {
2668		intel_runtime_pm_get(i915);
2669		vma->vm->insert_entries(vma->vm,
2670					vma->pages, vma->node.start,
2671					cache_level, pte_flags);
2672		intel_runtime_pm_put(i915);
2673	}
2674
2675	if (flags & I915_VMA_LOCAL_BIND) {
2676		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2677		appgtt->base.insert_entries(&appgtt->base,
2678					    vma->pages, vma->node.start,
2679					    cache_level, pte_flags);
2680	}
2681
2682	return 0;
2683}
2684
2685static void ggtt_unbind_vma(struct i915_vma *vma)
2686{
2687	struct drm_i915_private *i915 = to_i915(vma->vm->dev);
2688	struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2689	const u64 size = min(vma->size, vma->node.size);
2690
2691	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2692		intel_runtime_pm_get(i915);
2693		vma->vm->clear_range(vma->vm,
2694				     vma->node.start, size);
2695		intel_runtime_pm_put(i915);
2696	}
2697
2698	if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2699		appgtt->base.clear_range(&appgtt->base,
2700					 vma->node.start, size);
2701}
2702
2703void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2704			       struct sg_table *pages)
2705{
2706	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2707	struct device *kdev = &dev_priv->drm.pdev->dev;
2708	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2709
2710	if (unlikely(ggtt->do_idle_maps)) {
2711		if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
2712			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2713			/* Wait a bit, in hopes it avoids the hang */
2714			udelay(10);
2715		}
2716	}
2717
2718	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2719}
2720
2721static void i915_gtt_color_adjust(struct drm_mm_node *node,
2722				  unsigned long color,
2723				  u64 *start,
2724				  u64 *end)
2725{
2726	if (node->color != color)
2727		*start += 4096;
2728
2729	node = list_first_entry_or_null(&node->node_list,
2730					struct drm_mm_node,
2731					node_list);
2732	if (node && node->allocated && node->color != color)
2733		*end -= 4096;
2734}
2735
2736int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2737{
2738	/* Let GEM Manage all of the aperture.
2739	 *
2740	 * However, leave one page at the end still bound to the scratch page.
2741	 * There are a number of places where the hardware apparently prefetches
2742	 * past the end of the object, and we've seen multiple hangs with the
2743	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2744	 * aperture.  One page should be enough to keep any prefetching inside
2745	 * of the aperture.
2746	 */
2747	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2748	unsigned long hole_start, hole_end;
2749	struct i915_hw_ppgtt *ppgtt;
2750	struct drm_mm_node *entry;
2751	int ret;
2752
2753	ret = intel_vgt_balloon(dev_priv);
2754	if (ret)
2755		return ret;
2756
2757	/* Reserve a mappable slot for our lockless error capture */
2758	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2759						  &ggtt->error_capture,
2760						  4096, 0, -1,
2761						  0, ggtt->mappable_end,
2762						  0, 0);
2763	if (ret)
2764		return ret;
2765
2766	/* Clear any non-preallocated blocks */
2767	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2768		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2769			      hole_start, hole_end);
2770		ggtt->base.clear_range(&ggtt->base, hole_start,
2771				       hole_end - hole_start);
2772	}
2773
2774	/* And finally clear the reserved guard page */
2775	ggtt->base.clear_range(&ggtt->base,
2776			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2777
2778	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2779		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2780		if (!ppgtt) {
2781			ret = -ENOMEM;
2782			goto err;
2783		}
2784
2785		ret = __hw_ppgtt_init(ppgtt, dev_priv);
2786		if (ret)
2787			goto err_ppgtt;
2788
2789		if (ppgtt->base.allocate_va_range) {
2790			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2791							    ppgtt->base.total);
2792			if (ret)
2793				goto err_ppgtt_cleanup;
2794		}
2795
2796		ppgtt->base.clear_range(&ppgtt->base,
2797					ppgtt->base.start,
2798					ppgtt->base.total);
2799
2800		dev_priv->mm.aliasing_ppgtt = ppgtt;
2801		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2802		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2803	}
2804
2805	return 0;
2806
2807err_ppgtt_cleanup:
2808	ppgtt->base.cleanup(&ppgtt->base);
2809err_ppgtt:
2810	kfree(ppgtt);
2811err:
2812	drm_mm_remove_node(&ggtt->error_capture);
2813	return ret;
2814}
2815
2816/**
2817 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2818 * @dev_priv: i915 device
2819 */
2820void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2821{
2822	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2823
2824	if (dev_priv->mm.aliasing_ppgtt) {
2825		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2826		ppgtt->base.cleanup(&ppgtt->base);
2827		kfree(ppgtt);
2828	}
2829
2830	i915_gem_cleanup_stolen(&dev_priv->drm);
2831
2832	if (drm_mm_node_allocated(&ggtt->error_capture))
2833		drm_mm_remove_node(&ggtt->error_capture);
2834
2835	if (drm_mm_initialized(&ggtt->base.mm)) {
2836		intel_vgt_deballoon(dev_priv);
2837
2838		mutex_lock(&dev_priv->drm.struct_mutex);
2839		i915_address_space_fini(&ggtt->base);
2840		mutex_unlock(&dev_priv->drm.struct_mutex);
2841	}
2842
2843	ggtt->base.cleanup(&ggtt->base);
2844
2845	arch_phys_wc_del(ggtt->mtrr);
2846	io_mapping_fini(&ggtt->mappable);
2847}
2848
2849static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2850{
2851	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2852	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2853	return snb_gmch_ctl << 20;
2854}
2855
2856static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2857{
2858	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2859	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2860	if (bdw_gmch_ctl)
2861		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2862
2863#ifdef CONFIG_X86_32
2864	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2865	if (bdw_gmch_ctl > 4)
2866		bdw_gmch_ctl = 4;
2867#endif
2868
2869	return bdw_gmch_ctl << 20;
2870}
2871
2872static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2873{
2874	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2875	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2876
2877	if (gmch_ctrl)
2878		return 1 << (20 + gmch_ctrl);
2879
2880	return 0;
2881}
2882
2883static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2884{
2885	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2886	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2887	return snb_gmch_ctl << 25; /* 32 MB units */
2888}
2889
2890static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2891{
2892	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2893	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2894	return bdw_gmch_ctl << 25; /* 32 MB units */
2895}
2896
2897static size_t chv_get_stolen_size(u16 gmch_ctrl)
2898{
2899	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2900	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2901
2902	/*
2903	 * 0x0  to 0x10: 32MB increments starting at 0MB
2904	 * 0x11 to 0x16: 4MB increments starting at 8MB
2905	 * 0x17 to 0x1d: 4MB increments start at 36MB
2906	 */
2907	if (gmch_ctrl < 0x11)
2908		return gmch_ctrl << 25;
2909	else if (gmch_ctrl < 0x17)
2910		return (gmch_ctrl - 0x11 + 2) << 22;
2911	else
2912		return (gmch_ctrl - 0x17 + 9) << 22;
2913}
2914
2915static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2916{
2917	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2918	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2919
2920	if (gen9_gmch_ctl < 0xf0)
2921		return gen9_gmch_ctl << 25; /* 32 MB units */
2922	else
2923		/* 4MB increments starting at 0xf0 for 4MB */
2924		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2925}
2926
2927static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2928{
2929	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
2930	struct pci_dev *pdev = ggtt->base.dev->pdev;
2931	phys_addr_t phys_addr;
2932	int ret;
2933
2934	/* For Modern GENs the PTEs and register space are split in the BAR */
2935	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2936
2937	/*
2938	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2939	 * dropped. For WC mappings in general we have 64 byte burst writes
2940	 * when the WC buffer is flushed, so we can't use it, but have to
2941	 * resort to an uncached mapping. The WC issue is easily caught by the
2942	 * readback check when writing GTT PTE entries.
2943	 */
2944	if (IS_BROXTON(dev_priv))
2945		ggtt->gsm = ioremap_nocache(phys_addr, size);
2946	else
2947		ggtt->gsm = ioremap_wc(phys_addr, size);
2948	if (!ggtt->gsm) {
2949		DRM_ERROR("Failed to map the ggtt page table\n");
2950		return -ENOMEM;
2951	}
2952
2953	ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32);
2954	if (ret) {
2955		DRM_ERROR("Scratch setup failed\n");
2956		/* iounmap will also get called at remove, but meh */
2957		iounmap(ggtt->gsm);
2958		return ret;
2959	}
2960
2961	return 0;
2962}
2963
2964/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2965 * bits. When using advanced contexts each context stores its own PAT, but
2966 * writing this data shouldn't be harmful even in those cases. */
2967static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2968{
2969	uint64_t pat;
2970
2971	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2972	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2973	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2974	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2975	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2976	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2977	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2978	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2979
2980	if (!USES_PPGTT(dev_priv))
2981		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2982		 * so RTL will always use the value corresponding to
2983		 * pat_sel = 000".
2984		 * So let's disable cache for GGTT to avoid screen corruptions.
2985		 * MOCS still can be used though.
2986		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2987		 * before this patch, i.e. the same uncached + snooping access
2988		 * like on gen6/7 seems to be in effect.
2989		 * - So this just fixes blitter/render access. Again it looks
2990		 * like it's not just uncached access, but uncached + snooping.
2991		 * So we can still hold onto all our assumptions wrt cpu
2992		 * clflushing on LLC machines.
2993		 */
2994		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2995
2996	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2997	 * write would work. */
2998	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2999	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3000}
3001
3002static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3003{
3004	uint64_t pat;
3005
3006	/*
3007	 * Map WB on BDW to snooped on CHV.
3008	 *
3009	 * Only the snoop bit has meaning for CHV, the rest is
3010	 * ignored.
3011	 *
3012	 * The hardware will never snoop for certain types of accesses:
3013	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3014	 * - PPGTT page tables
3015	 * - some other special cycles
3016	 *
3017	 * As with BDW, we also need to consider the following for GT accesses:
3018	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3019	 * so RTL will always use the value corresponding to
3020	 * pat_sel = 000".
3021	 * Which means we must set the snoop bit in PAT entry 0
3022	 * in order to keep the global status page working.
3023	 */
3024	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3025	      GEN8_PPAT(1, 0) |
3026	      GEN8_PPAT(2, 0) |
3027	      GEN8_PPAT(3, 0) |
3028	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3029	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3030	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3031	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3032
3033	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3034	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3035}
3036
3037static void gen6_gmch_remove(struct i915_address_space *vm)
3038{
3039	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3040
3041	iounmap(ggtt->gsm);
3042	cleanup_scratch_page(to_i915(vm->dev), &vm->scratch_page);
3043}
3044
3045static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3046{
3047	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3048	struct pci_dev *pdev = dev_priv->drm.pdev;
3049	unsigned int size;
3050	u16 snb_gmch_ctl;
3051
3052	/* TODO: We're not aware of mappable constraints on gen8 yet */
3053	ggtt->mappable_base = pci_resource_start(pdev, 2);
3054	ggtt->mappable_end = pci_resource_len(pdev, 2);
3055
3056	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3057		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3058
3059	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3060
3061	if (INTEL_GEN(dev_priv) >= 9) {
3062		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3063		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3064	} else if (IS_CHERRYVIEW(dev_priv)) {
3065		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3066		size = chv_get_total_gtt_size(snb_gmch_ctl);
3067	} else {
3068		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3069		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3070	}
3071
3072	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3073
3074	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3075		chv_setup_private_ppat(dev_priv);
3076	else
3077		bdw_setup_private_ppat(dev_priv);
3078
3079	ggtt->base.cleanup = gen6_gmch_remove;
3080	ggtt->base.bind_vma = ggtt_bind_vma;
3081	ggtt->base.unbind_vma = ggtt_unbind_vma;
3082	ggtt->base.insert_page = gen8_ggtt_insert_page;
3083	ggtt->base.clear_range = nop_clear_range;
3084	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3085		ggtt->base.clear_range = gen8_ggtt_clear_range;
3086
3087	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3088	if (IS_CHERRYVIEW(dev_priv))
3089		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3090
3091	return ggtt_probe_common(ggtt, size);
3092}
3093
3094static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3095{
3096	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3097	struct pci_dev *pdev = dev_priv->drm.pdev;
3098	unsigned int size;
3099	u16 snb_gmch_ctl;
3100
3101	ggtt->mappable_base = pci_resource_start(pdev, 2);
3102	ggtt->mappable_end = pci_resource_len(pdev, 2);
3103
3104	/* 64/512MB is the current min/max we actually know of, but this is just
3105	 * a coarse sanity check.
3106	 */
3107	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3108		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3109		return -ENXIO;
3110	}
3111
3112	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3113		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3114	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3115
3116	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3117
3118	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3119	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3120
3121	ggtt->base.clear_range = gen6_ggtt_clear_range;
3122	ggtt->base.insert_page = gen6_ggtt_insert_page;
3123	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3124	ggtt->base.bind_vma = ggtt_bind_vma;
3125	ggtt->base.unbind_vma = ggtt_unbind_vma;
3126	ggtt->base.cleanup = gen6_gmch_remove;
3127
3128	if (HAS_EDRAM(dev_priv))
3129		ggtt->base.pte_encode = iris_pte_encode;
3130	else if (IS_HASWELL(dev_priv))
3131		ggtt->base.pte_encode = hsw_pte_encode;
3132	else if (IS_VALLEYVIEW(dev_priv))
3133		ggtt->base.pte_encode = byt_pte_encode;
3134	else if (INTEL_GEN(dev_priv) >= 7)
3135		ggtt->base.pte_encode = ivb_pte_encode;
3136	else
3137		ggtt->base.pte_encode = snb_pte_encode;
3138
3139	return ggtt_probe_common(ggtt, size);
3140}
3141
3142static void i915_gmch_remove(struct i915_address_space *vm)
3143{
3144	intel_gmch_remove();
3145}
3146
3147static int i915_gmch_probe(struct i915_ggtt *ggtt)
3148{
3149	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3150	int ret;
3151
3152	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3153	if (!ret) {
3154		DRM_ERROR("failed to set up gmch\n");
3155		return -EIO;
3156	}
3157
3158	intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3159		      &ggtt->mappable_base, &ggtt->mappable_end);
3160
3161	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3162	ggtt->base.insert_page = i915_ggtt_insert_page;
3163	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3164	ggtt->base.clear_range = i915_ggtt_clear_range;
3165	ggtt->base.bind_vma = ggtt_bind_vma;
3166	ggtt->base.unbind_vma = ggtt_unbind_vma;
3167	ggtt->base.cleanup = i915_gmch_remove;
3168
3169	if (unlikely(ggtt->do_idle_maps))
3170		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3171
3172	return 0;
3173}
3174
3175/**
3176 * i915_ggtt_probe_hw - Probe GGTT hardware location
3177 * @dev_priv: i915 device
3178 */
3179int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3180{
3181	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3182	int ret;
3183
3184	ggtt->base.dev = &dev_priv->drm;
3185
3186	if (INTEL_GEN(dev_priv) <= 5)
3187		ret = i915_gmch_probe(ggtt);
3188	else if (INTEL_GEN(dev_priv) < 8)
3189		ret = gen6_gmch_probe(ggtt);
3190	else
3191		ret = gen8_gmch_probe(ggtt);
3192	if (ret)
3193		return ret;
3194
3195	if ((ggtt->base.total - 1) >> 32) {
3196		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3197			  " of address space! Found %lldM!\n",
3198			  ggtt->base.total >> 20);
3199		ggtt->base.total = 1ULL << 32;
3200		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3201	}
3202
3203	if (ggtt->mappable_end > ggtt->base.total) {
3204		DRM_ERROR("mappable aperture extends past end of GGTT,"
3205			  " aperture=%llx, total=%llx\n",
3206			  ggtt->mappable_end, ggtt->base.total);
3207		ggtt->mappable_end = ggtt->base.total;
3208	}
3209
3210	/* GMADR is the PCI mmio aperture into the global GTT. */
3211	DRM_INFO("Memory usable by graphics device = %lluM\n",
3212		 ggtt->base.total >> 20);
3213	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3214	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3215#ifdef CONFIG_INTEL_IOMMU
3216	if (intel_iommu_gfx_mapped)
3217		DRM_INFO("VT-d active for gfx access\n");
3218#endif
3219
3220	return 0;
3221}
3222
3223/**
3224 * i915_ggtt_init_hw - Initialize GGTT hardware
3225 * @dev_priv: i915 device
3226 */
3227int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3228{
3229	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3230	int ret;
3231
3232	INIT_LIST_HEAD(&dev_priv->vm_list);
3233
3234	/* Subtract the guard page before address space initialization to
3235	 * shrink the range used by drm_mm.
3236	 */
3237	mutex_lock(&dev_priv->drm.struct_mutex);
3238	ggtt->base.total -= PAGE_SIZE;
3239	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3240	ggtt->base.total += PAGE_SIZE;
3241	if (!HAS_LLC(dev_priv))
3242		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3243	mutex_unlock(&dev_priv->drm.struct_mutex);
3244
3245	if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3246				dev_priv->ggtt.mappable_base,
3247				dev_priv->ggtt.mappable_end)) {
3248		ret = -EIO;
3249		goto out_gtt_cleanup;
3250	}
3251
3252	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3253
3254	/*
3255	 * Initialise stolen early so that we may reserve preallocated
3256	 * objects for the BIOS to KMS transition.
3257	 */
3258	ret = i915_gem_init_stolen(dev_priv);
3259	if (ret)
3260		goto out_gtt_cleanup;
3261
3262	return 0;
3263
3264out_gtt_cleanup:
3265	ggtt->base.cleanup(&ggtt->base);
3266	return ret;
3267}
3268
3269int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3270{
3271	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3272		return -EIO;
3273
3274	return 0;
3275}
3276
3277void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3278{
3279	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3280	struct drm_i915_gem_object *obj, *on;
3281
3282	i915_check_and_clear_faults(dev_priv);
3283
3284	/* First fill our portion of the GTT with scratch pages */
3285	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
3286
3287	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3288
3289	/* clflush objects bound into the GGTT and rebind them. */
3290	list_for_each_entry_safe(obj, on,
3291				 &dev_priv->mm.bound_list, global_link) {
3292		bool ggtt_bound = false;
3293		struct i915_vma *vma;
3294
3295		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3296			if (vma->vm != &ggtt->base)
3297				continue;
3298
3299			if (!i915_vma_unbind(vma))
3300				continue;
3301
3302			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3303					      PIN_UPDATE));
3304			ggtt_bound = true;
3305		}
3306
3307		if (ggtt_bound)
3308			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3309	}
3310
3311	ggtt->base.closed = false;
3312
3313	if (INTEL_GEN(dev_priv) >= 8) {
3314		if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3315			chv_setup_private_ppat(dev_priv);
3316		else
3317			bdw_setup_private_ppat(dev_priv);
3318
3319		return;
3320	}
3321
3322	if (USES_PPGTT(dev_priv)) {
3323		struct i915_address_space *vm;
3324
3325		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3326			/* TODO: Perhaps it shouldn't be gen6 specific */
3327
3328			struct i915_hw_ppgtt *ppgtt;
3329
3330			if (i915_is_ggtt(vm))
3331				ppgtt = dev_priv->mm.aliasing_ppgtt;
3332			else
3333				ppgtt = i915_vm_to_ppgtt(vm);
3334
3335			gen6_write_page_range(dev_priv, &ppgtt->pd,
3336					      0, ppgtt->base.total);
3337		}
3338	}
3339
3340	i915_ggtt_flush(dev_priv);
3341}
3342
3343struct i915_vma *
3344i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3345		    struct i915_address_space *vm,
3346		    const struct i915_ggtt_view *view)
3347{
3348	struct rb_node *rb;
3349
3350	rb = obj->vma_tree.rb_node;
3351	while (rb) {
3352		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
3353		long cmp;
3354
3355		cmp = i915_vma_compare(vma, vm, view);
3356		if (cmp == 0)
3357			return vma;
3358
3359		if (cmp < 0)
3360			rb = rb->rb_right;
3361		else
3362			rb = rb->rb_left;
3363	}
3364
3365	return NULL;
 
 
 
 
 
 
 
 
3366}
3367
3368struct i915_vma *
3369i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3370				  struct i915_address_space *vm,
3371				  const struct i915_ggtt_view *view)
3372{
3373	struct i915_vma *vma;
 
3374
3375	lockdep_assert_held(&obj->base.dev->struct_mutex);
3376	GEM_BUG_ON(view && !i915_is_ggtt(vm));
3377
3378	vma = i915_gem_obj_to_vma(obj, vm, view);
3379	if (!vma) {
3380		vma = i915_vma_create(obj, vm, view);
3381		GEM_BUG_ON(vma != i915_gem_obj_to_vma(obj, vm, view));
3382	}
3383
3384	GEM_BUG_ON(i915_vma_is_closed(vma));
3385	return vma;
3386}
3387
3388static struct scatterlist *
3389rotate_pages(const dma_addr_t *in, unsigned int offset,
3390	     unsigned int width, unsigned int height,
3391	     unsigned int stride,
3392	     struct sg_table *st, struct scatterlist *sg)
3393{
3394	unsigned int column, row;
3395	unsigned int src_idx;
3396
3397	for (column = 0; column < width; column++) {
3398		src_idx = stride * (height - 1) + column;
3399		for (row = 0; row < height; row++) {
3400			st->nents++;
3401			/* We don't need the pages, but need to initialize
3402			 * the entries so the sg list can be happily traversed.
3403			 * The only thing we need are DMA addresses.
3404			 */
3405			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3406			sg_dma_address(sg) = in[offset + src_idx];
3407			sg_dma_len(sg) = PAGE_SIZE;
3408			sg = sg_next(sg);
3409			src_idx -= stride;
3410		}
3411	}
3412
3413	return sg;
3414}
3415
3416static struct sg_table *
3417intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3418			  struct drm_i915_gem_object *obj)
3419{
3420	const size_t n_pages = obj->base.size / PAGE_SIZE;
3421	unsigned int size = intel_rotation_info_size(rot_info);
3422	struct sgt_iter sgt_iter;
3423	dma_addr_t dma_addr;
3424	unsigned long i;
3425	dma_addr_t *page_addr_list;
3426	struct sg_table *st;
3427	struct scatterlist *sg;
3428	int ret = -ENOMEM;
3429
3430	/* Allocate a temporary list of source pages for random access. */
3431	page_addr_list = drm_malloc_gfp(n_pages,
3432					sizeof(dma_addr_t),
3433					GFP_TEMPORARY);
3434	if (!page_addr_list)
3435		return ERR_PTR(ret);
3436
3437	/* Allocate target SG list. */
3438	st = kmalloc(sizeof(*st), GFP_KERNEL);
3439	if (!st)
3440		goto err_st_alloc;
3441
3442	ret = sg_alloc_table(st, size, GFP_KERNEL);
3443	if (ret)
3444		goto err_sg_alloc;
3445
3446	/* Populate source page list from the object. */
3447	i = 0;
3448	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3449		page_addr_list[i++] = dma_addr;
3450
3451	GEM_BUG_ON(i != n_pages);
3452	st->nents = 0;
3453	sg = st->sgl;
3454
3455	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3456		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3457				  rot_info->plane[i].width, rot_info->plane[i].height,
3458				  rot_info->plane[i].stride, st, sg);
3459	}
3460
3461	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3462		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3463
3464	drm_free_large(page_addr_list);
3465
3466	return st;
3467
3468err_sg_alloc:
3469	kfree(st);
3470err_st_alloc:
3471	drm_free_large(page_addr_list);
3472
3473	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3474		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3475
3476	return ERR_PTR(ret);
3477}
3478
3479static struct sg_table *
3480intel_partial_pages(const struct i915_ggtt_view *view,
3481		    struct drm_i915_gem_object *obj)
3482{
3483	struct sg_table *st;
3484	struct scatterlist *sg, *iter;
3485	unsigned int count = view->params.partial.size;
3486	unsigned int offset;
3487	int ret = -ENOMEM;
3488
3489	st = kmalloc(sizeof(*st), GFP_KERNEL);
3490	if (!st)
3491		goto err_st_alloc;
3492
3493	ret = sg_alloc_table(st, count, GFP_KERNEL);
3494	if (ret)
3495		goto err_sg_alloc;
3496
3497	iter = i915_gem_object_get_sg(obj,
3498				      view->params.partial.offset,
3499				      &offset);
3500	GEM_BUG_ON(!iter);
3501
3502	sg = st->sgl;
3503	st->nents = 0;
3504	do {
3505		unsigned int len;
3506
3507		len = min(iter->length - (offset << PAGE_SHIFT),
3508			  count << PAGE_SHIFT);
3509		sg_set_page(sg, NULL, len, 0);
3510		sg_dma_address(sg) =
3511			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3512		sg_dma_len(sg) = len;
3513
3514		st->nents++;
3515		count -= len >> PAGE_SHIFT;
3516		if (count == 0) {
3517			sg_mark_end(sg);
3518			return st;
3519		}
3520
3521		sg = __sg_next(sg);
3522		iter = __sg_next(iter);
3523		offset = 0;
3524	} while (1);
3525
3526err_sg_alloc:
3527	kfree(st);
3528err_st_alloc:
3529	return ERR_PTR(ret);
3530}
3531
3532static int
3533i915_get_ggtt_vma_pages(struct i915_vma *vma)
3534{
3535	int ret = 0;
3536
3537	/* The vma->pages are only valid within the lifespan of the borrowed
3538	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3539	 * must be the vma->pages. A simple rule is that vma->pages must only
3540	 * be accessed when the obj->mm.pages are pinned.
3541	 */
3542	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3543
3544	if (vma->pages)
3545		return 0;
3546
3547	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3548		vma->pages = vma->obj->mm.pages;
3549	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3550		vma->pages =
3551			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3552	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3553		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3554	else
3555		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3556			  vma->ggtt_view.type);
3557
3558	if (!vma->pages) {
3559		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3560			  vma->ggtt_view.type);
3561		ret = -EINVAL;
3562	} else if (IS_ERR(vma->pages)) {
3563		ret = PTR_ERR(vma->pages);
3564		vma->pages = NULL;
3565		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3566			  vma->ggtt_view.type, ret);
3567	}
3568
3569	return ret;
3570}
3571