Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  drivers/cpufreq/cpufreq_conservative.c
  3 *
  4 *  Copyright (C)  2001 Russell King
  5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6 *                      Jun Nakajima <jun.nakajima@intel.com>
  7 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 */
 13
 14#include <linux/kernel.h>
 15#include <linux/module.h>
 16#include <linux/init.h>
 17#include <linux/cpufreq.h>
 18#include <linux/cpu.h>
 19#include <linux/jiffies.h>
 20#include <linux/kernel_stat.h>
 21#include <linux/mutex.h>
 22#include <linux/hrtimer.h>
 23#include <linux/tick.h>
 24#include <linux/ktime.h>
 25#include <linux/sched.h>
 26
 27/*
 28 * dbs is used in this file as a shortform for demandbased switching
 29 * It helps to keep variable names smaller, simpler
 30 */
 31
 32#define DEF_FREQUENCY_UP_THRESHOLD		(80)
 33#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
 34
 35/*
 36 * The polling frequency of this governor depends on the capability of
 37 * the processor. Default polling frequency is 1000 times the transition
 38 * latency of the processor. The governor will work on any processor with
 39 * transition latency <= 10mS, using appropriate sampling
 40 * rate.
 41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 42 * this governor will not work.
 43 * All times here are in uS.
 44 */
 45#define MIN_SAMPLING_RATE_RATIO			(2)
 46
 47static unsigned int min_sampling_rate;
 
 
 
 48
 49#define LATENCY_MULTIPLIER			(1000)
 50#define MIN_LATENCY_MULTIPLIER			(100)
 
 
 51#define DEF_SAMPLING_DOWN_FACTOR		(1)
 52#define MAX_SAMPLING_DOWN_FACTOR		(10)
 53#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
 54
 55static void do_dbs_timer(struct work_struct *work);
 
 
 
 56
 57struct cpu_dbs_info_s {
 58	cputime64_t prev_cpu_idle;
 59	cputime64_t prev_cpu_wall;
 60	cputime64_t prev_cpu_nice;
 61	struct cpufreq_policy *cur_policy;
 62	struct delayed_work work;
 63	unsigned int down_skip;
 64	unsigned int requested_freq;
 65	int cpu;
 66	unsigned int enable:1;
 67	/*
 68	 * percpu mutex that serializes governor limit change with
 69	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
 70	 * when user is changing the governor or limits.
 71	 */
 72	struct mutex timer_mutex;
 73};
 74static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
 75
 76static unsigned int dbs_enable;	/* number of CPUs using this policy */
 
 77
 78/*
 79 * dbs_mutex protects dbs_enable in governor start/stop.
 
 
 
 
 
 
 80 */
 81static DEFINE_MUTEX(dbs_mutex);
 82
 83static struct dbs_tuners {
 84	unsigned int sampling_rate;
 85	unsigned int sampling_down_factor;
 86	unsigned int up_threshold;
 87	unsigned int down_threshold;
 88	unsigned int ignore_nice;
 89	unsigned int freq_step;
 90} dbs_tuners_ins = {
 91	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
 92	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
 93	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
 94	.ignore_nice = 0,
 95	.freq_step = 5,
 96};
 97
 98static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
 99							cputime64_t *wall)
100{
101	cputime64_t idle_time;
102	cputime64_t cur_wall_time;
103	cputime64_t busy_time;
104
105	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
106	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
107			kstat_cpu(cpu).cpustat.system);
 
 
 
 
108
109	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
110	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
111	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
112	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
113
114	idle_time = cputime64_sub(cur_wall_time, busy_time);
115	if (wall)
116		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
 
 
 
117
118	return (cputime64_t)jiffies_to_usecs(idle_time);
119}
 
 
120
121static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
122{
123	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
124
125	if (idle_time == -1ULL)
126		return get_cpu_idle_time_jiffy(cpu, wall);
 
127
128	return idle_time;
129}
 
130
131/* keep track of frequency transitions */
132static int
133dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
134		     void *data)
135{
136	struct cpufreq_freqs *freq = data;
137	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
138							freq->cpu);
139
140	struct cpufreq_policy *policy;
 
 
 
141
142	if (!this_dbs_info->enable)
143		return 0;
 
 
 
 
 
144
145	policy = this_dbs_info->cur_policy;
 
 
 
146
147	/*
148	 * we only care if our internally tracked freq moves outside
149	 * the 'valid' ranges of freqency available to us otherwise
150	 * we do not change it
151	*/
152	if (this_dbs_info->requested_freq > policy->max
153			|| this_dbs_info->requested_freq < policy->min)
154		this_dbs_info->requested_freq = freq->new;
155
156	return 0;
 
157}
158
159static struct notifier_block dbs_cpufreq_notifier_block = {
160	.notifier_call = dbs_cpufreq_notifier
161};
162
163/************************** sysfs interface ************************/
164static ssize_t show_sampling_rate_min(struct kobject *kobj,
165				      struct attribute *attr, char *buf)
166{
167	return sprintf(buf, "%u\n", min_sampling_rate);
168}
169
170define_one_global_ro(sampling_rate_min);
171
172/* cpufreq_conservative Governor Tunables */
173#define show_one(file_name, object)					\
174static ssize_t show_##file_name						\
175(struct kobject *kobj, struct attribute *attr, char *buf)		\
176{									\
177	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
178}
179show_one(sampling_rate, sampling_rate);
180show_one(sampling_down_factor, sampling_down_factor);
181show_one(up_threshold, up_threshold);
182show_one(down_threshold, down_threshold);
183show_one(ignore_nice_load, ignore_nice);
184show_one(freq_step, freq_step);
185
186static ssize_t store_sampling_down_factor(struct kobject *a,
187					  struct attribute *b,
188					  const char *buf, size_t count)
189{
 
190	unsigned int input;
191	int ret;
192	ret = sscanf(buf, "%u", &input);
193
194	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
195		return -EINVAL;
196
197	dbs_tuners_ins.sampling_down_factor = input;
198	return count;
199}
200
201static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
202				   const char *buf, size_t count)
203{
204	unsigned int input;
205	int ret;
206	ret = sscanf(buf, "%u", &input);
207
208	if (ret != 1)
209		return -EINVAL;
210
211	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
212	return count;
213}
214
215static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
216				  const char *buf, size_t count)
217{
 
 
218	unsigned int input;
219	int ret;
220	ret = sscanf(buf, "%u", &input);
221
222	if (ret != 1 || input > 100 ||
223			input <= dbs_tuners_ins.down_threshold)
224		return -EINVAL;
225
226	dbs_tuners_ins.up_threshold = input;
227	return count;
228}
229
230static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
231				    const char *buf, size_t count)
232{
 
 
233	unsigned int input;
234	int ret;
235	ret = sscanf(buf, "%u", &input);
236
237	/* cannot be lower than 11 otherwise freq will not fall */
238	if (ret != 1 || input < 11 || input > 100 ||
239			input >= dbs_tuners_ins.up_threshold)
240		return -EINVAL;
241
242	dbs_tuners_ins.down_threshold = input;
243	return count;
244}
245
246static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
247				      const char *buf, size_t count)
248{
 
249	unsigned int input;
250	int ret;
251
252	unsigned int j;
253
254	ret = sscanf(buf, "%u", &input);
255	if (ret != 1)
256		return -EINVAL;
257
258	if (input > 1)
259		input = 1;
260
261	if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
262		return count;
263
264	dbs_tuners_ins.ignore_nice = input;
265
266	/* we need to re-evaluate prev_cpu_idle */
267	for_each_online_cpu(j) {
268		struct cpu_dbs_info_s *dbs_info;
269		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
270		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
271						&dbs_info->prev_cpu_wall);
272		if (dbs_tuners_ins.ignore_nice)
273			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
274	}
275	return count;
276}
277
278static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
279			       const char *buf, size_t count)
280{
 
 
281	unsigned int input;
282	int ret;
283	ret = sscanf(buf, "%u", &input);
284
285	if (ret != 1)
286		return -EINVAL;
287
288	if (input > 100)
289		input = 100;
290
291	/* no need to test here if freq_step is zero as the user might actually
292	 * want this, they would be crazy though :) */
293	dbs_tuners_ins.freq_step = input;
 
 
294	return count;
295}
296
297define_one_global_rw(sampling_rate);
298define_one_global_rw(sampling_down_factor);
299define_one_global_rw(up_threshold);
300define_one_global_rw(down_threshold);
301define_one_global_rw(ignore_nice_load);
302define_one_global_rw(freq_step);
 
 
 
 
 
 
 
 
 
303
304static struct attribute *dbs_attributes[] = {
305	&sampling_rate_min.attr,
306	&sampling_rate.attr,
307	&sampling_down_factor.attr,
308	&up_threshold.attr,
309	&down_threshold.attr,
310	&ignore_nice_load.attr,
311	&freq_step.attr,
312	NULL
313};
314
315static struct attribute_group dbs_attr_group = {
316	.attrs = dbs_attributes,
317	.name = "conservative",
318};
319
320/************************** sysfs end ************************/
321
322static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
323{
324	unsigned int load = 0;
325	unsigned int max_load = 0;
326	unsigned int freq_target;
327
328	struct cpufreq_policy *policy;
329	unsigned int j;
330
331	policy = this_dbs_info->cur_policy;
332
333	/*
334	 * Every sampling_rate, we check, if current idle time is less
335	 * than 20% (default), then we try to increase frequency
336	 * Every sampling_rate*sampling_down_factor, we check, if current
337	 * idle time is more than 80%, then we try to decrease frequency
338	 *
339	 * Any frequency increase takes it to the maximum frequency.
340	 * Frequency reduction happens at minimum steps of
341	 * 5% (default) of maximum frequency
342	 */
343
344	/* Get Absolute Load */
345	for_each_cpu(j, policy->cpus) {
346		struct cpu_dbs_info_s *j_dbs_info;
347		cputime64_t cur_wall_time, cur_idle_time;
348		unsigned int idle_time, wall_time;
349
350		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
351
352		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
353
354		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
355				j_dbs_info->prev_cpu_wall);
356		j_dbs_info->prev_cpu_wall = cur_wall_time;
357
358		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
359				j_dbs_info->prev_cpu_idle);
360		j_dbs_info->prev_cpu_idle = cur_idle_time;
361
362		if (dbs_tuners_ins.ignore_nice) {
363			cputime64_t cur_nice;
364			unsigned long cur_nice_jiffies;
365
366			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
367					 j_dbs_info->prev_cpu_nice);
368			/*
369			 * Assumption: nice time between sampling periods will
370			 * be less than 2^32 jiffies for 32 bit sys
371			 */
372			cur_nice_jiffies = (unsigned long)
373					cputime64_to_jiffies64(cur_nice);
374
375			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
376			idle_time += jiffies_to_usecs(cur_nice_jiffies);
377		}
378
379		if (unlikely(!wall_time || wall_time < idle_time))
380			continue;
381
382		load = 100 * (wall_time - idle_time) / wall_time;
383
384		if (load > max_load)
385			max_load = load;
386	}
387
388	/*
389	 * break out if we 'cannot' reduce the speed as the user might
390	 * want freq_step to be zero
391	 */
392	if (dbs_tuners_ins.freq_step == 0)
393		return;
394
395	/* Check for frequency increase */
396	if (max_load > dbs_tuners_ins.up_threshold) {
397		this_dbs_info->down_skip = 0;
398
399		/* if we are already at full speed then break out early */
400		if (this_dbs_info->requested_freq == policy->max)
401			return;
402
403		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
404
405		/* max freq cannot be less than 100. But who knows.... */
406		if (unlikely(freq_target == 0))
407			freq_target = 5;
408
409		this_dbs_info->requested_freq += freq_target;
410		if (this_dbs_info->requested_freq > policy->max)
411			this_dbs_info->requested_freq = policy->max;
412
413		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
414			CPUFREQ_RELATION_H);
415		return;
416	}
417
418	/*
419	 * The optimal frequency is the frequency that is the lowest that
420	 * can support the current CPU usage without triggering the up
421	 * policy. To be safe, we focus 10 points under the threshold.
422	 */
423	if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
424		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
425
426		this_dbs_info->requested_freq -= freq_target;
427		if (this_dbs_info->requested_freq < policy->min)
428			this_dbs_info->requested_freq = policy->min;
429
430		/*
431		 * if we cannot reduce the frequency anymore, break out early
432		 */
433		if (policy->cur == policy->min)
434			return;
435
436		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
437				CPUFREQ_RELATION_H);
438		return;
439	}
440}
441
442static void do_dbs_timer(struct work_struct *work)
443{
444	struct cpu_dbs_info_s *dbs_info =
445		container_of(work, struct cpu_dbs_info_s, work.work);
446	unsigned int cpu = dbs_info->cpu;
447
448	/* We want all CPUs to do sampling nearly on same jiffy */
449	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
450
451	delay -= jiffies % delay;
452
453	mutex_lock(&dbs_info->timer_mutex);
 
 
454
455	dbs_check_cpu(dbs_info);
 
 
456
457	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
458	mutex_unlock(&dbs_info->timer_mutex);
459}
 
 
460
461static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
462{
463	/* We want all CPUs to do sampling nearly on same jiffy */
464	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
465	delay -= jiffies % delay;
466
467	dbs_info->enable = 1;
468	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
469	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
470}
471
472static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
473{
474	dbs_info->enable = 0;
475	cancel_delayed_work_sync(&dbs_info->work);
476}
477
478static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
479				   unsigned int event)
480{
481	unsigned int cpu = policy->cpu;
482	struct cpu_dbs_info_s *this_dbs_info;
483	unsigned int j;
484	int rc;
485
486	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
487
488	switch (event) {
489	case CPUFREQ_GOV_START:
490		if ((!cpu_online(cpu)) || (!policy->cur))
491			return -EINVAL;
492
493		mutex_lock(&dbs_mutex);
494
495		for_each_cpu(j, policy->cpus) {
496			struct cpu_dbs_info_s *j_dbs_info;
497			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
498			j_dbs_info->cur_policy = policy;
499
500			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
501						&j_dbs_info->prev_cpu_wall);
502			if (dbs_tuners_ins.ignore_nice) {
503				j_dbs_info->prev_cpu_nice =
504						kstat_cpu(j).cpustat.nice;
505			}
506		}
507		this_dbs_info->down_skip = 0;
508		this_dbs_info->requested_freq = policy->cur;
509
510		mutex_init(&this_dbs_info->timer_mutex);
511		dbs_enable++;
512		/*
513		 * Start the timerschedule work, when this governor
514		 * is used for first time
515		 */
516		if (dbs_enable == 1) {
517			unsigned int latency;
518			/* policy latency is in nS. Convert it to uS first */
519			latency = policy->cpuinfo.transition_latency / 1000;
520			if (latency == 0)
521				latency = 1;
522
523			rc = sysfs_create_group(cpufreq_global_kobject,
524						&dbs_attr_group);
525			if (rc) {
526				mutex_unlock(&dbs_mutex);
527				return rc;
528			}
529
530			/*
531			 * conservative does not implement micro like ondemand
532			 * governor, thus we are bound to jiffes/HZ
533			 */
534			min_sampling_rate =
535				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
536			/* Bring kernel and HW constraints together */
537			min_sampling_rate = max(min_sampling_rate,
538					MIN_LATENCY_MULTIPLIER * latency);
539			dbs_tuners_ins.sampling_rate =
540				max(min_sampling_rate,
541				    latency * LATENCY_MULTIPLIER);
542
543			cpufreq_register_notifier(
544					&dbs_cpufreq_notifier_block,
545					CPUFREQ_TRANSITION_NOTIFIER);
546		}
547		mutex_unlock(&dbs_mutex);
548
549		dbs_timer_init(this_dbs_info);
550
551		break;
552
553	case CPUFREQ_GOV_STOP:
554		dbs_timer_exit(this_dbs_info);
555
556		mutex_lock(&dbs_mutex);
557		dbs_enable--;
558		mutex_destroy(&this_dbs_info->timer_mutex);
559
560		/*
561		 * Stop the timerschedule work, when this governor
562		 * is used for first time
563		 */
564		if (dbs_enable == 0)
565			cpufreq_unregister_notifier(
566					&dbs_cpufreq_notifier_block,
567					CPUFREQ_TRANSITION_NOTIFIER);
568
569		mutex_unlock(&dbs_mutex);
570		if (!dbs_enable)
571			sysfs_remove_group(cpufreq_global_kobject,
572					   &dbs_attr_group);
573
574		break;
575
576	case CPUFREQ_GOV_LIMITS:
577		mutex_lock(&this_dbs_info->timer_mutex);
578		if (policy->max < this_dbs_info->cur_policy->cur)
579			__cpufreq_driver_target(
580					this_dbs_info->cur_policy,
581					policy->max, CPUFREQ_RELATION_H);
582		else if (policy->min > this_dbs_info->cur_policy->cur)
583			__cpufreq_driver_target(
584					this_dbs_info->cur_policy,
585					policy->min, CPUFREQ_RELATION_L);
586		mutex_unlock(&this_dbs_info->timer_mutex);
587
588		break;
589	}
590	return 0;
591}
592
593#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
594static
595#endif
596struct cpufreq_governor cpufreq_gov_conservative = {
597	.name			= "conservative",
598	.governor		= cpufreq_governor_dbs,
599	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
600	.owner			= THIS_MODULE,
 
601};
602
 
 
603static int __init cpufreq_gov_dbs_init(void)
604{
605	return cpufreq_register_governor(&cpufreq_gov_conservative);
606}
607
608static void __exit cpufreq_gov_dbs_exit(void)
609{
610	cpufreq_unregister_governor(&cpufreq_gov_conservative);
611}
612
613
614MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
615MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
616		"Low Latency Frequency Transition capable processors "
617		"optimised for use in a battery environment");
618MODULE_LICENSE("GPL");
619
620#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
 
 
 
 
 
621fs_initcall(cpufreq_gov_dbs_init);
622#else
623module_init(cpufreq_gov_dbs_init);
624#endif
625module_exit(cpufreq_gov_dbs_exit);
v4.10.11
  1/*
  2 *  drivers/cpufreq/cpufreq_conservative.c
  3 *
  4 *  Copyright (C)  2001 Russell King
  5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6 *                      Jun Nakajima <jun.nakajima@intel.com>
  7 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 */
 13
 14#include <linux/slab.h>
 15#include "cpufreq_governor.h"
 
 
 
 
 
 
 
 
 
 
 16
 17struct cs_policy_dbs_info {
 18	struct policy_dbs_info policy_dbs;
 19	unsigned int down_skip;
 20	unsigned int requested_freq;
 21};
 
 
 22
 23static inline struct cs_policy_dbs_info *to_dbs_info(struct policy_dbs_info *policy_dbs)
 24{
 25	return container_of(policy_dbs, struct cs_policy_dbs_info, policy_dbs);
 26}
 
 
 
 
 
 
 
 27
 28struct cs_dbs_tuners {
 29	unsigned int down_threshold;
 30	unsigned int freq_step;
 31};
 32
 33/* Conservative governor macros */
 34#define DEF_FREQUENCY_UP_THRESHOLD		(80)
 35#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
 36#define DEF_FREQUENCY_STEP			(5)
 37#define DEF_SAMPLING_DOWN_FACTOR		(1)
 38#define MAX_SAMPLING_DOWN_FACTOR		(10)
 
 39
 40static inline unsigned int get_freq_step(struct cs_dbs_tuners *cs_tuners,
 41					 struct cpufreq_policy *policy)
 42{
 43	unsigned int freq_step = (cs_tuners->freq_step * policy->max) / 100;
 44
 45	/* max freq cannot be less than 100. But who knows... */
 46	if (unlikely(freq_step == 0))
 47		freq_step = DEF_FREQUENCY_STEP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48
 49	return freq_step;
 50}
 51
 52/*
 53 * Every sampling_rate, we check, if current idle time is less than 20%
 54 * (default), then we try to increase frequency. Every sampling_rate *
 55 * sampling_down_factor, we check, if current idle time is more than 80%
 56 * (default), then we try to decrease frequency
 57 *
 58 * Frequency updates happen at minimum steps of 5% (default) of maximum
 59 * frequency
 60 */
 61static unsigned int cs_dbs_update(struct cpufreq_policy *policy)
 62{
 63	struct policy_dbs_info *policy_dbs = policy->governor_data;
 64	struct cs_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
 65	unsigned int requested_freq = dbs_info->requested_freq;
 66	struct dbs_data *dbs_data = policy_dbs->dbs_data;
 67	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
 68	unsigned int load = dbs_update(policy);
 69	unsigned int freq_step;
 
 
 
 
 
 
 
 70
 71	/*
 72	 * break out if we 'cannot' reduce the speed as the user might
 73	 * want freq_step to be zero
 74	 */
 75	if (cs_tuners->freq_step == 0)
 76		goto out;
 77
 78	/*
 79	 * If requested_freq is out of range, it is likely that the limits
 80	 * changed in the meantime, so fall back to current frequency in that
 81	 * case.
 82	 */
 83	if (requested_freq > policy->max || requested_freq < policy->min)
 84		requested_freq = policy->cur;
 85
 86	freq_step = get_freq_step(cs_tuners, policy);
 
 
 
 87
 88	/*
 89	 * Decrease requested_freq one freq_step for each idle period that
 90	 * we didn't update the frequency.
 91	 */
 92	if (policy_dbs->idle_periods < UINT_MAX) {
 93		unsigned int freq_steps = policy_dbs->idle_periods * freq_step;
 94
 95		if (requested_freq > freq_steps)
 96			requested_freq -= freq_steps;
 97		else
 98			requested_freq = policy->min;
 99
100		policy_dbs->idle_periods = UINT_MAX;
101	}
 
102
103	/* Check for frequency increase */
104	if (load > dbs_data->up_threshold) {
105		dbs_info->down_skip = 0;
106
107		/* if we are already at full speed then break out early */
108		if (requested_freq == policy->max)
109			goto out;
110
111		requested_freq += freq_step;
112		if (requested_freq > policy->max)
113			requested_freq = policy->max;
114
115		__cpufreq_driver_target(policy, requested_freq, CPUFREQ_RELATION_H);
116		dbs_info->requested_freq = requested_freq;
117		goto out;
118	}
119
120	/* if sampling_down_factor is active break out early */
121	if (++dbs_info->down_skip < dbs_data->sampling_down_factor)
122		goto out;
123	dbs_info->down_skip = 0;
124
125	/* Check for frequency decrease */
126	if (load < cs_tuners->down_threshold) {
127		/*
128		 * if we cannot reduce the frequency anymore, break out early
129		 */
130		if (requested_freq == policy->min)
131			goto out;
132
133		if (requested_freq > freq_step)
134			requested_freq -= freq_step;
135		else
136			requested_freq = policy->min;
137
138		__cpufreq_driver_target(policy, requested_freq, CPUFREQ_RELATION_L);
139		dbs_info->requested_freq = requested_freq;
140	}
 
 
 
 
 
141
142 out:
143	return dbs_data->sampling_rate;
144}
145
 
 
 
 
146/************************** sysfs interface ************************/
 
 
 
 
 
 
 
147
148static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149					  const char *buf, size_t count)
150{
151	struct dbs_data *dbs_data = to_dbs_data(attr_set);
152	unsigned int input;
153	int ret;
154	ret = sscanf(buf, "%u", &input);
155
156	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
157		return -EINVAL;
158
159	dbs_data->sampling_down_factor = input;
160	return count;
161}
162
163static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164				  const char *buf, size_t count)
165{
166	struct dbs_data *dbs_data = to_dbs_data(attr_set);
167	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
168	unsigned int input;
169	int ret;
170	ret = sscanf(buf, "%u", &input);
171
172	if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
 
173		return -EINVAL;
174
175	dbs_data->up_threshold = input;
176	return count;
177}
178
179static ssize_t store_down_threshold(struct gov_attr_set *attr_set,
180				    const char *buf, size_t count)
181{
182	struct dbs_data *dbs_data = to_dbs_data(attr_set);
183	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
184	unsigned int input;
185	int ret;
186	ret = sscanf(buf, "%u", &input);
187
188	/* cannot be lower than 11 otherwise freq will not fall */
189	if (ret != 1 || input < 11 || input > 100 ||
190			input >= dbs_data->up_threshold)
191		return -EINVAL;
192
193	cs_tuners->down_threshold = input;
194	return count;
195}
196
197static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
198				      const char *buf, size_t count)
199{
200	struct dbs_data *dbs_data = to_dbs_data(attr_set);
201	unsigned int input;
202	int ret;
203
 
 
204	ret = sscanf(buf, "%u", &input);
205	if (ret != 1)
206		return -EINVAL;
207
208	if (input > 1)
209		input = 1;
210
211	if (input == dbs_data->ignore_nice_load) /* nothing to do */
212		return count;
213
214	dbs_data->ignore_nice_load = input;
215
216	/* we need to re-evaluate prev_cpu_idle */
217	gov_update_cpu_data(dbs_data);
218
 
 
 
 
 
 
219	return count;
220}
221
222static ssize_t store_freq_step(struct gov_attr_set *attr_set, const char *buf,
223			       size_t count)
224{
225	struct dbs_data *dbs_data = to_dbs_data(attr_set);
226	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
227	unsigned int input;
228	int ret;
229	ret = sscanf(buf, "%u", &input);
230
231	if (ret != 1)
232		return -EINVAL;
233
234	if (input > 100)
235		input = 100;
236
237	/*
238	 * no need to test here if freq_step is zero as the user might actually
239	 * want this, they would be crazy though :)
240	 */
241	cs_tuners->freq_step = input;
242	return count;
243}
244
245gov_show_one_common(sampling_rate);
246gov_show_one_common(sampling_down_factor);
247gov_show_one_common(up_threshold);
248gov_show_one_common(ignore_nice_load);
249gov_show_one_common(min_sampling_rate);
250gov_show_one(cs, down_threshold);
251gov_show_one(cs, freq_step);
252
253gov_attr_rw(sampling_rate);
254gov_attr_rw(sampling_down_factor);
255gov_attr_rw(up_threshold);
256gov_attr_rw(ignore_nice_load);
257gov_attr_ro(min_sampling_rate);
258gov_attr_rw(down_threshold);
259gov_attr_rw(freq_step);
260
261static struct attribute *cs_attributes[] = {
262	&min_sampling_rate.attr,
263	&sampling_rate.attr,
264	&sampling_down_factor.attr,
265	&up_threshold.attr,
266	&down_threshold.attr,
267	&ignore_nice_load.attr,
268	&freq_step.attr,
269	NULL
270};
271
 
 
 
 
 
272/************************** sysfs end ************************/
273
274static struct policy_dbs_info *cs_alloc(void)
275{
276	struct cs_policy_dbs_info *dbs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277
278	dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
279	return dbs_info ? &dbs_info->policy_dbs : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280}
281
282static void cs_free(struct policy_dbs_info *policy_dbs)
283{
284	kfree(to_dbs_info(policy_dbs));
285}
 
 
 
 
 
 
286
287static int cs_init(struct dbs_data *dbs_data)
288{
289	struct cs_dbs_tuners *tuners;
290
291	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
292	if (!tuners)
293		return -ENOMEM;
294
295	tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
296	tuners->freq_step = DEF_FREQUENCY_STEP;
297	dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
298	dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
299	dbs_data->ignore_nice_load = 0;
300
301	dbs_data->tuners = tuners;
302	dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
303		jiffies_to_usecs(10);
 
 
304
305	return 0;
 
 
306}
307
308static void cs_exit(struct dbs_data *dbs_data)
309{
310	kfree(dbs_data->tuners);
 
311}
312
313static void cs_start(struct cpufreq_policy *policy)
 
314{
315	struct cs_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
 
 
 
 
 
 
 
 
 
 
316
317	dbs_info->down_skip = 0;
318	dbs_info->requested_freq = policy->cur;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319}
320
321static struct dbs_governor cs_governor = {
322	.gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("conservative"),
323	.kobj_type = { .default_attrs = cs_attributes },
324	.gov_dbs_update = cs_dbs_update,
325	.alloc = cs_alloc,
326	.free = cs_free,
327	.init = cs_init,
328	.exit = cs_exit,
329	.start = cs_start,
330};
331
332#define CPU_FREQ_GOV_CONSERVATIVE	(&cs_governor.gov)
333
334static int __init cpufreq_gov_dbs_init(void)
335{
336	return cpufreq_register_governor(CPU_FREQ_GOV_CONSERVATIVE);
337}
338
339static void __exit cpufreq_gov_dbs_exit(void)
340{
341	cpufreq_unregister_governor(CPU_FREQ_GOV_CONSERVATIVE);
342}
343
 
344MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
345MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
346		"Low Latency Frequency Transition capable processors "
347		"optimised for use in a battery environment");
348MODULE_LICENSE("GPL");
349
350#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
351struct cpufreq_governor *cpufreq_default_governor(void)
352{
353	return CPU_FREQ_GOV_CONSERVATIVE;
354}
355
356fs_initcall(cpufreq_gov_dbs_init);
357#else
358module_init(cpufreq_gov_dbs_init);
359#endif
360module_exit(cpufreq_gov_dbs_exit);