Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Driver for TI Dual PLL CDCE925 clock synthesizer
  3 *
  4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
  5 * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
  6 * basis. Clients can directly request any frequency that the chip can
  7 * deliver using the standard clk framework. In addition, the device can
  8 * be configured and activated via the devicetree.
  9 *
 10 * Copyright (C) 2014, Topic Embedded Products
 11 * Licenced under GPL
 12 */
 13#include <linux/clk.h>
 14#include <linux/clk-provider.h>
 15#include <linux/delay.h>
 16#include <linux/module.h>
 17#include <linux/i2c.h>
 18#include <linux/regmap.h>
 19#include <linux/slab.h>
 20#include <linux/gcd.h>
 21
 22/* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
 23 * Model this as 2 PLL clocks which are parents to the outputs.
 24 */
 25#define NUMBER_OF_PLLS	2
 26#define NUMBER_OF_OUTPUTS	5
 27
 28#define CDCE925_REG_GLOBAL1	0x01
 29#define CDCE925_REG_Y1SPIPDIVH	0x02
 30#define CDCE925_REG_PDIVL	0x03
 31#define CDCE925_REG_XCSEL	0x05
 32/* PLL parameters start at 0x10, steps of 0x10 */
 33#define CDCE925_OFFSET_PLL	0x10
 34/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
 35#define CDCE925_PLL_MUX_OUTPUTS	0x14
 36#define CDCE925_PLL_MULDIV	0x18
 37
 38#define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
 39#define CDCE925_PLL_FREQUENCY_MAX	230000000ul
 40struct clk_cdce925_chip;
 41
 42struct clk_cdce925_output {
 43	struct clk_hw hw;
 44	struct clk_cdce925_chip *chip;
 45	u8 index;
 46	u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
 47};
 48#define to_clk_cdce925_output(_hw) \
 49	container_of(_hw, struct clk_cdce925_output, hw)
 50
 51struct clk_cdce925_pll {
 52	struct clk_hw hw;
 53	struct clk_cdce925_chip *chip;
 54	u8 index;
 55	u16 m;   /* 1..511 */
 56	u16 n;   /* 1..4095 */
 57};
 58#define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
 59
 60struct clk_cdce925_chip {
 61	struct regmap *regmap;
 62	struct i2c_client *i2c_client;
 63	struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
 64	struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
 65};
 66
 67/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
 68
 69static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
 70	u16 n, u16 m)
 71{
 72	if ((!m || !n) || (m == n))
 73		return parent_rate; /* In bypass mode runs at same frequency */
 74	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
 75}
 76
 77static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
 78		unsigned long parent_rate)
 79{
 80	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
 81	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 82
 83	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
 84}
 85
 86static void cdce925_pll_find_rate(unsigned long rate,
 87		unsigned long parent_rate, u16 *n, u16 *m)
 88{
 89	unsigned long un;
 90	unsigned long um;
 91	unsigned long g;
 92
 93	if (rate <= parent_rate) {
 94		/* Can always deliver parent_rate in bypass mode */
 95		rate = parent_rate;
 96		*n = 0;
 97		*m = 0;
 98	} else {
 99		/* In PLL mode, need to apply min/max range */
100		if (rate < CDCE925_PLL_FREQUENCY_MIN)
101			rate = CDCE925_PLL_FREQUENCY_MIN;
102		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
103			rate = CDCE925_PLL_FREQUENCY_MAX;
104
105		g = gcd(rate, parent_rate);
106		um = parent_rate / g;
107		un = rate / g;
108		/* When outside hw range, reduce to fit (rounding errors) */
109		while ((un > 4095) || (um > 511)) {
110			un >>= 1;
111			um >>= 1;
112		}
113		if (un == 0)
114			un = 1;
115		if (um == 0)
116			um = 1;
117
118		*n = un;
119		*m = um;
120	}
121}
122
123static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
124		unsigned long *parent_rate)
125{
126	u16 n, m;
127
128	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
129	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
130}
131
132static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
133		unsigned long parent_rate)
134{
135	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
136
137	if (!rate || (rate == parent_rate)) {
138		data->m = 0; /* Bypass mode */
139		data->n = 0;
140		return 0;
141	}
142
143	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
144		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
145		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
146		return -EINVAL;
147	}
148
149	if (rate < parent_rate) {
150		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
151			rate, parent_rate);
152		return -EINVAL;
153	}
154
155	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
156	return 0;
157}
158
159
160/* calculate p = max(0, 4 - int(log2 (n/m))) */
161static u8 cdce925_pll_calc_p(u16 n, u16 m)
162{
163	u8 p;
164	u16 r = n / m;
165
166	if (r >= 16)
167		return 0;
168	p = 4;
169	while (r > 1) {
170		r >>= 1;
171		--p;
172	}
173	return p;
174}
175
176/* Returns VCO range bits for VCO1_0_RANGE */
177static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
178{
179	struct clk *parent = clk_get_parent(hw->clk);
180	unsigned long rate = clk_get_rate(parent);
181
182	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
183	if (rate >= 175000000)
184		return 0x3;
185	if (rate >= 150000000)
186		return 0x02;
187	if (rate >= 125000000)
188		return 0x01;
189	return 0x00;
190}
191
192/* I2C clock, hence everything must happen in (un)prepare because this
193 * may sleep */
194static int cdce925_pll_prepare(struct clk_hw *hw)
195{
196	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
197	u16 n = data->n;
198	u16 m = data->m;
199	u16 r;
200	u8 q;
201	u8 p;
202	u16 nn;
203	u8 pll[4]; /* Bits are spread out over 4 byte registers */
204	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
205	unsigned i;
206
207	if ((!m || !n) || (m == n)) {
208		/* Set PLL mux to bypass mode, leave the rest as is */
209		regmap_update_bits(data->chip->regmap,
210			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
211	} else {
212		/* According to data sheet: */
213		/* p = max(0, 4 - int(log2 (n/m))) */
214		p = cdce925_pll_calc_p(n, m);
215		/* nn = n * 2^p */
216		nn = n * BIT(p);
217		/* q = int(nn/m) */
218		q = nn / m;
219		if ((q < 16) || (q > 63)) {
220			pr_debug("%s invalid q=%d\n", __func__, q);
221			return -EINVAL;
222		}
223		r = nn - (m*q);
224		if (r > 511) {
225			pr_debug("%s invalid r=%d\n", __func__, r);
226			return -EINVAL;
227		}
228		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
229			n, m, p, q, r);
230		/* encode into register bits */
231		pll[0] = n >> 4;
232		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
233		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
234		pll[3] = ((q & 0x07) << 5) | (p << 2) |
235				cdce925_pll_calc_range_bits(hw, n, m);
236		/* Write to registers */
237		for (i = 0; i < ARRAY_SIZE(pll); ++i)
238			regmap_write(data->chip->regmap,
239				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
240		/* Enable PLL */
241		regmap_update_bits(data->chip->regmap,
242			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
243	}
244
245	return 0;
246}
247
248static void cdce925_pll_unprepare(struct clk_hw *hw)
249{
250	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
251	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
252
253	regmap_update_bits(data->chip->regmap,
254			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
255}
256
257static const struct clk_ops cdce925_pll_ops = {
258	.prepare = cdce925_pll_prepare,
259	.unprepare = cdce925_pll_unprepare,
260	.recalc_rate = cdce925_pll_recalc_rate,
261	.round_rate = cdce925_pll_round_rate,
262	.set_rate = cdce925_pll_set_rate,
263};
264
265
266static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
267{
268	switch (data->index) {
269	case 0:
270		regmap_update_bits(data->chip->regmap,
271			CDCE925_REG_Y1SPIPDIVH,
272			0x03, (pdiv >> 8) & 0x03);
273		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
274		break;
275	case 1:
276		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
277		break;
278	case 2:
279		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
280		break;
281	case 3:
282		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
283		break;
284	case 4:
285		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
286		break;
287	}
288}
289
290static void cdce925_clk_activate(struct clk_cdce925_output *data)
291{
292	switch (data->index) {
293	case 0:
294		regmap_update_bits(data->chip->regmap,
295			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
296		break;
297	case 1:
298	case 2:
299		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
300		break;
301	case 3:
302	case 4:
303		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
304		break;
305	}
306}
307
308static int cdce925_clk_prepare(struct clk_hw *hw)
309{
310	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
311
312	cdce925_clk_set_pdiv(data, data->pdiv);
313	cdce925_clk_activate(data);
314	return 0;
315}
316
317static void cdce925_clk_unprepare(struct clk_hw *hw)
318{
319	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
320
321	/* Disable clock by setting divider to "0" */
322	cdce925_clk_set_pdiv(data, 0);
323}
324
325static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
326		unsigned long parent_rate)
327{
328	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
329
330	if (data->pdiv)
331		return parent_rate / data->pdiv;
332	return 0;
333}
334
335static u16 cdce925_calc_divider(unsigned long rate,
336		unsigned long parent_rate)
337{
338	unsigned long divider;
339
340	if (!rate)
341		return 0;
342	if (rate >= parent_rate)
343		return 1;
344
345	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
346	if (divider > 0x7F)
347		divider = 0x7F;
348
349	return (u16)divider;
350}
351
352static unsigned long cdce925_clk_best_parent_rate(
353	struct clk_hw *hw, unsigned long rate)
354{
355	struct clk *pll = clk_get_parent(hw->clk);
356	struct clk *root = clk_get_parent(pll);
357	unsigned long root_rate = clk_get_rate(root);
358	unsigned long best_rate_error = rate;
359	u16 pdiv_min;
360	u16 pdiv_max;
361	u16 pdiv_best;
362	u16 pdiv_now;
363
364	if (root_rate % rate == 0)
365		return root_rate; /* Don't need the PLL, use bypass */
366
367	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
368	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
369
370	if (pdiv_min > pdiv_max)
371		return 0; /* No can do? */
372
373	pdiv_best = pdiv_min;
374	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
375		unsigned long target_rate = rate * pdiv_now;
376		long pll_rate = clk_round_rate(pll, target_rate);
377		unsigned long actual_rate;
378		unsigned long rate_error;
379
380		if (pll_rate <= 0)
381			continue;
382		actual_rate = pll_rate / pdiv_now;
383		rate_error = abs((long)actual_rate - (long)rate);
384		if (rate_error < best_rate_error) {
385			pdiv_best = pdiv_now;
386			best_rate_error = rate_error;
387		}
388		/* TODO: Consider PLL frequency based on smaller n/m values
389		 * and pick the better one if the error is equal */
390	}
391
392	return rate * pdiv_best;
393}
394
395static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
396		unsigned long *parent_rate)
397{
398	unsigned long l_parent_rate = *parent_rate;
399	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
400
401	if (l_parent_rate / divider != rate) {
402		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
403		divider = cdce925_calc_divider(rate, l_parent_rate);
404		*parent_rate = l_parent_rate;
405	}
406
407	if (divider)
408		return (long)(l_parent_rate / divider);
409	return 0;
410}
411
412static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
413		unsigned long parent_rate)
414{
415	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
416
417	data->pdiv = cdce925_calc_divider(rate, parent_rate);
418
419	return 0;
420}
421
422static const struct clk_ops cdce925_clk_ops = {
423	.prepare = cdce925_clk_prepare,
424	.unprepare = cdce925_clk_unprepare,
425	.recalc_rate = cdce925_clk_recalc_rate,
426	.round_rate = cdce925_clk_round_rate,
427	.set_rate = cdce925_clk_set_rate,
428};
429
430
431static u16 cdce925_y1_calc_divider(unsigned long rate,
432		unsigned long parent_rate)
433{
434	unsigned long divider;
435
436	if (!rate)
437		return 0;
438	if (rate >= parent_rate)
439		return 1;
440
441	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
442	if (divider > 0x3FF) /* Y1 has 10-bit divider */
443		divider = 0x3FF;
444
445	return (u16)divider;
446}
447
448static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
449		unsigned long *parent_rate)
450{
451	unsigned long l_parent_rate = *parent_rate;
452	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
453
454	if (divider)
455		return (long)(l_parent_rate / divider);
456	return 0;
457}
458
459static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
460		unsigned long parent_rate)
461{
462	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
463
464	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
465
466	return 0;
467}
468
469static const struct clk_ops cdce925_clk_y1_ops = {
470	.prepare = cdce925_clk_prepare,
471	.unprepare = cdce925_clk_unprepare,
472	.recalc_rate = cdce925_clk_recalc_rate,
473	.round_rate = cdce925_clk_y1_round_rate,
474	.set_rate = cdce925_clk_y1_set_rate,
475};
476
477
478static struct regmap_config cdce925_regmap_config = {
479	.name = "configuration0",
480	.reg_bits = 8,
481	.val_bits = 8,
482	.cache_type = REGCACHE_RBTREE,
483	.max_register = 0x2F,
484};
485
486#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
487#define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
488
489static int cdce925_regmap_i2c_write(
490	void *context, const void *data, size_t count)
491{
492	struct device *dev = context;
493	struct i2c_client *i2c = to_i2c_client(dev);
494	int ret;
495	u8 reg_data[2];
496
497	if (count != 2)
498		return -ENOTSUPP;
499
500	/* First byte is command code */
501	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
502	reg_data[1] = ((u8 *)data)[1];
503
504	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
505			reg_data[0], reg_data[1]);
506
507	ret = i2c_master_send(i2c, reg_data, count);
508	if (likely(ret == count))
509		return 0;
510	else if (ret < 0)
511		return ret;
512	else
513		return -EIO;
514}
515
516static int cdce925_regmap_i2c_read(void *context,
517	   const void *reg, size_t reg_size, void *val, size_t val_size)
518{
519	struct device *dev = context;
520	struct i2c_client *i2c = to_i2c_client(dev);
521	struct i2c_msg xfer[2];
522	int ret;
523	u8 reg_data[2];
524
525	if (reg_size != 1)
526		return -ENOTSUPP;
527
528	xfer[0].addr = i2c->addr;
529	xfer[0].flags = 0;
530	xfer[0].buf = reg_data;
531	if (val_size == 1) {
532		reg_data[0] =
533			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
534		xfer[0].len = 1;
535	} else {
536		reg_data[0] =
537			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
538		reg_data[1] = val_size;
539		xfer[0].len = 2;
540	}
541
542	xfer[1].addr = i2c->addr;
543	xfer[1].flags = I2C_M_RD;
544	xfer[1].len = val_size;
545	xfer[1].buf = val;
546
547	ret = i2c_transfer(i2c->adapter, xfer, 2);
548	if (likely(ret == 2)) {
549		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
550				reg_size, val_size, reg_data[0], *((u8 *)val));
551		return 0;
552	} else if (ret < 0)
553		return ret;
554	else
555		return -EIO;
556}
557
558static struct clk_hw *
559of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
560{
561	struct clk_cdce925_chip *data = _data;
562	unsigned int idx = clkspec->args[0];
563
564	if (idx >= ARRAY_SIZE(data->clk)) {
565		pr_err("%s: invalid index %u\n", __func__, idx);
566		return ERR_PTR(-EINVAL);
567	}
568
569	return &data->clk[idx].hw;
570}
571
572/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
573 * just weird, so just use the single byte mode exclusively. */
574static struct regmap_bus regmap_cdce925_bus = {
575	.write = cdce925_regmap_i2c_write,
576	.read = cdce925_regmap_i2c_read,
577};
578
579static int cdce925_probe(struct i2c_client *client,
580		const struct i2c_device_id *id)
581{
582	struct clk_cdce925_chip *data;
583	struct device_node *node = client->dev.of_node;
584	const char *parent_name;
585	const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
586	struct clk_init_data init;
587	u32 value;
588	int i;
589	int err;
590	struct device_node *np_output;
591	char child_name[6];
592
593	dev_dbg(&client->dev, "%s\n", __func__);
594	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
595	if (!data)
596		return -ENOMEM;
597
598	data->i2c_client = client;
599	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
600			&client->dev, &cdce925_regmap_config);
601	if (IS_ERR(data->regmap)) {
602		dev_err(&client->dev, "failed to allocate register map\n");
603		return PTR_ERR(data->regmap);
604	}
605	i2c_set_clientdata(client, data);
606
607	parent_name = of_clk_get_parent_name(node, 0);
608	if (!parent_name) {
609		dev_err(&client->dev, "missing parent clock\n");
610		return -ENODEV;
611	}
612	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
613
614	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
615		regmap_write(data->regmap,
616			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
617	/* PWDN bit */
618	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
619
620	/* Set input source for Y1 to be the XTAL */
621	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
622
623	init.ops = &cdce925_pll_ops;
624	init.flags = 0;
625	init.parent_names = &parent_name;
626	init.num_parents = parent_name ? 1 : 0;
627
628	/* Register PLL clocks */
629	for (i = 0; i < NUMBER_OF_PLLS; ++i) {
630		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
631			client->dev.of_node->name, i);
632		init.name = pll_clk_name[i];
633		data->pll[i].chip = data;
634		data->pll[i].hw.init = &init;
635		data->pll[i].index = i;
636		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
637		if (err) {
638			dev_err(&client->dev, "Failed register PLL %d\n", i);
639			goto error;
640		}
641		sprintf(child_name, "PLL%d", i+1);
642		np_output = of_get_child_by_name(node, child_name);
643		if (!np_output)
644			continue;
645		if (!of_property_read_u32(np_output,
646			"clock-frequency", &value)) {
647			err = clk_set_rate(data->pll[i].hw.clk, value);
648			if (err)
649				dev_err(&client->dev,
650					"unable to set PLL frequency %ud\n",
651					value);
652		}
653		if (!of_property_read_u32(np_output,
654			"spread-spectrum", &value)) {
655			u8 flag = of_property_read_bool(np_output,
656				"spread-spectrum-center") ? 0x80 : 0x00;
657			regmap_update_bits(data->regmap,
658				0x16 + (i*CDCE925_OFFSET_PLL),
659				0x80, flag);
660			regmap_update_bits(data->regmap,
661				0x12 + (i*CDCE925_OFFSET_PLL),
662				0x07, value & 0x07);
663		}
664	}
665
666	/* Register output clock Y1 */
667	init.ops = &cdce925_clk_y1_ops;
668	init.flags = 0;
669	init.num_parents = 1;
670	init.parent_names = &parent_name; /* Mux Y1 to input */
671	init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
672	data->clk[0].chip = data;
673	data->clk[0].hw.init = &init;
674	data->clk[0].index = 0;
675	data->clk[0].pdiv = 1;
676	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
677	kfree(init.name); /* clock framework made a copy of the name */
678	if (err) {
679		dev_err(&client->dev, "clock registration Y1 failed\n");
680		goto error;
681	}
682
683	/* Register output clocks Y2 .. Y5*/
684	init.ops = &cdce925_clk_ops;
685	init.flags = CLK_SET_RATE_PARENT;
686	init.num_parents = 1;
687	for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
688		init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
689			client->dev.of_node->name, i+1);
690		data->clk[i].chip = data;
691		data->clk[i].hw.init = &init;
692		data->clk[i].index = i;
693		data->clk[i].pdiv = 1;
694		switch (i) {
695		case 1:
696		case 2:
697			/* Mux Y2/3 to PLL1 */
698			init.parent_names = &pll_clk_name[0];
699			break;
700		case 3:
701		case 4:
702			/* Mux Y4/5 to PLL2 */
703			init.parent_names = &pll_clk_name[1];
704			break;
705		}
706		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
707		kfree(init.name); /* clock framework made a copy of the name */
708		if (err) {
709			dev_err(&client->dev, "clock registration failed\n");
710			goto error;
711		}
712	}
713
714	/* Register the output clocks */
715	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
716				  data);
717	if (err)
718		dev_err(&client->dev, "unable to add OF clock provider\n");
719
720	err = 0;
721
722error:
723	for (i = 0; i < NUMBER_OF_PLLS; ++i)
724		/* clock framework made a copy of the name */
725		kfree(pll_clk_name[i]);
726
727	return err;
728}
729
730static const struct i2c_device_id cdce925_id[] = {
731	{ "cdce925", 0 },
732	{ }
733};
734MODULE_DEVICE_TABLE(i2c, cdce925_id);
735
736static const struct of_device_id clk_cdce925_of_match[] = {
737	{ .compatible = "ti,cdce925" },
738	{ },
739};
740MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
741
742static struct i2c_driver cdce925_driver = {
743	.driver = {
744		.name = "cdce925",
745		.of_match_table = of_match_ptr(clk_cdce925_of_match),
746	},
747	.probe		= cdce925_probe,
748	.id_table	= cdce925_id,
749};
750module_i2c_driver(cdce925_driver);
751
752MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
753MODULE_DESCRIPTION("cdce925 driver");
754MODULE_LICENSE("GPL");