Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * property.c - Unified device property interface.
   3 *
   4 * Copyright (C) 2014, Intel Corporation
   5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   6 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/acpi.h>
  14#include <linux/export.h>
  15#include <linux/kernel.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
  18#include <linux/property.h>
  19#include <linux/etherdevice.h>
  20#include <linux/phy.h>
  21
  22struct property_set {
  23	struct fwnode_handle fwnode;
  24	struct property_entry *properties;
  25};
  26
  27static inline bool is_pset_node(struct fwnode_handle *fwnode)
  28{
  29	return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
  30}
  31
  32static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
  33{
  34	return is_pset_node(fwnode) ?
  35		container_of(fwnode, struct property_set, fwnode) : NULL;
  36}
  37
  38static struct property_entry *pset_prop_get(struct property_set *pset,
  39					    const char *name)
  40{
  41	struct property_entry *prop;
  42
  43	if (!pset || !pset->properties)
  44		return NULL;
  45
  46	for (prop = pset->properties; prop->name; prop++)
  47		if (!strcmp(name, prop->name))
  48			return prop;
  49
  50	return NULL;
  51}
  52
  53static void *pset_prop_find(struct property_set *pset, const char *propname,
  54			    size_t length)
  55{
  56	struct property_entry *prop;
  57	void *pointer;
  58
  59	prop = pset_prop_get(pset, propname);
  60	if (!prop)
  61		return ERR_PTR(-EINVAL);
  62	if (prop->is_array)
  63		pointer = prop->pointer.raw_data;
  64	else
  65		pointer = &prop->value.raw_data;
  66	if (!pointer)
  67		return ERR_PTR(-ENODATA);
  68	if (length > prop->length)
  69		return ERR_PTR(-EOVERFLOW);
  70	return pointer;
  71}
  72
  73static int pset_prop_read_u8_array(struct property_set *pset,
  74				   const char *propname,
  75				   u8 *values, size_t nval)
  76{
  77	void *pointer;
  78	size_t length = nval * sizeof(*values);
  79
  80	pointer = pset_prop_find(pset, propname, length);
  81	if (IS_ERR(pointer))
  82		return PTR_ERR(pointer);
  83
  84	memcpy(values, pointer, length);
  85	return 0;
  86}
  87
  88static int pset_prop_read_u16_array(struct property_set *pset,
  89				    const char *propname,
  90				    u16 *values, size_t nval)
  91{
  92	void *pointer;
  93	size_t length = nval * sizeof(*values);
  94
  95	pointer = pset_prop_find(pset, propname, length);
  96	if (IS_ERR(pointer))
  97		return PTR_ERR(pointer);
  98
  99	memcpy(values, pointer, length);
 100	return 0;
 101}
 102
 103static int pset_prop_read_u32_array(struct property_set *pset,
 104				    const char *propname,
 105				    u32 *values, size_t nval)
 106{
 107	void *pointer;
 108	size_t length = nval * sizeof(*values);
 109
 110	pointer = pset_prop_find(pset, propname, length);
 111	if (IS_ERR(pointer))
 112		return PTR_ERR(pointer);
 113
 114	memcpy(values, pointer, length);
 115	return 0;
 116}
 117
 118static int pset_prop_read_u64_array(struct property_set *pset,
 119				    const char *propname,
 120				    u64 *values, size_t nval)
 121{
 122	void *pointer;
 123	size_t length = nval * sizeof(*values);
 124
 125	pointer = pset_prop_find(pset, propname, length);
 126	if (IS_ERR(pointer))
 127		return PTR_ERR(pointer);
 128
 129	memcpy(values, pointer, length);
 130	return 0;
 131}
 132
 133static int pset_prop_count_elems_of_size(struct property_set *pset,
 134					 const char *propname, size_t length)
 135{
 136	struct property_entry *prop;
 137
 138	prop = pset_prop_get(pset, propname);
 139	if (!prop)
 140		return -EINVAL;
 141
 142	return prop->length / length;
 143}
 144
 145static int pset_prop_read_string_array(struct property_set *pset,
 146				       const char *propname,
 147				       const char **strings, size_t nval)
 148{
 149	void *pointer;
 150	size_t length = nval * sizeof(*strings);
 151
 152	pointer = pset_prop_find(pset, propname, length);
 153	if (IS_ERR(pointer))
 154		return PTR_ERR(pointer);
 155
 156	memcpy(strings, pointer, length);
 157	return 0;
 158}
 159
 160static int pset_prop_read_string(struct property_set *pset,
 161				 const char *propname, const char **strings)
 162{
 163	struct property_entry *prop;
 164	const char **pointer;
 165
 166	prop = pset_prop_get(pset, propname);
 167	if (!prop)
 168		return -EINVAL;
 169	if (!prop->is_string)
 170		return -EILSEQ;
 171	if (prop->is_array) {
 172		pointer = prop->pointer.str;
 173		if (!pointer)
 174			return -ENODATA;
 175	} else {
 176		pointer = &prop->value.str;
 177		if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
 178			return -EILSEQ;
 179	}
 180
 181	*strings = *pointer;
 182	return 0;
 183}
 184
 185static inline struct fwnode_handle *dev_fwnode(struct device *dev)
 186{
 187	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
 188		&dev->of_node->fwnode : dev->fwnode;
 189}
 190
 191/**
 192 * device_property_present - check if a property of a device is present
 193 * @dev: Device whose property is being checked
 194 * @propname: Name of the property
 195 *
 196 * Check if property @propname is present in the device firmware description.
 197 */
 198bool device_property_present(struct device *dev, const char *propname)
 199{
 200	return fwnode_property_present(dev_fwnode(dev), propname);
 201}
 202EXPORT_SYMBOL_GPL(device_property_present);
 203
 204static bool __fwnode_property_present(struct fwnode_handle *fwnode,
 205				      const char *propname)
 206{
 207	if (is_of_node(fwnode))
 208		return of_property_read_bool(to_of_node(fwnode), propname);
 209	else if (is_acpi_node(fwnode))
 210		return !acpi_node_prop_get(fwnode, propname, NULL);
 211	else if (is_pset_node(fwnode))
 212		return !!pset_prop_get(to_pset_node(fwnode), propname);
 213	return false;
 214}
 215
 216/**
 217 * fwnode_property_present - check if a property of a firmware node is present
 218 * @fwnode: Firmware node whose property to check
 219 * @propname: Name of the property
 220 */
 221bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
 222{
 223	bool ret;
 224
 225	ret = __fwnode_property_present(fwnode, propname);
 226	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
 227	    !IS_ERR_OR_NULL(fwnode->secondary))
 228		ret = __fwnode_property_present(fwnode->secondary, propname);
 229	return ret;
 230}
 231EXPORT_SYMBOL_GPL(fwnode_property_present);
 232
 233/**
 234 * device_property_read_u8_array - return a u8 array property of a device
 235 * @dev: Device to get the property of
 236 * @propname: Name of the property
 237 * @val: The values are stored here or %NULL to return the number of values
 238 * @nval: Size of the @val array
 239 *
 240 * Function reads an array of u8 properties with @propname from the device
 241 * firmware description and stores them to @val if found.
 242 *
 243 * Return: number of values if @val was %NULL,
 244 *         %0 if the property was found (success),
 245 *	   %-EINVAL if given arguments are not valid,
 246 *	   %-ENODATA if the property does not have a value,
 247 *	   %-EPROTO if the property is not an array of numbers,
 248 *	   %-EOVERFLOW if the size of the property is not as expected.
 249 *	   %-ENXIO if no suitable firmware interface is present.
 250 */
 251int device_property_read_u8_array(struct device *dev, const char *propname,
 252				  u8 *val, size_t nval)
 253{
 254	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
 255}
 256EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 257
 258/**
 259 * device_property_read_u16_array - return a u16 array property of a device
 260 * @dev: Device to get the property of
 261 * @propname: Name of the property
 262 * @val: The values are stored here or %NULL to return the number of values
 263 * @nval: Size of the @val array
 264 *
 265 * Function reads an array of u16 properties with @propname from the device
 266 * firmware description and stores them to @val if found.
 267 *
 268 * Return: number of values if @val was %NULL,
 269 *         %0 if the property was found (success),
 270 *	   %-EINVAL if given arguments are not valid,
 271 *	   %-ENODATA if the property does not have a value,
 272 *	   %-EPROTO if the property is not an array of numbers,
 273 *	   %-EOVERFLOW if the size of the property is not as expected.
 274 *	   %-ENXIO if no suitable firmware interface is present.
 275 */
 276int device_property_read_u16_array(struct device *dev, const char *propname,
 277				   u16 *val, size_t nval)
 278{
 279	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 280}
 281EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 282
 283/**
 284 * device_property_read_u32_array - return a u32 array property of a device
 285 * @dev: Device to get the property of
 286 * @propname: Name of the property
 287 * @val: The values are stored here or %NULL to return the number of values
 288 * @nval: Size of the @val array
 289 *
 290 * Function reads an array of u32 properties with @propname from the device
 291 * firmware description and stores them to @val if found.
 292 *
 293 * Return: number of values if @val was %NULL,
 294 *         %0 if the property was found (success),
 295 *	   %-EINVAL if given arguments are not valid,
 296 *	   %-ENODATA if the property does not have a value,
 297 *	   %-EPROTO if the property is not an array of numbers,
 298 *	   %-EOVERFLOW if the size of the property is not as expected.
 299 *	   %-ENXIO if no suitable firmware interface is present.
 300 */
 301int device_property_read_u32_array(struct device *dev, const char *propname,
 302				   u32 *val, size_t nval)
 303{
 304	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 305}
 306EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 307
 308/**
 309 * device_property_read_u64_array - return a u64 array property of a device
 310 * @dev: Device to get the property of
 311 * @propname: Name of the property
 312 * @val: The values are stored here or %NULL to return the number of values
 313 * @nval: Size of the @val array
 314 *
 315 * Function reads an array of u64 properties with @propname from the device
 316 * firmware description and stores them to @val if found.
 317 *
 318 * Return: number of values if @val was %NULL,
 319 *         %0 if the property was found (success),
 320 *	   %-EINVAL if given arguments are not valid,
 321 *	   %-ENODATA if the property does not have a value,
 322 *	   %-EPROTO if the property is not an array of numbers,
 323 *	   %-EOVERFLOW if the size of the property is not as expected.
 324 *	   %-ENXIO if no suitable firmware interface is present.
 325 */
 326int device_property_read_u64_array(struct device *dev, const char *propname,
 327				   u64 *val, size_t nval)
 328{
 329	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 330}
 331EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 332
 333/**
 334 * device_property_read_string_array - return a string array property of device
 335 * @dev: Device to get the property of
 336 * @propname: Name of the property
 337 * @val: The values are stored here or %NULL to return the number of values
 338 * @nval: Size of the @val array
 339 *
 340 * Function reads an array of string properties with @propname from the device
 341 * firmware description and stores them to @val if found.
 342 *
 343 * Return: number of values if @val was %NULL,
 344 *         %0 if the property was found (success),
 345 *	   %-EINVAL if given arguments are not valid,
 346 *	   %-ENODATA if the property does not have a value,
 347 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 348 *	   %-EOVERFLOW if the size of the property is not as expected.
 349 *	   %-ENXIO if no suitable firmware interface is present.
 350 */
 351int device_property_read_string_array(struct device *dev, const char *propname,
 352				      const char **val, size_t nval)
 353{
 354	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 355}
 356EXPORT_SYMBOL_GPL(device_property_read_string_array);
 357
 358/**
 359 * device_property_read_string - return a string property of a device
 360 * @dev: Device to get the property of
 361 * @propname: Name of the property
 362 * @val: The value is stored here
 363 *
 364 * Function reads property @propname from the device firmware description and
 365 * stores the value into @val if found. The value is checked to be a string.
 366 *
 367 * Return: %0 if the property was found (success),
 368 *	   %-EINVAL if given arguments are not valid,
 369 *	   %-ENODATA if the property does not have a value,
 370 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 371 *	   %-ENXIO if no suitable firmware interface is present.
 372 */
 373int device_property_read_string(struct device *dev, const char *propname,
 374				const char **val)
 375{
 376	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 377}
 378EXPORT_SYMBOL_GPL(device_property_read_string);
 379
 380/**
 381 * device_property_match_string - find a string in an array and return index
 382 * @dev: Device to get the property of
 383 * @propname: Name of the property holding the array
 384 * @string: String to look for
 385 *
 386 * Find a given string in a string array and if it is found return the
 387 * index back.
 388 *
 389 * Return: %0 if the property was found (success),
 390 *	   %-EINVAL if given arguments are not valid,
 391 *	   %-ENODATA if the property does not have a value,
 392 *	   %-EPROTO if the property is not an array of strings,
 393 *	   %-ENXIO if no suitable firmware interface is present.
 394 */
 395int device_property_match_string(struct device *dev, const char *propname,
 396				 const char *string)
 397{
 398	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 399}
 400EXPORT_SYMBOL_GPL(device_property_match_string);
 401
 402#define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval)				\
 403	(val) ? of_property_read_##type##_array((node), (propname), (val), (nval))	\
 404	      : of_property_count_elems_of_size((node), (propname), sizeof(type))
 405
 406#define PSET_PROP_READ_ARRAY(node, propname, type, val, nval)				\
 407	(val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval))	\
 408	      : pset_prop_count_elems_of_size((node), (propname), sizeof(type))
 409
 410#define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
 411({											\
 412	int _ret_;									\
 413	if (is_of_node(_fwnode_))							\
 414		_ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_,	\
 415					       _type_, _val_, _nval_);			\
 416	else if (is_acpi_node(_fwnode_))						\
 417		_ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_,		\
 418					    _val_, _nval_);				\
 419	else if (is_pset_node(_fwnode_)) 						\
 420		_ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_,	\
 421					     _type_, _val_, _nval_);			\
 422	else										\
 423		_ret_ = -ENXIO;								\
 424	_ret_;										\
 425})
 426
 427#define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
 428({											\
 429	int _ret_;									\
 430	_ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_,		\
 431				 _val_, _nval_);					\
 432	if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) &&				\
 433	    !IS_ERR_OR_NULL(_fwnode_->secondary))					\
 434		_ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_,	\
 435				_proptype_, _val_, _nval_);				\
 436	_ret_;										\
 437})
 438
 439/**
 440 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 441 * @fwnode: Firmware node to get the property of
 442 * @propname: Name of the property
 443 * @val: The values are stored here or %NULL to return the number of values
 444 * @nval: Size of the @val array
 445 *
 446 * Read an array of u8 properties with @propname from @fwnode and stores them to
 447 * @val if found.
 448 *
 449 * Return: number of values if @val was %NULL,
 450 *         %0 if the property was found (success),
 451 *	   %-EINVAL if given arguments are not valid,
 452 *	   %-ENODATA if the property does not have a value,
 453 *	   %-EPROTO if the property is not an array of numbers,
 454 *	   %-EOVERFLOW if the size of the property is not as expected,
 455 *	   %-ENXIO if no suitable firmware interface is present.
 456 */
 457int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
 458				  const char *propname, u8 *val, size_t nval)
 459{
 460	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
 461				      val, nval);
 462}
 463EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 464
 465/**
 466 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 467 * @fwnode: Firmware node to get the property of
 468 * @propname: Name of the property
 469 * @val: The values are stored here or %NULL to return the number of values
 470 * @nval: Size of the @val array
 471 *
 472 * Read an array of u16 properties with @propname from @fwnode and store them to
 473 * @val if found.
 474 *
 475 * Return: number of values if @val was %NULL,
 476 *         %0 if the property was found (success),
 477 *	   %-EINVAL if given arguments are not valid,
 478 *	   %-ENODATA if the property does not have a value,
 479 *	   %-EPROTO if the property is not an array of numbers,
 480 *	   %-EOVERFLOW if the size of the property is not as expected,
 481 *	   %-ENXIO if no suitable firmware interface is present.
 482 */
 483int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
 484				   const char *propname, u16 *val, size_t nval)
 485{
 486	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
 487				      val, nval);
 488}
 489EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 490
 491/**
 492 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 493 * @fwnode: Firmware node to get the property of
 494 * @propname: Name of the property
 495 * @val: The values are stored here or %NULL to return the number of values
 496 * @nval: Size of the @val array
 497 *
 498 * Read an array of u32 properties with @propname from @fwnode store them to
 499 * @val if found.
 500 *
 501 * Return: number of values if @val was %NULL,
 502 *         %0 if the property was found (success),
 503 *	   %-EINVAL if given arguments are not valid,
 504 *	   %-ENODATA if the property does not have a value,
 505 *	   %-EPROTO if the property is not an array of numbers,
 506 *	   %-EOVERFLOW if the size of the property is not as expected,
 507 *	   %-ENXIO if no suitable firmware interface is present.
 508 */
 509int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
 510				   const char *propname, u32 *val, size_t nval)
 511{
 512	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
 513				      val, nval);
 514}
 515EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 516
 517/**
 518 * fwnode_property_read_u64_array - return a u64 array property firmware node
 519 * @fwnode: Firmware node to get the property of
 520 * @propname: Name of the property
 521 * @val: The values are stored here or %NULL to return the number of values
 522 * @nval: Size of the @val array
 523 *
 524 * Read an array of u64 properties with @propname from @fwnode and store them to
 525 * @val if found.
 526 *
 527 * Return: number of values if @val was %NULL,
 528 *         %0 if the property was found (success),
 529 *	   %-EINVAL if given arguments are not valid,
 530 *	   %-ENODATA if the property does not have a value,
 531 *	   %-EPROTO if the property is not an array of numbers,
 532 *	   %-EOVERFLOW if the size of the property is not as expected,
 533 *	   %-ENXIO if no suitable firmware interface is present.
 534 */
 535int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
 536				   const char *propname, u64 *val, size_t nval)
 537{
 538	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
 539				      val, nval);
 540}
 541EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 542
 543static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
 544					       const char *propname,
 545					       const char **val, size_t nval)
 546{
 547	if (is_of_node(fwnode))
 548		return val ?
 549			of_property_read_string_array(to_of_node(fwnode),
 550						      propname, val, nval) :
 551			of_property_count_strings(to_of_node(fwnode), propname);
 552	else if (is_acpi_node(fwnode))
 553		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
 554					   val, nval);
 555	else if (is_pset_node(fwnode))
 556		return val ?
 557			pset_prop_read_string_array(to_pset_node(fwnode),
 558						    propname, val, nval) :
 559			pset_prop_count_elems_of_size(to_pset_node(fwnode),
 560						      propname,
 561						      sizeof(const char *));
 562	return -ENXIO;
 563}
 564
 565static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
 566					 const char *propname, const char **val)
 567{
 568	if (is_of_node(fwnode))
 569		return of_property_read_string(to_of_node(fwnode), propname, val);
 570	else if (is_acpi_node(fwnode))
 571		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
 572					   val, 1);
 573	else if (is_pset_node(fwnode))
 574		return pset_prop_read_string(to_pset_node(fwnode), propname, val);
 575	return -ENXIO;
 576}
 577
 578/**
 579 * fwnode_property_read_string_array - return string array property of a node
 580 * @fwnode: Firmware node to get the property of
 581 * @propname: Name of the property
 582 * @val: The values are stored here or %NULL to return the number of values
 583 * @nval: Size of the @val array
 584 *
 585 * Read an string list property @propname from the given firmware node and store
 586 * them to @val if found.
 587 *
 588 * Return: number of values if @val was %NULL,
 589 *         %0 if the property was found (success),
 590 *	   %-EINVAL if given arguments are not valid,
 591 *	   %-ENODATA if the property does not have a value,
 592 *	   %-EPROTO if the property is not an array of strings,
 593 *	   %-EOVERFLOW if the size of the property is not as expected,
 594 *	   %-ENXIO if no suitable firmware interface is present.
 595 */
 596int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
 597				      const char *propname, const char **val,
 598				      size_t nval)
 599{
 600	int ret;
 601
 602	ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
 603	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 604	    !IS_ERR_OR_NULL(fwnode->secondary))
 605		ret = __fwnode_property_read_string_array(fwnode->secondary,
 606							  propname, val, nval);
 607	return ret;
 608}
 609EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 610
 611/**
 612 * fwnode_property_read_string - return a string property of a firmware node
 613 * @fwnode: Firmware node to get the property of
 614 * @propname: Name of the property
 615 * @val: The value is stored here
 616 *
 617 * Read property @propname from the given firmware node and store the value into
 618 * @val if found.  The value is checked to be a string.
 619 *
 620 * Return: %0 if the property was found (success),
 621 *	   %-EINVAL if given arguments are not valid,
 622 *	   %-ENODATA if the property does not have a value,
 623 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 624 *	   %-ENXIO if no suitable firmware interface is present.
 625 */
 626int fwnode_property_read_string(struct fwnode_handle *fwnode,
 627				const char *propname, const char **val)
 628{
 629	int ret;
 630
 631	ret = __fwnode_property_read_string(fwnode, propname, val);
 632	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 633	    !IS_ERR_OR_NULL(fwnode->secondary))
 634		ret = __fwnode_property_read_string(fwnode->secondary,
 635						    propname, val);
 636	return ret;
 637}
 638EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 639
 640/**
 641 * fwnode_property_match_string - find a string in an array and return index
 642 * @fwnode: Firmware node to get the property of
 643 * @propname: Name of the property holding the array
 644 * @string: String to look for
 645 *
 646 * Find a given string in a string array and if it is found return the
 647 * index back.
 648 *
 649 * Return: %0 if the property was found (success),
 650 *	   %-EINVAL if given arguments are not valid,
 651 *	   %-ENODATA if the property does not have a value,
 652 *	   %-EPROTO if the property is not an array of strings,
 653 *	   %-ENXIO if no suitable firmware interface is present.
 654 */
 655int fwnode_property_match_string(struct fwnode_handle *fwnode,
 656	const char *propname, const char *string)
 657{
 658	const char **values;
 659	int nval, ret;
 660
 661	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 662	if (nval < 0)
 663		return nval;
 664
 665	if (nval == 0)
 666		return -ENODATA;
 667
 668	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 669	if (!values)
 670		return -ENOMEM;
 671
 672	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 673	if (ret < 0)
 674		goto out;
 675
 676	ret = match_string(values, nval, string);
 677	if (ret < 0)
 678		ret = -ENODATA;
 679out:
 680	kfree(values);
 681	return ret;
 682}
 683EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 684
 685/**
 686 * pset_free_set - releases memory allocated for copied property set
 687 * @pset: Property set to release
 688 *
 689 * Function takes previously copied property set and releases all the
 690 * memory allocated to it.
 691 */
 692static void pset_free_set(struct property_set *pset)
 693{
 694	const struct property_entry *prop;
 695	size_t i, nval;
 696
 697	if (!pset)
 698		return;
 699
 700	for (prop = pset->properties; prop->name; prop++) {
 701		if (prop->is_array) {
 702			if (prop->is_string && prop->pointer.str) {
 703				nval = prop->length / sizeof(const char *);
 704				for (i = 0; i < nval; i++)
 705					kfree(prop->pointer.str[i]);
 706			}
 707			kfree(prop->pointer.raw_data);
 708		} else if (prop->is_string) {
 709			kfree(prop->value.str);
 710		}
 711		kfree(prop->name);
 712	}
 713
 714	kfree(pset->properties);
 715	kfree(pset);
 716}
 717
 718static int pset_copy_entry(struct property_entry *dst,
 719			   const struct property_entry *src)
 720{
 721	const char **d, **s;
 722	size_t i, nval;
 723
 724	dst->name = kstrdup(src->name, GFP_KERNEL);
 725	if (!dst->name)
 726		return -ENOMEM;
 727
 728	if (src->is_array) {
 729		if (!src->length)
 730			return -ENODATA;
 731
 732		if (src->is_string) {
 733			nval = src->length / sizeof(const char *);
 734			dst->pointer.str = kcalloc(nval, sizeof(const char *),
 735						   GFP_KERNEL);
 736			if (!dst->pointer.str)
 737				return -ENOMEM;
 738
 739			d = dst->pointer.str;
 740			s = src->pointer.str;
 741			for (i = 0; i < nval; i++) {
 742				d[i] = kstrdup(s[i], GFP_KERNEL);
 743				if (!d[i] && s[i])
 744					return -ENOMEM;
 745			}
 746		} else {
 747			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
 748							src->length, GFP_KERNEL);
 749			if (!dst->pointer.raw_data)
 750				return -ENOMEM;
 751		}
 752	} else if (src->is_string) {
 753		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
 754		if (!dst->value.str && src->value.str)
 755			return -ENOMEM;
 756	} else {
 757		dst->value.raw_data = src->value.raw_data;
 758	}
 759
 760	dst->length = src->length;
 761	dst->is_array = src->is_array;
 762	dst->is_string = src->is_string;
 763
 764	return 0;
 765}
 766
 767/**
 768 * pset_copy_set - copies property set
 769 * @pset: Property set to copy
 770 *
 771 * This function takes a deep copy of the given property set and returns
 772 * pointer to the copy. Call device_free_property_set() to free resources
 773 * allocated in this function.
 774 *
 775 * Return: Pointer to the new property set or error pointer.
 776 */
 777static struct property_set *pset_copy_set(const struct property_set *pset)
 778{
 779	const struct property_entry *entry;
 780	struct property_set *p;
 781	size_t i, n = 0;
 782
 783	p = kzalloc(sizeof(*p), GFP_KERNEL);
 784	if (!p)
 785		return ERR_PTR(-ENOMEM);
 786
 787	while (pset->properties[n].name)
 788		n++;
 789
 790	p->properties = kcalloc(n + 1, sizeof(*entry), GFP_KERNEL);
 791	if (!p->properties) {
 792		kfree(p);
 793		return ERR_PTR(-ENOMEM);
 794	}
 795
 796	for (i = 0; i < n; i++) {
 797		int ret = pset_copy_entry(&p->properties[i],
 798					  &pset->properties[i]);
 799		if (ret) {
 800			pset_free_set(p);
 801			return ERR_PTR(ret);
 802		}
 803	}
 804
 805	return p;
 806}
 807
 808/**
 809 * device_remove_properties - Remove properties from a device object.
 810 * @dev: Device whose properties to remove.
 811 *
 812 * The function removes properties previously associated to the device
 813 * secondary firmware node with device_add_properties(). Memory allocated
 814 * to the properties will also be released.
 815 */
 816void device_remove_properties(struct device *dev)
 817{
 818	struct fwnode_handle *fwnode;
 819
 820	fwnode = dev_fwnode(dev);
 821	if (!fwnode)
 822		return;
 823	/*
 824	 * Pick either primary or secondary node depending which one holds
 825	 * the pset. If there is no real firmware node (ACPI/DT) primary
 826	 * will hold the pset.
 827	 */
 828	if (is_pset_node(fwnode)) {
 829		set_primary_fwnode(dev, NULL);
 830		pset_free_set(to_pset_node(fwnode));
 831	} else {
 832		fwnode = fwnode->secondary;
 833		if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
 834			set_secondary_fwnode(dev, NULL);
 835			pset_free_set(to_pset_node(fwnode));
 836		}
 837	}
 838}
 839EXPORT_SYMBOL_GPL(device_remove_properties);
 840
 841/**
 842 * device_add_properties - Add a collection of properties to a device object.
 843 * @dev: Device to add properties to.
 844 * @properties: Collection of properties to add.
 845 *
 846 * Associate a collection of device properties represented by @properties with
 847 * @dev as its secondary firmware node. The function takes a copy of
 848 * @properties.
 849 */
 850int device_add_properties(struct device *dev, struct property_entry *properties)
 851{
 852	struct property_set *p, pset;
 853
 854	if (!properties)
 855		return -EINVAL;
 856
 857	pset.properties = properties;
 858
 859	p = pset_copy_set(&pset);
 860	if (IS_ERR(p))
 861		return PTR_ERR(p);
 862
 863	p->fwnode.type = FWNODE_PDATA;
 864	set_secondary_fwnode(dev, &p->fwnode);
 865	return 0;
 866}
 867EXPORT_SYMBOL_GPL(device_add_properties);
 868
 869/**
 870 * device_get_next_child_node - Return the next child node handle for a device
 871 * @dev: Device to find the next child node for.
 872 * @child: Handle to one of the device's child nodes or a null handle.
 873 */
 874struct fwnode_handle *device_get_next_child_node(struct device *dev,
 875						 struct fwnode_handle *child)
 876{
 877	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 878		struct device_node *node;
 879
 880		node = of_get_next_available_child(dev->of_node, to_of_node(child));
 881		if (node)
 882			return &node->fwnode;
 883	} else if (IS_ENABLED(CONFIG_ACPI)) {
 884		return acpi_get_next_subnode(dev, child);
 885	}
 886	return NULL;
 887}
 888EXPORT_SYMBOL_GPL(device_get_next_child_node);
 889
 890/**
 891 * device_get_named_child_node - Return first matching named child node handle
 892 * @dev: Device to find the named child node for.
 893 * @childname: String to match child node name against.
 894 */
 895struct fwnode_handle *device_get_named_child_node(struct device *dev,
 896						  const char *childname)
 897{
 898	struct fwnode_handle *child;
 899
 900	/*
 901	 * Find first matching named child node of this device.
 902	 * For ACPI this will be a data only sub-node.
 903	 */
 904	device_for_each_child_node(dev, child) {
 905		if (is_of_node(child)) {
 906			if (!of_node_cmp(to_of_node(child)->name, childname))
 907				return child;
 908		} else if (is_acpi_data_node(child)) {
 909			if (acpi_data_node_match(child, childname))
 910				return child;
 911		}
 912	}
 913
 914	return NULL;
 915}
 916EXPORT_SYMBOL_GPL(device_get_named_child_node);
 917
 918/**
 919 * fwnode_handle_put - Drop reference to a device node
 920 * @fwnode: Pointer to the device node to drop the reference to.
 921 *
 922 * This has to be used when terminating device_for_each_child_node() iteration
 923 * with break or return to prevent stale device node references from being left
 924 * behind.
 925 */
 926void fwnode_handle_put(struct fwnode_handle *fwnode)
 927{
 928	if (is_of_node(fwnode))
 929		of_node_put(to_of_node(fwnode));
 930}
 931EXPORT_SYMBOL_GPL(fwnode_handle_put);
 932
 933/**
 934 * device_get_child_node_count - return the number of child nodes for device
 935 * @dev: Device to cound the child nodes for
 936 */
 937unsigned int device_get_child_node_count(struct device *dev)
 938{
 939	struct fwnode_handle *child;
 940	unsigned int count = 0;
 941
 942	device_for_each_child_node(dev, child)
 943		count++;
 944
 945	return count;
 946}
 947EXPORT_SYMBOL_GPL(device_get_child_node_count);
 948
 949bool device_dma_supported(struct device *dev)
 950{
 951	/* For DT, this is always supported.
 952	 * For ACPI, this depends on CCA, which
 953	 * is determined by the acpi_dma_supported().
 954	 */
 955	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
 956		return true;
 957
 958	return acpi_dma_supported(ACPI_COMPANION(dev));
 959}
 960EXPORT_SYMBOL_GPL(device_dma_supported);
 961
 962enum dev_dma_attr device_get_dma_attr(struct device *dev)
 963{
 964	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
 965
 966	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 967		if (of_dma_is_coherent(dev->of_node))
 968			attr = DEV_DMA_COHERENT;
 969		else
 970			attr = DEV_DMA_NON_COHERENT;
 971	} else
 972		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
 973
 974	return attr;
 975}
 976EXPORT_SYMBOL_GPL(device_get_dma_attr);
 977
 978/**
 979 * device_get_phy_mode - Get phy mode for given device
 980 * @dev:	Pointer to the given device
 981 *
 982 * The function gets phy interface string from property 'phy-mode' or
 983 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 984 * error case.
 985 */
 986int device_get_phy_mode(struct device *dev)
 987{
 988	const char *pm;
 989	int err, i;
 990
 991	err = device_property_read_string(dev, "phy-mode", &pm);
 992	if (err < 0)
 993		err = device_property_read_string(dev,
 994						  "phy-connection-type", &pm);
 995	if (err < 0)
 996		return err;
 997
 998	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 999		if (!strcasecmp(pm, phy_modes(i)))
1000			return i;
1001
1002	return -ENODEV;
1003}
1004EXPORT_SYMBOL_GPL(device_get_phy_mode);
1005
1006static void *device_get_mac_addr(struct device *dev,
1007				 const char *name, char *addr,
1008				 int alen)
1009{
1010	int ret = device_property_read_u8_array(dev, name, addr, alen);
1011
1012	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1013		return addr;
1014	return NULL;
1015}
1016
1017/**
1018 * device_get_mac_address - Get the MAC for a given device
1019 * @dev:	Pointer to the device
1020 * @addr:	Address of buffer to store the MAC in
1021 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
1022 *
1023 * Search the firmware node for the best MAC address to use.  'mac-address' is
1024 * checked first, because that is supposed to contain to "most recent" MAC
1025 * address. If that isn't set, then 'local-mac-address' is checked next,
1026 * because that is the default address.  If that isn't set, then the obsolete
1027 * 'address' is checked, just in case we're using an old device tree.
1028 *
1029 * Note that the 'address' property is supposed to contain a virtual address of
1030 * the register set, but some DTS files have redefined that property to be the
1031 * MAC address.
1032 *
1033 * All-zero MAC addresses are rejected, because those could be properties that
1034 * exist in the firmware tables, but were not updated by the firmware.  For
1035 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1036 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1037 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1038 * exists but is all zeros.
1039*/
1040void *device_get_mac_address(struct device *dev, char *addr, int alen)
1041{
1042	char *res;
1043
1044	res = device_get_mac_addr(dev, "mac-address", addr, alen);
1045	if (res)
1046		return res;
1047
1048	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1049	if (res)
1050		return res;
1051
1052	return device_get_mac_addr(dev, "address", addr, alen);
1053}
1054EXPORT_SYMBOL(device_get_mac_address);