Linux Audio

Check our new training course

Loading...
v3.1
  1/* 
  2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3 * Copyright 2003 PathScale, Inc.
  4 * Derived from include/asm-i386/pgtable.h
  5 * Licensed under the GPL
  6 */
  7
  8#ifndef __UM_PGTABLE_H
  9#define __UM_PGTABLE_H
 10
 11#include <asm/fixmap.h>
 12
 13#define _PAGE_PRESENT	0x001
 14#define _PAGE_NEWPAGE	0x002
 15#define _PAGE_NEWPROT	0x004
 16#define _PAGE_RW	0x020
 17#define _PAGE_USER	0x040
 18#define _PAGE_ACCESSED	0x080
 19#define _PAGE_DIRTY	0x100
 20/* If _PAGE_PRESENT is clear, we use these: */
 21#define _PAGE_FILE	0x008	/* nonlinear file mapping, saved PTE; unset:swap */
 22#define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
 23				   pte_present gives true */
 24
 25#ifdef CONFIG_3_LEVEL_PGTABLES
 26#include "asm/pgtable-3level.h"
 27#else
 28#include "asm/pgtable-2level.h"
 29#endif
 30
 31extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 32
 33/* zero page used for uninitialized stuff */
 34extern unsigned long *empty_zero_page;
 35
 36#define pgtable_cache_init() do ; while (0)
 37
 38/* Just any arbitrary offset to the start of the vmalloc VM area: the
 39 * current 8MB value just means that there will be a 8MB "hole" after the
 40 * physical memory until the kernel virtual memory starts.  That means that
 41 * any out-of-bounds memory accesses will hopefully be caught.
 42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 43 * area for the same reason. ;)
 44 */
 45
 46extern unsigned long end_iomem;
 47
 48#define VMALLOC_OFFSET	(__va_space)
 49#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 50#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
 51#ifdef CONFIG_HIGHMEM
 52# define VMALLOC_END	(PKMAP_BASE-2*PAGE_SIZE)
 53#else
 54# define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
 55#endif
 56#define MODULES_VADDR	VMALLOC_START
 57#define MODULES_END	VMALLOC_END
 58#define MODULES_LEN	(MODULES_VADDR - MODULES_END)
 59
 60#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
 61#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
 62#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 63#define __PAGE_KERNEL_EXEC                                              \
 64	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 65#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
 66#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
 67#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 68#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 69#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 70#define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
 71
 72/*
 73 * The i386 can't do page protection for execute, and considers that the same
 74 * are read.
 75 * Also, write permissions imply read permissions. This is the closest we can
 76 * get..
 77 */
 78#define __P000	PAGE_NONE
 79#define __P001	PAGE_READONLY
 80#define __P010	PAGE_COPY
 81#define __P011	PAGE_COPY
 82#define __P100	PAGE_READONLY
 83#define __P101	PAGE_READONLY
 84#define __P110	PAGE_COPY
 85#define __P111	PAGE_COPY
 86
 87#define __S000	PAGE_NONE
 88#define __S001	PAGE_READONLY
 89#define __S010	PAGE_SHARED
 90#define __S011	PAGE_SHARED
 91#define __S100	PAGE_READONLY
 92#define __S101	PAGE_READONLY
 93#define __S110	PAGE_SHARED
 94#define __S111	PAGE_SHARED
 95
 96/*
 97 * ZERO_PAGE is a global shared page that is always zero: used
 98 * for zero-mapped memory areas etc..
 99 */
100#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
101
102#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
103
104#define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
105#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
106
107#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
108#define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
109
110#define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
111#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
112
113#define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
114#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
115
116#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
117
118#define pte_page(x) pfn_to_page(pte_pfn(x))
119
120#define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
121
122/*
123 * =================================
124 * Flags checking section.
125 * =================================
126 */
127
128static inline int pte_none(pte_t pte)
129{
130	return pte_is_zero(pte);
131}
132
133/*
134 * The following only work if pte_present() is true.
135 * Undefined behaviour if not..
136 */
137static inline int pte_read(pte_t pte)
138{ 
139	return((pte_get_bits(pte, _PAGE_USER)) &&
140	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
141}
142
143static inline int pte_exec(pte_t pte){
144	return((pte_get_bits(pte, _PAGE_USER)) &&
145	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
146}
147
148static inline int pte_write(pte_t pte)
149{
150	return((pte_get_bits(pte, _PAGE_RW)) &&
151	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
152}
153
154/*
155 * The following only works if pte_present() is not true.
156 */
157static inline int pte_file(pte_t pte)
158{
159	return pte_get_bits(pte, _PAGE_FILE);
160}
161
162static inline int pte_dirty(pte_t pte)
163{
164	return pte_get_bits(pte, _PAGE_DIRTY);
165}
166
167static inline int pte_young(pte_t pte)
168{
169	return pte_get_bits(pte, _PAGE_ACCESSED);
170}
171
172static inline int pte_newpage(pte_t pte)
173{
174	return pte_get_bits(pte, _PAGE_NEWPAGE);
175}
176
177static inline int pte_newprot(pte_t pte)
178{ 
179	return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
180}
181
182static inline int pte_special(pte_t pte)
183{
184	return 0;
185}
186
187/*
188 * =================================
189 * Flags setting section.
190 * =================================
191 */
192
193static inline pte_t pte_mknewprot(pte_t pte)
194{
195	pte_set_bits(pte, _PAGE_NEWPROT);
196	return(pte);
197}
198
199static inline pte_t pte_mkclean(pte_t pte)
200{
201	pte_clear_bits(pte, _PAGE_DIRTY);
202	return(pte);
203}
204
205static inline pte_t pte_mkold(pte_t pte)	
206{ 
207	pte_clear_bits(pte, _PAGE_ACCESSED);
208	return(pte);
209}
210
211static inline pte_t pte_wrprotect(pte_t pte)
212{ 
213	pte_clear_bits(pte, _PAGE_RW);
214	return(pte_mknewprot(pte)); 
215}
216
217static inline pte_t pte_mkread(pte_t pte)
218{ 
219	pte_set_bits(pte, _PAGE_USER);
220	return(pte_mknewprot(pte)); 
221}
222
223static inline pte_t pte_mkdirty(pte_t pte)
224{ 
225	pte_set_bits(pte, _PAGE_DIRTY);
226	return(pte);
227}
228
229static inline pte_t pte_mkyoung(pte_t pte)
230{
231	pte_set_bits(pte, _PAGE_ACCESSED);
232	return(pte);
233}
234
235static inline pte_t pte_mkwrite(pte_t pte)	
236{
237	pte_set_bits(pte, _PAGE_RW);
238	return(pte_mknewprot(pte)); 
239}
240
241static inline pte_t pte_mkuptodate(pte_t pte)	
242{
243	pte_clear_bits(pte, _PAGE_NEWPAGE);
244	if(pte_present(pte))
245		pte_clear_bits(pte, _PAGE_NEWPROT);
246	return(pte); 
247}
248
249static inline pte_t pte_mknewpage(pte_t pte)
250{
251	pte_set_bits(pte, _PAGE_NEWPAGE);
252	return(pte);
253}
254
255static inline pte_t pte_mkspecial(pte_t pte)
256{
257	return(pte);
258}
259
260static inline void set_pte(pte_t *pteptr, pte_t pteval)
261{
262	pte_copy(*pteptr, pteval);
263
264	/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
265	 * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
266	 * mapped pages.
267	 */
268
269	*pteptr = pte_mknewpage(*pteptr);
270	if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
271}
272#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
273
 
 
 
 
 
 
274/*
275 * Conversion functions: convert a page and protection to a page entry,
276 * and a page entry and page directory to the page they refer to.
277 */
278
279#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
280#define __virt_to_page(virt) phys_to_page(__pa(virt))
281#define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
282#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
283
284#define mk_pte(page, pgprot) \
285	({ pte_t pte;					\
286							\
287	pte_set_val(pte, page_to_phys(page), (pgprot));	\
288	if (pte_present(pte))				\
289		pte_mknewprot(pte_mknewpage(pte));	\
290	pte;})
291
292static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
293{
294	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
295	return pte; 
296}
297
298/*
299 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
300 *
301 * this macro returns the index of the entry in the pgd page which would
302 * control the given virtual address
303 */
304#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
305
306/*
307 * pgd_offset() returns a (pgd_t *)
308 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
309 */
310#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
311
312/*
313 * a shortcut which implies the use of the kernel's pgd, instead
314 * of a process's
315 */
316#define pgd_offset_k(address) pgd_offset(&init_mm, address)
317
318/*
319 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
320 *
321 * this macro returns the index of the entry in the pmd page which would
322 * control the given virtual address
323 */
324#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
325#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
326
327#define pmd_page_vaddr(pmd) \
328	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
329
330/*
331 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
332 *
333 * this macro returns the index of the entry in the pte page which would
334 * control the given virtual address
335 */
336#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
337#define pte_offset_kernel(dir, address) \
338	((pte_t *) pmd_page_vaddr(*(dir)) +  pte_index(address))
339#define pte_offset_map(dir, address) \
340	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
341#define pte_unmap(pte) do { } while (0)
342
343struct mm_struct;
344extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
345
346#define update_mmu_cache(vma,address,ptep) do ; while (0)
347
348/* Encode and de-code a swap entry */
349#define __swp_type(x)			(((x).val >> 4) & 0x3f)
350#define __swp_offset(x)			((x).val >> 11)
351
352#define __swp_entry(type, offset) \
353	((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
354#define __pte_to_swp_entry(pte) \
355	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
356#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
357
358#define kern_addr_valid(addr) (1)
359
360#include <asm-generic/pgtable.h>
361
362/* Clear a kernel PTE and flush it from the TLB */
363#define kpte_clear_flush(ptep, vaddr)		\
364do {						\
365	pte_clear(&init_mm, (vaddr), (ptep));	\
366	__flush_tlb_one((vaddr));		\
367} while (0)
368
369#endif
v4.10.11
  1/* 
  2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3 * Copyright 2003 PathScale, Inc.
  4 * Derived from include/asm-i386/pgtable.h
  5 * Licensed under the GPL
  6 */
  7
  8#ifndef __UM_PGTABLE_H
  9#define __UM_PGTABLE_H
 10
 11#include <asm/fixmap.h>
 12
 13#define _PAGE_PRESENT	0x001
 14#define _PAGE_NEWPAGE	0x002
 15#define _PAGE_NEWPROT	0x004
 16#define _PAGE_RW	0x020
 17#define _PAGE_USER	0x040
 18#define _PAGE_ACCESSED	0x080
 19#define _PAGE_DIRTY	0x100
 20/* If _PAGE_PRESENT is clear, we use these: */
 
 21#define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
 22				   pte_present gives true */
 23
 24#ifdef CONFIG_3_LEVEL_PGTABLES
 25#include <asm/pgtable-3level.h>
 26#else
 27#include <asm/pgtable-2level.h>
 28#endif
 29
 30extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 31
 32/* zero page used for uninitialized stuff */
 33extern unsigned long *empty_zero_page;
 34
 35#define pgtable_cache_init() do ; while (0)
 36
 37/* Just any arbitrary offset to the start of the vmalloc VM area: the
 38 * current 8MB value just means that there will be a 8MB "hole" after the
 39 * physical memory until the kernel virtual memory starts.  That means that
 40 * any out-of-bounds memory accesses will hopefully be caught.
 41 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 42 * area for the same reason. ;)
 43 */
 44
 45extern unsigned long end_iomem;
 46
 47#define VMALLOC_OFFSET	(__va_space)
 48#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 49#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
 50#define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
 
 
 
 
 51#define MODULES_VADDR	VMALLOC_START
 52#define MODULES_END	VMALLOC_END
 53#define MODULES_LEN	(MODULES_VADDR - MODULES_END)
 54
 55#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
 56#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
 57#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 58#define __PAGE_KERNEL_EXEC                                              \
 59	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 60#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
 61#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
 62#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 63#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 64#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 65#define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
 66
 67/*
 68 * The i386 can't do page protection for execute, and considers that the same
 69 * are read.
 70 * Also, write permissions imply read permissions. This is the closest we can
 71 * get..
 72 */
 73#define __P000	PAGE_NONE
 74#define __P001	PAGE_READONLY
 75#define __P010	PAGE_COPY
 76#define __P011	PAGE_COPY
 77#define __P100	PAGE_READONLY
 78#define __P101	PAGE_READONLY
 79#define __P110	PAGE_COPY
 80#define __P111	PAGE_COPY
 81
 82#define __S000	PAGE_NONE
 83#define __S001	PAGE_READONLY
 84#define __S010	PAGE_SHARED
 85#define __S011	PAGE_SHARED
 86#define __S100	PAGE_READONLY
 87#define __S101	PAGE_READONLY
 88#define __S110	PAGE_SHARED
 89#define __S111	PAGE_SHARED
 90
 91/*
 92 * ZERO_PAGE is a global shared page that is always zero: used
 93 * for zero-mapped memory areas etc..
 94 */
 95#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
 96
 97#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
 98
 99#define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
100#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
101
102#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
103#define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
104
105#define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
106#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
107
108#define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
109#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
110
111#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
112
113#define pte_page(x) pfn_to_page(pte_pfn(x))
114
115#define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
116
117/*
118 * =================================
119 * Flags checking section.
120 * =================================
121 */
122
123static inline int pte_none(pte_t pte)
124{
125	return pte_is_zero(pte);
126}
127
128/*
129 * The following only work if pte_present() is true.
130 * Undefined behaviour if not..
131 */
132static inline int pte_read(pte_t pte)
133{ 
134	return((pte_get_bits(pte, _PAGE_USER)) &&
135	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
136}
137
138static inline int pte_exec(pte_t pte){
139	return((pte_get_bits(pte, _PAGE_USER)) &&
140	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
141}
142
143static inline int pte_write(pte_t pte)
144{
145	return((pte_get_bits(pte, _PAGE_RW)) &&
146	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
147}
148
 
 
 
 
 
 
 
 
149static inline int pte_dirty(pte_t pte)
150{
151	return pte_get_bits(pte, _PAGE_DIRTY);
152}
153
154static inline int pte_young(pte_t pte)
155{
156	return pte_get_bits(pte, _PAGE_ACCESSED);
157}
158
159static inline int pte_newpage(pte_t pte)
160{
161	return pte_get_bits(pte, _PAGE_NEWPAGE);
162}
163
164static inline int pte_newprot(pte_t pte)
165{ 
166	return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
167}
168
169static inline int pte_special(pte_t pte)
170{
171	return 0;
172}
173
174/*
175 * =================================
176 * Flags setting section.
177 * =================================
178 */
179
180static inline pte_t pte_mknewprot(pte_t pte)
181{
182	pte_set_bits(pte, _PAGE_NEWPROT);
183	return(pte);
184}
185
186static inline pte_t pte_mkclean(pte_t pte)
187{
188	pte_clear_bits(pte, _PAGE_DIRTY);
189	return(pte);
190}
191
192static inline pte_t pte_mkold(pte_t pte)	
193{ 
194	pte_clear_bits(pte, _PAGE_ACCESSED);
195	return(pte);
196}
197
198static inline pte_t pte_wrprotect(pte_t pte)
199{ 
200	pte_clear_bits(pte, _PAGE_RW);
201	return(pte_mknewprot(pte)); 
202}
203
204static inline pte_t pte_mkread(pte_t pte)
205{ 
206	pte_set_bits(pte, _PAGE_USER);
207	return(pte_mknewprot(pte)); 
208}
209
210static inline pte_t pte_mkdirty(pte_t pte)
211{ 
212	pte_set_bits(pte, _PAGE_DIRTY);
213	return(pte);
214}
215
216static inline pte_t pte_mkyoung(pte_t pte)
217{
218	pte_set_bits(pte, _PAGE_ACCESSED);
219	return(pte);
220}
221
222static inline pte_t pte_mkwrite(pte_t pte)	
223{
224	pte_set_bits(pte, _PAGE_RW);
225	return(pte_mknewprot(pte)); 
226}
227
228static inline pte_t pte_mkuptodate(pte_t pte)	
229{
230	pte_clear_bits(pte, _PAGE_NEWPAGE);
231	if(pte_present(pte))
232		pte_clear_bits(pte, _PAGE_NEWPROT);
233	return(pte); 
234}
235
236static inline pte_t pte_mknewpage(pte_t pte)
237{
238	pte_set_bits(pte, _PAGE_NEWPAGE);
239	return(pte);
240}
241
242static inline pte_t pte_mkspecial(pte_t pte)
243{
244	return(pte);
245}
246
247static inline void set_pte(pte_t *pteptr, pte_t pteval)
248{
249	pte_copy(*pteptr, pteval);
250
251	/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
252	 * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
253	 * mapped pages.
254	 */
255
256	*pteptr = pte_mknewpage(*pteptr);
257	if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
258}
259#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
260
261#define __HAVE_ARCH_PTE_SAME
262static inline int pte_same(pte_t pte_a, pte_t pte_b)
263{
264	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
265}
266
267/*
268 * Conversion functions: convert a page and protection to a page entry,
269 * and a page entry and page directory to the page they refer to.
270 */
271
272#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
273#define __virt_to_page(virt) phys_to_page(__pa(virt))
274#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
275#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
276
277#define mk_pte(page, pgprot) \
278	({ pte_t pte;					\
279							\
280	pte_set_val(pte, page_to_phys(page), (pgprot));	\
281	if (pte_present(pte))				\
282		pte_mknewprot(pte_mknewpage(pte));	\
283	pte;})
284
285static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
286{
287	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
288	return pte; 
289}
290
291/*
292 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
293 *
294 * this macro returns the index of the entry in the pgd page which would
295 * control the given virtual address
296 */
297#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
298
299/*
300 * pgd_offset() returns a (pgd_t *)
301 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
302 */
303#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
304
305/*
306 * a shortcut which implies the use of the kernel's pgd, instead
307 * of a process's
308 */
309#define pgd_offset_k(address) pgd_offset(&init_mm, address)
310
311/*
312 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
313 *
314 * this macro returns the index of the entry in the pmd page which would
315 * control the given virtual address
316 */
317#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
318#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
319
320#define pmd_page_vaddr(pmd) \
321	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
322
323/*
324 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
325 *
326 * this macro returns the index of the entry in the pte page which would
327 * control the given virtual address
328 */
329#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
330#define pte_offset_kernel(dir, address) \
331	((pte_t *) pmd_page_vaddr(*(dir)) +  pte_index(address))
332#define pte_offset_map(dir, address) \
333	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
334#define pte_unmap(pte) do { } while (0)
335
336struct mm_struct;
337extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
338
339#define update_mmu_cache(vma,address,ptep) do ; while (0)
340
341/* Encode and de-code a swap entry */
342#define __swp_type(x)			(((x).val >> 5) & 0x1f)
343#define __swp_offset(x)			((x).val >> 11)
344
345#define __swp_entry(type, offset) \
346	((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
347#define __pte_to_swp_entry(pte) \
348	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
349#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
350
351#define kern_addr_valid(addr) (1)
352
353#include <asm-generic/pgtable.h>
354
355/* Clear a kernel PTE and flush it from the TLB */
356#define kpte_clear_flush(ptep, vaddr)		\
357do {						\
358	pte_clear(&init_mm, (vaddr), (ptep));	\
359	__flush_tlb_one((vaddr));		\
360} while (0)
361
362#endif