Loading...
1/*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
7
8#ifndef __UM_PGTABLE_H
9#define __UM_PGTABLE_H
10
11#include <asm/fixmap.h>
12
13#define _PAGE_PRESENT 0x001
14#define _PAGE_NEWPAGE 0x002
15#define _PAGE_NEWPROT 0x004
16#define _PAGE_RW 0x020
17#define _PAGE_USER 0x040
18#define _PAGE_ACCESSED 0x080
19#define _PAGE_DIRTY 0x100
20/* If _PAGE_PRESENT is clear, we use these: */
21#define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
22#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
23 pte_present gives true */
24
25#ifdef CONFIG_3_LEVEL_PGTABLES
26#include "asm/pgtable-3level.h"
27#else
28#include "asm/pgtable-2level.h"
29#endif
30
31extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32
33/* zero page used for uninitialized stuff */
34extern unsigned long *empty_zero_page;
35
36#define pgtable_cache_init() do ; while (0)
37
38/* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
44 */
45
46extern unsigned long end_iomem;
47
48#define VMALLOC_OFFSET (__va_space)
49#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
51#ifdef CONFIG_HIGHMEM
52# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
53#else
54# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
55#endif
56#define MODULES_VADDR VMALLOC_START
57#define MODULES_END VMALLOC_END
58#define MODULES_LEN (MODULES_VADDR - MODULES_END)
59
60#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
61#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
62#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
63#define __PAGE_KERNEL_EXEC \
64 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
66#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
67#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
68#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
69#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
70#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
71
72/*
73 * The i386 can't do page protection for execute, and considers that the same
74 * are read.
75 * Also, write permissions imply read permissions. This is the closest we can
76 * get..
77 */
78#define __P000 PAGE_NONE
79#define __P001 PAGE_READONLY
80#define __P010 PAGE_COPY
81#define __P011 PAGE_COPY
82#define __P100 PAGE_READONLY
83#define __P101 PAGE_READONLY
84#define __P110 PAGE_COPY
85#define __P111 PAGE_COPY
86
87#define __S000 PAGE_NONE
88#define __S001 PAGE_READONLY
89#define __S010 PAGE_SHARED
90#define __S011 PAGE_SHARED
91#define __S100 PAGE_READONLY
92#define __S101 PAGE_READONLY
93#define __S110 PAGE_SHARED
94#define __S111 PAGE_SHARED
95
96/*
97 * ZERO_PAGE is a global shared page that is always zero: used
98 * for zero-mapped memory areas etc..
99 */
100#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
101
102#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
103
104#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
105#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
106
107#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
108#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
109
110#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
111#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
112
113#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
114#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
115
116#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
117
118#define pte_page(x) pfn_to_page(pte_pfn(x))
119
120#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
121
122/*
123 * =================================
124 * Flags checking section.
125 * =================================
126 */
127
128static inline int pte_none(pte_t pte)
129{
130 return pte_is_zero(pte);
131}
132
133/*
134 * The following only work if pte_present() is true.
135 * Undefined behaviour if not..
136 */
137static inline int pte_read(pte_t pte)
138{
139 return((pte_get_bits(pte, _PAGE_USER)) &&
140 !(pte_get_bits(pte, _PAGE_PROTNONE)));
141}
142
143static inline int pte_exec(pte_t pte){
144 return((pte_get_bits(pte, _PAGE_USER)) &&
145 !(pte_get_bits(pte, _PAGE_PROTNONE)));
146}
147
148static inline int pte_write(pte_t pte)
149{
150 return((pte_get_bits(pte, _PAGE_RW)) &&
151 !(pte_get_bits(pte, _PAGE_PROTNONE)));
152}
153
154/*
155 * The following only works if pte_present() is not true.
156 */
157static inline int pte_file(pte_t pte)
158{
159 return pte_get_bits(pte, _PAGE_FILE);
160}
161
162static inline int pte_dirty(pte_t pte)
163{
164 return pte_get_bits(pte, _PAGE_DIRTY);
165}
166
167static inline int pte_young(pte_t pte)
168{
169 return pte_get_bits(pte, _PAGE_ACCESSED);
170}
171
172static inline int pte_newpage(pte_t pte)
173{
174 return pte_get_bits(pte, _PAGE_NEWPAGE);
175}
176
177static inline int pte_newprot(pte_t pte)
178{
179 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
180}
181
182static inline int pte_special(pte_t pte)
183{
184 return 0;
185}
186
187/*
188 * =================================
189 * Flags setting section.
190 * =================================
191 */
192
193static inline pte_t pte_mknewprot(pte_t pte)
194{
195 pte_set_bits(pte, _PAGE_NEWPROT);
196 return(pte);
197}
198
199static inline pte_t pte_mkclean(pte_t pte)
200{
201 pte_clear_bits(pte, _PAGE_DIRTY);
202 return(pte);
203}
204
205static inline pte_t pte_mkold(pte_t pte)
206{
207 pte_clear_bits(pte, _PAGE_ACCESSED);
208 return(pte);
209}
210
211static inline pte_t pte_wrprotect(pte_t pte)
212{
213 pte_clear_bits(pte, _PAGE_RW);
214 return(pte_mknewprot(pte));
215}
216
217static inline pte_t pte_mkread(pte_t pte)
218{
219 pte_set_bits(pte, _PAGE_USER);
220 return(pte_mknewprot(pte));
221}
222
223static inline pte_t pte_mkdirty(pte_t pte)
224{
225 pte_set_bits(pte, _PAGE_DIRTY);
226 return(pte);
227}
228
229static inline pte_t pte_mkyoung(pte_t pte)
230{
231 pte_set_bits(pte, _PAGE_ACCESSED);
232 return(pte);
233}
234
235static inline pte_t pte_mkwrite(pte_t pte)
236{
237 pte_set_bits(pte, _PAGE_RW);
238 return(pte_mknewprot(pte));
239}
240
241static inline pte_t pte_mkuptodate(pte_t pte)
242{
243 pte_clear_bits(pte, _PAGE_NEWPAGE);
244 if(pte_present(pte))
245 pte_clear_bits(pte, _PAGE_NEWPROT);
246 return(pte);
247}
248
249static inline pte_t pte_mknewpage(pte_t pte)
250{
251 pte_set_bits(pte, _PAGE_NEWPAGE);
252 return(pte);
253}
254
255static inline pte_t pte_mkspecial(pte_t pte)
256{
257 return(pte);
258}
259
260static inline void set_pte(pte_t *pteptr, pte_t pteval)
261{
262 pte_copy(*pteptr, pteval);
263
264 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
265 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
266 * mapped pages.
267 */
268
269 *pteptr = pte_mknewpage(*pteptr);
270 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
271}
272#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
273
274/*
275 * Conversion functions: convert a page and protection to a page entry,
276 * and a page entry and page directory to the page they refer to.
277 */
278
279#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
280#define __virt_to_page(virt) phys_to_page(__pa(virt))
281#define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
282#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
283
284#define mk_pte(page, pgprot) \
285 ({ pte_t pte; \
286 \
287 pte_set_val(pte, page_to_phys(page), (pgprot)); \
288 if (pte_present(pte)) \
289 pte_mknewprot(pte_mknewpage(pte)); \
290 pte;})
291
292static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
293{
294 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
295 return pte;
296}
297
298/*
299 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
300 *
301 * this macro returns the index of the entry in the pgd page which would
302 * control the given virtual address
303 */
304#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
305
306/*
307 * pgd_offset() returns a (pgd_t *)
308 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
309 */
310#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
311
312/*
313 * a shortcut which implies the use of the kernel's pgd, instead
314 * of a process's
315 */
316#define pgd_offset_k(address) pgd_offset(&init_mm, address)
317
318/*
319 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
320 *
321 * this macro returns the index of the entry in the pmd page which would
322 * control the given virtual address
323 */
324#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
325#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
326
327#define pmd_page_vaddr(pmd) \
328 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
329
330/*
331 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
332 *
333 * this macro returns the index of the entry in the pte page which would
334 * control the given virtual address
335 */
336#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
337#define pte_offset_kernel(dir, address) \
338 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
339#define pte_offset_map(dir, address) \
340 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
341#define pte_unmap(pte) do { } while (0)
342
343struct mm_struct;
344extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
345
346#define update_mmu_cache(vma,address,ptep) do ; while (0)
347
348/* Encode and de-code a swap entry */
349#define __swp_type(x) (((x).val >> 4) & 0x3f)
350#define __swp_offset(x) ((x).val >> 11)
351
352#define __swp_entry(type, offset) \
353 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
354#define __pte_to_swp_entry(pte) \
355 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
356#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
357
358#define kern_addr_valid(addr) (1)
359
360#include <asm-generic/pgtable.h>
361
362/* Clear a kernel PTE and flush it from the TLB */
363#define kpte_clear_flush(ptep, vaddr) \
364do { \
365 pte_clear(&init_mm, (vaddr), (ptep)); \
366 __flush_tlb_one((vaddr)); \
367} while (0)
368
369#endif
1/*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
7
8#ifndef __UM_PGTABLE_H
9#define __UM_PGTABLE_H
10
11#include <asm/fixmap.h>
12
13#define _PAGE_PRESENT 0x001
14#define _PAGE_NEWPAGE 0x002
15#define _PAGE_NEWPROT 0x004
16#define _PAGE_RW 0x020
17#define _PAGE_USER 0x040
18#define _PAGE_ACCESSED 0x080
19#define _PAGE_DIRTY 0x100
20/* If _PAGE_PRESENT is clear, we use these: */
21#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
22 pte_present gives true */
23
24#ifdef CONFIG_3_LEVEL_PGTABLES
25#include <asm/pgtable-3level.h>
26#else
27#include <asm/pgtable-2level.h>
28#endif
29
30extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
31
32/* zero page used for uninitialized stuff */
33extern unsigned long *empty_zero_page;
34
35#define pgtable_cache_init() do ; while (0)
36
37/* Just any arbitrary offset to the start of the vmalloc VM area: the
38 * current 8MB value just means that there will be a 8MB "hole" after the
39 * physical memory until the kernel virtual memory starts. That means that
40 * any out-of-bounds memory accesses will hopefully be caught.
41 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
42 * area for the same reason. ;)
43 */
44
45extern unsigned long end_iomem;
46
47#define VMALLOC_OFFSET (__va_space)
48#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
49#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
50#define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
51#define MODULES_VADDR VMALLOC_START
52#define MODULES_END VMALLOC_END
53#define MODULES_LEN (MODULES_VADDR - MODULES_END)
54
55#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
56#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
57#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
58#define __PAGE_KERNEL_EXEC \
59 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
60#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
61#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
62#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
63#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
64#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
66
67/*
68 * The i386 can't do page protection for execute, and considers that the same
69 * are read.
70 * Also, write permissions imply read permissions. This is the closest we can
71 * get..
72 */
73#define __P000 PAGE_NONE
74#define __P001 PAGE_READONLY
75#define __P010 PAGE_COPY
76#define __P011 PAGE_COPY
77#define __P100 PAGE_READONLY
78#define __P101 PAGE_READONLY
79#define __P110 PAGE_COPY
80#define __P111 PAGE_COPY
81
82#define __S000 PAGE_NONE
83#define __S001 PAGE_READONLY
84#define __S010 PAGE_SHARED
85#define __S011 PAGE_SHARED
86#define __S100 PAGE_READONLY
87#define __S101 PAGE_READONLY
88#define __S110 PAGE_SHARED
89#define __S111 PAGE_SHARED
90
91/*
92 * ZERO_PAGE is a global shared page that is always zero: used
93 * for zero-mapped memory areas etc..
94 */
95#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
96
97#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
98
99#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
100#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
101
102#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
103#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
104
105#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
106#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
107
108#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
109#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
110
111#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
112
113#define pte_page(x) pfn_to_page(pte_pfn(x))
114
115#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
116
117/*
118 * =================================
119 * Flags checking section.
120 * =================================
121 */
122
123static inline int pte_none(pte_t pte)
124{
125 return pte_is_zero(pte);
126}
127
128/*
129 * The following only work if pte_present() is true.
130 * Undefined behaviour if not..
131 */
132static inline int pte_read(pte_t pte)
133{
134 return((pte_get_bits(pte, _PAGE_USER)) &&
135 !(pte_get_bits(pte, _PAGE_PROTNONE)));
136}
137
138static inline int pte_exec(pte_t pte){
139 return((pte_get_bits(pte, _PAGE_USER)) &&
140 !(pte_get_bits(pte, _PAGE_PROTNONE)));
141}
142
143static inline int pte_write(pte_t pte)
144{
145 return((pte_get_bits(pte, _PAGE_RW)) &&
146 !(pte_get_bits(pte, _PAGE_PROTNONE)));
147}
148
149static inline int pte_dirty(pte_t pte)
150{
151 return pte_get_bits(pte, _PAGE_DIRTY);
152}
153
154static inline int pte_young(pte_t pte)
155{
156 return pte_get_bits(pte, _PAGE_ACCESSED);
157}
158
159static inline int pte_newpage(pte_t pte)
160{
161 return pte_get_bits(pte, _PAGE_NEWPAGE);
162}
163
164static inline int pte_newprot(pte_t pte)
165{
166 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
167}
168
169static inline int pte_special(pte_t pte)
170{
171 return 0;
172}
173
174/*
175 * =================================
176 * Flags setting section.
177 * =================================
178 */
179
180static inline pte_t pte_mknewprot(pte_t pte)
181{
182 pte_set_bits(pte, _PAGE_NEWPROT);
183 return(pte);
184}
185
186static inline pte_t pte_mkclean(pte_t pte)
187{
188 pte_clear_bits(pte, _PAGE_DIRTY);
189 return(pte);
190}
191
192static inline pte_t pte_mkold(pte_t pte)
193{
194 pte_clear_bits(pte, _PAGE_ACCESSED);
195 return(pte);
196}
197
198static inline pte_t pte_wrprotect(pte_t pte)
199{
200 pte_clear_bits(pte, _PAGE_RW);
201 return(pte_mknewprot(pte));
202}
203
204static inline pte_t pte_mkread(pte_t pte)
205{
206 pte_set_bits(pte, _PAGE_USER);
207 return(pte_mknewprot(pte));
208}
209
210static inline pte_t pte_mkdirty(pte_t pte)
211{
212 pte_set_bits(pte, _PAGE_DIRTY);
213 return(pte);
214}
215
216static inline pte_t pte_mkyoung(pte_t pte)
217{
218 pte_set_bits(pte, _PAGE_ACCESSED);
219 return(pte);
220}
221
222static inline pte_t pte_mkwrite(pte_t pte)
223{
224 pte_set_bits(pte, _PAGE_RW);
225 return(pte_mknewprot(pte));
226}
227
228static inline pte_t pte_mkuptodate(pte_t pte)
229{
230 pte_clear_bits(pte, _PAGE_NEWPAGE);
231 if(pte_present(pte))
232 pte_clear_bits(pte, _PAGE_NEWPROT);
233 return(pte);
234}
235
236static inline pte_t pte_mknewpage(pte_t pte)
237{
238 pte_set_bits(pte, _PAGE_NEWPAGE);
239 return(pte);
240}
241
242static inline pte_t pte_mkspecial(pte_t pte)
243{
244 return(pte);
245}
246
247static inline void set_pte(pte_t *pteptr, pte_t pteval)
248{
249 pte_copy(*pteptr, pteval);
250
251 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
252 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
253 * mapped pages.
254 */
255
256 *pteptr = pte_mknewpage(*pteptr);
257 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
258}
259#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
260
261#define __HAVE_ARCH_PTE_SAME
262static inline int pte_same(pte_t pte_a, pte_t pte_b)
263{
264 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
265}
266
267/*
268 * Conversion functions: convert a page and protection to a page entry,
269 * and a page entry and page directory to the page they refer to.
270 */
271
272#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
273#define __virt_to_page(virt) phys_to_page(__pa(virt))
274#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
275#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
276
277#define mk_pte(page, pgprot) \
278 ({ pte_t pte; \
279 \
280 pte_set_val(pte, page_to_phys(page), (pgprot)); \
281 if (pte_present(pte)) \
282 pte_mknewprot(pte_mknewpage(pte)); \
283 pte;})
284
285static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
286{
287 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
288 return pte;
289}
290
291/*
292 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
293 *
294 * this macro returns the index of the entry in the pgd page which would
295 * control the given virtual address
296 */
297#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
298
299/*
300 * pgd_offset() returns a (pgd_t *)
301 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
302 */
303#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
304
305/*
306 * a shortcut which implies the use of the kernel's pgd, instead
307 * of a process's
308 */
309#define pgd_offset_k(address) pgd_offset(&init_mm, address)
310
311/*
312 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
313 *
314 * this macro returns the index of the entry in the pmd page which would
315 * control the given virtual address
316 */
317#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
318#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
319
320#define pmd_page_vaddr(pmd) \
321 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
322
323/*
324 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
325 *
326 * this macro returns the index of the entry in the pte page which would
327 * control the given virtual address
328 */
329#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
330#define pte_offset_kernel(dir, address) \
331 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
332#define pte_offset_map(dir, address) \
333 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
334#define pte_unmap(pte) do { } while (0)
335
336struct mm_struct;
337extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
338
339#define update_mmu_cache(vma,address,ptep) do ; while (0)
340
341/* Encode and de-code a swap entry */
342#define __swp_type(x) (((x).val >> 5) & 0x1f)
343#define __swp_offset(x) ((x).val >> 11)
344
345#define __swp_entry(type, offset) \
346 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
347#define __pte_to_swp_entry(pte) \
348 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
349#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
350
351#define kern_addr_valid(addr) (1)
352
353#include <asm-generic/pgtable.h>
354
355/* Clear a kernel PTE and flush it from the TLB */
356#define kpte_clear_flush(ptep, vaddr) \
357do { \
358 pte_clear(&init_mm, (vaddr), (ptep)); \
359 __flush_tlb_one((vaddr)); \
360} while (0)
361
362#endif