Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * A small micro-assembler. It is intentionally kept simple, does only
  7 * support a subset of instructions, and does not try to hide pipeline
  8 * effects like branch delay slots.
  9 *
 10 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
 11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
 12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
 13 * Copyright (C) 2012, 2013  MIPS Technologies, Inc.  All rights reserved.
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/types.h>
 18
 19#include <asm/inst.h>
 20#include <asm/elf.h>
 21#include <asm/bugs.h>
 22#define UASM_ISA	_UASM_ISA_CLASSIC
 23#include <asm/uasm.h>
 24
 25#define RS_MASK		0x1f
 26#define RS_SH		21
 27#define RT_MASK		0x1f
 28#define RT_SH		16
 29#define SCIMM_MASK	0xfffff
 30#define SCIMM_SH	6
 31
 32/* This macro sets the non-variable bits of an instruction. */
 33#define M(a, b, c, d, e, f)					\
 34	((a) << OP_SH						\
 35	 | (b) << RS_SH						\
 36	 | (c) << RT_SH						\
 37	 | (d) << RD_SH						\
 38	 | (e) << RE_SH						\
 39	 | (f) << FUNC_SH)
 40
 41/* This macro sets the non-variable bits of an R6 instruction. */
 42#define M6(a, b, c, d, e)					\
 43	((a) << OP_SH						\
 44	 | (b) << RS_SH						\
 45	 | (c) << RT_SH						\
 46	 | (d) << SIMM9_SH					\
 47	 | (e) << FUNC_SH)
 48
 49#include "uasm.c"
 50
 51static struct insn insn_table[] = {
 52	{ insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
 53	{ insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
 54	{ insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
 55	{ insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
 56	{ insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 57	{ insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 58	{ insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 59	{ insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 60	{ insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
 61	{ insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
 62	{ insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
 63	{ insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
 64	{ insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 65#ifndef CONFIG_CPU_MIPSR6
 66	{ insn_cache,  M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 67#else
 68	{ insn_cache,  M6(spec3_op, 0, 0, 0, cache6_op),  RS | RT | SIMM9 },
 69#endif
 70	{ insn_cfc1, M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD },
 71	{ insn_cfcmsa, M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE },
 72	{ insn_ctc1, M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD },
 73	{ insn_ctcmsa, M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE },
 74	{ insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
 75	{ insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
 76	{ insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
 77	{ insn_di, M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT },
 78	{ insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
 79	{ insn_divu, M(spec_op, 0, 0, 0, 0, divu_op), RS | RT },
 80	{ insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
 81	{ insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
 82	{ insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
 83	{ insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
 84	{ insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
 85	{ insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
 86	{ insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
 87	{ insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
 88	{ insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
 89	{ insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
 90	{ insn_eret,  M(cop0_op, cop_op, 0, 0, 0, eret_op),  0 },
 91	{ insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE },
 92	{ insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE },
 93	{ insn_j,  M(j_op, 0, 0, 0, 0, 0),  JIMM },
 94	{ insn_jal,  M(jal_op, 0, 0, 0, 0, 0),	JIMM },
 95	{ insn_jalr,  M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD },
 96	{ insn_j,  M(j_op, 0, 0, 0, 0, 0),  JIMM },
 97#ifndef CONFIG_CPU_MIPSR6
 98	{ insn_jr,  M(spec_op, 0, 0, 0, 0, jr_op),  RS },
 99#else
100	{ insn_jr,  M(spec_op, 0, 0, 0, 0, jalr_op),  RS },
101#endif
102	{ insn_lb, M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
103	{ insn_ld,  M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
104	{ insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
105	{ insn_lh,  M(lh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
106#ifndef CONFIG_CPU_MIPSR6
107	{ insn_lld,  M(lld_op, 0, 0, 0, 0, 0),	RS | RT | SIMM },
108	{ insn_ll,  M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
109#else
110	{ insn_lld,  M6(spec3_op, 0, 0, 0, lld6_op),  RS | RT | SIMM9 },
111	{ insn_ll,  M6(spec3_op, 0, 0, 0, ll6_op),  RS | RT | SIMM9 },
112#endif
113	{ insn_lui,  M(lui_op, 0, 0, 0, 0, 0),	RT | SIMM },
114	{ insn_lw,  M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
115	{ insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
116	{ insn_mfc0,  M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
117	{ insn_mfhc0,  M(cop0_op, mfhc0_op, 0, 0, 0, 0),  RT | RD | SET},
118	{ insn_mfhi,  M(spec_op, 0, 0, 0, 0, mfhi_op), RD },
119	{ insn_mflo,  M(spec_op, 0, 0, 0, 0, mflo_op), RD },
120	{ insn_mtc0,  M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
121	{ insn_mthc0,  M(cop0_op, mthc0_op, 0, 0, 0, 0),  RT | RD | SET},
122	{ insn_mthi,  M(spec_op, 0, 0, 0, 0, mthi_op), RS },
123	{ insn_mtlo,  M(spec_op, 0, 0, 0, 0, mtlo_op), RS },
124#ifndef CONFIG_CPU_MIPSR6
125	{ insn_mul, M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
126#else
127	{ insn_mul, M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
128#endif
129	{ insn_ori,  M(ori_op, 0, 0, 0, 0, 0),	RS | RT | UIMM },
130	{ insn_or,  M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD },
131#ifndef CONFIG_CPU_MIPSR6
132	{ insn_pref,  M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
133#else
134	{ insn_pref,  M6(spec3_op, 0, 0, 0, pref6_op),  RS | RT | SIMM9 },
135#endif
136	{ insn_rfe,  M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0 },
137	{ insn_rotr,  M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE },
138#ifndef CONFIG_CPU_MIPSR6
139	{ insn_scd,  M(scd_op, 0, 0, 0, 0, 0),	RS | RT | SIMM },
140	{ insn_sc,  M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
141#else
142	{ insn_scd,  M6(spec3_op, 0, 0, 0, scd6_op),  RS | RT | SIMM9 },
143	{ insn_sc,  M6(spec3_op, 0, 0, 0, sc6_op),  RS | RT | SIMM9 },
144#endif
145	{ insn_sd,  M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
146	{ insn_sll,  M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE },
147	{ insn_sllv,  M(spec_op, 0, 0, 0, 0, sllv_op),  RS | RT | RD },
148	{ insn_slt,  M(spec_op, 0, 0, 0, 0, slt_op),  RS | RT | RD },
149	{ insn_sltiu, M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
150	{ insn_sltu, M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD },
151	{ insn_sra,  M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE },
152	{ insn_srl,  M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE },
153	{ insn_srlv,  M(spec_op, 0, 0, 0, 0, srlv_op),  RS | RT | RD },
154	{ insn_subu,  M(spec_op, 0, 0, 0, 0, subu_op),	RS | RT | RD },
155	{ insn_sw,  M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
156	{ insn_sync, M(spec_op, 0, 0, 0, 0, sync_op), RE },
157	{ insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
158	{ insn_tlbp,  M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0 },
159	{ insn_tlbr,  M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0 },
160	{ insn_tlbwi,  M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0 },
161	{ insn_tlbwr,  M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0 },
162	{ insn_wait, M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM },
163	{ insn_wsbh, M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD },
164	{ insn_xori,  M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM },
165	{ insn_xor,  M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD },
166	{ insn_yield, M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD },
167	{ insn_ldpte, M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD },
168	{ insn_lddir, M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD },
169	{ insn_invalid, 0, 0 }
170};
171
172#undef M
173
174static inline u32 build_bimm(s32 arg)
175{
176	WARN(arg > 0x1ffff || arg < -0x20000,
177	     KERN_WARNING "Micro-assembler field overflow\n");
178
179	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
180
181	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
182}
183
184static inline u32 build_jimm(u32 arg)
185{
186	WARN(arg & ~(JIMM_MASK << 2),
187	     KERN_WARNING "Micro-assembler field overflow\n");
188
189	return (arg >> 2) & JIMM_MASK;
190}
191
192/*
193 * The order of opcode arguments is implicitly left to right,
194 * starting with RS and ending with FUNC or IMM.
195 */
196static void build_insn(u32 **buf, enum opcode opc, ...)
197{
198	struct insn *ip = NULL;
199	unsigned int i;
200	va_list ap;
201	u32 op;
202
203	for (i = 0; insn_table[i].opcode != insn_invalid; i++)
204		if (insn_table[i].opcode == opc) {
205			ip = &insn_table[i];
206			break;
207		}
208
209	if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
210		panic("Unsupported Micro-assembler instruction %d", opc);
211
212	op = ip->match;
213	va_start(ap, opc);
214	if (ip->fields & RS)
215		op |= build_rs(va_arg(ap, u32));
216	if (ip->fields & RT)
217		op |= build_rt(va_arg(ap, u32));
218	if (ip->fields & RD)
219		op |= build_rd(va_arg(ap, u32));
220	if (ip->fields & RE)
221		op |= build_re(va_arg(ap, u32));
222	if (ip->fields & SIMM)
223		op |= build_simm(va_arg(ap, s32));
224	if (ip->fields & UIMM)
225		op |= build_uimm(va_arg(ap, u32));
226	if (ip->fields & BIMM)
227		op |= build_bimm(va_arg(ap, s32));
228	if (ip->fields & JIMM)
229		op |= build_jimm(va_arg(ap, u32));
230	if (ip->fields & FUNC)
231		op |= build_func(va_arg(ap, u32));
232	if (ip->fields & SET)
233		op |= build_set(va_arg(ap, u32));
234	if (ip->fields & SCIMM)
235		op |= build_scimm(va_arg(ap, u32));
236	if (ip->fields & SIMM9)
237		op |= build_scimm9(va_arg(ap, u32));
238	va_end(ap);
239
240	**buf = op;
241	(*buf)++;
242}
243
244static inline void
245__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
246{
247	long laddr = (long)lab->addr;
248	long raddr = (long)rel->addr;
249
250	switch (rel->type) {
251	case R_MIPS_PC16:
252		*rel->addr |= build_bimm(laddr - (raddr + 4));
253		break;
254
255	default:
256		panic("Unsupported Micro-assembler relocation %d",
257		      rel->type);
258	}
259}