Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/module.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 
 
 
 36
 37#include <linux/atomic.h>
 38#include <asm/cpu.h>
 39#include <asm/processor.h>
 
 40#include <asm/r4k-timer.h>
 41#include <asm/system.h>
 42#include <asm/mmu_context.h>
 43#include <asm/time.h>
 
 
 44
 45#ifdef CONFIG_MIPS_MT_SMTC
 46#include <asm/mipsmtregs.h>
 47#endif /* CONFIG_MIPS_MT_SMTC */
 48
 49volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
 50
 51int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 52EXPORT_SYMBOL(__cpu_number_map);
 53
 54int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 55EXPORT_SYMBOL(__cpu_logical_map);
 56
 57/* Number of TCs (or siblings in Intel speak) per CPU core */
 58int smp_num_siblings = 1;
 59EXPORT_SYMBOL(smp_num_siblings);
 60
 61/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 62cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 63EXPORT_SYMBOL(cpu_sibling_map);
 64
 
 
 
 
 
 
 
 
 
 
 
 65/* representing cpus for which sibling maps can be computed */
 66static cpumask_t cpu_sibling_setup_map;
 67
 
 
 
 
 
 
 
 
 
 
 68static inline void set_cpu_sibling_map(int cpu)
 69{
 70	int i;
 71
 72	cpu_set(cpu, cpu_sibling_setup_map);
 73
 74	if (smp_num_siblings > 1) {
 75		for_each_cpu_mask(i, cpu_sibling_setup_map) {
 76			if (cpu_data[cpu].core == cpu_data[i].core) {
 77				cpu_set(i, cpu_sibling_map[cpu]);
 78				cpu_set(cpu, cpu_sibling_map[i]);
 
 79			}
 80		}
 81	} else
 82		cpu_set(cpu, cpu_sibling_map[cpu]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83}
 84
 85struct plat_smp_ops *mp_ops;
 
 86
 87__cpuinit void register_smp_ops(struct plat_smp_ops *ops)
 88{
 89	if (mp_ops)
 90		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 91
 92	mp_ops = ops;
 93}
 94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95/*
 96 * First C code run on the secondary CPUs after being started up by
 97 * the master.
 98 */
 99asmlinkage __cpuinit void start_secondary(void)
100{
101	unsigned int cpu;
102
103#ifdef CONFIG_MIPS_MT_SMTC
104	/* Only do cpu_probe for first TC of CPU */
105	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
106#endif /* CONFIG_MIPS_MT_SMTC */
107	cpu_probe();
108	cpu_report();
109	per_cpu_trap_init();
110	mips_clockevent_init();
111	mp_ops->init_secondary();
 
 
112
113	/*
114	 * XXX parity protection should be folded in here when it's converted
115	 * to an option instead of something based on .cputype
116	 */
117
118	calibrate_delay();
119	preempt_disable();
120	cpu = smp_processor_id();
121	cpu_data[cpu].udelay_val = loops_per_jiffy;
122
 
123	notify_cpu_starting(cpu);
124
125	mp_ops->smp_finish();
126	set_cpu_sibling_map(cpu);
127
128	cpu_set(cpu, cpu_callin_map);
129
130	synchronise_count_slave();
 
131
132	cpu_idle();
133}
134
135/*
136 * Call into both interrupt handlers, as we share the IPI for them
137 */
138void __irq_entry smp_call_function_interrupt(void)
139{
140	irq_enter();
141	generic_smp_call_function_single_interrupt();
142	generic_smp_call_function_interrupt();
143	irq_exit();
144}
145
146static void stop_this_cpu(void *dummy)
147{
148	/*
149	 * Remove this CPU:
150	 */
151	cpu_clear(smp_processor_id(), cpu_online_map);
152	for (;;) {
153		if (cpu_wait)
154			(*cpu_wait)();		/* Wait if available. */
155	}
156}
157
158void smp_send_stop(void)
159{
160	smp_call_function(stop_this_cpu, NULL, 0);
161}
162
163void __init smp_cpus_done(unsigned int max_cpus)
164{
165	mp_ops->cpus_done();
166	synchronise_count_master();
167}
168
169/* called from main before smp_init() */
170void __init smp_prepare_cpus(unsigned int max_cpus)
171{
172	init_new_context(current, &init_mm);
173	current_thread_info()->cpu = 0;
174	mp_ops->prepare_cpus(max_cpus);
175	set_cpu_sibling_map(0);
 
 
176#ifndef CONFIG_HOTPLUG_CPU
177	init_cpu_present(&cpu_possible_map);
178#endif
 
179}
180
181/* preload SMP state for boot cpu */
182void __devinit smp_prepare_boot_cpu(void)
183{
184	set_cpu_possible(0, true);
185	set_cpu_online(0, true);
186	cpu_set(0, cpu_callin_map);
187}
188
189/*
190 * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
191 * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
192 * physical, not logical.
193 */
194static struct task_struct *cpu_idle_thread[NR_CPUS];
195
196struct create_idle {
197	struct work_struct work;
198	struct task_struct *idle;
199	struct completion done;
200	int cpu;
201};
202
203static void __cpuinit do_fork_idle(struct work_struct *work)
204{
205	struct create_idle *c_idle =
206		container_of(work, struct create_idle, work);
207
208	c_idle->idle = fork_idle(c_idle->cpu);
209	complete(&c_idle->done);
210}
211
212int __cpuinit __cpu_up(unsigned int cpu)
213{
214	struct task_struct *idle;
215
216	/*
217	 * Processor goes to start_secondary(), sets online flag
218	 * The following code is purely to make sure
219	 * Linux can schedule processes on this slave.
220	 */
221	if (!cpu_idle_thread[cpu]) {
222		/*
223		 * Schedule work item to avoid forking user task
224		 * Ported from arch/x86/kernel/smpboot.c
225		 */
226		struct create_idle c_idle = {
227			.cpu    = cpu,
228			.done   = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
229		};
230
231		INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
232		schedule_work(&c_idle.work);
233		wait_for_completion(&c_idle.done);
234		idle = cpu_idle_thread[cpu] = c_idle.idle;
235
236		if (IS_ERR(idle))
237			panic(KERN_ERR "Fork failed for CPU %d", cpu);
238	} else {
239		idle = cpu_idle_thread[cpu];
240		init_idle(idle, cpu);
241	}
242
243	mp_ops->boot_secondary(cpu, idle);
244
245	/*
246	 * Trust is futile.  We should really have timeouts ...
247	 */
248	while (!cpu_isset(cpu, cpu_callin_map))
249		udelay(100);
 
 
250
251	cpu_set(cpu, cpu_online_map);
252
253	return 0;
254}
255
256/* Not really SMP stuff ... */
257int setup_profiling_timer(unsigned int multiplier)
258{
259	return 0;
260}
261
262static void flush_tlb_all_ipi(void *info)
263{
264	local_flush_tlb_all();
265}
266
267void flush_tlb_all(void)
268{
269	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
270}
271
272static void flush_tlb_mm_ipi(void *mm)
273{
274	local_flush_tlb_mm((struct mm_struct *)mm);
275}
276
277/*
278 * Special Variant of smp_call_function for use by TLB functions:
279 *
280 *  o No return value
281 *  o collapses to normal function call on UP kernels
282 *  o collapses to normal function call on systems with a single shared
283 *    primary cache.
284 *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
285 */
286static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
287{
288#ifndef CONFIG_MIPS_MT_SMTC
289	smp_call_function(func, info, 1);
290#endif
291}
292
293static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
294{
295	preempt_disable();
296
297	smp_on_other_tlbs(func, info);
298	func(info);
299
300	preempt_enable();
301}
302
303/*
304 * The following tlb flush calls are invoked when old translations are
305 * being torn down, or pte attributes are changing. For single threaded
306 * address spaces, a new context is obtained on the current cpu, and tlb
307 * context on other cpus are invalidated to force a new context allocation
308 * at switch_mm time, should the mm ever be used on other cpus. For
309 * multithreaded address spaces, intercpu interrupts have to be sent.
310 * Another case where intercpu interrupts are required is when the target
311 * mm might be active on another cpu (eg debuggers doing the flushes on
312 * behalf of debugees, kswapd stealing pages from another process etc).
313 * Kanoj 07/00.
314 */
315
316void flush_tlb_mm(struct mm_struct *mm)
317{
318	preempt_disable();
319
320	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
321		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
322	} else {
323		cpumask_t mask = cpu_online_map;
324		unsigned int cpu;
325
326		cpu_clear(smp_processor_id(), mask);
327		for_each_cpu_mask(cpu, mask)
328			if (cpu_context(cpu, mm))
329				cpu_context(cpu, mm) = 0;
 
330	}
331	local_flush_tlb_mm(mm);
332
333	preempt_enable();
334}
335
336struct flush_tlb_data {
337	struct vm_area_struct *vma;
338	unsigned long addr1;
339	unsigned long addr2;
340};
341
342static void flush_tlb_range_ipi(void *info)
343{
344	struct flush_tlb_data *fd = info;
345
346	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
347}
348
349void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
350{
351	struct mm_struct *mm = vma->vm_mm;
352
353	preempt_disable();
354	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
355		struct flush_tlb_data fd = {
356			.vma = vma,
357			.addr1 = start,
358			.addr2 = end,
359		};
360
361		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
362	} else {
363		cpumask_t mask = cpu_online_map;
364		unsigned int cpu;
 
365
366		cpu_clear(smp_processor_id(), mask);
367		for_each_cpu_mask(cpu, mask)
368			if (cpu_context(cpu, mm))
369				cpu_context(cpu, mm) = 0;
 
 
 
 
 
 
370	}
371	local_flush_tlb_range(vma, start, end);
372	preempt_enable();
373}
374
375static void flush_tlb_kernel_range_ipi(void *info)
376{
377	struct flush_tlb_data *fd = info;
378
379	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
380}
381
382void flush_tlb_kernel_range(unsigned long start, unsigned long end)
383{
384	struct flush_tlb_data fd = {
385		.addr1 = start,
386		.addr2 = end,
387	};
388
389	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
390}
391
392static void flush_tlb_page_ipi(void *info)
393{
394	struct flush_tlb_data *fd = info;
395
396	local_flush_tlb_page(fd->vma, fd->addr1);
397}
398
399void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
400{
401	preempt_disable();
402	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
403		struct flush_tlb_data fd = {
404			.vma = vma,
405			.addr1 = page,
406		};
407
408		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
409	} else {
410		cpumask_t mask = cpu_online_map;
411		unsigned int cpu;
412
413		cpu_clear(smp_processor_id(), mask);
414		for_each_cpu_mask(cpu, mask)
415			if (cpu_context(cpu, vma->vm_mm))
416				cpu_context(cpu, vma->vm_mm) = 0;
 
 
 
 
 
 
417	}
418	local_flush_tlb_page(vma, page);
419	preempt_enable();
420}
421
422static void flush_tlb_one_ipi(void *info)
423{
424	unsigned long vaddr = (unsigned long) info;
425
426	local_flush_tlb_one(vaddr);
427}
428
429void flush_tlb_one(unsigned long vaddr)
430{
431	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
432}
433
434EXPORT_SYMBOL(flush_tlb_page);
435EXPORT_SYMBOL(flush_tlb_one);
v4.10.11
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/export.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 36#include <linux/irqdomain.h>
 37#include <linux/of.h>
 38#include <linux/of_irq.h>
 39
 40#include <linux/atomic.h>
 41#include <asm/cpu.h>
 42#include <asm/processor.h>
 43#include <asm/idle.h>
 44#include <asm/r4k-timer.h>
 45#include <asm/mips-cpc.h>
 46#include <asm/mmu_context.h>
 47#include <asm/time.h>
 48#include <asm/setup.h>
 49#include <asm/maar.h>
 50
 51cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
 
 
 
 
 52
 53int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 54EXPORT_SYMBOL(__cpu_number_map);
 55
 56int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 57EXPORT_SYMBOL(__cpu_logical_map);
 58
 59/* Number of TCs (or siblings in Intel speak) per CPU core */
 60int smp_num_siblings = 1;
 61EXPORT_SYMBOL(smp_num_siblings);
 62
 63/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 64cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 65EXPORT_SYMBOL(cpu_sibling_map);
 66
 67/* representing the core map of multi-core chips of each logical CPU */
 68cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 69EXPORT_SYMBOL(cpu_core_map);
 70
 71/*
 72 * A logcal cpu mask containing only one VPE per core to
 73 * reduce the number of IPIs on large MT systems.
 74 */
 75cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
 76EXPORT_SYMBOL(cpu_foreign_map);
 77
 78/* representing cpus for which sibling maps can be computed */
 79static cpumask_t cpu_sibling_setup_map;
 80
 81/* representing cpus for which core maps can be computed */
 82static cpumask_t cpu_core_setup_map;
 83
 84cpumask_t cpu_coherent_mask;
 85
 86#ifdef CONFIG_GENERIC_IRQ_IPI
 87static struct irq_desc *call_desc;
 88static struct irq_desc *sched_desc;
 89#endif
 90
 91static inline void set_cpu_sibling_map(int cpu)
 92{
 93	int i;
 94
 95	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
 96
 97	if (smp_num_siblings > 1) {
 98		for_each_cpu(i, &cpu_sibling_setup_map) {
 99			if (cpu_data[cpu].package == cpu_data[i].package &&
100				    cpu_data[cpu].core == cpu_data[i].core) {
101				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103			}
104		}
105	} else
106		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107}
108
109static inline void set_cpu_core_map(int cpu)
110{
111	int i;
112
113	cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115	for_each_cpu(i, &cpu_core_setup_map) {
116		if (cpu_data[cpu].package == cpu_data[i].package) {
117			cpumask_set_cpu(i, &cpu_core_map[cpu]);
118			cpumask_set_cpu(cpu, &cpu_core_map[i]);
119		}
120	}
121}
122
123/*
124 * Calculate a new cpu_foreign_map mask whenever a
125 * new cpu appears or disappears.
126 */
127void calculate_cpu_foreign_map(void)
128{
129	int i, k, core_present;
130	cpumask_t temp_foreign_map;
131
132	/* Re-calculate the mask */
133	cpumask_clear(&temp_foreign_map);
134	for_each_online_cpu(i) {
135		core_present = 0;
136		for_each_cpu(k, &temp_foreign_map)
137			if (cpu_data[i].package == cpu_data[k].package &&
138			    cpu_data[i].core == cpu_data[k].core)
139				core_present = 1;
140		if (!core_present)
141			cpumask_set_cpu(i, &temp_foreign_map);
142	}
143
144	for_each_online_cpu(i)
145		cpumask_andnot(&cpu_foreign_map[i],
146			       &temp_foreign_map, &cpu_sibling_map[i]);
147}
148
149struct plat_smp_ops *mp_ops;
150EXPORT_SYMBOL(mp_ops);
151
152void register_smp_ops(struct plat_smp_ops *ops)
153{
154	if (mp_ops)
155		printk(KERN_WARNING "Overriding previously set SMP ops\n");
156
157	mp_ops = ops;
158}
159
160#ifdef CONFIG_GENERIC_IRQ_IPI
161void mips_smp_send_ipi_single(int cpu, unsigned int action)
162{
163	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164}
165
166void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167{
168	unsigned long flags;
169	unsigned int core;
170	int cpu;
171
172	local_irq_save(flags);
173
174	switch (action) {
175	case SMP_CALL_FUNCTION:
176		__ipi_send_mask(call_desc, mask);
177		break;
178
179	case SMP_RESCHEDULE_YOURSELF:
180		__ipi_send_mask(sched_desc, mask);
181		break;
182
183	default:
184		BUG();
185	}
186
187	if (mips_cpc_present()) {
188		for_each_cpu(cpu, mask) {
189			core = cpu_data[cpu].core;
190
191			if (core == current_cpu_data.core)
192				continue;
193
194			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195				mips_cm_lock_other(core, 0);
196				mips_cpc_lock_other(core);
197				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
198				mips_cpc_unlock_other();
199				mips_cm_unlock_other();
200			}
201		}
202	}
203
204	local_irq_restore(flags);
205}
206
207
208static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
209{
210	scheduler_ipi();
211
212	return IRQ_HANDLED;
213}
214
215static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
216{
217	generic_smp_call_function_interrupt();
218
219	return IRQ_HANDLED;
220}
221
222static struct irqaction irq_resched = {
223	.handler	= ipi_resched_interrupt,
224	.flags		= IRQF_PERCPU,
225	.name		= "IPI resched"
226};
227
228static struct irqaction irq_call = {
229	.handler	= ipi_call_interrupt,
230	.flags		= IRQF_PERCPU,
231	.name		= "IPI call"
232};
233
234static void smp_ipi_init_one(unsigned int virq,
235				    struct irqaction *action)
236{
237	int ret;
238
239	irq_set_handler(virq, handle_percpu_irq);
240	ret = setup_irq(virq, action);
241	BUG_ON(ret);
242}
243
244static unsigned int call_virq, sched_virq;
245
246int mips_smp_ipi_allocate(const struct cpumask *mask)
247{
248	int virq;
249	struct irq_domain *ipidomain;
250	struct device_node *node;
251
252	node = of_irq_find_parent(of_root);
253	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
254
255	/*
256	 * Some platforms have half DT setup. So if we found irq node but
257	 * didn't find an ipidomain, try to search for one that is not in the
258	 * DT.
259	 */
260	if (node && !ipidomain)
261		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
262
263	/*
264	 * There are systems which only use IPI domains some of the time,
265	 * depending upon configuration we don't know until runtime. An
266	 * example is Malta where we may compile in support for GIC & the
267	 * MT ASE, but run on a system which has multiple VPEs in a single
268	 * core and doesn't include a GIC. Until all IPI implementations
269	 * have been converted to use IPI domains the best we can do here
270	 * is to return & hope some other code sets up the IPIs.
271	 */
272	if (!ipidomain)
273		return 0;
274
275	virq = irq_reserve_ipi(ipidomain, mask);
276	BUG_ON(!virq);
277	if (!call_virq)
278		call_virq = virq;
279
280	virq = irq_reserve_ipi(ipidomain, mask);
281	BUG_ON(!virq);
282	if (!sched_virq)
283		sched_virq = virq;
284
285	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
286		int cpu;
287
288		for_each_cpu(cpu, mask) {
289			smp_ipi_init_one(call_virq + cpu, &irq_call);
290			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
291		}
292	} else {
293		smp_ipi_init_one(call_virq, &irq_call);
294		smp_ipi_init_one(sched_virq, &irq_resched);
295	}
296
297	return 0;
298}
299
300int mips_smp_ipi_free(const struct cpumask *mask)
301{
302	struct irq_domain *ipidomain;
303	struct device_node *node;
304
305	node = of_irq_find_parent(of_root);
306	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
307
308	/*
309	 * Some platforms have half DT setup. So if we found irq node but
310	 * didn't find an ipidomain, try to search for one that is not in the
311	 * DT.
312	 */
313	if (node && !ipidomain)
314		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
315
316	BUG_ON(!ipidomain);
317
318	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
319		int cpu;
320
321		for_each_cpu(cpu, mask) {
322			remove_irq(call_virq + cpu, &irq_call);
323			remove_irq(sched_virq + cpu, &irq_resched);
324		}
325	}
326	irq_destroy_ipi(call_virq, mask);
327	irq_destroy_ipi(sched_virq, mask);
328	return 0;
329}
330
331
332static int __init mips_smp_ipi_init(void)
333{
334	mips_smp_ipi_allocate(cpu_possible_mask);
335
336	call_desc = irq_to_desc(call_virq);
337	sched_desc = irq_to_desc(sched_virq);
338
339	return 0;
340}
341early_initcall(mips_smp_ipi_init);
342#endif
343
344/*
345 * First C code run on the secondary CPUs after being started up by
346 * the master.
347 */
348asmlinkage void start_secondary(void)
349{
350	unsigned int cpu;
351
 
 
 
 
352	cpu_probe();
353	per_cpu_trap_init(false);
 
354	mips_clockevent_init();
355	mp_ops->init_secondary();
356	cpu_report();
357	maar_init();
358
359	/*
360	 * XXX parity protection should be folded in here when it's converted
361	 * to an option instead of something based on .cputype
362	 */
363
364	calibrate_delay();
365	preempt_disable();
366	cpu = smp_processor_id();
367	cpu_data[cpu].udelay_val = loops_per_jiffy;
368
369	cpumask_set_cpu(cpu, &cpu_coherent_mask);
370	notify_cpu_starting(cpu);
371
372	cpumask_set_cpu(cpu, &cpu_callin_map);
373	synchronise_count_slave(cpu);
374
375	set_cpu_online(cpu, true);
376
377	set_cpu_sibling_map(cpu);
378	set_cpu_core_map(cpu);
379
380	calculate_cpu_foreign_map();
 
381
382	/*
383	 * irq will be enabled in ->smp_finish(), enabling it too early
384	 * is dangerous.
385	 */
386	WARN_ON_ONCE(!irqs_disabled());
387	mp_ops->smp_finish();
388
389	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 
390}
391
392static void stop_this_cpu(void *dummy)
393{
394	/*
395	 * Remove this CPU:
396	 */
397
398	set_cpu_online(smp_processor_id(), false);
399	calculate_cpu_foreign_map();
400	local_irq_disable();
401	while (1);
402}
403
404void smp_send_stop(void)
405{
406	smp_call_function(stop_this_cpu, NULL, 0);
407}
408
409void __init smp_cpus_done(unsigned int max_cpus)
410{
 
 
411}
412
413/* called from main before smp_init() */
414void __init smp_prepare_cpus(unsigned int max_cpus)
415{
416	init_new_context(current, &init_mm);
417	current_thread_info()->cpu = 0;
418	mp_ops->prepare_cpus(max_cpus);
419	set_cpu_sibling_map(0);
420	set_cpu_core_map(0);
421	calculate_cpu_foreign_map();
422#ifndef CONFIG_HOTPLUG_CPU
423	init_cpu_present(cpu_possible_mask);
424#endif
425	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
426}
427
428/* preload SMP state for boot cpu */
429void smp_prepare_boot_cpu(void)
430{
431	set_cpu_possible(0, true);
432	set_cpu_online(0, true);
433	cpumask_set_cpu(0, &cpu_callin_map);
434}
435
436int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437{
438	mp_ops->boot_secondary(cpu, tidle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439
440	/*
441	 * Trust is futile.  We should really have timeouts ...
442	 */
443	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
444		udelay(100);
445		schedule();
446	}
447
448	synchronise_count_master(cpu);
 
449	return 0;
450}
451
452/* Not really SMP stuff ... */
453int setup_profiling_timer(unsigned int multiplier)
454{
455	return 0;
456}
457
458static void flush_tlb_all_ipi(void *info)
459{
460	local_flush_tlb_all();
461}
462
463void flush_tlb_all(void)
464{
465	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
466}
467
468static void flush_tlb_mm_ipi(void *mm)
469{
470	local_flush_tlb_mm((struct mm_struct *)mm);
471}
472
473/*
474 * Special Variant of smp_call_function for use by TLB functions:
475 *
476 *  o No return value
477 *  o collapses to normal function call on UP kernels
478 *  o collapses to normal function call on systems with a single shared
479 *    primary cache.
 
480 */
481static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
482{
 
483	smp_call_function(func, info, 1);
 
484}
485
486static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
487{
488	preempt_disable();
489
490	smp_on_other_tlbs(func, info);
491	func(info);
492
493	preempt_enable();
494}
495
496/*
497 * The following tlb flush calls are invoked when old translations are
498 * being torn down, or pte attributes are changing. For single threaded
499 * address spaces, a new context is obtained on the current cpu, and tlb
500 * context on other cpus are invalidated to force a new context allocation
501 * at switch_mm time, should the mm ever be used on other cpus. For
502 * multithreaded address spaces, intercpu interrupts have to be sent.
503 * Another case where intercpu interrupts are required is when the target
504 * mm might be active on another cpu (eg debuggers doing the flushes on
505 * behalf of debugees, kswapd stealing pages from another process etc).
506 * Kanoj 07/00.
507 */
508
509void flush_tlb_mm(struct mm_struct *mm)
510{
511	preempt_disable();
512
513	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
514		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
515	} else {
 
516		unsigned int cpu;
517
518		for_each_online_cpu(cpu) {
519			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
 
520				cpu_context(cpu, mm) = 0;
521		}
522	}
523	local_flush_tlb_mm(mm);
524
525	preempt_enable();
526}
527
528struct flush_tlb_data {
529	struct vm_area_struct *vma;
530	unsigned long addr1;
531	unsigned long addr2;
532};
533
534static void flush_tlb_range_ipi(void *info)
535{
536	struct flush_tlb_data *fd = info;
537
538	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
539}
540
541void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
542{
543	struct mm_struct *mm = vma->vm_mm;
544
545	preempt_disable();
546	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
547		struct flush_tlb_data fd = {
548			.vma = vma,
549			.addr1 = start,
550			.addr2 = end,
551		};
552
553		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
554	} else {
 
555		unsigned int cpu;
556		int exec = vma->vm_flags & VM_EXEC;
557
558		for_each_online_cpu(cpu) {
559			/*
560			 * flush_cache_range() will only fully flush icache if
561			 * the VMA is executable, otherwise we must invalidate
562			 * ASID without it appearing to has_valid_asid() as if
563			 * mm has been completely unused by that CPU.
564			 */
565			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
566				cpu_context(cpu, mm) = !exec;
567		}
568	}
569	local_flush_tlb_range(vma, start, end);
570	preempt_enable();
571}
572
573static void flush_tlb_kernel_range_ipi(void *info)
574{
575	struct flush_tlb_data *fd = info;
576
577	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
578}
579
580void flush_tlb_kernel_range(unsigned long start, unsigned long end)
581{
582	struct flush_tlb_data fd = {
583		.addr1 = start,
584		.addr2 = end,
585	};
586
587	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
588}
589
590static void flush_tlb_page_ipi(void *info)
591{
592	struct flush_tlb_data *fd = info;
593
594	local_flush_tlb_page(fd->vma, fd->addr1);
595}
596
597void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
598{
599	preempt_disable();
600	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
601		struct flush_tlb_data fd = {
602			.vma = vma,
603			.addr1 = page,
604		};
605
606		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
607	} else {
 
608		unsigned int cpu;
609
610		for_each_online_cpu(cpu) {
611			/*
612			 * flush_cache_page() only does partial flushes, so
613			 * invalidate ASID without it appearing to
614			 * has_valid_asid() as if mm has been completely unused
615			 * by that CPU.
616			 */
617			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
618				cpu_context(cpu, vma->vm_mm) = 1;
619		}
620	}
621	local_flush_tlb_page(vma, page);
622	preempt_enable();
623}
624
625static void flush_tlb_one_ipi(void *info)
626{
627	unsigned long vaddr = (unsigned long) info;
628
629	local_flush_tlb_one(vaddr);
630}
631
632void flush_tlb_one(unsigned long vaddr)
633{
634	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
635}
636
637EXPORT_SYMBOL(flush_tlb_page);
638EXPORT_SYMBOL(flush_tlb_one);
639
640#if defined(CONFIG_KEXEC)
641void (*dump_ipi_function_ptr)(void *) = NULL;
642void dump_send_ipi(void (*dump_ipi_callback)(void *))
643{
644	int i;
645	int cpu = smp_processor_id();
646
647	dump_ipi_function_ptr = dump_ipi_callback;
648	smp_mb();
649	for_each_online_cpu(i)
650		if (i != cpu)
651			mp_ops->send_ipi_single(i, SMP_DUMP);
652
653}
654EXPORT_SYMBOL(dump_send_ipi);
655#endif
656
657#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
658
659static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
660static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
661
662void tick_broadcast(const struct cpumask *mask)
663{
664	atomic_t *count;
665	struct call_single_data *csd;
666	int cpu;
667
668	for_each_cpu(cpu, mask) {
669		count = &per_cpu(tick_broadcast_count, cpu);
670		csd = &per_cpu(tick_broadcast_csd, cpu);
671
672		if (atomic_inc_return(count) == 1)
673			smp_call_function_single_async(cpu, csd);
674	}
675}
676
677static void tick_broadcast_callee(void *info)
678{
679	int cpu = smp_processor_id();
680	tick_receive_broadcast();
681	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
682}
683
684static int __init tick_broadcast_init(void)
685{
686	struct call_single_data *csd;
687	int cpu;
688
689	for (cpu = 0; cpu < NR_CPUS; cpu++) {
690		csd = &per_cpu(tick_broadcast_csd, cpu);
691		csd->func = tick_broadcast_callee;
692	}
693
694	return 0;
695}
696early_initcall(tick_broadcast_init);
697
698#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */