Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  Kernel Probes (KProbes)
  3 *  arch/mips/kernel/kprobes.c
  4 *
  5 *  Copyright 2006 Sony Corp.
  6 *  Copyright 2010 Cavium Networks
  7 *
  8 *  Some portions copied from the powerpc version.
  9 *
 10 *   Copyright (C) IBM Corporation, 2002, 2004
 11 *
 12 *  This program is free software; you can redistribute it and/or modify
 13 *  it under the terms of the GNU General Public License as published by
 14 *  the Free Software Foundation; version 2 of the License.
 15 *
 16 *  This program is distributed in the hope that it will be useful,
 17 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 19 *  GNU General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License
 22 *  along with this program; if not, write to the Free Software
 23 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 24 */
 25
 26#include <linux/kprobes.h>
 27#include <linux/preempt.h>
 
 28#include <linux/kdebug.h>
 29#include <linux/slab.h>
 30
 31#include <asm/ptrace.h>
 
 32#include <asm/break.h>
 33#include <asm/inst.h>
 
 34
 35static const union mips_instruction breakpoint_insn = {
 36	.b_format = {
 37		.opcode = spec_op,
 38		.code = BRK_KPROBE_BP,
 39		.func = break_op
 40	}
 41};
 42
 43static const union mips_instruction breakpoint2_insn = {
 44	.b_format = {
 45		.opcode = spec_op,
 46		.code = BRK_KPROBE_SSTEPBP,
 47		.func = break_op
 48	}
 49};
 50
 51DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 52DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 53
 54static int __kprobes insn_has_delayslot(union mips_instruction insn)
 55{
 56	switch (insn.i_format.opcode) {
 
 57
 58		/*
 59		 * This group contains:
 60		 * jr and jalr are in r_format format.
 61		 */
 62	case spec_op:
 63		switch (insn.r_format.func) {
 64		case jr_op:
 65		case jalr_op:
 66			break;
 67		default:
 68			goto insn_ok;
 69		}
 70
 71		/*
 72		 * This group contains:
 73		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
 74		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
 75		 */
 76	case bcond_op:
 77
 78		/*
 79		 * These are unconditional and in j_format.
 80		 */
 81	case jal_op:
 82	case j_op:
 83
 84		/*
 85		 * These are conditional and in i_format.
 86		 */
 87	case beq_op:
 88	case beql_op:
 89	case bne_op:
 90	case bnel_op:
 91	case blez_op:
 92	case blezl_op:
 93	case bgtz_op:
 94	case bgtzl_op:
 95
 96		/*
 97		 * These are the FPA/cp1 branch instructions.
 98		 */
 99	case cop1_op:
100
101#ifdef CONFIG_CPU_CAVIUM_OCTEON
102	case lwc2_op: /* This is bbit0 on Octeon */
103	case ldc2_op: /* This is bbit032 on Octeon */
104	case swc2_op: /* This is bbit1 on Octeon */
105	case sdc2_op: /* This is bbit132 on Octeon */
106#endif
107		return 1;
108	default:
109		break;
110	}
111insn_ok:
112	return 0;
113}
114
115int __kprobes arch_prepare_kprobe(struct kprobe *p)
116{
117	union mips_instruction insn;
118	union mips_instruction prev_insn;
119	int ret = 0;
120
121	prev_insn = p->addr[-1];
122	insn = p->addr[0];
123
124	if (insn_has_delayslot(insn) || insn_has_delayslot(prev_insn)) {
125		pr_notice("Kprobes for branch and jump instructions are not supported\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126		ret = -EINVAL;
127		goto out;
128	}
129
130	/* insn: must be on special executable page on mips. */
131	p->ainsn.insn = get_insn_slot();
132	if (!p->ainsn.insn) {
133		ret = -ENOMEM;
134		goto out;
135	}
136
137	/*
138	 * In the kprobe->ainsn.insn[] array we store the original
139	 * instruction at index zero and a break trap instruction at
140	 * index one.
 
 
 
 
 
 
 
 
141	 */
 
 
 
 
142
143	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
144	p->ainsn.insn[1] = breakpoint2_insn;
145	p->opcode = *p->addr;
146
147out:
148	return ret;
149}
150
151void __kprobes arch_arm_kprobe(struct kprobe *p)
152{
153	*p->addr = breakpoint_insn;
154	flush_insn_slot(p);
155}
156
157void __kprobes arch_disarm_kprobe(struct kprobe *p)
158{
159	*p->addr = p->opcode;
160	flush_insn_slot(p);
161}
162
163void __kprobes arch_remove_kprobe(struct kprobe *p)
164{
165	free_insn_slot(p->ainsn.insn, 0);
 
 
 
166}
167
168static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
169{
170	kcb->prev_kprobe.kp = kprobe_running();
171	kcb->prev_kprobe.status = kcb->kprobe_status;
172	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
173	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
174	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
175}
176
177static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
178{
179	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
180	kcb->kprobe_status = kcb->prev_kprobe.status;
181	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
182	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
183	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
184}
185
186static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
187			       struct kprobe_ctlblk *kcb)
188{
189	__get_cpu_var(current_kprobe) = p;
190	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
191	kcb->kprobe_saved_epc = regs->cp0_epc;
192}
193
194static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195{
 
 
196	regs->cp0_status &= ~ST0_IE;
197
198	/* single step inline if the instruction is a break */
199	if (p->opcode.word == breakpoint_insn.word ||
200	    p->opcode.word == breakpoint2_insn.word)
201		regs->cp0_epc = (unsigned long)p->addr;
202	else
203		regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204}
205
206static int __kprobes kprobe_handler(struct pt_regs *regs)
207{
208	struct kprobe *p;
209	int ret = 0;
210	kprobe_opcode_t *addr;
211	struct kprobe_ctlblk *kcb;
212
213	addr = (kprobe_opcode_t *) regs->cp0_epc;
214
215	/*
216	 * We don't want to be preempted for the entire
217	 * duration of kprobe processing
218	 */
219	preempt_disable();
220	kcb = get_kprobe_ctlblk();
221
222	/* Check we're not actually recursing */
223	if (kprobe_running()) {
224		p = get_kprobe(addr);
225		if (p) {
226			if (kcb->kprobe_status == KPROBE_HIT_SS &&
227			    p->ainsn.insn->word == breakpoint_insn.word) {
228				regs->cp0_status &= ~ST0_IE;
229				regs->cp0_status |= kcb->kprobe_saved_SR;
230				goto no_kprobe;
231			}
232			/*
233			 * We have reentered the kprobe_handler(), since
234			 * another probe was hit while within the handler.
235			 * We here save the original kprobes variables and
236			 * just single step on the instruction of the new probe
237			 * without calling any user handlers.
238			 */
239			save_previous_kprobe(kcb);
240			set_current_kprobe(p, regs, kcb);
241			kprobes_inc_nmissed_count(p);
242			prepare_singlestep(p, regs);
243			kcb->kprobe_status = KPROBE_REENTER;
 
 
 
 
 
244			return 1;
245		} else {
246			if (addr->word != breakpoint_insn.word) {
247				/*
248				 * The breakpoint instruction was removed by
249				 * another cpu right after we hit, no further
250				 * handling of this interrupt is appropriate
251				 */
252				ret = 1;
253				goto no_kprobe;
254			}
255			p = __get_cpu_var(current_kprobe);
256			if (p->break_handler && p->break_handler(p, regs))
257				goto ss_probe;
258		}
259		goto no_kprobe;
260	}
261
262	p = get_kprobe(addr);
263	if (!p) {
264		if (addr->word != breakpoint_insn.word) {
265			/*
266			 * The breakpoint instruction was removed right
267			 * after we hit it.  Another cpu has removed
268			 * either a probepoint or a debugger breakpoint
269			 * at this address.  In either case, no further
270			 * handling of this interrupt is appropriate.
271			 */
272			ret = 1;
273		}
274		/* Not one of ours: let kernel handle it */
275		goto no_kprobe;
276	}
277
278	set_current_kprobe(p, regs, kcb);
279	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
280
281	if (p->pre_handler && p->pre_handler(p, regs)) {
282		/* handler has already set things up, so skip ss setup */
283		return 1;
284	}
285
286ss_probe:
287	prepare_singlestep(p, regs);
288	kcb->kprobe_status = KPROBE_HIT_SS;
 
 
 
 
 
 
 
 
289	return 1;
290
291no_kprobe:
292	preempt_enable_no_resched();
293	return ret;
294
295}
296
297/*
298 * Called after single-stepping.  p->addr is the address of the
299 * instruction whose first byte has been replaced by the "break 0"
300 * instruction.  To avoid the SMP problems that can occur when we
301 * temporarily put back the original opcode to single-step, we
302 * single-stepped a copy of the instruction.  The address of this
303 * copy is p->ainsn.insn.
304 *
305 * This function prepares to return from the post-single-step
306 * breakpoint trap.
307 */
308static void __kprobes resume_execution(struct kprobe *p,
309				       struct pt_regs *regs,
310				       struct kprobe_ctlblk *kcb)
311{
312	unsigned long orig_epc = kcb->kprobe_saved_epc;
313	regs->cp0_epc = orig_epc + 4;
314}
315
316static inline int post_kprobe_handler(struct pt_regs *regs)
317{
318	struct kprobe *cur = kprobe_running();
319	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
320
321	if (!cur)
322		return 0;
323
324	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
325		kcb->kprobe_status = KPROBE_HIT_SSDONE;
326		cur->post_handler(cur, regs, 0);
327	}
328
329	resume_execution(cur, regs, kcb);
330
331	regs->cp0_status |= kcb->kprobe_saved_SR;
332
333	/* Restore back the original saved kprobes variables and continue. */
334	if (kcb->kprobe_status == KPROBE_REENTER) {
335		restore_previous_kprobe(kcb);
336		goto out;
337	}
338	reset_current_kprobe();
339out:
340	preempt_enable_no_resched();
341
342	return 1;
343}
344
345static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
346{
347	struct kprobe *cur = kprobe_running();
348	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
349
350	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
351		return 1;
352
353	if (kcb->kprobe_status & KPROBE_HIT_SS) {
354		resume_execution(cur, regs, kcb);
355		regs->cp0_status |= kcb->kprobe_old_SR;
356
357		reset_current_kprobe();
358		preempt_enable_no_resched();
359	}
360	return 0;
361}
362
363/*
364 * Wrapper routine for handling exceptions.
365 */
366int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
367				       unsigned long val, void *data)
368{
369
370	struct die_args *args = (struct die_args *)data;
371	int ret = NOTIFY_DONE;
372
373	switch (val) {
374	case DIE_BREAK:
375		if (kprobe_handler(args->regs))
376			ret = NOTIFY_STOP;
377		break;
378	case DIE_SSTEPBP:
379		if (post_kprobe_handler(args->regs))
380			ret = NOTIFY_STOP;
381		break;
382
383	case DIE_PAGE_FAULT:
384		/* kprobe_running() needs smp_processor_id() */
385		preempt_disable();
386
387		if (kprobe_running()
388		    && kprobe_fault_handler(args->regs, args->trapnr))
389			ret = NOTIFY_STOP;
390		preempt_enable();
391		break;
392	default:
393		break;
394	}
395	return ret;
396}
397
398int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
399{
400	struct jprobe *jp = container_of(p, struct jprobe, kp);
401	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
402
403	kcb->jprobe_saved_regs = *regs;
404	kcb->jprobe_saved_sp = regs->regs[29];
405
406	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
407	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
408
409	regs->cp0_epc = (unsigned long)(jp->entry);
410
411	return 1;
412}
413
414/* Defined in the inline asm below. */
415void jprobe_return_end(void);
416
417void __kprobes jprobe_return(void)
418{
419	/* Assembler quirk necessitates this '0,code' business.  */
420	asm volatile(
421		"break 0,%0\n\t"
422		".globl jprobe_return_end\n"
423		"jprobe_return_end:\n"
424		: : "n" (BRK_KPROBE_BP) : "memory");
425}
426
427int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
428{
429	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
430
431	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
432	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
433		*regs = kcb->jprobe_saved_regs;
434		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
435		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
436		preempt_enable_no_resched();
437
438		return 1;
439	}
440	return 0;
441}
442
443/*
444 * Function return probe trampoline:
445 *	- init_kprobes() establishes a probepoint here
446 *	- When the probed function returns, this probe causes the
447 *	  handlers to fire
448 */
449static void __used kretprobe_trampoline_holder(void)
450{
451	asm volatile(
452		".set push\n\t"
453		/* Keep the assembler from reordering and placing JR here. */
454		".set noreorder\n\t"
455		"nop\n\t"
456		".global kretprobe_trampoline\n"
457		"kretprobe_trampoline:\n\t"
458		"nop\n\t"
459		".set pop"
460		: : : "memory");
461}
462
463void kretprobe_trampoline(void);
464
465void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
466				      struct pt_regs *regs)
467{
468	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
469
470	/* Replace the return addr with trampoline addr */
471	regs->regs[31] = (unsigned long)kretprobe_trampoline;
472}
473
474/*
475 * Called when the probe at kretprobe trampoline is hit
476 */
477static int __kprobes trampoline_probe_handler(struct kprobe *p,
478						struct pt_regs *regs)
479{
480	struct kretprobe_instance *ri = NULL;
481	struct hlist_head *head, empty_rp;
482	struct hlist_node *node, *tmp;
483	unsigned long flags, orig_ret_address = 0;
484	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
485
486	INIT_HLIST_HEAD(&empty_rp);
487	kretprobe_hash_lock(current, &head, &flags);
488
489	/*
490	 * It is possible to have multiple instances associated with a given
491	 * task either because an multiple functions in the call path
492	 * have a return probe installed on them, and/or more than one return
493	 * return probe was registered for a target function.
494	 *
495	 * We can handle this because:
496	 *     - instances are always inserted at the head of the list
497	 *     - when multiple return probes are registered for the same
498	 *       function, the first instance's ret_addr will point to the
499	 *       real return address, and all the rest will point to
500	 *       kretprobe_trampoline
501	 */
502	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
503		if (ri->task != current)
504			/* another task is sharing our hash bucket */
505			continue;
506
507		if (ri->rp && ri->rp->handler)
508			ri->rp->handler(ri, regs);
509
510		orig_ret_address = (unsigned long)ri->ret_addr;
511		recycle_rp_inst(ri, &empty_rp);
512
513		if (orig_ret_address != trampoline_address)
514			/*
515			 * This is the real return address. Any other
516			 * instances associated with this task are for
517			 * other calls deeper on the call stack
518			 */
519			break;
520	}
521
522	kretprobe_assert(ri, orig_ret_address, trampoline_address);
523	instruction_pointer(regs) = orig_ret_address;
524
525	reset_current_kprobe();
526	kretprobe_hash_unlock(current, &flags);
527	preempt_enable_no_resched();
528
529	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
530		hlist_del(&ri->hlist);
531		kfree(ri);
532	}
533	/*
534	 * By returning a non-zero value, we are telling
535	 * kprobe_handler() that we don't want the post_handler
536	 * to run (and have re-enabled preemption)
537	 */
538	return 1;
539}
540
541int __kprobes arch_trampoline_kprobe(struct kprobe *p)
542{
543	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
544		return 1;
545
546	return 0;
547}
548
549static struct kprobe trampoline_p = {
550	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
551	.pre_handler = trampoline_probe_handler
552};
553
554int __init arch_init_kprobes(void)
555{
556	return register_kprobe(&trampoline_p);
557}
v4.10.11
  1/*
  2 *  Kernel Probes (KProbes)
  3 *  arch/mips/kernel/kprobes.c
  4 *
  5 *  Copyright 2006 Sony Corp.
  6 *  Copyright 2010 Cavium Networks
  7 *
  8 *  Some portions copied from the powerpc version.
  9 *
 10 *   Copyright (C) IBM Corporation, 2002, 2004
 11 *
 12 *  This program is free software; you can redistribute it and/or modify
 13 *  it under the terms of the GNU General Public License as published by
 14 *  the Free Software Foundation; version 2 of the License.
 15 *
 16 *  This program is distributed in the hope that it will be useful,
 17 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 19 *  GNU General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License
 22 *  along with this program; if not, write to the Free Software
 23 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 24 */
 25
 26#include <linux/kprobes.h>
 27#include <linux/preempt.h>
 28#include <linux/uaccess.h>
 29#include <linux/kdebug.h>
 30#include <linux/slab.h>
 31
 32#include <asm/ptrace.h>
 33#include <asm/branch.h>
 34#include <asm/break.h>
 35
 36#include "probes-common.h"
 37
 38static const union mips_instruction breakpoint_insn = {
 39	.b_format = {
 40		.opcode = spec_op,
 41		.code = BRK_KPROBE_BP,
 42		.func = break_op
 43	}
 44};
 45
 46static const union mips_instruction breakpoint2_insn = {
 47	.b_format = {
 48		.opcode = spec_op,
 49		.code = BRK_KPROBE_SSTEPBP,
 50		.func = break_op
 51	}
 52};
 53
 54DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 55DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 56
 57static int __kprobes insn_has_delayslot(union mips_instruction insn)
 58{
 59	return __insn_has_delay_slot(insn);
 60}
 61
 62/*
 63 * insn_has_ll_or_sc function checks whether instruction is ll or sc
 64 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
 65 * so we need to prevent it and refuse kprobes insertion for such
 66 * instructions; cannot do much about breakpoint in the middle of
 67 * ll/sc pair; it is upto user to avoid those places
 68 */
 69static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
 70{
 71	int ret = 0;
 
 
 72
 73	switch (insn.i_format.opcode) {
 74	case ll_op:
 75	case lld_op:
 76	case sc_op:
 77	case scd_op:
 78		ret = 1;
 79		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 80	default:
 81		break;
 82	}
 83	return ret;
 
 84}
 85
 86int __kprobes arch_prepare_kprobe(struct kprobe *p)
 87{
 88	union mips_instruction insn;
 89	union mips_instruction prev_insn;
 90	int ret = 0;
 91
 
 92	insn = p->addr[0];
 93
 94	if (insn_has_ll_or_sc(insn)) {
 95		pr_notice("Kprobes for ll and sc instructions are not"
 96			  "supported\n");
 97		ret = -EINVAL;
 98		goto out;
 99	}
100
101	if ((probe_kernel_read(&prev_insn, p->addr - 1,
102				sizeof(mips_instruction)) == 0) &&
103				insn_has_delayslot(prev_insn)) {
104		pr_notice("Kprobes for branch delayslot are not supported\n");
105		ret = -EINVAL;
106		goto out;
107	}
108
109	if (__insn_is_compact_branch(insn)) {
110		pr_notice("Kprobes for compact branches are not supported\n");
111		ret = -EINVAL;
112		goto out;
113	}
114
115	/* insn: must be on special executable page on mips. */
116	p->ainsn.insn = get_insn_slot();
117	if (!p->ainsn.insn) {
118		ret = -ENOMEM;
119		goto out;
120	}
121
122	/*
123	 * In the kprobe->ainsn.insn[] array we store the original
124	 * instruction at index zero and a break trap instruction at
125	 * index one.
126	 *
127	 * On MIPS arch if the instruction at probed address is a
128	 * branch instruction, we need to execute the instruction at
129	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
130	 * doesn't have single stepping support, the BD instruction can
131	 * not be executed in-line and it would be executed on SSOL slot
132	 * using a normal breakpoint instruction in the next slot.
133	 * So, read the instruction and save it for later execution.
134	 */
135	if (insn_has_delayslot(insn))
136		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
137	else
138		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
139
 
140	p->ainsn.insn[1] = breakpoint2_insn;
141	p->opcode = *p->addr;
142
143out:
144	return ret;
145}
146
147void __kprobes arch_arm_kprobe(struct kprobe *p)
148{
149	*p->addr = breakpoint_insn;
150	flush_insn_slot(p);
151}
152
153void __kprobes arch_disarm_kprobe(struct kprobe *p)
154{
155	*p->addr = p->opcode;
156	flush_insn_slot(p);
157}
158
159void __kprobes arch_remove_kprobe(struct kprobe *p)
160{
161	if (p->ainsn.insn) {
162		free_insn_slot(p->ainsn.insn, 0);
163		p->ainsn.insn = NULL;
164	}
165}
166
167static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
168{
169	kcb->prev_kprobe.kp = kprobe_running();
170	kcb->prev_kprobe.status = kcb->kprobe_status;
171	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
172	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
173	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
174}
175
176static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
177{
178	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
179	kcb->kprobe_status = kcb->prev_kprobe.status;
180	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
181	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
182	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
183}
184
185static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
186			       struct kprobe_ctlblk *kcb)
187{
188	__this_cpu_write(current_kprobe, p);
189	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
190	kcb->kprobe_saved_epc = regs->cp0_epc;
191}
192
193/**
194 * evaluate_branch_instrucion -
195 *
196 * Evaluate the branch instruction at probed address during probe hit. The
197 * result of evaluation would be the updated epc. The insturction in delayslot
198 * would actually be single stepped using a normal breakpoint) on SSOL slot.
199 *
200 * The result is also saved in the kprobe control block for later use,
201 * in case we need to execute the delayslot instruction. The latter will be
202 * false for NOP instruction in dealyslot and the branch-likely instructions
203 * when the branch is taken. And for those cases we set a flag as
204 * SKIP_DELAYSLOT in the kprobe control block
205 */
206static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
207					struct kprobe_ctlblk *kcb)
208{
209	union mips_instruction insn = p->opcode;
210	long epc;
211	int ret = 0;
212
213	epc = regs->cp0_epc;
214	if (epc & 3)
215		goto unaligned;
216
217	if (p->ainsn.insn->word == 0)
218		kcb->flags |= SKIP_DELAYSLOT;
219	else
220		kcb->flags &= ~SKIP_DELAYSLOT;
221
222	ret = __compute_return_epc_for_insn(regs, insn);
223	if (ret < 0)
224		return ret;
225
226	if (ret == BRANCH_LIKELY_TAKEN)
227		kcb->flags |= SKIP_DELAYSLOT;
228
229	kcb->target_epc = regs->cp0_epc;
230
231	return 0;
232
233unaligned:
234	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
235	force_sig(SIGBUS, current);
236	return -EFAULT;
237
238}
239
240static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
241						struct kprobe_ctlblk *kcb)
242{
243	int ret = 0;
244
245	regs->cp0_status &= ~ST0_IE;
246
247	/* single step inline if the instruction is a break */
248	if (p->opcode.word == breakpoint_insn.word ||
249	    p->opcode.word == breakpoint2_insn.word)
250		regs->cp0_epc = (unsigned long)p->addr;
251	else if (insn_has_delayslot(p->opcode)) {
252		ret = evaluate_branch_instruction(p, regs, kcb);
253		if (ret < 0) {
254			pr_notice("Kprobes: Error in evaluating branch\n");
255			return;
256		}
257	}
258	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
259}
260
261/*
262 * Called after single-stepping.  p->addr is the address of the
263 * instruction whose first byte has been replaced by the "break 0"
264 * instruction.	 To avoid the SMP problems that can occur when we
265 * temporarily put back the original opcode to single-step, we
266 * single-stepped a copy of the instruction.  The address of this
267 * copy is p->ainsn.insn.
268 *
269 * This function prepares to return from the post-single-step
270 * breakpoint trap. In case of branch instructions, the target
271 * epc to be restored.
272 */
273static void __kprobes resume_execution(struct kprobe *p,
274				       struct pt_regs *regs,
275				       struct kprobe_ctlblk *kcb)
276{
277	if (insn_has_delayslot(p->opcode))
278		regs->cp0_epc = kcb->target_epc;
279	else {
280		unsigned long orig_epc = kcb->kprobe_saved_epc;
281		regs->cp0_epc = orig_epc + 4;
282	}
283}
284
285static int __kprobes kprobe_handler(struct pt_regs *regs)
286{
287	struct kprobe *p;
288	int ret = 0;
289	kprobe_opcode_t *addr;
290	struct kprobe_ctlblk *kcb;
291
292	addr = (kprobe_opcode_t *) regs->cp0_epc;
293
294	/*
295	 * We don't want to be preempted for the entire
296	 * duration of kprobe processing
297	 */
298	preempt_disable();
299	kcb = get_kprobe_ctlblk();
300
301	/* Check we're not actually recursing */
302	if (kprobe_running()) {
303		p = get_kprobe(addr);
304		if (p) {
305			if (kcb->kprobe_status == KPROBE_HIT_SS &&
306			    p->ainsn.insn->word == breakpoint_insn.word) {
307				regs->cp0_status &= ~ST0_IE;
308				regs->cp0_status |= kcb->kprobe_saved_SR;
309				goto no_kprobe;
310			}
311			/*
312			 * We have reentered the kprobe_handler(), since
313			 * another probe was hit while within the handler.
314			 * We here save the original kprobes variables and
315			 * just single step on the instruction of the new probe
316			 * without calling any user handlers.
317			 */
318			save_previous_kprobe(kcb);
319			set_current_kprobe(p, regs, kcb);
320			kprobes_inc_nmissed_count(p);
321			prepare_singlestep(p, regs, kcb);
322			kcb->kprobe_status = KPROBE_REENTER;
323			if (kcb->flags & SKIP_DELAYSLOT) {
324				resume_execution(p, regs, kcb);
325				restore_previous_kprobe(kcb);
326				preempt_enable_no_resched();
327			}
328			return 1;
329		} else {
330			if (addr->word != breakpoint_insn.word) {
331				/*
332				 * The breakpoint instruction was removed by
333				 * another cpu right after we hit, no further
334				 * handling of this interrupt is appropriate
335				 */
336				ret = 1;
337				goto no_kprobe;
338			}
339			p = __this_cpu_read(current_kprobe);
340			if (p->break_handler && p->break_handler(p, regs))
341				goto ss_probe;
342		}
343		goto no_kprobe;
344	}
345
346	p = get_kprobe(addr);
347	if (!p) {
348		if (addr->word != breakpoint_insn.word) {
349			/*
350			 * The breakpoint instruction was removed right
351			 * after we hit it.  Another cpu has removed
352			 * either a probepoint or a debugger breakpoint
353			 * at this address.  In either case, no further
354			 * handling of this interrupt is appropriate.
355			 */
356			ret = 1;
357		}
358		/* Not one of ours: let kernel handle it */
359		goto no_kprobe;
360	}
361
362	set_current_kprobe(p, regs, kcb);
363	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
364
365	if (p->pre_handler && p->pre_handler(p, regs)) {
366		/* handler has already set things up, so skip ss setup */
367		return 1;
368	}
369
370ss_probe:
371	prepare_singlestep(p, regs, kcb);
372	if (kcb->flags & SKIP_DELAYSLOT) {
373		kcb->kprobe_status = KPROBE_HIT_SSDONE;
374		if (p->post_handler)
375			p->post_handler(p, regs, 0);
376		resume_execution(p, regs, kcb);
377		preempt_enable_no_resched();
378	} else
379		kcb->kprobe_status = KPROBE_HIT_SS;
380
381	return 1;
382
383no_kprobe:
384	preempt_enable_no_resched();
385	return ret;
386
387}
388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389static inline int post_kprobe_handler(struct pt_regs *regs)
390{
391	struct kprobe *cur = kprobe_running();
392	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
393
394	if (!cur)
395		return 0;
396
397	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
398		kcb->kprobe_status = KPROBE_HIT_SSDONE;
399		cur->post_handler(cur, regs, 0);
400	}
401
402	resume_execution(cur, regs, kcb);
403
404	regs->cp0_status |= kcb->kprobe_saved_SR;
405
406	/* Restore back the original saved kprobes variables and continue. */
407	if (kcb->kprobe_status == KPROBE_REENTER) {
408		restore_previous_kprobe(kcb);
409		goto out;
410	}
411	reset_current_kprobe();
412out:
413	preempt_enable_no_resched();
414
415	return 1;
416}
417
418static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
419{
420	struct kprobe *cur = kprobe_running();
421	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
422
423	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
424		return 1;
425
426	if (kcb->kprobe_status & KPROBE_HIT_SS) {
427		resume_execution(cur, regs, kcb);
428		regs->cp0_status |= kcb->kprobe_old_SR;
429
430		reset_current_kprobe();
431		preempt_enable_no_resched();
432	}
433	return 0;
434}
435
436/*
437 * Wrapper routine for handling exceptions.
438 */
439int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
440				       unsigned long val, void *data)
441{
442
443	struct die_args *args = (struct die_args *)data;
444	int ret = NOTIFY_DONE;
445
446	switch (val) {
447	case DIE_BREAK:
448		if (kprobe_handler(args->regs))
449			ret = NOTIFY_STOP;
450		break;
451	case DIE_SSTEPBP:
452		if (post_kprobe_handler(args->regs))
453			ret = NOTIFY_STOP;
454		break;
455
456	case DIE_PAGE_FAULT:
457		/* kprobe_running() needs smp_processor_id() */
458		preempt_disable();
459
460		if (kprobe_running()
461		    && kprobe_fault_handler(args->regs, args->trapnr))
462			ret = NOTIFY_STOP;
463		preempt_enable();
464		break;
465	default:
466		break;
467	}
468	return ret;
469}
470
471int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
472{
473	struct jprobe *jp = container_of(p, struct jprobe, kp);
474	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
475
476	kcb->jprobe_saved_regs = *regs;
477	kcb->jprobe_saved_sp = regs->regs[29];
478
479	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
480	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
481
482	regs->cp0_epc = (unsigned long)(jp->entry);
483
484	return 1;
485}
486
487/* Defined in the inline asm below. */
488void jprobe_return_end(void);
489
490void __kprobes jprobe_return(void)
491{
492	/* Assembler quirk necessitates this '0,code' business.	 */
493	asm volatile(
494		"break 0,%0\n\t"
495		".globl jprobe_return_end\n"
496		"jprobe_return_end:\n"
497		: : "n" (BRK_KPROBE_BP) : "memory");
498}
499
500int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
501{
502	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
503
504	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
505	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
506		*regs = kcb->jprobe_saved_regs;
507		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
508		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
509		preempt_enable_no_resched();
510
511		return 1;
512	}
513	return 0;
514}
515
516/*
517 * Function return probe trampoline:
518 *	- init_kprobes() establishes a probepoint here
519 *	- When the probed function returns, this probe causes the
520 *	  handlers to fire
521 */
522static void __used kretprobe_trampoline_holder(void)
523{
524	asm volatile(
525		".set push\n\t"
526		/* Keep the assembler from reordering and placing JR here. */
527		".set noreorder\n\t"
528		"nop\n\t"
529		".global kretprobe_trampoline\n"
530		"kretprobe_trampoline:\n\t"
531		"nop\n\t"
532		".set pop"
533		: : : "memory");
534}
535
536void kretprobe_trampoline(void);
537
538void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
539				      struct pt_regs *regs)
540{
541	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
542
543	/* Replace the return addr with trampoline addr */
544	regs->regs[31] = (unsigned long)kretprobe_trampoline;
545}
546
547/*
548 * Called when the probe at kretprobe trampoline is hit
549 */
550static int __kprobes trampoline_probe_handler(struct kprobe *p,
551						struct pt_regs *regs)
552{
553	struct kretprobe_instance *ri = NULL;
554	struct hlist_head *head, empty_rp;
555	struct hlist_node *tmp;
556	unsigned long flags, orig_ret_address = 0;
557	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
558
559	INIT_HLIST_HEAD(&empty_rp);
560	kretprobe_hash_lock(current, &head, &flags);
561
562	/*
563	 * It is possible to have multiple instances associated with a given
564	 * task either because an multiple functions in the call path
565	 * have a return probe installed on them, and/or more than one return
566	 * return probe was registered for a target function.
567	 *
568	 * We can handle this because:
569	 *     - instances are always inserted at the head of the list
570	 *     - when multiple return probes are registered for the same
571	 *	 function, the first instance's ret_addr will point to the
572	 *	 real return address, and all the rest will point to
573	 *	 kretprobe_trampoline
574	 */
575	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
576		if (ri->task != current)
577			/* another task is sharing our hash bucket */
578			continue;
579
580		if (ri->rp && ri->rp->handler)
581			ri->rp->handler(ri, regs);
582
583		orig_ret_address = (unsigned long)ri->ret_addr;
584		recycle_rp_inst(ri, &empty_rp);
585
586		if (orig_ret_address != trampoline_address)
587			/*
588			 * This is the real return address. Any other
589			 * instances associated with this task are for
590			 * other calls deeper on the call stack
591			 */
592			break;
593	}
594
595	kretprobe_assert(ri, orig_ret_address, trampoline_address);
596	instruction_pointer(regs) = orig_ret_address;
597
598	reset_current_kprobe();
599	kretprobe_hash_unlock(current, &flags);
600	preempt_enable_no_resched();
601
602	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
603		hlist_del(&ri->hlist);
604		kfree(ri);
605	}
606	/*
607	 * By returning a non-zero value, we are telling
608	 * kprobe_handler() that we don't want the post_handler
609	 * to run (and have re-enabled preemption)
610	 */
611	return 1;
612}
613
614int __kprobes arch_trampoline_kprobe(struct kprobe *p)
615{
616	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
617		return 1;
618
619	return 0;
620}
621
622static struct kprobe trampoline_p = {
623	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
624	.pre_handler = trampoline_probe_handler
625};
626
627int __init arch_init_kprobes(void)
628{
629	return register_kprobe(&trampoline_p);
630}