Loading...
1#ifndef __ASM_SPINLOCK_H
2#define __ASM_SPINLOCK_H
3
4#if __LINUX_ARM_ARCH__ < 6
5#error SMP not supported on pre-ARMv6 CPUs
6#endif
7
8#include <asm/processor.h>
9
10/*
11 * sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K
12 * extensions, so when running on UP, we have to patch these instructions away.
13 */
14#define ALT_SMP(smp, up) \
15 "9998: " smp "\n" \
16 " .pushsection \".alt.smp.init\", \"a\"\n" \
17 " .long 9998b\n" \
18 " " up "\n" \
19 " .popsection\n"
20
21#ifdef CONFIG_THUMB2_KERNEL
22#define SEV ALT_SMP("sev.w", "nop.w")
23/*
24 * For Thumb-2, special care is needed to ensure that the conditional WFE
25 * instruction really does assemble to exactly 4 bytes (as required by
26 * the SMP_ON_UP fixup code). By itself "wfene" might cause the
27 * assembler to insert a extra (16-bit) IT instruction, depending on the
28 * presence or absence of neighbouring conditional instructions.
29 *
30 * To avoid this unpredictableness, an approprite IT is inserted explicitly:
31 * the assembler won't change IT instructions which are explicitly present
32 * in the input.
33 */
34#define WFE(cond) ALT_SMP( \
35 "it " cond "\n\t" \
36 "wfe" cond ".n", \
37 \
38 "nop.w" \
39)
40#else
41#define SEV ALT_SMP("sev", "nop")
42#define WFE(cond) ALT_SMP("wfe" cond, "nop")
43#endif
44
45static inline void dsb_sev(void)
46{
47#if __LINUX_ARM_ARCH__ >= 7
48 __asm__ __volatile__ (
49 "dsb\n"
50 SEV
51 );
52#else
53 __asm__ __volatile__ (
54 "mcr p15, 0, %0, c7, c10, 4\n"
55 SEV
56 : : "r" (0)
57 );
58#endif
59}
60
61/*
62 * ARMv6 Spin-locking.
63 *
64 * We exclusively read the old value. If it is zero, we may have
65 * won the lock, so we try exclusively storing it. A memory barrier
66 * is required after we get a lock, and before we release it, because
67 * V6 CPUs are assumed to have weakly ordered memory.
68 *
69 * Unlocked value: 0
70 * Locked value: 1
71 */
72
73#define arch_spin_is_locked(x) ((x)->lock != 0)
74#define arch_spin_unlock_wait(lock) \
75 do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
76
77#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
78
79static inline void arch_spin_lock(arch_spinlock_t *lock)
80{
81 unsigned long tmp;
82
83 __asm__ __volatile__(
84"1: ldrex %0, [%1]\n"
85" teq %0, #0\n"
86 WFE("ne")
87" strexeq %0, %2, [%1]\n"
88" teqeq %0, #0\n"
89" bne 1b"
90 : "=&r" (tmp)
91 : "r" (&lock->lock), "r" (1)
92 : "cc");
93
94 smp_mb();
95}
96
97static inline int arch_spin_trylock(arch_spinlock_t *lock)
98{
99 unsigned long tmp;
100
101 __asm__ __volatile__(
102" ldrex %0, [%1]\n"
103" teq %0, #0\n"
104" strexeq %0, %2, [%1]"
105 : "=&r" (tmp)
106 : "r" (&lock->lock), "r" (1)
107 : "cc");
108
109 if (tmp == 0) {
110 smp_mb();
111 return 1;
112 } else {
113 return 0;
114 }
115}
116
117static inline void arch_spin_unlock(arch_spinlock_t *lock)
118{
119 smp_mb();
120
121 __asm__ __volatile__(
122" str %1, [%0]\n"
123 :
124 : "r" (&lock->lock), "r" (0)
125 : "cc");
126
127 dsb_sev();
128}
129
130/*
131 * RWLOCKS
132 *
133 *
134 * Write locks are easy - we just set bit 31. When unlocking, we can
135 * just write zero since the lock is exclusively held.
136 */
137
138static inline void arch_write_lock(arch_rwlock_t *rw)
139{
140 unsigned long tmp;
141
142 __asm__ __volatile__(
143"1: ldrex %0, [%1]\n"
144" teq %0, #0\n"
145 WFE("ne")
146" strexeq %0, %2, [%1]\n"
147" teq %0, #0\n"
148" bne 1b"
149 : "=&r" (tmp)
150 : "r" (&rw->lock), "r" (0x80000000)
151 : "cc");
152
153 smp_mb();
154}
155
156static inline int arch_write_trylock(arch_rwlock_t *rw)
157{
158 unsigned long tmp;
159
160 __asm__ __volatile__(
161"1: ldrex %0, [%1]\n"
162" teq %0, #0\n"
163" strexeq %0, %2, [%1]"
164 : "=&r" (tmp)
165 : "r" (&rw->lock), "r" (0x80000000)
166 : "cc");
167
168 if (tmp == 0) {
169 smp_mb();
170 return 1;
171 } else {
172 return 0;
173 }
174}
175
176static inline void arch_write_unlock(arch_rwlock_t *rw)
177{
178 smp_mb();
179
180 __asm__ __volatile__(
181 "str %1, [%0]\n"
182 :
183 : "r" (&rw->lock), "r" (0)
184 : "cc");
185
186 dsb_sev();
187}
188
189/* write_can_lock - would write_trylock() succeed? */
190#define arch_write_can_lock(x) ((x)->lock == 0)
191
192/*
193 * Read locks are a bit more hairy:
194 * - Exclusively load the lock value.
195 * - Increment it.
196 * - Store new lock value if positive, and we still own this location.
197 * If the value is negative, we've already failed.
198 * - If we failed to store the value, we want a negative result.
199 * - If we failed, try again.
200 * Unlocking is similarly hairy. We may have multiple read locks
201 * currently active. However, we know we won't have any write
202 * locks.
203 */
204static inline void arch_read_lock(arch_rwlock_t *rw)
205{
206 unsigned long tmp, tmp2;
207
208 __asm__ __volatile__(
209"1: ldrex %0, [%2]\n"
210" adds %0, %0, #1\n"
211" strexpl %1, %0, [%2]\n"
212 WFE("mi")
213" rsbpls %0, %1, #0\n"
214" bmi 1b"
215 : "=&r" (tmp), "=&r" (tmp2)
216 : "r" (&rw->lock)
217 : "cc");
218
219 smp_mb();
220}
221
222static inline void arch_read_unlock(arch_rwlock_t *rw)
223{
224 unsigned long tmp, tmp2;
225
226 smp_mb();
227
228 __asm__ __volatile__(
229"1: ldrex %0, [%2]\n"
230" sub %0, %0, #1\n"
231" strex %1, %0, [%2]\n"
232" teq %1, #0\n"
233" bne 1b"
234 : "=&r" (tmp), "=&r" (tmp2)
235 : "r" (&rw->lock)
236 : "cc");
237
238 if (tmp == 0)
239 dsb_sev();
240}
241
242static inline int arch_read_trylock(arch_rwlock_t *rw)
243{
244 unsigned long tmp, tmp2 = 1;
245
246 __asm__ __volatile__(
247"1: ldrex %0, [%2]\n"
248" adds %0, %0, #1\n"
249" strexpl %1, %0, [%2]\n"
250 : "=&r" (tmp), "+r" (tmp2)
251 : "r" (&rw->lock)
252 : "cc");
253
254 smp_mb();
255 return tmp2 == 0;
256}
257
258/* read_can_lock - would read_trylock() succeed? */
259#define arch_read_can_lock(x) ((x)->lock < 0x80000000)
260
261#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
262#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
263
264#define arch_spin_relax(lock) cpu_relax()
265#define arch_read_relax(lock) cpu_relax()
266#define arch_write_relax(lock) cpu_relax()
267
268#endif /* __ASM_SPINLOCK_H */
1#ifndef __ASM_SPINLOCK_H
2#define __ASM_SPINLOCK_H
3
4#if __LINUX_ARM_ARCH__ < 6
5#error SMP not supported on pre-ARMv6 CPUs
6#endif
7
8#include <linux/prefetch.h>
9#include <asm/barrier.h>
10#include <asm/processor.h>
11
12/*
13 * sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K
14 * extensions, so when running on UP, we have to patch these instructions away.
15 */
16#ifdef CONFIG_THUMB2_KERNEL
17/*
18 * For Thumb-2, special care is needed to ensure that the conditional WFE
19 * instruction really does assemble to exactly 4 bytes (as required by
20 * the SMP_ON_UP fixup code). By itself "wfene" might cause the
21 * assembler to insert a extra (16-bit) IT instruction, depending on the
22 * presence or absence of neighbouring conditional instructions.
23 *
24 * To avoid this unpredictableness, an approprite IT is inserted explicitly:
25 * the assembler won't change IT instructions which are explicitly present
26 * in the input.
27 */
28#define WFE(cond) __ALT_SMP_ASM( \
29 "it " cond "\n\t" \
30 "wfe" cond ".n", \
31 \
32 "nop.w" \
33)
34#else
35#define WFE(cond) __ALT_SMP_ASM("wfe" cond, "nop")
36#endif
37
38#define SEV __ALT_SMP_ASM(WASM(sev), WASM(nop))
39
40static inline void dsb_sev(void)
41{
42
43 dsb(ishst);
44 __asm__(SEV);
45}
46
47/*
48 * ARMv6 ticket-based spin-locking.
49 *
50 * A memory barrier is required after we get a lock, and before we
51 * release it, because V6 CPUs are assumed to have weakly ordered
52 * memory.
53 */
54
55static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
56{
57 u16 owner = READ_ONCE(lock->tickets.owner);
58
59 for (;;) {
60 arch_spinlock_t tmp = READ_ONCE(*lock);
61
62 if (tmp.tickets.owner == tmp.tickets.next ||
63 tmp.tickets.owner != owner)
64 break;
65
66 wfe();
67 }
68 smp_acquire__after_ctrl_dep();
69}
70
71#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
72
73static inline void arch_spin_lock(arch_spinlock_t *lock)
74{
75 unsigned long tmp;
76 u32 newval;
77 arch_spinlock_t lockval;
78
79 prefetchw(&lock->slock);
80 __asm__ __volatile__(
81"1: ldrex %0, [%3]\n"
82" add %1, %0, %4\n"
83" strex %2, %1, [%3]\n"
84" teq %2, #0\n"
85" bne 1b"
86 : "=&r" (lockval), "=&r" (newval), "=&r" (tmp)
87 : "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
88 : "cc");
89
90 while (lockval.tickets.next != lockval.tickets.owner) {
91 wfe();
92 lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);
93 }
94
95 smp_mb();
96}
97
98static inline int arch_spin_trylock(arch_spinlock_t *lock)
99{
100 unsigned long contended, res;
101 u32 slock;
102
103 prefetchw(&lock->slock);
104 do {
105 __asm__ __volatile__(
106 " ldrex %0, [%3]\n"
107 " mov %2, #0\n"
108 " subs %1, %0, %0, ror #16\n"
109 " addeq %0, %0, %4\n"
110 " strexeq %2, %0, [%3]"
111 : "=&r" (slock), "=&r" (contended), "=&r" (res)
112 : "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
113 : "cc");
114 } while (res);
115
116 if (!contended) {
117 smp_mb();
118 return 1;
119 } else {
120 return 0;
121 }
122}
123
124static inline void arch_spin_unlock(arch_spinlock_t *lock)
125{
126 smp_mb();
127 lock->tickets.owner++;
128 dsb_sev();
129}
130
131static inline int arch_spin_value_unlocked(arch_spinlock_t lock)
132{
133 return lock.tickets.owner == lock.tickets.next;
134}
135
136static inline int arch_spin_is_locked(arch_spinlock_t *lock)
137{
138 return !arch_spin_value_unlocked(READ_ONCE(*lock));
139}
140
141static inline int arch_spin_is_contended(arch_spinlock_t *lock)
142{
143 struct __raw_tickets tickets = READ_ONCE(lock->tickets);
144 return (tickets.next - tickets.owner) > 1;
145}
146#define arch_spin_is_contended arch_spin_is_contended
147
148/*
149 * RWLOCKS
150 *
151 *
152 * Write locks are easy - we just set bit 31. When unlocking, we can
153 * just write zero since the lock is exclusively held.
154 */
155
156static inline void arch_write_lock(arch_rwlock_t *rw)
157{
158 unsigned long tmp;
159
160 prefetchw(&rw->lock);
161 __asm__ __volatile__(
162"1: ldrex %0, [%1]\n"
163" teq %0, #0\n"
164 WFE("ne")
165" strexeq %0, %2, [%1]\n"
166" teq %0, #0\n"
167" bne 1b"
168 : "=&r" (tmp)
169 : "r" (&rw->lock), "r" (0x80000000)
170 : "cc");
171
172 smp_mb();
173}
174
175static inline int arch_write_trylock(arch_rwlock_t *rw)
176{
177 unsigned long contended, res;
178
179 prefetchw(&rw->lock);
180 do {
181 __asm__ __volatile__(
182 " ldrex %0, [%2]\n"
183 " mov %1, #0\n"
184 " teq %0, #0\n"
185 " strexeq %1, %3, [%2]"
186 : "=&r" (contended), "=&r" (res)
187 : "r" (&rw->lock), "r" (0x80000000)
188 : "cc");
189 } while (res);
190
191 if (!contended) {
192 smp_mb();
193 return 1;
194 } else {
195 return 0;
196 }
197}
198
199static inline void arch_write_unlock(arch_rwlock_t *rw)
200{
201 smp_mb();
202
203 __asm__ __volatile__(
204 "str %1, [%0]\n"
205 :
206 : "r" (&rw->lock), "r" (0)
207 : "cc");
208
209 dsb_sev();
210}
211
212/* write_can_lock - would write_trylock() succeed? */
213#define arch_write_can_lock(x) (ACCESS_ONCE((x)->lock) == 0)
214
215/*
216 * Read locks are a bit more hairy:
217 * - Exclusively load the lock value.
218 * - Increment it.
219 * - Store new lock value if positive, and we still own this location.
220 * If the value is negative, we've already failed.
221 * - If we failed to store the value, we want a negative result.
222 * - If we failed, try again.
223 * Unlocking is similarly hairy. We may have multiple read locks
224 * currently active. However, we know we won't have any write
225 * locks.
226 */
227static inline void arch_read_lock(arch_rwlock_t *rw)
228{
229 unsigned long tmp, tmp2;
230
231 prefetchw(&rw->lock);
232 __asm__ __volatile__(
233"1: ldrex %0, [%2]\n"
234" adds %0, %0, #1\n"
235" strexpl %1, %0, [%2]\n"
236 WFE("mi")
237" rsbpls %0, %1, #0\n"
238" bmi 1b"
239 : "=&r" (tmp), "=&r" (tmp2)
240 : "r" (&rw->lock)
241 : "cc");
242
243 smp_mb();
244}
245
246static inline void arch_read_unlock(arch_rwlock_t *rw)
247{
248 unsigned long tmp, tmp2;
249
250 smp_mb();
251
252 prefetchw(&rw->lock);
253 __asm__ __volatile__(
254"1: ldrex %0, [%2]\n"
255" sub %0, %0, #1\n"
256" strex %1, %0, [%2]\n"
257" teq %1, #0\n"
258" bne 1b"
259 : "=&r" (tmp), "=&r" (tmp2)
260 : "r" (&rw->lock)
261 : "cc");
262
263 if (tmp == 0)
264 dsb_sev();
265}
266
267static inline int arch_read_trylock(arch_rwlock_t *rw)
268{
269 unsigned long contended, res;
270
271 prefetchw(&rw->lock);
272 do {
273 __asm__ __volatile__(
274 " ldrex %0, [%2]\n"
275 " mov %1, #0\n"
276 " adds %0, %0, #1\n"
277 " strexpl %1, %0, [%2]"
278 : "=&r" (contended), "=&r" (res)
279 : "r" (&rw->lock)
280 : "cc");
281 } while (res);
282
283 /* If the lock is negative, then it is already held for write. */
284 if (contended < 0x80000000) {
285 smp_mb();
286 return 1;
287 } else {
288 return 0;
289 }
290}
291
292/* read_can_lock - would read_trylock() succeed? */
293#define arch_read_can_lock(x) (ACCESS_ONCE((x)->lock) < 0x80000000)
294
295#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
296#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
297
298#define arch_spin_relax(lock) cpu_relax()
299#define arch_read_relax(lock) cpu_relax()
300#define arch_write_relax(lock) cpu_relax()
301
302#endif /* __ASM_SPINLOCK_H */