Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF)
  2 *
  3 * Copyright (C) 2013 Terry Lam <vtlam@google.com>
  4 * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com>
  5 */
  6
  7#include <linux/jhash.h>
  8#include <linux/jiffies.h>
  9#include <linux/module.h>
 10#include <linux/skbuff.h>
 11#include <linux/vmalloc.h>
 12#include <net/pkt_sched.h>
 13#include <net/sock.h>
 14
 15/*	Heavy-Hitter Filter (HHF)
 16 *
 17 * Principles :
 18 * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
 19 * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
 20 * as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
 21 * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
 22 * in which the heavy-hitter bucket is served with less weight.
 23 * In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
 24 * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
 25 * higher share of bandwidth.
 26 *
 27 * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
 28 * following paper:
 29 * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
 30 * Accounting", in ACM SIGCOMM, 2002.
 31 *
 32 * Conceptually, a multi-stage filter comprises k independent hash functions
 33 * and k counter arrays. Packets are indexed into k counter arrays by k hash
 34 * functions, respectively. The counters are then increased by the packet sizes.
 35 * Therefore,
 36 *    - For a heavy-hitter flow: *all* of its k array counters must be large.
 37 *    - For a non-heavy-hitter flow: some of its k array counters can be large
 38 *      due to hash collision with other small flows; however, with high
 39 *      probability, not *all* k counters are large.
 40 *
 41 * By the design of the multi-stage filter algorithm, the false negative rate
 42 * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
 43 * susceptible to false positives (non-heavy-hitters mistakenly classified as
 44 * heavy-hitters).
 45 * Therefore, we also implement the following optimizations to reduce false
 46 * positives by avoiding unnecessary increment of the counter values:
 47 *    - Optimization O1: once a heavy-hitter is identified, its bytes are not
 48 *        accounted in the array counters. This technique is called "shielding"
 49 *        in Section 3.3.1 of [EV02].
 50 *    - Optimization O2: conservative update of counters
 51 *                       (Section 3.3.2 of [EV02]),
 52 *        New counter value = max {old counter value,
 53 *                                 smallest counter value + packet bytes}
 54 *
 55 * Finally, we refresh the counters periodically since otherwise the counter
 56 * values will keep accumulating.
 57 *
 58 * Once a flow is classified as heavy-hitter, we also save its per-flow state
 59 * in an exact-matching flow table so that its subsequent packets can be
 60 * dispatched to the heavy-hitter bucket accordingly.
 61 *
 62 *
 63 * At a high level, this qdisc works as follows:
 64 * Given a packet p:
 65 *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
 66 *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
 67 *     bucket.
 68 *   - Otherwise, forward p to the multi-stage filter, denoted filter F
 69 *        + If F decides that p belongs to a non-heavy-hitter flow, then send p
 70 *          to the non-heavy-hitter bucket.
 71 *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
 72 *          then set up a new flow entry for the flow-id of p in the table T and
 73 *          send p to the heavy-hitter bucket.
 74 *
 75 * In this implementation:
 76 *   - T is a fixed-size hash-table with 1024 entries. Hash collision is
 77 *     resolved by linked-list chaining.
 78 *   - F has four counter arrays, each array containing 1024 32-bit counters.
 79 *     That means 4 * 1024 * 32 bits = 16KB of memory.
 80 *   - Since each array in F contains 1024 counters, 10 bits are sufficient to
 81 *     index into each array.
 82 *     Hence, instead of having four hash functions, we chop the 32-bit
 83 *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
 84 *     computed as XOR sum of those three chunks.
 85 *   - We need to clear the counter arrays periodically; however, directly
 86 *     memsetting 16KB of memory can lead to cache eviction and unwanted delay.
 87 *     So by representing each counter by a valid bit, we only need to reset
 88 *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
 89 *   - The Deficit Round Robin engine is taken from fq_codel implementation
 90 *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
 91 *     fq_codel_flow in fq_codel implementation.
 92 *
 93 */
 94
 95/* Non-configurable parameters */
 96#define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */
 97#define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */
 98#define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */
 99#define HHF_BIT_MASK_LEN 10    /* masking 10 bits */
100#define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */
101
102#define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */
103enum wdrr_bucket_idx {
104	WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */
105	WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */
106};
107
108#define hhf_time_before(a, b)	\
109	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
110
111/* Heavy-hitter per-flow state */
112struct hh_flow_state {
113	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */
114	u32		 hit_timestamp;	/* last time heavy-hitter was seen */
115	struct list_head flowchain;	/* chaining under hash collision */
116};
117
118/* Weighted Deficit Round Robin (WDRR) scheduler */
119struct wdrr_bucket {
120	struct sk_buff	  *head;
121	struct sk_buff	  *tail;
122	struct list_head  bucketchain;
123	int		  deficit;
124};
125
126struct hhf_sched_data {
127	struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
128	u32		   perturbation;   /* hash perturbation */
129	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */
130	u32		   drop_overlimit; /* number of times max qdisc packet
131					    * limit was hit
132					    */
133	struct list_head   *hh_flows;       /* table T (currently active HHs) */
134	u32		   hh_flows_limit;            /* max active HH allocs */
135	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */
136	u32		   hh_flows_total_cnt;          /* total admitted HHs */
137	u32		   hh_flows_current_cnt;        /* total current HHs  */
138	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
139	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays
140							 * was reset
141							 */
142	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
143							     * of hhf_arrays
144							     */
145	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
146	struct list_head   new_buckets; /* list of new buckets */
147	struct list_head   old_buckets; /* list of old buckets */
148
149	/* Configurable HHF parameters */
150	u32		   hhf_reset_timeout; /* interval to reset counter
151					       * arrays in filter F
152					       * (default 40ms)
153					       */
154	u32		   hhf_admit_bytes;   /* counter thresh to classify as
155					       * HH (default 128KB).
156					       * With these default values,
157					       * 128KB / 40ms = 25 Mbps
158					       * i.e., we expect to capture HHs
159					       * sending > 25 Mbps.
160					       */
161	u32		   hhf_evict_timeout; /* aging threshold to evict idle
162					       * HHs out of table T. This should
163					       * be large enough to avoid
164					       * reordering during HH eviction.
165					       * (default 1s)
166					       */
167	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs
168					       * (default 2,
169					       *  i.e., non-HH : HH = 2 : 1)
170					       */
171};
172
173static u32 hhf_time_stamp(void)
174{
175	return jiffies;
176}
177
178/* Looks up a heavy-hitter flow in a chaining list of table T. */
179static struct hh_flow_state *seek_list(const u32 hash,
180				       struct list_head *head,
181				       struct hhf_sched_data *q)
182{
183	struct hh_flow_state *flow, *next;
184	u32 now = hhf_time_stamp();
185
186	if (list_empty(head))
187		return NULL;
188
189	list_for_each_entry_safe(flow, next, head, flowchain) {
190		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
191
192		if (hhf_time_before(prev, now)) {
193			/* Delete expired heavy-hitters, but preserve one entry
194			 * to avoid kzalloc() when next time this slot is hit.
195			 */
196			if (list_is_last(&flow->flowchain, head))
197				return NULL;
198			list_del(&flow->flowchain);
199			kfree(flow);
200			q->hh_flows_current_cnt--;
201		} else if (flow->hash_id == hash) {
202			return flow;
203		}
204	}
205	return NULL;
206}
207
208/* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired
209 * entry or dynamically alloc a new entry.
210 */
211static struct hh_flow_state *alloc_new_hh(struct list_head *head,
212					  struct hhf_sched_data *q)
213{
214	struct hh_flow_state *flow;
215	u32 now = hhf_time_stamp();
216
217	if (!list_empty(head)) {
218		/* Find an expired heavy-hitter flow entry. */
219		list_for_each_entry(flow, head, flowchain) {
220			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
221
222			if (hhf_time_before(prev, now))
223				return flow;
224		}
225	}
226
227	if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
228		q->hh_flows_overlimit++;
229		return NULL;
230	}
231	/* Create new entry. */
232	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
233	if (!flow)
234		return NULL;
235
236	q->hh_flows_current_cnt++;
237	INIT_LIST_HEAD(&flow->flowchain);
238	list_add_tail(&flow->flowchain, head);
239
240	return flow;
241}
242
243/* Assigns packets to WDRR buckets.  Implements a multi-stage filter to
244 * classify heavy-hitters.
245 */
246static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
247{
248	struct hhf_sched_data *q = qdisc_priv(sch);
249	u32 tmp_hash, hash;
250	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
251	struct hh_flow_state *flow;
252	u32 pkt_len, min_hhf_val;
253	int i;
254	u32 prev;
255	u32 now = hhf_time_stamp();
256
257	/* Reset the HHF counter arrays if this is the right time. */
258	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
259	if (hhf_time_before(prev, now)) {
260		for (i = 0; i < HHF_ARRAYS_CNT; i++)
261			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
262		q->hhf_arrays_reset_timestamp = now;
263	}
264
265	/* Get hashed flow-id of the skb. */
266	hash = skb_get_hash_perturb(skb, q->perturbation);
267
268	/* Check if this packet belongs to an already established HH flow. */
269	flow_pos = hash & HHF_BIT_MASK;
270	flow = seek_list(hash, &q->hh_flows[flow_pos], q);
271	if (flow) { /* found its HH flow */
272		flow->hit_timestamp = now;
273		return WDRR_BUCKET_FOR_HH;
274	}
275
276	/* Now pass the packet through the multi-stage filter. */
277	tmp_hash = hash;
278	xorsum = 0;
279	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
280		/* Split the skb_hash into three 10-bit chunks. */
281		filter_pos[i] = tmp_hash & HHF_BIT_MASK;
282		xorsum ^= filter_pos[i];
283		tmp_hash >>= HHF_BIT_MASK_LEN;
284	}
285	/* The last chunk is computed as XOR sum of other chunks. */
286	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
287
288	pkt_len = qdisc_pkt_len(skb);
289	min_hhf_val = ~0U;
290	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
291		u32 val;
292
293		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
294			q->hhf_arrays[i][filter_pos[i]] = 0;
295			__set_bit(filter_pos[i], q->hhf_valid_bits[i]);
296		}
297
298		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
299		if (min_hhf_val > val)
300			min_hhf_val = val;
301	}
302
303	/* Found a new HH iff all counter values > HH admit threshold. */
304	if (min_hhf_val > q->hhf_admit_bytes) {
305		/* Just captured a new heavy-hitter. */
306		flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
307		if (!flow) /* memory alloc problem */
308			return WDRR_BUCKET_FOR_NON_HH;
309		flow->hash_id = hash;
310		flow->hit_timestamp = now;
311		q->hh_flows_total_cnt++;
312
313		/* By returning without updating counters in q->hhf_arrays,
314		 * we implicitly implement "shielding" (see Optimization O1).
315		 */
316		return WDRR_BUCKET_FOR_HH;
317	}
318
319	/* Conservative update of HHF arrays (see Optimization O2). */
320	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
321		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
322			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
323	}
324	return WDRR_BUCKET_FOR_NON_HH;
325}
326
327/* Removes one skb from head of bucket. */
328static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
329{
330	struct sk_buff *skb = bucket->head;
331
332	bucket->head = skb->next;
333	skb->next = NULL;
334	return skb;
335}
336
337/* Tail-adds skb to bucket. */
338static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
339{
340	if (bucket->head == NULL)
341		bucket->head = skb;
342	else
343		bucket->tail->next = skb;
344	bucket->tail = skb;
345	skb->next = NULL;
346}
347
348static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free)
349{
350	struct hhf_sched_data *q = qdisc_priv(sch);
351	struct wdrr_bucket *bucket;
352
353	/* Always try to drop from heavy-hitters first. */
354	bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
355	if (!bucket->head)
356		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
357
358	if (bucket->head) {
359		struct sk_buff *skb = dequeue_head(bucket);
360
361		sch->q.qlen--;
362		qdisc_qstats_backlog_dec(sch, skb);
363		qdisc_drop(skb, sch, to_free);
364	}
365
366	/* Return id of the bucket from which the packet was dropped. */
367	return bucket - q->buckets;
368}
369
370static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
371		       struct sk_buff **to_free)
372{
373	struct hhf_sched_data *q = qdisc_priv(sch);
374	enum wdrr_bucket_idx idx;
375	struct wdrr_bucket *bucket;
376	unsigned int prev_backlog;
377
378	idx = hhf_classify(skb, sch);
379
380	bucket = &q->buckets[idx];
381	bucket_add(bucket, skb);
382	qdisc_qstats_backlog_inc(sch, skb);
383
384	if (list_empty(&bucket->bucketchain)) {
385		unsigned int weight;
386
387		/* The logic of new_buckets vs. old_buckets is the same as
388		 * new_flows vs. old_flows in the implementation of fq_codel,
389		 * i.e., short bursts of non-HHs should have strict priority.
390		 */
391		if (idx == WDRR_BUCKET_FOR_HH) {
392			/* Always move heavy-hitters to old bucket. */
393			weight = 1;
394			list_add_tail(&bucket->bucketchain, &q->old_buckets);
395		} else {
396			weight = q->hhf_non_hh_weight;
397			list_add_tail(&bucket->bucketchain, &q->new_buckets);
398		}
399		bucket->deficit = weight * q->quantum;
400	}
401	if (++sch->q.qlen <= sch->limit)
402		return NET_XMIT_SUCCESS;
403
404	prev_backlog = sch->qstats.backlog;
405	q->drop_overlimit++;
406	/* Return Congestion Notification only if we dropped a packet from this
407	 * bucket.
408	 */
409	if (hhf_drop(sch, to_free) == idx)
410		return NET_XMIT_CN;
411
412	/* As we dropped a packet, better let upper stack know this. */
413	qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog);
414	return NET_XMIT_SUCCESS;
415}
416
417static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
418{
419	struct hhf_sched_data *q = qdisc_priv(sch);
420	struct sk_buff *skb = NULL;
421	struct wdrr_bucket *bucket;
422	struct list_head *head;
423
424begin:
425	head = &q->new_buckets;
426	if (list_empty(head)) {
427		head = &q->old_buckets;
428		if (list_empty(head))
429			return NULL;
430	}
431	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
432
433	if (bucket->deficit <= 0) {
434		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
435			      1 : q->hhf_non_hh_weight;
436
437		bucket->deficit += weight * q->quantum;
438		list_move_tail(&bucket->bucketchain, &q->old_buckets);
439		goto begin;
440	}
441
442	if (bucket->head) {
443		skb = dequeue_head(bucket);
444		sch->q.qlen--;
445		qdisc_qstats_backlog_dec(sch, skb);
446	}
447
448	if (!skb) {
449		/* Force a pass through old_buckets to prevent starvation. */
450		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
451			list_move_tail(&bucket->bucketchain, &q->old_buckets);
452		else
453			list_del_init(&bucket->bucketchain);
454		goto begin;
455	}
456	qdisc_bstats_update(sch, skb);
457	bucket->deficit -= qdisc_pkt_len(skb);
458
459	return skb;
460}
461
462static void hhf_reset(struct Qdisc *sch)
463{
464	struct sk_buff *skb;
465
466	while ((skb = hhf_dequeue(sch)) != NULL)
467		rtnl_kfree_skbs(skb, skb);
468}
469
470static void *hhf_zalloc(size_t sz)
471{
472	void *ptr = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
473
474	if (!ptr)
475		ptr = vzalloc(sz);
476
477	return ptr;
478}
479
480static void hhf_free(void *addr)
481{
482	kvfree(addr);
483}
484
485static void hhf_destroy(struct Qdisc *sch)
486{
487	int i;
488	struct hhf_sched_data *q = qdisc_priv(sch);
489
490	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
491		hhf_free(q->hhf_arrays[i]);
492		hhf_free(q->hhf_valid_bits[i]);
493	}
494
495	for (i = 0; i < HH_FLOWS_CNT; i++) {
496		struct hh_flow_state *flow, *next;
497		struct list_head *head = &q->hh_flows[i];
498
499		if (list_empty(head))
500			continue;
501		list_for_each_entry_safe(flow, next, head, flowchain) {
502			list_del(&flow->flowchain);
503			kfree(flow);
504		}
505	}
506	hhf_free(q->hh_flows);
507}
508
509static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
510	[TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 },
511	[TCA_HHF_QUANTUM]	 = { .type = NLA_U32 },
512	[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
513	[TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 },
514	[TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 },
515	[TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 },
516	[TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 },
517};
518
519static int hhf_change(struct Qdisc *sch, struct nlattr *opt)
520{
521	struct hhf_sched_data *q = qdisc_priv(sch);
522	struct nlattr *tb[TCA_HHF_MAX + 1];
523	unsigned int qlen, prev_backlog;
524	int err;
525	u64 non_hh_quantum;
526	u32 new_quantum = q->quantum;
527	u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
528
529	if (!opt)
530		return -EINVAL;
531
532	err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy);
533	if (err < 0)
534		return err;
535
536	if (tb[TCA_HHF_QUANTUM])
537		new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
538
539	if (tb[TCA_HHF_NON_HH_WEIGHT])
540		new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
541
542	non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
543	if (non_hh_quantum > INT_MAX)
544		return -EINVAL;
545
546	sch_tree_lock(sch);
547
548	if (tb[TCA_HHF_BACKLOG_LIMIT])
549		sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
550
551	q->quantum = new_quantum;
552	q->hhf_non_hh_weight = new_hhf_non_hh_weight;
553
554	if (tb[TCA_HHF_HH_FLOWS_LIMIT])
555		q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
556
557	if (tb[TCA_HHF_RESET_TIMEOUT]) {
558		u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
559
560		q->hhf_reset_timeout = usecs_to_jiffies(us);
561	}
562
563	if (tb[TCA_HHF_ADMIT_BYTES])
564		q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
565
566	if (tb[TCA_HHF_EVICT_TIMEOUT]) {
567		u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
568
569		q->hhf_evict_timeout = usecs_to_jiffies(us);
570	}
571
572	qlen = sch->q.qlen;
573	prev_backlog = sch->qstats.backlog;
574	while (sch->q.qlen > sch->limit) {
575		struct sk_buff *skb = hhf_dequeue(sch);
576
577		rtnl_kfree_skbs(skb, skb);
578	}
579	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen,
580				  prev_backlog - sch->qstats.backlog);
581
582	sch_tree_unlock(sch);
583	return 0;
584}
585
586static int hhf_init(struct Qdisc *sch, struct nlattr *opt)
587{
588	struct hhf_sched_data *q = qdisc_priv(sch);
589	int i;
590
591	sch->limit = 1000;
592	q->quantum = psched_mtu(qdisc_dev(sch));
593	q->perturbation = prandom_u32();
594	INIT_LIST_HEAD(&q->new_buckets);
595	INIT_LIST_HEAD(&q->old_buckets);
596
597	/* Configurable HHF parameters */
598	q->hhf_reset_timeout = HZ / 25; /* 40  ms */
599	q->hhf_admit_bytes = 131072;    /* 128 KB */
600	q->hhf_evict_timeout = HZ;      /* 1  sec */
601	q->hhf_non_hh_weight = 2;
602
603	if (opt) {
604		int err = hhf_change(sch, opt);
605
606		if (err)
607			return err;
608	}
609
610	if (!q->hh_flows) {
611		/* Initialize heavy-hitter flow table. */
612		q->hh_flows = hhf_zalloc(HH_FLOWS_CNT *
613					 sizeof(struct list_head));
614		if (!q->hh_flows)
615			return -ENOMEM;
616		for (i = 0; i < HH_FLOWS_CNT; i++)
617			INIT_LIST_HEAD(&q->hh_flows[i]);
618
619		/* Cap max active HHs at twice len of hh_flows table. */
620		q->hh_flows_limit = 2 * HH_FLOWS_CNT;
621		q->hh_flows_overlimit = 0;
622		q->hh_flows_total_cnt = 0;
623		q->hh_flows_current_cnt = 0;
624
625		/* Initialize heavy-hitter filter arrays. */
626		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
627			q->hhf_arrays[i] = hhf_zalloc(HHF_ARRAYS_LEN *
628						      sizeof(u32));
629			if (!q->hhf_arrays[i]) {
630				hhf_destroy(sch);
631				return -ENOMEM;
632			}
633		}
634		q->hhf_arrays_reset_timestamp = hhf_time_stamp();
635
636		/* Initialize valid bits of heavy-hitter filter arrays. */
637		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
638			q->hhf_valid_bits[i] = hhf_zalloc(HHF_ARRAYS_LEN /
639							  BITS_PER_BYTE);
640			if (!q->hhf_valid_bits[i]) {
641				hhf_destroy(sch);
642				return -ENOMEM;
643			}
644		}
645
646		/* Initialize Weighted DRR buckets. */
647		for (i = 0; i < WDRR_BUCKET_CNT; i++) {
648			struct wdrr_bucket *bucket = q->buckets + i;
649
650			INIT_LIST_HEAD(&bucket->bucketchain);
651		}
652	}
653
654	return 0;
655}
656
657static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
658{
659	struct hhf_sched_data *q = qdisc_priv(sch);
660	struct nlattr *opts;
661
662	opts = nla_nest_start(skb, TCA_OPTIONS);
663	if (opts == NULL)
664		goto nla_put_failure;
665
666	if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
667	    nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
668	    nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
669	    nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
670			jiffies_to_usecs(q->hhf_reset_timeout)) ||
671	    nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
672	    nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
673			jiffies_to_usecs(q->hhf_evict_timeout)) ||
674	    nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
675		goto nla_put_failure;
676
677	return nla_nest_end(skb, opts);
678
679nla_put_failure:
680	return -1;
681}
682
683static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
684{
685	struct hhf_sched_data *q = qdisc_priv(sch);
686	struct tc_hhf_xstats st = {
687		.drop_overlimit = q->drop_overlimit,
688		.hh_overlimit	= q->hh_flows_overlimit,
689		.hh_tot_count	= q->hh_flows_total_cnt,
690		.hh_cur_count	= q->hh_flows_current_cnt,
691	};
692
693	return gnet_stats_copy_app(d, &st, sizeof(st));
694}
695
696static struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
697	.id		=	"hhf",
698	.priv_size	=	sizeof(struct hhf_sched_data),
699
700	.enqueue	=	hhf_enqueue,
701	.dequeue	=	hhf_dequeue,
702	.peek		=	qdisc_peek_dequeued,
703	.init		=	hhf_init,
704	.reset		=	hhf_reset,
705	.destroy	=	hhf_destroy,
706	.change		=	hhf_change,
707	.dump		=	hhf_dump,
708	.dump_stats	=	hhf_dump_stats,
709	.owner		=	THIS_MODULE,
710};
711
712static int __init hhf_module_init(void)
713{
714	return register_qdisc(&hhf_qdisc_ops);
715}
716
717static void __exit hhf_module_exit(void)
718{
719	unregister_qdisc(&hhf_qdisc_ops);
720}
721
722module_init(hhf_module_init)
723module_exit(hhf_module_exit)
724MODULE_AUTHOR("Terry Lam");
725MODULE_AUTHOR("Nandita Dukkipati");
726MODULE_LICENSE("GPL");