Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
 
  19#include <linux/proc_fs.h>
 
  20#include <linux/seq_file.h>
 
  21#include <linux/kmemcheck.h>
  22#include <linux/cpu.h>
  23#include <linux/cpuset.h>
  24#include <linux/mempolicy.h>
  25#include <linux/ctype.h>
  26#include <linux/debugobjects.h>
  27#include <linux/kallsyms.h>
  28#include <linux/memory.h>
  29#include <linux/math64.h>
  30#include <linux/fault-inject.h>
  31#include <linux/stacktrace.h>
 
 
  32
  33#include <trace/events/kmem.h>
  34
 
 
  35/*
  36 * Lock order:
  37 *   1. slub_lock (Global Semaphore)
  38 *   2. node->list_lock
  39 *   3. slab_lock(page) (Only on some arches and for debugging)
  40 *
  41 *   slub_lock
  42 *
  43 *   The role of the slub_lock is to protect the list of all the slabs
  44 *   and to synchronize major metadata changes to slab cache structures.
  45 *
  46 *   The slab_lock is only used for debugging and on arches that do not
  47 *   have the ability to do a cmpxchg_double. It only protects the second
  48 *   double word in the page struct. Meaning
  49 *	A. page->freelist	-> List of object free in a page
  50 *	B. page->counters	-> Counters of objects
  51 *	C. page->frozen		-> frozen state
  52 *
  53 *   If a slab is frozen then it is exempt from list management. It is not
  54 *   on any list. The processor that froze the slab is the one who can
  55 *   perform list operations on the page. Other processors may put objects
  56 *   onto the freelist but the processor that froze the slab is the only
  57 *   one that can retrieve the objects from the page's freelist.
  58 *
  59 *   The list_lock protects the partial and full list on each node and
  60 *   the partial slab counter. If taken then no new slabs may be added or
  61 *   removed from the lists nor make the number of partial slabs be modified.
  62 *   (Note that the total number of slabs is an atomic value that may be
  63 *   modified without taking the list lock).
  64 *
  65 *   The list_lock is a centralized lock and thus we avoid taking it as
  66 *   much as possible. As long as SLUB does not have to handle partial
  67 *   slabs, operations can continue without any centralized lock. F.e.
  68 *   allocating a long series of objects that fill up slabs does not require
  69 *   the list lock.
  70 *   Interrupts are disabled during allocation and deallocation in order to
  71 *   make the slab allocator safe to use in the context of an irq. In addition
  72 *   interrupts are disabled to ensure that the processor does not change
  73 *   while handling per_cpu slabs, due to kernel preemption.
  74 *
  75 * SLUB assigns one slab for allocation to each processor.
  76 * Allocations only occur from these slabs called cpu slabs.
  77 *
  78 * Slabs with free elements are kept on a partial list and during regular
  79 * operations no list for full slabs is used. If an object in a full slab is
  80 * freed then the slab will show up again on the partial lists.
  81 * We track full slabs for debugging purposes though because otherwise we
  82 * cannot scan all objects.
  83 *
  84 * Slabs are freed when they become empty. Teardown and setup is
  85 * minimal so we rely on the page allocators per cpu caches for
  86 * fast frees and allocs.
  87 *
  88 * Overloading of page flags that are otherwise used for LRU management.
  89 *
  90 * PageActive 		The slab is frozen and exempt from list processing.
  91 * 			This means that the slab is dedicated to a purpose
  92 * 			such as satisfying allocations for a specific
  93 * 			processor. Objects may be freed in the slab while
  94 * 			it is frozen but slab_free will then skip the usual
  95 * 			list operations. It is up to the processor holding
  96 * 			the slab to integrate the slab into the slab lists
  97 * 			when the slab is no longer needed.
  98 *
  99 * 			One use of this flag is to mark slabs that are
 100 * 			used for allocations. Then such a slab becomes a cpu
 101 * 			slab. The cpu slab may be equipped with an additional
 102 * 			freelist that allows lockless access to
 103 * 			free objects in addition to the regular freelist
 104 * 			that requires the slab lock.
 105 *
 106 * PageError		Slab requires special handling due to debug
 107 * 			options set. This moves	slab handling out of
 108 * 			the fast path and disables lockless freelists.
 109 */
 110
 111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 112		SLAB_TRACE | SLAB_DEBUG_FREE)
 113
 114static inline int kmem_cache_debug(struct kmem_cache *s)
 115{
 116#ifdef CONFIG_SLUB_DEBUG
 117	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 118#else
 119	return 0;
 120#endif
 121}
 122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123/*
 124 * Issues still to be resolved:
 125 *
 126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 127 *
 128 * - Variable sizing of the per node arrays
 129 */
 130
 131/* Enable to test recovery from slab corruption on boot */
 132#undef SLUB_RESILIENCY_TEST
 133
 134/* Enable to log cmpxchg failures */
 135#undef SLUB_DEBUG_CMPXCHG
 136
 137/*
 138 * Mininum number of partial slabs. These will be left on the partial
 139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 140 */
 141#define MIN_PARTIAL 5
 142
 143/*
 144 * Maximum number of desirable partial slabs.
 145 * The existence of more partial slabs makes kmem_cache_shrink
 146 * sort the partial list by the number of objects in the.
 147 */
 148#define MAX_PARTIAL 10
 149
 150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
 151				SLAB_POISON | SLAB_STORE_USER)
 152
 153/*
 
 
 
 
 
 
 
 
 154 * Debugging flags that require metadata to be stored in the slab.  These get
 155 * disabled when slub_debug=O is used and a cache's min order increases with
 156 * metadata.
 157 */
 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 159
 160/*
 161 * Set of flags that will prevent slab merging
 162 */
 163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 164		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
 165		SLAB_FAILSLAB)
 166
 167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
 168		SLAB_CACHE_DMA | SLAB_NOTRACK)
 169
 170#define OO_SHIFT	16
 171#define OO_MASK		((1 << OO_SHIFT) - 1)
 172#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 173
 174/* Internal SLUB flags */
 175#define __OBJECT_POISON		0x80000000UL /* Poison object */
 176#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
 177
 178static int kmem_size = sizeof(struct kmem_cache);
 179
 180#ifdef CONFIG_SMP
 181static struct notifier_block slab_notifier;
 182#endif
 183
 184static enum {
 185	DOWN,		/* No slab functionality available */
 186	PARTIAL,	/* Kmem_cache_node works */
 187	UP,		/* Everything works but does not show up in sysfs */
 188	SYSFS		/* Sysfs up */
 189} slab_state = DOWN;
 190
 191/* A list of all slab caches on the system */
 192static DECLARE_RWSEM(slub_lock);
 193static LIST_HEAD(slab_caches);
 194
 195/*
 196 * Tracking user of a slab.
 197 */
 198#define TRACK_ADDRS_COUNT 16
 199struct track {
 200	unsigned long addr;	/* Called from address */
 201#ifdef CONFIG_STACKTRACE
 202	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 203#endif
 204	int cpu;		/* Was running on cpu */
 205	int pid;		/* Pid context */
 206	unsigned long when;	/* When did the operation occur */
 207};
 208
 209enum track_item { TRACK_ALLOC, TRACK_FREE };
 210
 211#ifdef CONFIG_SYSFS
 212static int sysfs_slab_add(struct kmem_cache *);
 213static int sysfs_slab_alias(struct kmem_cache *, const char *);
 214static void sysfs_slab_remove(struct kmem_cache *);
 215
 216#else
 217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 219							{ return 0; }
 220static inline void sysfs_slab_remove(struct kmem_cache *s)
 221{
 222	kfree(s->name);
 223	kfree(s);
 224}
 225
 226#endif
 227
 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
 229{
 230#ifdef CONFIG_SLUB_STATS
 231	__this_cpu_inc(s->cpu_slab->stat[si]);
 
 
 
 
 232#endif
 233}
 234
 235/********************************************************************
 236 * 			Core slab cache functions
 237 *******************************************************************/
 238
 239int slab_is_available(void)
 240{
 241	return slab_state >= UP;
 242}
 243
 244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 245{
 246	return s->node[node];
 247}
 248
 249/* Verify that a pointer has an address that is valid within a slab page */
 250static inline int check_valid_pointer(struct kmem_cache *s,
 251				struct page *page, const void *object)
 252{
 253	void *base;
 254
 255	if (!object)
 256		return 1;
 257
 258	base = page_address(page);
 259	if (object < base || object >= base + page->objects * s->size ||
 260		(object - base) % s->size) {
 261		return 0;
 262	}
 263
 264	return 1;
 265}
 266
 267static inline void *get_freepointer(struct kmem_cache *s, void *object)
 268{
 269	return *(void **)(object + s->offset);
 270}
 271
 272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 273{
 274	void *p;
 275
 276#ifdef CONFIG_DEBUG_PAGEALLOC
 
 
 277	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 278#else
 279	p = get_freepointer(s, object);
 280#endif
 281	return p;
 282}
 283
 284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 285{
 286	*(void **)(object + s->offset) = fp;
 287}
 288
 289/* Loop over all objects in a slab */
 290#define for_each_object(__p, __s, __addr, __objects) \
 291	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
 292			__p += (__s)->size)
 
 
 
 
 
 
 293
 294/* Determine object index from a given position */
 295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 296{
 297	return (p - addr) / s->size;
 298}
 299
 300static inline size_t slab_ksize(const struct kmem_cache *s)
 301{
 302#ifdef CONFIG_SLUB_DEBUG
 303	/*
 304	 * Debugging requires use of the padding between object
 305	 * and whatever may come after it.
 306	 */
 307	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 308		return s->objsize;
 309
 310#endif
 311	/*
 312	 * If we have the need to store the freelist pointer
 313	 * back there or track user information then we can
 314	 * only use the space before that information.
 315	 */
 316	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 317		return s->inuse;
 318	/*
 319	 * Else we can use all the padding etc for the allocation
 320	 */
 321	return s->size;
 322}
 323
 324static inline int order_objects(int order, unsigned long size, int reserved)
 325{
 326	return ((PAGE_SIZE << order) - reserved) / size;
 327}
 328
 329static inline struct kmem_cache_order_objects oo_make(int order,
 330		unsigned long size, int reserved)
 331{
 332	struct kmem_cache_order_objects x = {
 333		(order << OO_SHIFT) + order_objects(order, size, reserved)
 334	};
 335
 336	return x;
 337}
 338
 339static inline int oo_order(struct kmem_cache_order_objects x)
 340{
 341	return x.x >> OO_SHIFT;
 342}
 343
 344static inline int oo_objects(struct kmem_cache_order_objects x)
 345{
 346	return x.x & OO_MASK;
 347}
 348
 349/*
 350 * Per slab locking using the pagelock
 351 */
 352static __always_inline void slab_lock(struct page *page)
 353{
 
 354	bit_spin_lock(PG_locked, &page->flags);
 355}
 356
 357static __always_inline void slab_unlock(struct page *page)
 358{
 
 359	__bit_spin_unlock(PG_locked, &page->flags);
 360}
 361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362/* Interrupts must be disabled (for the fallback code to work right) */
 363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 364		void *freelist_old, unsigned long counters_old,
 365		void *freelist_new, unsigned long counters_new,
 366		const char *n)
 367{
 368	VM_BUG_ON(!irqs_disabled());
 369#ifdef CONFIG_CMPXCHG_DOUBLE
 
 370	if (s->flags & __CMPXCHG_DOUBLE) {
 371		if (cmpxchg_double(&page->freelist,
 372			freelist_old, counters_old,
 373			freelist_new, counters_new))
 374		return 1;
 375	} else
 376#endif
 377	{
 378		slab_lock(page);
 379		if (page->freelist == freelist_old && page->counters == counters_old) {
 
 380			page->freelist = freelist_new;
 381			page->counters = counters_new;
 382			slab_unlock(page);
 383			return 1;
 384		}
 385		slab_unlock(page);
 386	}
 387
 388	cpu_relax();
 389	stat(s, CMPXCHG_DOUBLE_FAIL);
 390
 391#ifdef SLUB_DEBUG_CMPXCHG
 392	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 393#endif
 394
 395	return 0;
 396}
 397
 398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 399		void *freelist_old, unsigned long counters_old,
 400		void *freelist_new, unsigned long counters_new,
 401		const char *n)
 402{
 403#ifdef CONFIG_CMPXCHG_DOUBLE
 
 404	if (s->flags & __CMPXCHG_DOUBLE) {
 405		if (cmpxchg_double(&page->freelist,
 406			freelist_old, counters_old,
 407			freelist_new, counters_new))
 408		return 1;
 409	} else
 410#endif
 411	{
 412		unsigned long flags;
 413
 414		local_irq_save(flags);
 415		slab_lock(page);
 416		if (page->freelist == freelist_old && page->counters == counters_old) {
 
 417			page->freelist = freelist_new;
 418			page->counters = counters_new;
 419			slab_unlock(page);
 420			local_irq_restore(flags);
 421			return 1;
 422		}
 423		slab_unlock(page);
 424		local_irq_restore(flags);
 425	}
 426
 427	cpu_relax();
 428	stat(s, CMPXCHG_DOUBLE_FAIL);
 429
 430#ifdef SLUB_DEBUG_CMPXCHG
 431	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 432#endif
 433
 434	return 0;
 435}
 436
 437#ifdef CONFIG_SLUB_DEBUG
 438/*
 439 * Determine a map of object in use on a page.
 440 *
 441 * Node listlock must be held to guarantee that the page does
 442 * not vanish from under us.
 443 */
 444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 445{
 446	void *p;
 447	void *addr = page_address(page);
 448
 449	for (p = page->freelist; p; p = get_freepointer(s, p))
 450		set_bit(slab_index(p, s, addr), map);
 451}
 452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453/*
 454 * Debug settings:
 455 */
 456#ifdef CONFIG_SLUB_DEBUG_ON
 457static int slub_debug = DEBUG_DEFAULT_FLAGS;
 458#else
 459static int slub_debug;
 460#endif
 461
 462static char *slub_debug_slabs;
 463static int disable_higher_order_debug;
 464
 465/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466 * Object debugging
 467 */
 468static void print_section(char *text, u8 *addr, unsigned int length)
 
 
 
 469{
 470	int i, offset;
 471	int newline = 1;
 472	char ascii[17];
 473
 474	ascii[16] = 0;
 475
 476	for (i = 0; i < length; i++) {
 477		if (newline) {
 478			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
 479			newline = 0;
 480		}
 481		printk(KERN_CONT " %02x", addr[i]);
 482		offset = i % 16;
 483		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
 484		if (offset == 15) {
 485			printk(KERN_CONT " %s\n", ascii);
 486			newline = 1;
 487		}
 488	}
 489	if (!newline) {
 490		i %= 16;
 491		while (i < 16) {
 492			printk(KERN_CONT "   ");
 493			ascii[i] = ' ';
 494			i++;
 495		}
 496		printk(KERN_CONT " %s\n", ascii);
 497	}
 
 
 
 
 
 
 
 
 
 
 
 498}
 499
 500static struct track *get_track(struct kmem_cache *s, void *object,
 501	enum track_item alloc)
 502{
 503	struct track *p;
 504
 505	if (s->offset)
 506		p = object + s->offset + sizeof(void *);
 507	else
 508		p = object + s->inuse;
 509
 510	return p + alloc;
 511}
 512
 513static void set_track(struct kmem_cache *s, void *object,
 514			enum track_item alloc, unsigned long addr)
 515{
 516	struct track *p = get_track(s, object, alloc);
 517
 518	if (addr) {
 519#ifdef CONFIG_STACKTRACE
 520		struct stack_trace trace;
 521		int i;
 522
 523		trace.nr_entries = 0;
 524		trace.max_entries = TRACK_ADDRS_COUNT;
 525		trace.entries = p->addrs;
 526		trace.skip = 3;
 
 527		save_stack_trace(&trace);
 
 528
 529		/* See rant in lockdep.c */
 530		if (trace.nr_entries != 0 &&
 531		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 532			trace.nr_entries--;
 533
 534		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 535			p->addrs[i] = 0;
 536#endif
 537		p->addr = addr;
 538		p->cpu = smp_processor_id();
 539		p->pid = current->pid;
 540		p->when = jiffies;
 541	} else
 542		memset(p, 0, sizeof(struct track));
 543}
 544
 545static void init_tracking(struct kmem_cache *s, void *object)
 546{
 547	if (!(s->flags & SLAB_STORE_USER))
 548		return;
 549
 550	set_track(s, object, TRACK_FREE, 0UL);
 551	set_track(s, object, TRACK_ALLOC, 0UL);
 552}
 553
 554static void print_track(const char *s, struct track *t)
 555{
 556	if (!t->addr)
 557		return;
 558
 559	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 560		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 561#ifdef CONFIG_STACKTRACE
 562	{
 563		int i;
 564		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 565			if (t->addrs[i])
 566				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
 567			else
 568				break;
 569	}
 570#endif
 571}
 572
 573static void print_tracking(struct kmem_cache *s, void *object)
 574{
 575	if (!(s->flags & SLAB_STORE_USER))
 576		return;
 577
 578	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 579	print_track("Freed", get_track(s, object, TRACK_FREE));
 580}
 581
 582static void print_page_info(struct page *page)
 583{
 584	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 585		page, page->objects, page->inuse, page->freelist, page->flags);
 586
 587}
 588
 589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 590{
 
 591	va_list args;
 592	char buf[100];
 593
 594	va_start(args, fmt);
 595	vsnprintf(buf, sizeof(buf), fmt, args);
 
 
 
 
 
 
 596	va_end(args);
 597	printk(KERN_ERR "========================================"
 598			"=====================================\n");
 599	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
 600	printk(KERN_ERR "----------------------------------------"
 601			"-------------------------------------\n\n");
 602}
 603
 604static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 605{
 
 606	va_list args;
 607	char buf[100];
 608
 609	va_start(args, fmt);
 610	vsnprintf(buf, sizeof(buf), fmt, args);
 
 
 611	va_end(args);
 612	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
 613}
 614
 615static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 616{
 617	unsigned int off;	/* Offset of last byte */
 618	u8 *addr = page_address(page);
 619
 620	print_tracking(s, p);
 621
 622	print_page_info(page);
 623
 624	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 625			p, p - addr, get_freepointer(s, p));
 626
 627	if (p > addr + 16)
 628		print_section("Bytes b4", p - 16, 16);
 629
 630	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
 
 
 
 
 631
 
 
 632	if (s->flags & SLAB_RED_ZONE)
 633		print_section("Redzone", p + s->objsize,
 634			s->inuse - s->objsize);
 635
 636	if (s->offset)
 637		off = s->offset + sizeof(void *);
 638	else
 639		off = s->inuse;
 640
 641	if (s->flags & SLAB_STORE_USER)
 642		off += 2 * sizeof(struct track);
 643
 644	if (off != s->size)
 
 
 645		/* Beginning of the filler is the free pointer */
 646		print_section("Padding", p + off, s->size - off);
 
 647
 648	dump_stack();
 649}
 650
 651static void object_err(struct kmem_cache *s, struct page *page,
 652			u8 *object, char *reason)
 653{
 654	slab_bug(s, "%s", reason);
 655	print_trailer(s, page, object);
 656}
 657
 658static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
 
 659{
 660	va_list args;
 661	char buf[100];
 662
 663	va_start(args, fmt);
 664	vsnprintf(buf, sizeof(buf), fmt, args);
 665	va_end(args);
 666	slab_bug(s, "%s", buf);
 667	print_page_info(page);
 668	dump_stack();
 669}
 670
 671static void init_object(struct kmem_cache *s, void *object, u8 val)
 672{
 673	u8 *p = object;
 674
 675	if (s->flags & __OBJECT_POISON) {
 676		memset(p, POISON_FREE, s->objsize - 1);
 677		p[s->objsize - 1] = POISON_END;
 678	}
 679
 680	if (s->flags & SLAB_RED_ZONE)
 681		memset(p + s->objsize, val, s->inuse - s->objsize);
 682}
 683
 684static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
 685{
 686	while (bytes) {
 687		if (*start != value)
 688			return start;
 689		start++;
 690		bytes--;
 691	}
 692	return NULL;
 693}
 694
 695static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
 696{
 697	u64 value64;
 698	unsigned int words, prefix;
 699
 700	if (bytes <= 16)
 701		return check_bytes8(start, value, bytes);
 702
 703	value64 = value | value << 8 | value << 16 | value << 24;
 704	value64 = (value64 & 0xffffffff) | value64 << 32;
 705	prefix = 8 - ((unsigned long)start) % 8;
 706
 707	if (prefix) {
 708		u8 *r = check_bytes8(start, value, prefix);
 709		if (r)
 710			return r;
 711		start += prefix;
 712		bytes -= prefix;
 713	}
 714
 715	words = bytes / 8;
 716
 717	while (words) {
 718		if (*(u64 *)start != value64)
 719			return check_bytes8(start, value, 8);
 720		start += 8;
 721		words--;
 722	}
 723
 724	return check_bytes8(start, value, bytes % 8);
 
 725}
 726
 727static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 728						void *from, void *to)
 729{
 730	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 731	memset(from, data, to - from);
 732}
 733
 734static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 735			u8 *object, char *what,
 736			u8 *start, unsigned int value, unsigned int bytes)
 737{
 738	u8 *fault;
 739	u8 *end;
 740
 741	fault = check_bytes(start, value, bytes);
 
 
 742	if (!fault)
 743		return 1;
 744
 745	end = start + bytes;
 746	while (end > fault && end[-1] == value)
 747		end--;
 748
 749	slab_bug(s, "%s overwritten", what);
 750	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 751					fault, end - 1, fault[0], value);
 752	print_trailer(s, page, object);
 753
 754	restore_bytes(s, what, value, fault, end);
 755	return 0;
 756}
 757
 758/*
 759 * Object layout:
 760 *
 761 * object address
 762 * 	Bytes of the object to be managed.
 763 * 	If the freepointer may overlay the object then the free
 764 * 	pointer is the first word of the object.
 765 *
 766 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 767 * 	0xa5 (POISON_END)
 768 *
 769 * object + s->objsize
 770 * 	Padding to reach word boundary. This is also used for Redzoning.
 771 * 	Padding is extended by another word if Redzoning is enabled and
 772 * 	objsize == inuse.
 773 *
 774 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 775 * 	0xcc (RED_ACTIVE) for objects in use.
 776 *
 777 * object + s->inuse
 778 * 	Meta data starts here.
 779 *
 780 * 	A. Free pointer (if we cannot overwrite object on free)
 781 * 	B. Tracking data for SLAB_STORE_USER
 782 * 	C. Padding to reach required alignment boundary or at mininum
 783 * 		one word if debugging is on to be able to detect writes
 784 * 		before the word boundary.
 785 *
 786 *	Padding is done using 0x5a (POISON_INUSE)
 787 *
 788 * object + s->size
 789 * 	Nothing is used beyond s->size.
 790 *
 791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 792 * ignored. And therefore no slab options that rely on these boundaries
 793 * may be used with merged slabcaches.
 794 */
 795
 796static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 797{
 798	unsigned long off = s->inuse;	/* The end of info */
 799
 800	if (s->offset)
 801		/* Freepointer is placed after the object. */
 802		off += sizeof(void *);
 803
 804	if (s->flags & SLAB_STORE_USER)
 805		/* We also have user information there */
 806		off += 2 * sizeof(struct track);
 807
 808	if (s->size == off)
 
 
 809		return 1;
 810
 811	return check_bytes_and_report(s, page, p, "Object padding",
 812				p + off, POISON_INUSE, s->size - off);
 813}
 814
 815/* Check the pad bytes at the end of a slab page */
 816static int slab_pad_check(struct kmem_cache *s, struct page *page)
 817{
 818	u8 *start;
 819	u8 *fault;
 820	u8 *end;
 821	int length;
 822	int remainder;
 823
 824	if (!(s->flags & SLAB_POISON))
 825		return 1;
 826
 827	start = page_address(page);
 828	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 829	end = start + length;
 830	remainder = length % s->size;
 831	if (!remainder)
 832		return 1;
 833
 834	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
 
 
 835	if (!fault)
 836		return 1;
 837	while (end > fault && end[-1] == POISON_INUSE)
 838		end--;
 839
 840	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 841	print_section("Padding", end - remainder, remainder);
 842
 843	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 844	return 0;
 845}
 846
 847static int check_object(struct kmem_cache *s, struct page *page,
 848					void *object, u8 val)
 849{
 850	u8 *p = object;
 851	u8 *endobject = object + s->objsize;
 852
 853	if (s->flags & SLAB_RED_ZONE) {
 854		if (!check_bytes_and_report(s, page, object, "Redzone",
 855			endobject, val, s->inuse - s->objsize))
 
 
 
 
 856			return 0;
 857	} else {
 858		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
 859			check_bytes_and_report(s, page, p, "Alignment padding",
 860				endobject, POISON_INUSE, s->inuse - s->objsize);
 
 861		}
 862	}
 863
 864	if (s->flags & SLAB_POISON) {
 865		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 866			(!check_bytes_and_report(s, page, p, "Poison", p,
 867					POISON_FREE, s->objsize - 1) ||
 868			 !check_bytes_and_report(s, page, p, "Poison",
 869				p + s->objsize - 1, POISON_END, 1)))
 870			return 0;
 871		/*
 872		 * check_pad_bytes cleans up on its own.
 873		 */
 874		check_pad_bytes(s, page, p);
 875	}
 876
 877	if (!s->offset && val == SLUB_RED_ACTIVE)
 878		/*
 879		 * Object and freepointer overlap. Cannot check
 880		 * freepointer while object is allocated.
 881		 */
 882		return 1;
 883
 884	/* Check free pointer validity */
 885	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 886		object_err(s, page, p, "Freepointer corrupt");
 887		/*
 888		 * No choice but to zap it and thus lose the remainder
 889		 * of the free objects in this slab. May cause
 890		 * another error because the object count is now wrong.
 891		 */
 892		set_freepointer(s, p, NULL);
 893		return 0;
 894	}
 895	return 1;
 896}
 897
 898static int check_slab(struct kmem_cache *s, struct page *page)
 899{
 900	int maxobj;
 901
 902	VM_BUG_ON(!irqs_disabled());
 903
 904	if (!PageSlab(page)) {
 905		slab_err(s, page, "Not a valid slab page");
 906		return 0;
 907	}
 908
 909	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 910	if (page->objects > maxobj) {
 911		slab_err(s, page, "objects %u > max %u",
 912			s->name, page->objects, maxobj);
 913		return 0;
 914	}
 915	if (page->inuse > page->objects) {
 916		slab_err(s, page, "inuse %u > max %u",
 917			s->name, page->inuse, page->objects);
 918		return 0;
 919	}
 920	/* Slab_pad_check fixes things up after itself */
 921	slab_pad_check(s, page);
 922	return 1;
 923}
 924
 925/*
 926 * Determine if a certain object on a page is on the freelist. Must hold the
 927 * slab lock to guarantee that the chains are in a consistent state.
 928 */
 929static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 930{
 931	int nr = 0;
 932	void *fp;
 933	void *object = NULL;
 934	unsigned long max_objects;
 935
 936	fp = page->freelist;
 937	while (fp && nr <= page->objects) {
 938		if (fp == search)
 939			return 1;
 940		if (!check_valid_pointer(s, page, fp)) {
 941			if (object) {
 942				object_err(s, page, object,
 943					"Freechain corrupt");
 944				set_freepointer(s, object, NULL);
 945				break;
 946			} else {
 947				slab_err(s, page, "Freepointer corrupt");
 948				page->freelist = NULL;
 949				page->inuse = page->objects;
 950				slab_fix(s, "Freelist cleared");
 951				return 0;
 952			}
 953			break;
 954		}
 955		object = fp;
 956		fp = get_freepointer(s, object);
 957		nr++;
 958	}
 959
 960	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 961	if (max_objects > MAX_OBJS_PER_PAGE)
 962		max_objects = MAX_OBJS_PER_PAGE;
 963
 964	if (page->objects != max_objects) {
 965		slab_err(s, page, "Wrong number of objects. Found %d but "
 966			"should be %d", page->objects, max_objects);
 967		page->objects = max_objects;
 968		slab_fix(s, "Number of objects adjusted.");
 969	}
 970	if (page->inuse != page->objects - nr) {
 971		slab_err(s, page, "Wrong object count. Counter is %d but "
 972			"counted were %d", page->inuse, page->objects - nr);
 973		page->inuse = page->objects - nr;
 974		slab_fix(s, "Object count adjusted.");
 975	}
 976	return search == NULL;
 977}
 978
 979static void trace(struct kmem_cache *s, struct page *page, void *object,
 980								int alloc)
 981{
 982	if (s->flags & SLAB_TRACE) {
 983		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 984			s->name,
 985			alloc ? "alloc" : "free",
 986			object, page->inuse,
 987			page->freelist);
 988
 989		if (!alloc)
 990			print_section("Object", (void *)object, s->objsize);
 
 991
 992		dump_stack();
 993	}
 994}
 995
 996/*
 997 * Hooks for other subsystems that check memory allocations. In a typical
 998 * production configuration these hooks all should produce no code at all.
 999 */
1000static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1001{
1002	flags &= gfp_allowed_mask;
1003	lockdep_trace_alloc(flags);
1004	might_sleep_if(flags & __GFP_WAIT);
1005
1006	return should_failslab(s->objsize, flags, s->flags);
1007}
1008
1009static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
1010{
1011	flags &= gfp_allowed_mask;
1012	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1013	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1014}
1015
1016static inline void slab_free_hook(struct kmem_cache *s, void *x)
1017{
1018	kmemleak_free_recursive(x, s->flags);
1019
1020	/*
1021	 * Trouble is that we may no longer disable interupts in the fast path
1022	 * So in order to make the debug calls that expect irqs to be
1023	 * disabled we need to disable interrupts temporarily.
1024	 */
1025#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1026	{
1027		unsigned long flags;
1028
1029		local_irq_save(flags);
1030		kmemcheck_slab_free(s, x, s->objsize);
1031		debug_check_no_locks_freed(x, s->objsize);
1032		local_irq_restore(flags);
1033	}
1034#endif
1035	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036		debug_check_no_obj_freed(x, s->objsize);
1037}
1038
1039/*
1040 * Tracking of fully allocated slabs for debugging purposes.
1041 *
1042 * list_lock must be held.
1043 */
1044static void add_full(struct kmem_cache *s,
1045	struct kmem_cache_node *n, struct page *page)
1046{
1047	if (!(s->flags & SLAB_STORE_USER))
1048		return;
1049
 
1050	list_add(&page->lru, &n->full);
1051}
1052
1053/*
1054 * list_lock must be held.
1055 */
1056static void remove_full(struct kmem_cache *s, struct page *page)
1057{
1058	if (!(s->flags & SLAB_STORE_USER))
1059		return;
1060
 
1061	list_del(&page->lru);
1062}
1063
1064/* Tracking of the number of slabs for debugging purposes */
1065static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066{
1067	struct kmem_cache_node *n = get_node(s, node);
1068
1069	return atomic_long_read(&n->nr_slabs);
1070}
1071
1072static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1073{
1074	return atomic_long_read(&n->nr_slabs);
1075}
1076
1077static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1078{
1079	struct kmem_cache_node *n = get_node(s, node);
1080
1081	/*
1082	 * May be called early in order to allocate a slab for the
1083	 * kmem_cache_node structure. Solve the chicken-egg
1084	 * dilemma by deferring the increment of the count during
1085	 * bootstrap (see early_kmem_cache_node_alloc).
1086	 */
1087	if (n) {
1088		atomic_long_inc(&n->nr_slabs);
1089		atomic_long_add(objects, &n->total_objects);
1090	}
1091}
1092static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1093{
1094	struct kmem_cache_node *n = get_node(s, node);
1095
1096	atomic_long_dec(&n->nr_slabs);
1097	atomic_long_sub(objects, &n->total_objects);
1098}
1099
1100/* Object debug checks for alloc/free paths */
1101static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102								void *object)
1103{
1104	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105		return;
1106
1107	init_object(s, object, SLUB_RED_INACTIVE);
1108	init_tracking(s, object);
1109}
1110
1111static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
 
1112					void *object, unsigned long addr)
1113{
1114	if (!check_slab(s, page))
1115		goto bad;
1116
1117	if (!check_valid_pointer(s, page, object)) {
1118		object_err(s, page, object, "Freelist Pointer check fails");
1119		goto bad;
1120	}
1121
1122	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1123		goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
1124
1125	/* Success perform special debug activities for allocs */
1126	if (s->flags & SLAB_STORE_USER)
1127		set_track(s, object, TRACK_ALLOC, addr);
1128	trace(s, page, object, 1);
1129	init_object(s, object, SLUB_RED_ACTIVE);
1130	return 1;
1131
1132bad:
1133	if (PageSlab(page)) {
1134		/*
1135		 * If this is a slab page then lets do the best we can
1136		 * to avoid issues in the future. Marking all objects
1137		 * as used avoids touching the remaining objects.
1138		 */
1139		slab_fix(s, "Marking all objects used");
1140		page->inuse = page->objects;
1141		page->freelist = NULL;
1142	}
1143	return 0;
1144}
1145
1146static noinline int free_debug_processing(struct kmem_cache *s,
1147		 struct page *page, void *object, unsigned long addr)
1148{
1149	unsigned long flags;
1150	int rc = 0;
1151
1152	local_irq_save(flags);
1153	slab_lock(page);
1154
1155	if (!check_slab(s, page))
1156		goto fail;
1157
1158	if (!check_valid_pointer(s, page, object)) {
1159		slab_err(s, page, "Invalid object pointer 0x%p", object);
1160		goto fail;
1161	}
1162
1163	if (on_freelist(s, page, object)) {
1164		object_err(s, page, object, "Object already free");
1165		goto fail;
1166	}
1167
1168	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169		goto out;
1170
1171	if (unlikely(s != page->slab)) {
1172		if (!PageSlab(page)) {
1173			slab_err(s, page, "Attempt to free object(0x%p) "
1174				"outside of slab", object);
1175		} else if (!page->slab) {
1176			printk(KERN_ERR
1177				"SLUB <none>: no slab for object 0x%p.\n",
1178						object);
1179			dump_stack();
1180		} else
1181			object_err(s, page, object,
1182					"page slab pointer corrupt.");
1183		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184	}
1185
1186	if (s->flags & SLAB_STORE_USER)
1187		set_track(s, object, TRACK_FREE, addr);
1188	trace(s, page, object, 0);
 
1189	init_object(s, object, SLUB_RED_INACTIVE);
1190	rc = 1;
 
 
 
 
 
 
 
1191out:
1192	slab_unlock(page);
1193	local_irq_restore(flags);
1194	return rc;
1195
1196fail:
1197	slab_fix(s, "Object at 0x%p not freed", object);
1198	goto out;
 
 
1199}
1200
1201static int __init setup_slub_debug(char *str)
1202{
1203	slub_debug = DEBUG_DEFAULT_FLAGS;
1204	if (*str++ != '=' || !*str)
1205		/*
1206		 * No options specified. Switch on full debugging.
1207		 */
1208		goto out;
1209
1210	if (*str == ',')
1211		/*
1212		 * No options but restriction on slabs. This means full
1213		 * debugging for slabs matching a pattern.
1214		 */
1215		goto check_slabs;
1216
1217	if (tolower(*str) == 'o') {
1218		/*
1219		 * Avoid enabling debugging on caches if its minimum order
1220		 * would increase as a result.
1221		 */
1222		disable_higher_order_debug = 1;
1223		goto out;
1224	}
1225
1226	slub_debug = 0;
1227	if (*str == '-')
1228		/*
1229		 * Switch off all debugging measures.
1230		 */
1231		goto out;
1232
1233	/*
1234	 * Determine which debug features should be switched on
1235	 */
1236	for (; *str && *str != ','; str++) {
1237		switch (tolower(*str)) {
1238		case 'f':
1239			slub_debug |= SLAB_DEBUG_FREE;
1240			break;
1241		case 'z':
1242			slub_debug |= SLAB_RED_ZONE;
1243			break;
1244		case 'p':
1245			slub_debug |= SLAB_POISON;
1246			break;
1247		case 'u':
1248			slub_debug |= SLAB_STORE_USER;
1249			break;
1250		case 't':
1251			slub_debug |= SLAB_TRACE;
1252			break;
1253		case 'a':
1254			slub_debug |= SLAB_FAILSLAB;
1255			break;
 
 
 
 
 
 
 
1256		default:
1257			printk(KERN_ERR "slub_debug option '%c' "
1258				"unknown. skipped\n", *str);
1259		}
1260	}
1261
1262check_slabs:
1263	if (*str == ',')
1264		slub_debug_slabs = str + 1;
1265out:
1266	return 1;
1267}
1268
1269__setup("slub_debug", setup_slub_debug);
1270
1271static unsigned long kmem_cache_flags(unsigned long objsize,
1272	unsigned long flags, const char *name,
1273	void (*ctor)(void *))
1274{
1275	/*
1276	 * Enable debugging if selected on the kernel commandline.
1277	 */
1278	if (slub_debug && (!slub_debug_slabs ||
1279		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280		flags |= slub_debug;
1281
1282	return flags;
1283}
1284#else
1285static inline void setup_object_debug(struct kmem_cache *s,
1286			struct page *page, void *object) {}
1287
1288static inline int alloc_debug_processing(struct kmem_cache *s,
1289	struct page *page, void *object, unsigned long addr) { return 0; }
1290
1291static inline int free_debug_processing(struct kmem_cache *s,
1292	struct page *page, void *object, unsigned long addr) { return 0; }
 
 
1293
1294static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295			{ return 1; }
1296static inline int check_object(struct kmem_cache *s, struct page *page,
1297			void *object, u8 val) { return 1; }
1298static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299					struct page *page) {}
1300static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1301static inline unsigned long kmem_cache_flags(unsigned long objsize,
 
1302	unsigned long flags, const char *name,
1303	void (*ctor)(void *))
1304{
1305	return flags;
1306}
1307#define slub_debug 0
1308
1309#define disable_higher_order_debug 0
1310
1311static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312							{ return 0; }
1313static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314							{ return 0; }
1315static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316							int objects) {}
1317static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318							int objects) {}
1319
1320static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321							{ return 0; }
1322
1323static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324		void *object) {}
 
 
 
 
 
 
 
1325
1326static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
 
 
 
 
1327
1328#endif /* CONFIG_SLUB_DEBUG */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329
1330/*
1331 * Slab allocation and freeing
1332 */
1333static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334					struct kmem_cache_order_objects oo)
1335{
 
1336	int order = oo_order(oo);
1337
1338	flags |= __GFP_NOTRACK;
1339
1340	if (node == NUMA_NO_NODE)
1341		return alloc_pages(flags, order);
1342	else
1343		return alloc_pages_exact_node(node, flags, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344}
1345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
1348	struct page *page;
1349	struct kmem_cache_order_objects oo = s->oo;
1350	gfp_t alloc_gfp;
 
 
 
1351
1352	flags &= gfp_allowed_mask;
1353
1354	if (flags & __GFP_WAIT)
1355		local_irq_enable();
1356
1357	flags |= s->allocflags;
1358
1359	/*
1360	 * Let the initial higher-order allocation fail under memory pressure
1361	 * so we fall-back to the minimum order allocation.
1362	 */
1363	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
 
 
1364
1365	page = alloc_slab_page(alloc_gfp, node, oo);
1366	if (unlikely(!page)) {
1367		oo = s->min;
 
1368		/*
1369		 * Allocation may have failed due to fragmentation.
1370		 * Try a lower order alloc if possible
1371		 */
1372		page = alloc_slab_page(flags, node, oo);
1373
1374		if (page)
1375			stat(s, ORDER_FALLBACK);
1376	}
1377
1378	if (flags & __GFP_WAIT)
1379		local_irq_disable();
1380
1381	if (!page)
1382		return NULL;
1383
1384	if (kmemcheck_enabled
1385		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1386		int pages = 1 << oo_order(oo);
1387
1388		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1389
1390		/*
1391		 * Objects from caches that have a constructor don't get
1392		 * cleared when they're allocated, so we need to do it here.
1393		 */
1394		if (s->ctor)
1395			kmemcheck_mark_uninitialized_pages(page, pages);
1396		else
1397			kmemcheck_mark_unallocated_pages(page, pages);
1398	}
1399
1400	page->objects = oo_objects(oo);
1401	mod_zone_page_state(page_zone(page),
1402		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1404		1 << oo_order(oo));
1405
1406	return page;
1407}
 
 
 
1408
1409static void setup_object(struct kmem_cache *s, struct page *page,
1410				void *object)
1411{
1412	setup_object_debug(s, page, object);
1413	if (unlikely(s->ctor))
1414		s->ctor(object);
1415}
1416
1417static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1418{
1419	struct page *page;
1420	void *start;
1421	void *last;
1422	void *p;
1423
1424	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1425
1426	page = allocate_slab(s,
1427		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428	if (!page)
1429		goto out;
1430
1431	inc_slabs_node(s, page_to_nid(page), page->objects);
1432	page->slab = s;
1433	page->flags |= 1 << PG_slab;
 
1434
1435	start = page_address(page);
1436
1437	if (unlikely(s->flags & SLAB_POISON))
1438		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1439
1440	last = start;
1441	for_each_object(p, s, start, page->objects) {
1442		setup_object(s, page, last);
1443		set_freepointer(s, last, p);
1444		last = p;
 
 
1445	}
1446	setup_object(s, page, last);
1447	set_freepointer(s, last, NULL);
1448
1449	page->freelist = start;
1450	page->inuse = 0;
1451	page->frozen = 1;
1452out:
1453	return page;
1454}
1455
1456static void __free_slab(struct kmem_cache *s, struct page *page)
1457{
1458	int order = compound_order(page);
1459	int pages = 1 << order;
1460
1461	if (kmem_cache_debug(s)) {
1462		void *p;
1463
1464		slab_pad_check(s, page);
1465		for_each_object(p, s, page_address(page),
1466						page->objects)
1467			check_object(s, page, p, SLUB_RED_INACTIVE);
1468	}
1469
1470	kmemcheck_free_shadow(page, compound_order(page));
1471
1472	mod_zone_page_state(page_zone(page),
1473		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1475		-pages);
1476
 
1477	__ClearPageSlab(page);
1478	reset_page_mapcount(page);
 
1479	if (current->reclaim_state)
1480		current->reclaim_state->reclaimed_slab += pages;
 
1481	__free_pages(page, order);
1482}
1483
1484#define need_reserve_slab_rcu						\
1485	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
1487static void rcu_free_slab(struct rcu_head *h)
1488{
1489	struct page *page;
1490
1491	if (need_reserve_slab_rcu)
1492		page = virt_to_head_page(h);
1493	else
1494		page = container_of((struct list_head *)h, struct page, lru);
1495
1496	__free_slab(page->slab, page);
1497}
1498
1499static void free_slab(struct kmem_cache *s, struct page *page)
1500{
1501	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1502		struct rcu_head *head;
1503
1504		if (need_reserve_slab_rcu) {
1505			int order = compound_order(page);
1506			int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508			VM_BUG_ON(s->reserved != sizeof(*head));
1509			head = page_address(page) + offset;
1510		} else {
1511			/*
1512			 * RCU free overloads the RCU head over the LRU
1513			 */
1514			head = (void *)&page->lru;
1515		}
1516
1517		call_rcu(head, rcu_free_slab);
1518	} else
1519		__free_slab(s, page);
1520}
1521
1522static void discard_slab(struct kmem_cache *s, struct page *page)
1523{
1524	dec_slabs_node(s, page_to_nid(page), page->objects);
1525	free_slab(s, page);
1526}
1527
1528/*
1529 * Management of partially allocated slabs.
1530 *
1531 * list_lock must be held.
1532 */
1533static inline void add_partial(struct kmem_cache_node *n,
1534				struct page *page, int tail)
1535{
1536	n->nr_partial++;
1537	if (tail)
1538		list_add_tail(&page->lru, &n->partial);
1539	else
1540		list_add(&page->lru, &n->partial);
1541}
1542
1543/*
1544 * list_lock must be held.
1545 */
 
 
 
 
1546static inline void remove_partial(struct kmem_cache_node *n,
1547					struct page *page)
1548{
 
1549	list_del(&page->lru);
1550	n->nr_partial--;
1551}
1552
1553/*
1554 * Lock slab, remove from the partial list and put the object into the
1555 * per cpu freelist.
1556 *
1557 * Must hold list_lock.
1558 */
1559static inline int acquire_slab(struct kmem_cache *s,
1560		struct kmem_cache_node *n, struct page *page)
 
1561{
1562	void *freelist;
1563	unsigned long counters;
1564	struct page new;
1565
 
 
1566	/*
1567	 * Zap the freelist and set the frozen bit.
1568	 * The old freelist is the list of objects for the
1569	 * per cpu allocation list.
1570	 */
1571	do {
1572		freelist = page->freelist;
1573		counters = page->counters;
1574		new.counters = counters;
 
1575		new.inuse = page->objects;
 
 
 
 
1576
1577		VM_BUG_ON(new.frozen);
1578		new.frozen = 1;
1579
1580	} while (!__cmpxchg_double_slab(s, page,
1581			freelist, counters,
1582			NULL, new.counters,
1583			"lock and freeze"));
 
1584
1585	remove_partial(n, page);
1586
1587	if (freelist) {
1588		/* Populate the per cpu freelist */
1589		this_cpu_write(s->cpu_slab->freelist, freelist);
1590		this_cpu_write(s->cpu_slab->page, page);
1591		this_cpu_write(s->cpu_slab->node, page_to_nid(page));
1592		return 1;
1593	} else {
1594		/*
1595		 * Slab page came from the wrong list. No object to allocate
1596		 * from. Put it onto the correct list and continue partial
1597		 * scan.
1598		 */
1599		printk(KERN_ERR "SLUB: %s : Page without available objects on"
1600			" partial list\n", s->name);
1601		return 0;
1602	}
1603}
1604
 
 
 
1605/*
1606 * Try to allocate a partial slab from a specific node.
1607 */
1608static struct page *get_partial_node(struct kmem_cache *s,
1609					struct kmem_cache_node *n)
1610{
1611	struct page *page;
 
 
 
1612
1613	/*
1614	 * Racy check. If we mistakenly see no partial slabs then we
1615	 * just allocate an empty slab. If we mistakenly try to get a
1616	 * partial slab and there is none available then get_partials()
1617	 * will return NULL.
1618	 */
1619	if (!n || !n->nr_partial)
1620		return NULL;
1621
1622	spin_lock(&n->list_lock);
1623	list_for_each_entry(page, &n->partial, lru)
1624		if (acquire_slab(s, n, page))
1625			goto out;
1626	page = NULL;
1627out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628	spin_unlock(&n->list_lock);
1629	return page;
1630}
1631
1632/*
1633 * Get a page from somewhere. Search in increasing NUMA distances.
1634 */
1635static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
 
1636{
1637#ifdef CONFIG_NUMA
1638	struct zonelist *zonelist;
1639	struct zoneref *z;
1640	struct zone *zone;
1641	enum zone_type high_zoneidx = gfp_zone(flags);
1642	struct page *page;
 
1643
1644	/*
1645	 * The defrag ratio allows a configuration of the tradeoffs between
1646	 * inter node defragmentation and node local allocations. A lower
1647	 * defrag_ratio increases the tendency to do local allocations
1648	 * instead of attempting to obtain partial slabs from other nodes.
1649	 *
1650	 * If the defrag_ratio is set to 0 then kmalloc() always
1651	 * returns node local objects. If the ratio is higher then kmalloc()
1652	 * may return off node objects because partial slabs are obtained
1653	 * from other nodes and filled up.
1654	 *
1655	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1656	 * defrag_ratio = 1000) then every (well almost) allocation will
1657	 * first attempt to defrag slab caches on other nodes. This means
1658	 * scanning over all nodes to look for partial slabs which may be
1659	 * expensive if we do it every time we are trying to find a slab
1660	 * with available objects.
1661	 */
1662	if (!s->remote_node_defrag_ratio ||
1663			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1664		return NULL;
1665
1666	get_mems_allowed();
1667	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1668	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669		struct kmem_cache_node *n;
1670
1671		n = get_node(s, zone_to_nid(zone));
1672
1673		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1674				n->nr_partial > s->min_partial) {
1675			page = get_partial_node(s, n);
1676			if (page) {
1677				put_mems_allowed();
1678				return page;
 
 
 
 
 
 
 
 
1679			}
1680		}
1681	}
1682	put_mems_allowed();
1683#endif
1684	return NULL;
1685}
1686
1687/*
1688 * Get a partial page, lock it and return it.
1689 */
1690static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
 
1691{
1692	struct page *page;
1693	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1694
1695	page = get_partial_node(s, get_node(s, searchnode));
1696	if (page || node != NUMA_NO_NODE)
1697		return page;
 
 
 
 
 
1698
1699	return get_any_partial(s, flags);
1700}
1701
1702#ifdef CONFIG_PREEMPT
1703/*
1704 * Calculate the next globally unique transaction for disambiguiation
1705 * during cmpxchg. The transactions start with the cpu number and are then
1706 * incremented by CONFIG_NR_CPUS.
1707 */
1708#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1709#else
1710/*
1711 * No preemption supported therefore also no need to check for
1712 * different cpus.
1713 */
1714#define TID_STEP 1
1715#endif
1716
1717static inline unsigned long next_tid(unsigned long tid)
1718{
1719	return tid + TID_STEP;
1720}
1721
1722static inline unsigned int tid_to_cpu(unsigned long tid)
1723{
1724	return tid % TID_STEP;
1725}
1726
1727static inline unsigned long tid_to_event(unsigned long tid)
1728{
1729	return tid / TID_STEP;
1730}
1731
1732static inline unsigned int init_tid(int cpu)
1733{
1734	return cpu;
1735}
1736
1737static inline void note_cmpxchg_failure(const char *n,
1738		const struct kmem_cache *s, unsigned long tid)
1739{
1740#ifdef SLUB_DEBUG_CMPXCHG
1741	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1742
1743	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1744
1745#ifdef CONFIG_PREEMPT
1746	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1747		printk("due to cpu change %d -> %d\n",
1748			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1749	else
1750#endif
1751	if (tid_to_event(tid) != tid_to_event(actual_tid))
1752		printk("due to cpu running other code. Event %ld->%ld\n",
1753			tid_to_event(tid), tid_to_event(actual_tid));
1754	else
1755		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1756			actual_tid, tid, next_tid(tid));
1757#endif
1758	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1759}
1760
1761void init_kmem_cache_cpus(struct kmem_cache *s)
1762{
1763	int cpu;
1764
1765	for_each_possible_cpu(cpu)
1766		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1767}
1768/*
1769 * Remove the cpu slab
1770 */
1771
1772/*
1773 * Remove the cpu slab
1774 */
1775static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 
1776{
1777	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1778	struct page *page = c->page;
1779	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1780	int lock = 0;
1781	enum slab_modes l = M_NONE, m = M_NONE;
1782	void *freelist;
1783	void *nextfree;
1784	int tail = 0;
1785	struct page new;
1786	struct page old;
1787
1788	if (page->freelist) {
1789		stat(s, DEACTIVATE_REMOTE_FREES);
1790		tail = 1;
1791	}
1792
1793	c->tid = next_tid(c->tid);
1794	c->page = NULL;
1795	freelist = c->freelist;
1796	c->freelist = NULL;
1797
1798	/*
1799	 * Stage one: Free all available per cpu objects back
1800	 * to the page freelist while it is still frozen. Leave the
1801	 * last one.
1802	 *
1803	 * There is no need to take the list->lock because the page
1804	 * is still frozen.
1805	 */
1806	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1807		void *prior;
1808		unsigned long counters;
1809
1810		do {
1811			prior = page->freelist;
1812			counters = page->counters;
1813			set_freepointer(s, freelist, prior);
1814			new.counters = counters;
1815			new.inuse--;
1816			VM_BUG_ON(!new.frozen);
1817
1818		} while (!__cmpxchg_double_slab(s, page,
1819			prior, counters,
1820			freelist, new.counters,
1821			"drain percpu freelist"));
1822
1823		freelist = nextfree;
1824	}
1825
1826	/*
1827	 * Stage two: Ensure that the page is unfrozen while the
1828	 * list presence reflects the actual number of objects
1829	 * during unfreeze.
1830	 *
1831	 * We setup the list membership and then perform a cmpxchg
1832	 * with the count. If there is a mismatch then the page
1833	 * is not unfrozen but the page is on the wrong list.
1834	 *
1835	 * Then we restart the process which may have to remove
1836	 * the page from the list that we just put it on again
1837	 * because the number of objects in the slab may have
1838	 * changed.
1839	 */
1840redo:
1841
1842	old.freelist = page->freelist;
1843	old.counters = page->counters;
1844	VM_BUG_ON(!old.frozen);
1845
1846	/* Determine target state of the slab */
1847	new.counters = old.counters;
1848	if (freelist) {
1849		new.inuse--;
1850		set_freepointer(s, freelist, old.freelist);
1851		new.freelist = freelist;
1852	} else
1853		new.freelist = old.freelist;
1854
1855	new.frozen = 0;
1856
1857	if (!new.inuse && n->nr_partial > s->min_partial)
1858		m = M_FREE;
1859	else if (new.freelist) {
1860		m = M_PARTIAL;
1861		if (!lock) {
1862			lock = 1;
1863			/*
1864			 * Taking the spinlock removes the possiblity
1865			 * that acquire_slab() will see a slab page that
1866			 * is frozen
1867			 */
1868			spin_lock(&n->list_lock);
1869		}
1870	} else {
1871		m = M_FULL;
1872		if (kmem_cache_debug(s) && !lock) {
1873			lock = 1;
1874			/*
1875			 * This also ensures that the scanning of full
1876			 * slabs from diagnostic functions will not see
1877			 * any frozen slabs.
1878			 */
1879			spin_lock(&n->list_lock);
1880		}
1881	}
1882
1883	if (l != m) {
1884
1885		if (l == M_PARTIAL)
1886
1887			remove_partial(n, page);
1888
1889		else if (l == M_FULL)
1890
1891			remove_full(s, page);
1892
1893		if (m == M_PARTIAL) {
1894
1895			add_partial(n, page, tail);
1896			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1897
1898		} else if (m == M_FULL) {
1899
1900			stat(s, DEACTIVATE_FULL);
1901			add_full(s, n, page);
1902
1903		}
1904	}
1905
1906	l = m;
1907	if (!__cmpxchg_double_slab(s, page,
1908				old.freelist, old.counters,
1909				new.freelist, new.counters,
1910				"unfreezing slab"))
1911		goto redo;
1912
1913	if (lock)
1914		spin_unlock(&n->list_lock);
1915
1916	if (m == M_FREE) {
1917		stat(s, DEACTIVATE_EMPTY);
1918		discard_slab(s, page);
1919		stat(s, FREE_SLAB);
1920	}
1921}
1922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1924{
1925	stat(s, CPUSLAB_FLUSH);
1926	deactivate_slab(s, c);
 
 
 
 
1927}
1928
1929/*
1930 * Flush cpu slab.
1931 *
1932 * Called from IPI handler with interrupts disabled.
1933 */
1934static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1935{
1936	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1937
1938	if (likely(c && c->page))
1939		flush_slab(s, c);
 
 
 
 
1940}
1941
1942static void flush_cpu_slab(void *d)
1943{
1944	struct kmem_cache *s = d;
1945
1946	__flush_cpu_slab(s, smp_processor_id());
1947}
1948
 
 
 
 
 
 
 
 
1949static void flush_all(struct kmem_cache *s)
1950{
1951	on_each_cpu(flush_cpu_slab, s, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952}
1953
1954/*
1955 * Check if the objects in a per cpu structure fit numa
1956 * locality expectations.
1957 */
1958static inline int node_match(struct kmem_cache_cpu *c, int node)
1959{
1960#ifdef CONFIG_NUMA
1961	if (node != NUMA_NO_NODE && c->node != node)
1962		return 0;
1963#endif
1964	return 1;
1965}
1966
 
1967static int count_free(struct page *page)
1968{
1969	return page->objects - page->inuse;
1970}
1971
 
 
 
 
 
 
 
1972static unsigned long count_partial(struct kmem_cache_node *n,
1973					int (*get_count)(struct page *))
1974{
1975	unsigned long flags;
1976	unsigned long x = 0;
1977	struct page *page;
1978
1979	spin_lock_irqsave(&n->list_lock, flags);
1980	list_for_each_entry(page, &n->partial, lru)
1981		x += get_count(page);
1982	spin_unlock_irqrestore(&n->list_lock, flags);
1983	return x;
1984}
1985
1986static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1987{
1988#ifdef CONFIG_SLUB_DEBUG
1989	return atomic_long_read(&n->total_objects);
1990#else
1991	return 0;
1992#endif
1993}
1994
1995static noinline void
1996slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1997{
 
 
 
1998	int node;
 
1999
2000	printk(KERN_WARNING
2001		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2002		nid, gfpflags);
2003	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2004		"default order: %d, min order: %d\n", s->name, s->objsize,
2005		s->size, oo_order(s->oo), oo_order(s->min));
2006
2007	if (oo_order(s->min) > get_order(s->objsize))
2008		printk(KERN_WARNING "  %s debugging increased min order, use "
2009		       "slub_debug=O to disable.\n", s->name);
 
 
2010
2011	for_each_online_node(node) {
2012		struct kmem_cache_node *n = get_node(s, node);
2013		unsigned long nr_slabs;
2014		unsigned long nr_objs;
2015		unsigned long nr_free;
2016
2017		if (!n)
2018			continue;
2019
2020		nr_free  = count_partial(n, count_free);
2021		nr_slabs = node_nr_slabs(n);
2022		nr_objs  = node_nr_objs(n);
2023
2024		printk(KERN_WARNING
2025			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2026			node, nr_slabs, nr_objs, nr_free);
2027	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2028}
2029
2030/*
2031 * Slow path. The lockless freelist is empty or we need to perform
2032 * debugging duties.
2033 *
2034 * Interrupts are disabled.
2035 *
2036 * Processing is still very fast if new objects have been freed to the
2037 * regular freelist. In that case we simply take over the regular freelist
2038 * as the lockless freelist and zap the regular freelist.
2039 *
2040 * If that is not working then we fall back to the partial lists. We take the
2041 * first element of the freelist as the object to allocate now and move the
2042 * rest of the freelist to the lockless freelist.
2043 *
2044 * And if we were unable to get a new slab from the partial slab lists then
2045 * we need to allocate a new slab. This is the slowest path since it involves
2046 * a call to the page allocator and the setup of a new slab.
 
 
 
2047 */
2048static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2049			  unsigned long addr, struct kmem_cache_cpu *c)
2050{
2051	void **object;
2052	struct page *page;
2053	unsigned long flags;
2054	struct page new;
2055	unsigned long counters;
2056
2057	local_irq_save(flags);
2058#ifdef CONFIG_PREEMPT
2059	/*
2060	 * We may have been preempted and rescheduled on a different
2061	 * cpu before disabling interrupts. Need to reload cpu area
2062	 * pointer.
2063	 */
2064	c = this_cpu_ptr(s->cpu_slab);
2065#endif
2066
2067	/* We handle __GFP_ZERO in the caller */
2068	gfpflags &= ~__GFP_ZERO;
2069
2070	page = c->page;
2071	if (!page)
2072		goto new_slab;
 
2073
2074	if (unlikely(!node_match(c, node))) {
2075		stat(s, ALLOC_NODE_MISMATCH);
2076		deactivate_slab(s, c);
2077		goto new_slab;
2078	}
2079
2080	stat(s, ALLOC_SLOWPATH);
 
2081
2082	do {
2083		object = page->freelist;
2084		counters = page->counters;
2085		new.counters = counters;
2086		VM_BUG_ON(!new.frozen);
 
 
 
2087
2088		/*
2089		 * If there is no object left then we use this loop to
2090		 * deactivate the slab which is simple since no objects
2091		 * are left in the slab and therefore we do not need to
2092		 * put the page back onto the partial list.
2093		 *
2094		 * If there are objects left then we retrieve them
2095		 * and use them to refill the per cpu queue.
2096		*/
 
 
2097
2098		new.inuse = page->objects;
2099		new.frozen = object != NULL;
 
 
2100
2101	} while (!__cmpxchg_double_slab(s, page,
2102			object, counters,
2103			NULL, new.counters,
2104			"__slab_alloc"));
2105
2106	if (unlikely(!object)) {
2107		c->page = NULL;
2108		stat(s, DEACTIVATE_BYPASS);
2109		goto new_slab;
2110	}
2111
2112	stat(s, ALLOC_REFILL);
2113
2114load_freelist:
2115	VM_BUG_ON(!page->frozen);
2116	c->freelist = get_freepointer(s, object);
 
 
 
 
 
2117	c->tid = next_tid(c->tid);
2118	local_irq_restore(flags);
2119	return object;
2120
2121new_slab:
2122	page = get_partial(s, gfpflags, node);
2123	if (page) {
2124		stat(s, ALLOC_FROM_PARTIAL);
2125		object = c->freelist;
2126
2127		if (kmem_cache_debug(s))
2128			goto debug;
2129		goto load_freelist;
 
 
 
2130	}
2131
2132	page = new_slab(s, gfpflags, node);
2133
2134	if (page) {
2135		c = __this_cpu_ptr(s->cpu_slab);
2136		if (c->page)
2137			flush_slab(s, c);
2138
2139		/*
2140		 * No other reference to the page yet so we can
2141		 * muck around with it freely without cmpxchg
2142		 */
2143		object = page->freelist;
2144		page->freelist = NULL;
2145		page->inuse = page->objects;
2146
2147		stat(s, ALLOC_SLAB);
2148		c->node = page_to_nid(page);
2149		c->page = page;
 
2150
2151		if (kmem_cache_debug(s))
2152			goto debug;
2153		goto load_freelist;
2154	}
2155	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2156		slab_out_of_memory(s, gfpflags, node);
2157	local_irq_restore(flags);
2158	return NULL;
2159
2160debug:
2161	if (!object || !alloc_debug_processing(s, page, object, addr))
2162		goto new_slab;
 
2163
2164	c->freelist = get_freepointer(s, object);
2165	deactivate_slab(s, c);
2166	c->page = NULL;
2167	c->node = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168	local_irq_restore(flags);
2169	return object;
2170}
2171
2172/*
2173 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2174 * have the fastpath folded into their functions. So no function call
2175 * overhead for requests that can be satisfied on the fastpath.
2176 *
2177 * The fastpath works by first checking if the lockless freelist can be used.
2178 * If not then __slab_alloc is called for slow processing.
2179 *
2180 * Otherwise we can simply pick the next object from the lockless free list.
2181 */
2182static __always_inline void *slab_alloc(struct kmem_cache *s,
2183		gfp_t gfpflags, int node, unsigned long addr)
2184{
2185	void **object;
2186	struct kmem_cache_cpu *c;
 
2187	unsigned long tid;
2188
2189	if (slab_pre_alloc_hook(s, gfpflags))
 
2190		return NULL;
2191
2192redo:
2193
2194	/*
2195	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2196	 * enabled. We may switch back and forth between cpus while
2197	 * reading from one cpu area. That does not matter as long
2198	 * as we end up on the original cpu again when doing the cmpxchg.
 
 
 
 
2199	 */
2200	c = __this_cpu_ptr(s->cpu_slab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2201
2202	/*
2203	 * The transaction ids are globally unique per cpu and per operation on
2204	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2205	 * occurs on the right processor and that there was no operation on the
2206	 * linked list in between.
2207	 */
2208	tid = c->tid;
2209	barrier();
2210
2211	object = c->freelist;
2212	if (unlikely(!object || !node_match(c, node)))
2213
2214		object = __slab_alloc(s, gfpflags, node, addr, c);
 
 
 
2215
2216	else {
2217		/*
2218		 * The cmpxchg will only match if there was no additional
2219		 * operation and if we are on the right processor.
2220		 *
2221		 * The cmpxchg does the following atomically (without lock semantics!)
 
2222		 * 1. Relocate first pointer to the current per cpu area.
2223		 * 2. Verify that tid and freelist have not been changed
2224		 * 3. If they were not changed replace tid and freelist
2225		 *
2226		 * Since this is without lock semantics the protection is only against
2227		 * code executing on this cpu *not* from access by other cpus.
 
2228		 */
2229		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2230				s->cpu_slab->freelist, s->cpu_slab->tid,
2231				object, tid,
2232				get_freepointer_safe(s, object), next_tid(tid)))) {
2233
2234			note_cmpxchg_failure("slab_alloc", s, tid);
2235			goto redo;
2236		}
 
2237		stat(s, ALLOC_FASTPATH);
2238	}
2239
2240	if (unlikely(gfpflags & __GFP_ZERO) && object)
2241		memset(object, 0, s->objsize);
2242
2243	slab_post_alloc_hook(s, gfpflags, object);
2244
2245	return object;
2246}
2247
 
 
 
 
 
 
2248void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2249{
2250	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2251
2252	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
 
2253
2254	return ret;
2255}
2256EXPORT_SYMBOL(kmem_cache_alloc);
2257
2258#ifdef CONFIG_TRACING
2259void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2260{
2261	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2262	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
 
2263	return ret;
2264}
2265EXPORT_SYMBOL(kmem_cache_alloc_trace);
2266
2267void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2268{
2269	void *ret = kmalloc_order(size, flags, order);
2270	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2271	return ret;
2272}
2273EXPORT_SYMBOL(kmalloc_order_trace);
2274#endif
2275
2276#ifdef CONFIG_NUMA
2277void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2278{
2279	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2280
2281	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2282				    s->objsize, s->size, gfpflags, node);
2283
2284	return ret;
2285}
2286EXPORT_SYMBOL(kmem_cache_alloc_node);
2287
2288#ifdef CONFIG_TRACING
2289void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2290				    gfp_t gfpflags,
2291				    int node, size_t size)
2292{
2293	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2294
2295	trace_kmalloc_node(_RET_IP_, ret,
2296			   size, s->size, gfpflags, node);
 
 
2297	return ret;
2298}
2299EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2300#endif
2301#endif
2302
2303/*
2304 * Slow patch handling. This may still be called frequently since objects
2305 * have a longer lifetime than the cpu slabs in most processing loads.
2306 *
2307 * So we still attempt to reduce cache line usage. Just take the slab
2308 * lock and free the item. If there is no additional partial page
2309 * handling required then we can return immediately.
2310 */
2311static void __slab_free(struct kmem_cache *s, struct page *page,
2312			void *x, unsigned long addr)
 
 
2313{
2314	void *prior;
2315	void **object = (void *)x;
2316	int was_frozen;
2317	int inuse;
2318	struct page new;
2319	unsigned long counters;
2320	struct kmem_cache_node *n = NULL;
2321	unsigned long uninitialized_var(flags);
2322
2323	stat(s, FREE_SLOWPATH);
2324
2325	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
 
2326		return;
2327
2328	do {
 
 
 
 
2329		prior = page->freelist;
2330		counters = page->counters;
2331		set_freepointer(s, object, prior);
2332		new.counters = counters;
2333		was_frozen = new.frozen;
2334		new.inuse--;
2335		if ((!new.inuse || !prior) && !was_frozen && !n) {
2336                        n = get_node(s, page_to_nid(page));
2337			/*
2338			 * Speculatively acquire the list_lock.
2339			 * If the cmpxchg does not succeed then we may
2340			 * drop the list_lock without any processing.
2341			 *
2342			 * Otherwise the list_lock will synchronize with
2343			 * other processors updating the list of slabs.
2344			 */
2345                        spin_lock_irqsave(&n->list_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346		}
2347		inuse = new.inuse;
2348
2349	} while (!cmpxchg_double_slab(s, page,
2350		prior, counters,
2351		object, new.counters,
2352		"__slab_free"));
2353
2354	if (likely(!n)) {
2355                /*
 
 
 
 
 
 
 
 
 
2356		 * The list lock was not taken therefore no list
2357		 * activity can be necessary.
2358		 */
2359                if (was_frozen)
2360                        stat(s, FREE_FROZEN);
2361                return;
2362        }
2363
2364	/*
2365	 * was_frozen may have been set after we acquired the list_lock in
2366	 * an earlier loop. So we need to check it here again.
2367	 */
2368	if (was_frozen)
2369		stat(s, FREE_FROZEN);
2370	else {
2371		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2372                        goto slab_empty;
2373
2374		/*
2375		 * Objects left in the slab. If it was not on the partial list before
2376		 * then add it.
2377		 */
2378		if (unlikely(!prior)) {
2379			remove_full(s, page);
2380			add_partial(n, page, 1);
2381			stat(s, FREE_ADD_PARTIAL);
2382		}
2383	}
2384	spin_unlock_irqrestore(&n->list_lock, flags);
2385	return;
2386
2387slab_empty:
2388	if (prior) {
2389		/*
2390		 * Slab on the partial list.
2391		 */
2392		remove_partial(n, page);
2393		stat(s, FREE_REMOVE_PARTIAL);
2394	} else
2395		/* Slab must be on the full list */
2396		remove_full(s, page);
 
2397
2398	spin_unlock_irqrestore(&n->list_lock, flags);
2399	stat(s, FREE_SLAB);
2400	discard_slab(s, page);
2401}
2402
2403/*
2404 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2405 * can perform fastpath freeing without additional function calls.
2406 *
2407 * The fastpath is only possible if we are freeing to the current cpu slab
2408 * of this processor. This typically the case if we have just allocated
2409 * the item before.
2410 *
2411 * If fastpath is not possible then fall back to __slab_free where we deal
2412 * with all sorts of special processing.
2413 */
2414static __always_inline void slab_free(struct kmem_cache *s,
2415			struct page *page, void *x, unsigned long addr)
 
 
 
 
 
2416{
2417	void **object = (void *)x;
2418	struct kmem_cache_cpu *c;
2419	unsigned long tid;
2420
2421	slab_free_hook(s, x);
2422
2423redo:
2424
2425	/*
2426	 * Determine the currently cpus per cpu slab.
2427	 * The cpu may change afterward. However that does not matter since
2428	 * data is retrieved via this pointer. If we are on the same cpu
2429	 * during the cmpxchg then the free will succedd.
2430	 */
2431	c = __this_cpu_ptr(s->cpu_slab);
 
 
 
 
2432
2433	tid = c->tid;
2434	barrier();
2435
2436	if (likely(page == c->page)) {
2437		set_freepointer(s, object, c->freelist);
2438
2439		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2440				s->cpu_slab->freelist, s->cpu_slab->tid,
2441				c->freelist, tid,
2442				object, next_tid(tid)))) {
2443
2444			note_cmpxchg_failure("slab_free", s, tid);
2445			goto redo;
2446		}
2447		stat(s, FREE_FASTPATH);
2448	} else
2449		__slab_free(s, page, x, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450
 
 
 
 
2451}
 
2452
2453void kmem_cache_free(struct kmem_cache *s, void *x)
2454{
 
 
 
 
 
 
 
 
 
2455	struct page *page;
 
 
 
 
 
2456
2457	page = virt_to_head_page(x);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458
2459	slab_free(s, page, x, _RET_IP_);
 
2460
2461	trace_kmem_cache_free(_RET_IP_, x);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2462}
2463EXPORT_SYMBOL(kmem_cache_free);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464
2465/*
2466 * Object placement in a slab is made very easy because we always start at
2467 * offset 0. If we tune the size of the object to the alignment then we can
2468 * get the required alignment by putting one properly sized object after
2469 * another.
2470 *
2471 * Notice that the allocation order determines the sizes of the per cpu
2472 * caches. Each processor has always one slab available for allocations.
2473 * Increasing the allocation order reduces the number of times that slabs
2474 * must be moved on and off the partial lists and is therefore a factor in
2475 * locking overhead.
2476 */
2477
2478/*
2479 * Mininum / Maximum order of slab pages. This influences locking overhead
2480 * and slab fragmentation. A higher order reduces the number of partial slabs
2481 * and increases the number of allocations possible without having to
2482 * take the list_lock.
2483 */
2484static int slub_min_order;
2485static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2486static int slub_min_objects;
2487
2488/*
2489 * Merge control. If this is set then no merging of slab caches will occur.
2490 * (Could be removed. This was introduced to pacify the merge skeptics.)
2491 */
2492static int slub_nomerge;
2493
2494/*
2495 * Calculate the order of allocation given an slab object size.
2496 *
2497 * The order of allocation has significant impact on performance and other
2498 * system components. Generally order 0 allocations should be preferred since
2499 * order 0 does not cause fragmentation in the page allocator. Larger objects
2500 * be problematic to put into order 0 slabs because there may be too much
2501 * unused space left. We go to a higher order if more than 1/16th of the slab
2502 * would be wasted.
2503 *
2504 * In order to reach satisfactory performance we must ensure that a minimum
2505 * number of objects is in one slab. Otherwise we may generate too much
2506 * activity on the partial lists which requires taking the list_lock. This is
2507 * less a concern for large slabs though which are rarely used.
2508 *
2509 * slub_max_order specifies the order where we begin to stop considering the
2510 * number of objects in a slab as critical. If we reach slub_max_order then
2511 * we try to keep the page order as low as possible. So we accept more waste
2512 * of space in favor of a small page order.
2513 *
2514 * Higher order allocations also allow the placement of more objects in a
2515 * slab and thereby reduce object handling overhead. If the user has
2516 * requested a higher mininum order then we start with that one instead of
2517 * the smallest order which will fit the object.
2518 */
2519static inline int slab_order(int size, int min_objects,
2520				int max_order, int fract_leftover, int reserved)
2521{
2522	int order;
2523	int rem;
2524	int min_order = slub_min_order;
2525
2526	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2527		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2528
2529	for (order = max(min_order,
2530				fls(min_objects * size - 1) - PAGE_SHIFT);
2531			order <= max_order; order++) {
2532
2533		unsigned long slab_size = PAGE_SIZE << order;
2534
2535		if (slab_size < min_objects * size + reserved)
2536			continue;
2537
2538		rem = (slab_size - reserved) % size;
2539
2540		if (rem <= slab_size / fract_leftover)
2541			break;
2542
2543	}
2544
2545	return order;
2546}
2547
2548static inline int calculate_order(int size, int reserved)
2549{
2550	int order;
2551	int min_objects;
2552	int fraction;
2553	int max_objects;
2554
2555	/*
2556	 * Attempt to find best configuration for a slab. This
2557	 * works by first attempting to generate a layout with
2558	 * the best configuration and backing off gradually.
2559	 *
2560	 * First we reduce the acceptable waste in a slab. Then
2561	 * we reduce the minimum objects required in a slab.
2562	 */
2563	min_objects = slub_min_objects;
2564	if (!min_objects)
2565		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2566	max_objects = order_objects(slub_max_order, size, reserved);
2567	min_objects = min(min_objects, max_objects);
2568
2569	while (min_objects > 1) {
2570		fraction = 16;
2571		while (fraction >= 4) {
2572			order = slab_order(size, min_objects,
2573					slub_max_order, fraction, reserved);
2574			if (order <= slub_max_order)
2575				return order;
2576			fraction /= 2;
2577		}
2578		min_objects--;
2579	}
2580
2581	/*
2582	 * We were unable to place multiple objects in a slab. Now
2583	 * lets see if we can place a single object there.
2584	 */
2585	order = slab_order(size, 1, slub_max_order, 1, reserved);
2586	if (order <= slub_max_order)
2587		return order;
2588
2589	/*
2590	 * Doh this slab cannot be placed using slub_max_order.
2591	 */
2592	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2593	if (order < MAX_ORDER)
2594		return order;
2595	return -ENOSYS;
2596}
2597
2598/*
2599 * Figure out what the alignment of the objects will be.
2600 */
2601static unsigned long calculate_alignment(unsigned long flags,
2602		unsigned long align, unsigned long size)
2603{
2604	/*
2605	 * If the user wants hardware cache aligned objects then follow that
2606	 * suggestion if the object is sufficiently large.
2607	 *
2608	 * The hardware cache alignment cannot override the specified
2609	 * alignment though. If that is greater then use it.
2610	 */
2611	if (flags & SLAB_HWCACHE_ALIGN) {
2612		unsigned long ralign = cache_line_size();
2613		while (size <= ralign / 2)
2614			ralign /= 2;
2615		align = max(align, ralign);
2616	}
2617
2618	if (align < ARCH_SLAB_MINALIGN)
2619		align = ARCH_SLAB_MINALIGN;
2620
2621	return ALIGN(align, sizeof(void *));
2622}
2623
2624static void
2625init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2626{
2627	n->nr_partial = 0;
2628	spin_lock_init(&n->list_lock);
2629	INIT_LIST_HEAD(&n->partial);
2630#ifdef CONFIG_SLUB_DEBUG
2631	atomic_long_set(&n->nr_slabs, 0);
2632	atomic_long_set(&n->total_objects, 0);
2633	INIT_LIST_HEAD(&n->full);
2634#endif
2635}
2636
2637static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2638{
2639	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2640			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2641
2642	/*
2643	 * Must align to double word boundary for the double cmpxchg
2644	 * instructions to work; see __pcpu_double_call_return_bool().
2645	 */
2646	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2647				     2 * sizeof(void *));
2648
2649	if (!s->cpu_slab)
2650		return 0;
2651
2652	init_kmem_cache_cpus(s);
2653
2654	return 1;
2655}
2656
2657static struct kmem_cache *kmem_cache_node;
2658
2659/*
2660 * No kmalloc_node yet so do it by hand. We know that this is the first
2661 * slab on the node for this slabcache. There are no concurrent accesses
2662 * possible.
2663 *
2664 * Note that this function only works on the kmalloc_node_cache
2665 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2666 * memory on a fresh node that has no slab structures yet.
2667 */
2668static void early_kmem_cache_node_alloc(int node)
2669{
2670	struct page *page;
2671	struct kmem_cache_node *n;
2672
2673	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2674
2675	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2676
2677	BUG_ON(!page);
2678	if (page_to_nid(page) != node) {
2679		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2680				"node %d\n", node);
2681		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2682				"in order to be able to continue\n");
2683	}
2684
2685	n = page->freelist;
2686	BUG_ON(!n);
2687	page->freelist = get_freepointer(kmem_cache_node, n);
2688	page->inuse++;
2689	page->frozen = 0;
2690	kmem_cache_node->node[node] = n;
2691#ifdef CONFIG_SLUB_DEBUG
2692	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2693	init_tracking(kmem_cache_node, n);
2694#endif
2695	init_kmem_cache_node(n, kmem_cache_node);
 
 
2696	inc_slabs_node(kmem_cache_node, node, page->objects);
2697
2698	add_partial(n, page, 0);
 
 
 
 
2699}
2700
2701static void free_kmem_cache_nodes(struct kmem_cache *s)
2702{
2703	int node;
 
2704
2705	for_each_node_state(node, N_NORMAL_MEMORY) {
2706		struct kmem_cache_node *n = s->node[node];
2707
2708		if (n)
2709			kmem_cache_free(kmem_cache_node, n);
2710
2711		s->node[node] = NULL;
2712	}
2713}
2714
 
 
 
 
 
 
 
2715static int init_kmem_cache_nodes(struct kmem_cache *s)
2716{
2717	int node;
2718
2719	for_each_node_state(node, N_NORMAL_MEMORY) {
2720		struct kmem_cache_node *n;
2721
2722		if (slab_state == DOWN) {
2723			early_kmem_cache_node_alloc(node);
2724			continue;
2725		}
2726		n = kmem_cache_alloc_node(kmem_cache_node,
2727						GFP_KERNEL, node);
2728
2729		if (!n) {
2730			free_kmem_cache_nodes(s);
2731			return 0;
2732		}
2733
2734		s->node[node] = n;
2735		init_kmem_cache_node(n, s);
2736	}
2737	return 1;
2738}
2739
2740static void set_min_partial(struct kmem_cache *s, unsigned long min)
2741{
2742	if (min < MIN_PARTIAL)
2743		min = MIN_PARTIAL;
2744	else if (min > MAX_PARTIAL)
2745		min = MAX_PARTIAL;
2746	s->min_partial = min;
2747}
2748
2749/*
2750 * calculate_sizes() determines the order and the distribution of data within
2751 * a slab object.
2752 */
2753static int calculate_sizes(struct kmem_cache *s, int forced_order)
2754{
2755	unsigned long flags = s->flags;
2756	unsigned long size = s->objsize;
2757	unsigned long align = s->align;
2758	int order;
2759
2760	/*
2761	 * Round up object size to the next word boundary. We can only
2762	 * place the free pointer at word boundaries and this determines
2763	 * the possible location of the free pointer.
2764	 */
2765	size = ALIGN(size, sizeof(void *));
2766
2767#ifdef CONFIG_SLUB_DEBUG
2768	/*
2769	 * Determine if we can poison the object itself. If the user of
2770	 * the slab may touch the object after free or before allocation
2771	 * then we should never poison the object itself.
2772	 */
2773	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2774			!s->ctor)
2775		s->flags |= __OBJECT_POISON;
2776	else
2777		s->flags &= ~__OBJECT_POISON;
2778
2779
2780	/*
2781	 * If we are Redzoning then check if there is some space between the
2782	 * end of the object and the free pointer. If not then add an
2783	 * additional word to have some bytes to store Redzone information.
2784	 */
2785	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2786		size += sizeof(void *);
2787#endif
2788
2789	/*
2790	 * With that we have determined the number of bytes in actual use
2791	 * by the object. This is the potential offset to the free pointer.
2792	 */
2793	s->inuse = size;
2794
2795	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2796		s->ctor)) {
2797		/*
2798		 * Relocate free pointer after the object if it is not
2799		 * permitted to overwrite the first word of the object on
2800		 * kmem_cache_free.
2801		 *
2802		 * This is the case if we do RCU, have a constructor or
2803		 * destructor or are poisoning the objects.
2804		 */
2805		s->offset = size;
2806		size += sizeof(void *);
2807	}
2808
2809#ifdef CONFIG_SLUB_DEBUG
2810	if (flags & SLAB_STORE_USER)
2811		/*
2812		 * Need to store information about allocs and frees after
2813		 * the object.
2814		 */
2815		size += 2 * sizeof(struct track);
 
2816
2817	if (flags & SLAB_RED_ZONE)
 
 
2818		/*
2819		 * Add some empty padding so that we can catch
2820		 * overwrites from earlier objects rather than let
2821		 * tracking information or the free pointer be
2822		 * corrupted if a user writes before the start
2823		 * of the object.
2824		 */
2825		size += sizeof(void *);
2826#endif
2827
2828	/*
2829	 * Determine the alignment based on various parameters that the
2830	 * user specified and the dynamic determination of cache line size
2831	 * on bootup.
2832	 */
2833	align = calculate_alignment(flags, align, s->objsize);
2834	s->align = align;
2835
2836	/*
2837	 * SLUB stores one object immediately after another beginning from
2838	 * offset 0. In order to align the objects we have to simply size
2839	 * each object to conform to the alignment.
2840	 */
2841	size = ALIGN(size, align);
2842	s->size = size;
2843	if (forced_order >= 0)
2844		order = forced_order;
2845	else
2846		order = calculate_order(size, s->reserved);
2847
2848	if (order < 0)
2849		return 0;
2850
2851	s->allocflags = 0;
2852	if (order)
2853		s->allocflags |= __GFP_COMP;
2854
2855	if (s->flags & SLAB_CACHE_DMA)
2856		s->allocflags |= SLUB_DMA;
2857
2858	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2859		s->allocflags |= __GFP_RECLAIMABLE;
2860
2861	/*
2862	 * Determine the number of objects per slab
2863	 */
2864	s->oo = oo_make(order, size, s->reserved);
2865	s->min = oo_make(get_order(size), size, s->reserved);
2866	if (oo_objects(s->oo) > oo_objects(s->max))
2867		s->max = s->oo;
2868
2869	return !!oo_objects(s->oo);
2870
2871}
2872
2873static int kmem_cache_open(struct kmem_cache *s,
2874		const char *name, size_t size,
2875		size_t align, unsigned long flags,
2876		void (*ctor)(void *))
2877{
2878	memset(s, 0, kmem_size);
2879	s->name = name;
2880	s->ctor = ctor;
2881	s->objsize = size;
2882	s->align = align;
2883	s->flags = kmem_cache_flags(size, flags, name, ctor);
2884	s->reserved = 0;
2885
2886	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2887		s->reserved = sizeof(struct rcu_head);
2888
2889	if (!calculate_sizes(s, -1))
2890		goto error;
2891	if (disable_higher_order_debug) {
2892		/*
2893		 * Disable debugging flags that store metadata if the min slab
2894		 * order increased.
2895		 */
2896		if (get_order(s->size) > get_order(s->objsize)) {
2897			s->flags &= ~DEBUG_METADATA_FLAGS;
2898			s->offset = 0;
2899			if (!calculate_sizes(s, -1))
2900				goto error;
2901		}
2902	}
2903
2904#ifdef CONFIG_CMPXCHG_DOUBLE
2905	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
 
2906		/* Enable fast mode */
2907		s->flags |= __CMPXCHG_DOUBLE;
2908#endif
2909
2910	/*
2911	 * The larger the object size is, the more pages we want on the partial
2912	 * list to avoid pounding the page allocator excessively.
2913	 */
2914	set_min_partial(s, ilog2(s->size));
2915	s->refcount = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2916#ifdef CONFIG_NUMA
2917	s->remote_node_defrag_ratio = 1000;
2918#endif
 
 
 
 
 
 
 
2919	if (!init_kmem_cache_nodes(s))
2920		goto error;
2921
2922	if (alloc_kmem_cache_cpus(s))
2923		return 1;
2924
2925	free_kmem_cache_nodes(s);
2926error:
2927	if (flags & SLAB_PANIC)
2928		panic("Cannot create slab %s size=%lu realsize=%u "
2929			"order=%u offset=%u flags=%lx\n",
2930			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2931			s->offset, flags);
2932	return 0;
2933}
2934
2935/*
2936 * Determine the size of a slab object
2937 */
2938unsigned int kmem_cache_size(struct kmem_cache *s)
2939{
2940	return s->objsize;
2941}
2942EXPORT_SYMBOL(kmem_cache_size);
2943
2944static void list_slab_objects(struct kmem_cache *s, struct page *page,
2945							const char *text)
2946{
2947#ifdef CONFIG_SLUB_DEBUG
2948	void *addr = page_address(page);
2949	void *p;
2950	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2951				     sizeof(long), GFP_ATOMIC);
2952	if (!map)
2953		return;
2954	slab_err(s, page, "%s", text);
2955	slab_lock(page);
2956
2957	get_map(s, page, map);
2958	for_each_object(p, s, addr, page->objects) {
2959
2960		if (!test_bit(slab_index(p, s, addr), map)) {
2961			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2962							p, p - addr);
2963			print_tracking(s, p);
2964		}
2965	}
2966	slab_unlock(page);
2967	kfree(map);
2968#endif
2969}
2970
2971/*
2972 * Attempt to free all partial slabs on a node.
 
 
2973 */
2974static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2975{
2976	unsigned long flags;
2977	struct page *page, *h;
2978
2979	spin_lock_irqsave(&n->list_lock, flags);
 
2980	list_for_each_entry_safe(page, h, &n->partial, lru) {
2981		if (!page->inuse) {
2982			remove_partial(n, page);
2983			discard_slab(s, page);
2984		} else {
2985			list_slab_objects(s, page,
2986				"Objects remaining on kmem_cache_close()");
2987		}
2988	}
2989	spin_unlock_irqrestore(&n->list_lock, flags);
 
 
 
2990}
2991
2992/*
2993 * Release all resources used by a slab cache.
2994 */
2995static inline int kmem_cache_close(struct kmem_cache *s)
2996{
2997	int node;
 
2998
2999	flush_all(s);
3000	free_percpu(s->cpu_slab);
3001	/* Attempt to free all objects */
3002	for_each_node_state(node, N_NORMAL_MEMORY) {
3003		struct kmem_cache_node *n = get_node(s, node);
3004
3005		free_partial(s, n);
3006		if (n->nr_partial || slabs_node(s, node))
3007			return 1;
3008	}
3009	free_kmem_cache_nodes(s);
3010	return 0;
3011}
3012
3013/*
3014 * Close a cache and release the kmem_cache structure
3015 * (must be used for caches created using kmem_cache_create)
3016 */
3017void kmem_cache_destroy(struct kmem_cache *s)
3018{
3019	down_write(&slub_lock);
3020	s->refcount--;
3021	if (!s->refcount) {
3022		list_del(&s->list);
3023		if (kmem_cache_close(s)) {
3024			printk(KERN_ERR "SLUB %s: %s called for cache that "
3025				"still has objects.\n", s->name, __func__);
3026			dump_stack();
3027		}
3028		if (s->flags & SLAB_DESTROY_BY_RCU)
3029			rcu_barrier();
3030		sysfs_slab_remove(s);
3031	}
3032	up_write(&slub_lock);
3033}
3034EXPORT_SYMBOL(kmem_cache_destroy);
3035
3036/********************************************************************
3037 *		Kmalloc subsystem
3038 *******************************************************************/
3039
3040struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3041EXPORT_SYMBOL(kmalloc_caches);
3042
3043static struct kmem_cache *kmem_cache;
3044
3045#ifdef CONFIG_ZONE_DMA
3046static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3047#endif
3048
3049static int __init setup_slub_min_order(char *str)
3050{
3051	get_option(&str, &slub_min_order);
3052
3053	return 1;
3054}
3055
3056__setup("slub_min_order=", setup_slub_min_order);
3057
3058static int __init setup_slub_max_order(char *str)
3059{
3060	get_option(&str, &slub_max_order);
3061	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3062
3063	return 1;
3064}
3065
3066__setup("slub_max_order=", setup_slub_max_order);
3067
3068static int __init setup_slub_min_objects(char *str)
3069{
3070	get_option(&str, &slub_min_objects);
3071
3072	return 1;
3073}
3074
3075__setup("slub_min_objects=", setup_slub_min_objects);
3076
3077static int __init setup_slub_nomerge(char *str)
3078{
3079	slub_nomerge = 1;
3080	return 1;
3081}
3082
3083__setup("slub_nomerge", setup_slub_nomerge);
3084
3085static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3086						int size, unsigned int flags)
3087{
3088	struct kmem_cache *s;
3089
3090	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3091
3092	/*
3093	 * This function is called with IRQs disabled during early-boot on
3094	 * single CPU so there's no need to take slub_lock here.
3095	 */
3096	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3097								flags, NULL))
3098		goto panic;
3099
3100	list_add(&s->list, &slab_caches);
3101	return s;
3102
3103panic:
3104	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3105	return NULL;
3106}
3107
3108/*
3109 * Conversion table for small slabs sizes / 8 to the index in the
3110 * kmalloc array. This is necessary for slabs < 192 since we have non power
3111 * of two cache sizes there. The size of larger slabs can be determined using
3112 * fls.
3113 */
3114static s8 size_index[24] = {
3115	3,	/* 8 */
3116	4,	/* 16 */
3117	5,	/* 24 */
3118	5,	/* 32 */
3119	6,	/* 40 */
3120	6,	/* 48 */
3121	6,	/* 56 */
3122	6,	/* 64 */
3123	1,	/* 72 */
3124	1,	/* 80 */
3125	1,	/* 88 */
3126	1,	/* 96 */
3127	7,	/* 104 */
3128	7,	/* 112 */
3129	7,	/* 120 */
3130	7,	/* 128 */
3131	2,	/* 136 */
3132	2,	/* 144 */
3133	2,	/* 152 */
3134	2,	/* 160 */
3135	2,	/* 168 */
3136	2,	/* 176 */
3137	2,	/* 184 */
3138	2	/* 192 */
3139};
3140
3141static inline int size_index_elem(size_t bytes)
3142{
3143	return (bytes - 1) / 8;
3144}
3145
3146static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3147{
3148	int index;
3149
3150	if (size <= 192) {
3151		if (!size)
3152			return ZERO_SIZE_PTR;
3153
3154		index = size_index[size_index_elem(size)];
3155	} else
3156		index = fls(size - 1);
3157
3158#ifdef CONFIG_ZONE_DMA
3159	if (unlikely((flags & SLUB_DMA)))
3160		return kmalloc_dma_caches[index];
3161
3162#endif
3163	return kmalloc_caches[index];
3164}
3165
3166void *__kmalloc(size_t size, gfp_t flags)
3167{
3168	struct kmem_cache *s;
3169	void *ret;
3170
3171	if (unlikely(size > SLUB_MAX_SIZE))
3172		return kmalloc_large(size, flags);
3173
3174	s = get_slab(size, flags);
3175
3176	if (unlikely(ZERO_OR_NULL_PTR(s)))
3177		return s;
3178
3179	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3180
3181	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3182
 
 
3183	return ret;
3184}
3185EXPORT_SYMBOL(__kmalloc);
3186
3187#ifdef CONFIG_NUMA
3188static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3189{
3190	struct page *page;
3191	void *ptr = NULL;
3192
3193	flags |= __GFP_COMP | __GFP_NOTRACK;
3194	page = alloc_pages_node(node, flags, get_order(size));
3195	if (page)
3196		ptr = page_address(page);
3197
3198	kmemleak_alloc(ptr, size, 1, flags);
3199	return ptr;
3200}
3201
3202void *__kmalloc_node(size_t size, gfp_t flags, int node)
3203{
3204	struct kmem_cache *s;
3205	void *ret;
3206
3207	if (unlikely(size > SLUB_MAX_SIZE)) {
3208		ret = kmalloc_large_node(size, flags, node);
3209
3210		trace_kmalloc_node(_RET_IP_, ret,
3211				   size, PAGE_SIZE << get_order(size),
3212				   flags, node);
3213
3214		return ret;
3215	}
3216
3217	s = get_slab(size, flags);
3218
3219	if (unlikely(ZERO_OR_NULL_PTR(s)))
3220		return s;
3221
3222	ret = slab_alloc(s, flags, node, _RET_IP_);
3223
3224	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3225
 
 
3226	return ret;
3227}
3228EXPORT_SYMBOL(__kmalloc_node);
3229#endif
3230
3231size_t ksize(const void *object)
 
 
 
 
 
 
 
 
3232{
3233	struct page *page;
 
 
3234
3235	if (unlikely(object == ZERO_SIZE_PTR))
3236		return 0;
 
3237
3238	page = virt_to_head_page(object);
 
 
3239
3240	if (unlikely(!PageSlab(page))) {
3241		WARN_ON(!PageCompound(page));
3242		return PAGE_SIZE << compound_order(page);
 
 
 
 
 
3243	}
3244
3245	return slab_ksize(page->slab);
 
 
 
 
3246}
3247EXPORT_SYMBOL(ksize);
3248
3249#ifdef CONFIG_SLUB_DEBUG
3250bool verify_mem_not_deleted(const void *x)
3251{
3252	struct page *page;
3253	void *object = (void *)x;
3254	unsigned long flags;
3255	bool rv;
3256
3257	if (unlikely(ZERO_OR_NULL_PTR(x)))
3258		return false;
3259
3260	local_irq_save(flags);
3261
3262	page = virt_to_head_page(x);
3263	if (unlikely(!PageSlab(page))) {
3264		/* maybe it was from stack? */
3265		rv = true;
3266		goto out_unlock;
3267	}
3268
3269	slab_lock(page);
3270	if (on_freelist(page->slab, page, object)) {
3271		object_err(page->slab, page, object, "Object is on free-list");
3272		rv = false;
3273	} else {
3274		rv = true;
3275	}
3276	slab_unlock(page);
3277
3278out_unlock:
3279	local_irq_restore(flags);
3280	return rv;
 
 
 
 
 
3281}
3282EXPORT_SYMBOL(verify_mem_not_deleted);
3283#endif
3284
3285void kfree(const void *x)
3286{
3287	struct page *page;
3288	void *object = (void *)x;
3289
3290	trace_kfree(_RET_IP_, x);
3291
3292	if (unlikely(ZERO_OR_NULL_PTR(x)))
3293		return;
3294
3295	page = virt_to_head_page(x);
3296	if (unlikely(!PageSlab(page))) {
3297		BUG_ON(!PageCompound(page));
3298		kmemleak_free(x);
3299		put_page(page);
3300		return;
3301	}
3302	slab_free(page->slab, page, object, _RET_IP_);
3303}
3304EXPORT_SYMBOL(kfree);
3305
 
 
3306/*
3307 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3308 * the remaining slabs by the number of items in use. The slabs with the
3309 * most items in use come first. New allocations will then fill those up
3310 * and thus they can be removed from the partial lists.
3311 *
3312 * The slabs with the least items are placed last. This results in them
3313 * being allocated from last increasing the chance that the last objects
3314 * are freed in them.
3315 */
3316int kmem_cache_shrink(struct kmem_cache *s)
3317{
3318	int node;
3319	int i;
3320	struct kmem_cache_node *n;
3321	struct page *page;
3322	struct page *t;
3323	int objects = oo_objects(s->max);
3324	struct list_head *slabs_by_inuse =
3325		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3326	unsigned long flags;
3327
3328	if (!slabs_by_inuse)
3329		return -ENOMEM;
3330
3331	flush_all(s);
3332	for_each_node_state(node, N_NORMAL_MEMORY) {
3333		n = get_node(s, node);
3334
3335		if (!n->nr_partial)
3336			continue;
3337
3338		for (i = 0; i < objects; i++)
3339			INIT_LIST_HEAD(slabs_by_inuse + i);
3340
3341		spin_lock_irqsave(&n->list_lock, flags);
3342
3343		/*
3344		 * Build lists indexed by the items in use in each slab.
3345		 *
3346		 * Note that concurrent frees may occur while we hold the
3347		 * list_lock. page->inuse here is the upper limit.
3348		 */
3349		list_for_each_entry_safe(page, t, &n->partial, lru) {
3350			if (!page->inuse) {
3351				remove_partial(n, page);
3352				discard_slab(s, page);
3353			} else {
3354				list_move(&page->lru,
3355				slabs_by_inuse + page->inuse);
3356			}
 
 
 
 
 
 
3357		}
3358
3359		/*
3360		 * Rebuild the partial list with the slabs filled up most
3361		 * first and the least used slabs at the end.
3362		 */
3363		for (i = objects - 1; i >= 0; i--)
3364			list_splice(slabs_by_inuse + i, n->partial.prev);
3365
3366		spin_unlock_irqrestore(&n->list_lock, flags);
 
 
 
 
 
 
 
3367	}
3368
3369	kfree(slabs_by_inuse);
3370	return 0;
3371}
3372EXPORT_SYMBOL(kmem_cache_shrink);
3373
3374#if defined(CONFIG_MEMORY_HOTPLUG)
3375static int slab_mem_going_offline_callback(void *arg)
3376{
3377	struct kmem_cache *s;
3378
3379	down_read(&slub_lock);
3380	list_for_each_entry(s, &slab_caches, list)
3381		kmem_cache_shrink(s);
3382	up_read(&slub_lock);
3383
3384	return 0;
3385}
3386
3387static void slab_mem_offline_callback(void *arg)
3388{
3389	struct kmem_cache_node *n;
3390	struct kmem_cache *s;
3391	struct memory_notify *marg = arg;
3392	int offline_node;
3393
3394	offline_node = marg->status_change_nid;
3395
3396	/*
3397	 * If the node still has available memory. we need kmem_cache_node
3398	 * for it yet.
3399	 */
3400	if (offline_node < 0)
3401		return;
3402
3403	down_read(&slub_lock);
3404	list_for_each_entry(s, &slab_caches, list) {
3405		n = get_node(s, offline_node);
3406		if (n) {
3407			/*
3408			 * if n->nr_slabs > 0, slabs still exist on the node
3409			 * that is going down. We were unable to free them,
3410			 * and offline_pages() function shouldn't call this
3411			 * callback. So, we must fail.
3412			 */
3413			BUG_ON(slabs_node(s, offline_node));
3414
3415			s->node[offline_node] = NULL;
3416			kmem_cache_free(kmem_cache_node, n);
3417		}
3418	}
3419	up_read(&slub_lock);
3420}
3421
3422static int slab_mem_going_online_callback(void *arg)
3423{
3424	struct kmem_cache_node *n;
3425	struct kmem_cache *s;
3426	struct memory_notify *marg = arg;
3427	int nid = marg->status_change_nid;
3428	int ret = 0;
3429
3430	/*
3431	 * If the node's memory is already available, then kmem_cache_node is
3432	 * already created. Nothing to do.
3433	 */
3434	if (nid < 0)
3435		return 0;
3436
3437	/*
3438	 * We are bringing a node online. No memory is available yet. We must
3439	 * allocate a kmem_cache_node structure in order to bring the node
3440	 * online.
3441	 */
3442	down_read(&slub_lock);
3443	list_for_each_entry(s, &slab_caches, list) {
3444		/*
3445		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3446		 *      since memory is not yet available from the node that
3447		 *      is brought up.
3448		 */
3449		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3450		if (!n) {
3451			ret = -ENOMEM;
3452			goto out;
3453		}
3454		init_kmem_cache_node(n, s);
3455		s->node[nid] = n;
3456	}
3457out:
3458	up_read(&slub_lock);
3459	return ret;
3460}
3461
3462static int slab_memory_callback(struct notifier_block *self,
3463				unsigned long action, void *arg)
3464{
3465	int ret = 0;
3466
3467	switch (action) {
3468	case MEM_GOING_ONLINE:
3469		ret = slab_mem_going_online_callback(arg);
3470		break;
3471	case MEM_GOING_OFFLINE:
3472		ret = slab_mem_going_offline_callback(arg);
3473		break;
3474	case MEM_OFFLINE:
3475	case MEM_CANCEL_ONLINE:
3476		slab_mem_offline_callback(arg);
3477		break;
3478	case MEM_ONLINE:
3479	case MEM_CANCEL_OFFLINE:
3480		break;
3481	}
3482	if (ret)
3483		ret = notifier_from_errno(ret);
3484	else
3485		ret = NOTIFY_OK;
3486	return ret;
3487}
3488
3489#endif /* CONFIG_MEMORY_HOTPLUG */
 
 
 
3490
3491/********************************************************************
3492 *			Basic setup of slabs
3493 *******************************************************************/
3494
3495/*
3496 * Used for early kmem_cache structures that were allocated using
3497 * the page allocator
 
3498 */
3499
3500static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3501{
3502	int node;
 
 
3503
3504	list_add(&s->list, &slab_caches);
3505	s->refcount = -1;
3506
3507	for_each_node_state(node, N_NORMAL_MEMORY) {
3508		struct kmem_cache_node *n = get_node(s, node);
 
 
 
 
 
3509		struct page *p;
3510
3511		if (n) {
3512			list_for_each_entry(p, &n->partial, lru)
3513				p->slab = s;
3514
3515#ifdef CONFIG_SLUB_DEBUG
3516			list_for_each_entry(p, &n->full, lru)
3517				p->slab = s;
3518#endif
3519		}
3520	}
 
 
 
3521}
3522
3523void __init kmem_cache_init(void)
3524{
3525	int i;
3526	int caches = 0;
3527	struct kmem_cache *temp_kmem_cache;
3528	int order;
3529	struct kmem_cache *temp_kmem_cache_node;
3530	unsigned long kmalloc_size;
3531
3532	kmem_size = offsetof(struct kmem_cache, node) +
3533				nr_node_ids * sizeof(struct kmem_cache_node *);
3534
3535	/* Allocate two kmem_caches from the page allocator */
3536	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3537	order = get_order(2 * kmalloc_size);
3538	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3539
3540	/*
3541	 * Must first have the slab cache available for the allocations of the
3542	 * struct kmem_cache_node's. There is special bootstrap code in
3543	 * kmem_cache_open for slab_state == DOWN.
3544	 */
3545	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3546
3547	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3548		sizeof(struct kmem_cache_node),
3549		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3550
3551	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3552
3553	/* Able to allocate the per node structures */
3554	slab_state = PARTIAL;
3555
3556	temp_kmem_cache = kmem_cache;
3557	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3558		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3559	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3560	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
 
3561
3562	/*
3563	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3564	 * kmem_cache_node is separately allocated so no need to
3565	 * update any list pointers.
3566	 */
3567	temp_kmem_cache_node = kmem_cache_node;
3568
3569	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3570	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3571
3572	kmem_cache_bootstrap_fixup(kmem_cache_node);
3573
3574	caches++;
3575	kmem_cache_bootstrap_fixup(kmem_cache);
3576	caches++;
3577	/* Free temporary boot structure */
3578	free_pages((unsigned long)temp_kmem_cache, order);
3579
3580	/* Now we can use the kmem_cache to allocate kmalloc slabs */
 
 
3581
3582	/*
3583	 * Patch up the size_index table if we have strange large alignment
3584	 * requirements for the kmalloc array. This is only the case for
3585	 * MIPS it seems. The standard arches will not generate any code here.
3586	 *
3587	 * Largest permitted alignment is 256 bytes due to the way we
3588	 * handle the index determination for the smaller caches.
3589	 *
3590	 * Make sure that nothing crazy happens if someone starts tinkering
3591	 * around with ARCH_KMALLOC_MINALIGN
3592	 */
3593	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3594		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3595
3596	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3597		int elem = size_index_elem(i);
3598		if (elem >= ARRAY_SIZE(size_index))
3599			break;
3600		size_index[elem] = KMALLOC_SHIFT_LOW;
3601	}
3602
3603	if (KMALLOC_MIN_SIZE == 64) {
3604		/*
3605		 * The 96 byte size cache is not used if the alignment
3606		 * is 64 byte.
3607		 */
3608		for (i = 64 + 8; i <= 96; i += 8)
3609			size_index[size_index_elem(i)] = 7;
3610	} else if (KMALLOC_MIN_SIZE == 128) {
3611		/*
3612		 * The 192 byte sized cache is not used if the alignment
3613		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3614		 * instead.
3615		 */
3616		for (i = 128 + 8; i <= 192; i += 8)
3617			size_index[size_index_elem(i)] = 8;
3618	}
3619
3620	/* Caches that are not of the two-to-the-power-of size */
3621	if (KMALLOC_MIN_SIZE <= 32) {
3622		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3623		caches++;
3624	}
3625
3626	if (KMALLOC_MIN_SIZE <= 64) {
3627		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3628		caches++;
3629	}
3630
3631	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3632		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3633		caches++;
3634	}
3635
3636	slab_state = UP;
3637
3638	/* Provide the correct kmalloc names now that the caches are up */
3639	if (KMALLOC_MIN_SIZE <= 32) {
3640		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3641		BUG_ON(!kmalloc_caches[1]->name);
3642	}
3643
3644	if (KMALLOC_MIN_SIZE <= 64) {
3645		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3646		BUG_ON(!kmalloc_caches[2]->name);
3647	}
3648
3649	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3650		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3651
3652		BUG_ON(!s);
3653		kmalloc_caches[i]->name = s;
3654	}
3655
3656#ifdef CONFIG_SMP
3657	register_cpu_notifier(&slab_notifier);
3658#endif
3659
3660#ifdef CONFIG_ZONE_DMA
3661	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3662		struct kmem_cache *s = kmalloc_caches[i];
3663
3664		if (s && s->size) {
3665			char *name = kasprintf(GFP_NOWAIT,
3666				 "dma-kmalloc-%d", s->objsize);
3667
3668			BUG_ON(!name);
3669			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3670				s->objsize, SLAB_CACHE_DMA);
3671		}
3672	}
3673#endif
3674	printk(KERN_INFO
3675		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3676		" CPUs=%d, Nodes=%d\n",
3677		caches, cache_line_size(),
3678		slub_min_order, slub_max_order, slub_min_objects,
3679		nr_cpu_ids, nr_node_ids);
3680}
3681
3682void __init kmem_cache_init_late(void)
3683{
3684}
3685
3686/*
3687 * Find a mergeable slab cache
3688 */
3689static int slab_unmergeable(struct kmem_cache *s)
3690{
3691	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3692		return 1;
3693
3694	if (s->ctor)
3695		return 1;
3696
3697	/*
3698	 * We may have set a slab to be unmergeable during bootstrap.
3699	 */
3700	if (s->refcount < 0)
3701		return 1;
3702
3703	return 0;
3704}
3705
3706static struct kmem_cache *find_mergeable(size_t size,
3707		size_t align, unsigned long flags, const char *name,
3708		void (*ctor)(void *))
3709{
3710	struct kmem_cache *s;
3711
3712	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3713		return NULL;
3714
3715	if (ctor)
3716		return NULL;
3717
3718	size = ALIGN(size, sizeof(void *));
3719	align = calculate_alignment(flags, align, size);
3720	size = ALIGN(size, align);
3721	flags = kmem_cache_flags(size, flags, name, NULL);
3722
3723	list_for_each_entry(s, &slab_caches, list) {
3724		if (slab_unmergeable(s))
3725			continue;
3726
3727		if (size > s->size)
3728			continue;
3729
3730		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3731				continue;
3732		/*
3733		 * Check if alignment is compatible.
3734		 * Courtesy of Adrian Drzewiecki
3735		 */
3736		if ((s->size & ~(align - 1)) != s->size)
3737			continue;
3738
3739		if (s->size - size >= sizeof(void *))
3740			continue;
3741
3742		return s;
3743	}
3744	return NULL;
3745}
3746
3747struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3748		size_t align, unsigned long flags, void (*ctor)(void *))
3749{
3750	struct kmem_cache *s;
3751	char *n;
3752
3753	if (WARN_ON(!name))
3754		return NULL;
3755
3756	down_write(&slub_lock);
3757	s = find_mergeable(size, align, flags, name, ctor);
3758	if (s) {
3759		s->refcount++;
 
3760		/*
3761		 * Adjust the object sizes so that we clear
3762		 * the complete object on kzalloc.
3763		 */
3764		s->objsize = max(s->objsize, (int)size);
3765		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3766
3767		if (sysfs_slab_alias(s, name)) {
3768			s->refcount--;
3769			goto err;
 
3770		}
3771		up_write(&slub_lock);
3772		return s;
3773	}
3774
3775	n = kstrdup(name, GFP_KERNEL);
3776	if (!n)
3777		goto err;
3778
3779	s = kmalloc(kmem_size, GFP_KERNEL);
3780	if (s) {
3781		if (kmem_cache_open(s, n,
3782				size, align, flags, ctor)) {
3783			list_add(&s->list, &slab_caches);
3784			if (sysfs_slab_add(s)) {
3785				list_del(&s->list);
3786				kfree(n);
3787				kfree(s);
3788				goto err;
3789			}
3790			up_write(&slub_lock);
3791			return s;
3792		}
3793		kfree(n);
3794		kfree(s);
3795	}
3796err:
3797	up_write(&slub_lock);
3798
3799	if (flags & SLAB_PANIC)
3800		panic("Cannot create slabcache %s\n", name);
3801	else
3802		s = NULL;
3803	return s;
3804}
3805EXPORT_SYMBOL(kmem_cache_create);
3806
3807#ifdef CONFIG_SMP
3808/*
3809 * Use the cpu notifier to insure that the cpu slabs are flushed when
3810 * necessary.
3811 */
3812static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3813		unsigned long action, void *hcpu)
3814{
3815	long cpu = (long)hcpu;
3816	struct kmem_cache *s;
3817	unsigned long flags;
3818
3819	switch (action) {
3820	case CPU_UP_CANCELED:
3821	case CPU_UP_CANCELED_FROZEN:
3822	case CPU_DEAD:
3823	case CPU_DEAD_FROZEN:
3824		down_read(&slub_lock);
3825		list_for_each_entry(s, &slab_caches, list) {
3826			local_irq_save(flags);
3827			__flush_cpu_slab(s, cpu);
3828			local_irq_restore(flags);
3829		}
3830		up_read(&slub_lock);
3831		break;
3832	default:
3833		break;
3834	}
3835	return NOTIFY_OK;
3836}
3837
3838static struct notifier_block __cpuinitdata slab_notifier = {
3839	.notifier_call = slab_cpuup_callback
3840};
3841
3842#endif
 
 
 
 
 
 
3843
3844void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3845{
3846	struct kmem_cache *s;
3847	void *ret;
3848
3849	if (unlikely(size > SLUB_MAX_SIZE))
3850		return kmalloc_large(size, gfpflags);
3851
3852	s = get_slab(size, gfpflags);
3853
3854	if (unlikely(ZERO_OR_NULL_PTR(s)))
3855		return s;
3856
3857	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3858
3859	/* Honor the call site pointer we received. */
3860	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3861
3862	return ret;
3863}
3864
3865#ifdef CONFIG_NUMA
3866void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3867					int node, unsigned long caller)
3868{
3869	struct kmem_cache *s;
3870	void *ret;
3871
3872	if (unlikely(size > SLUB_MAX_SIZE)) {
3873		ret = kmalloc_large_node(size, gfpflags, node);
3874
3875		trace_kmalloc_node(caller, ret,
3876				   size, PAGE_SIZE << get_order(size),
3877				   gfpflags, node);
3878
3879		return ret;
3880	}
3881
3882	s = get_slab(size, gfpflags);
3883
3884	if (unlikely(ZERO_OR_NULL_PTR(s)))
3885		return s;
3886
3887	ret = slab_alloc(s, gfpflags, node, caller);
3888
3889	/* Honor the call site pointer we received. */
3890	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3891
3892	return ret;
3893}
3894#endif
3895
3896#ifdef CONFIG_SYSFS
3897static int count_inuse(struct page *page)
3898{
3899	return page->inuse;
3900}
3901
3902static int count_total(struct page *page)
3903{
3904	return page->objects;
3905}
3906#endif
3907
3908#ifdef CONFIG_SLUB_DEBUG
3909static int validate_slab(struct kmem_cache *s, struct page *page,
3910						unsigned long *map)
3911{
3912	void *p;
3913	void *addr = page_address(page);
3914
3915	if (!check_slab(s, page) ||
3916			!on_freelist(s, page, NULL))
3917		return 0;
3918
3919	/* Now we know that a valid freelist exists */
3920	bitmap_zero(map, page->objects);
3921
3922	get_map(s, page, map);
3923	for_each_object(p, s, addr, page->objects) {
3924		if (test_bit(slab_index(p, s, addr), map))
3925			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3926				return 0;
3927	}
3928
3929	for_each_object(p, s, addr, page->objects)
3930		if (!test_bit(slab_index(p, s, addr), map))
3931			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3932				return 0;
3933	return 1;
3934}
3935
3936static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3937						unsigned long *map)
3938{
3939	slab_lock(page);
3940	validate_slab(s, page, map);
3941	slab_unlock(page);
3942}
3943
3944static int validate_slab_node(struct kmem_cache *s,
3945		struct kmem_cache_node *n, unsigned long *map)
3946{
3947	unsigned long count = 0;
3948	struct page *page;
3949	unsigned long flags;
3950
3951	spin_lock_irqsave(&n->list_lock, flags);
3952
3953	list_for_each_entry(page, &n->partial, lru) {
3954		validate_slab_slab(s, page, map);
3955		count++;
3956	}
3957	if (count != n->nr_partial)
3958		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3959			"counter=%ld\n", s->name, count, n->nr_partial);
3960
3961	if (!(s->flags & SLAB_STORE_USER))
3962		goto out;
3963
3964	list_for_each_entry(page, &n->full, lru) {
3965		validate_slab_slab(s, page, map);
3966		count++;
3967	}
3968	if (count != atomic_long_read(&n->nr_slabs))
3969		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3970			"counter=%ld\n", s->name, count,
3971			atomic_long_read(&n->nr_slabs));
3972
3973out:
3974	spin_unlock_irqrestore(&n->list_lock, flags);
3975	return count;
3976}
3977
3978static long validate_slab_cache(struct kmem_cache *s)
3979{
3980	int node;
3981	unsigned long count = 0;
3982	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3983				sizeof(unsigned long), GFP_KERNEL);
 
3984
3985	if (!map)
3986		return -ENOMEM;
3987
3988	flush_all(s);
3989	for_each_node_state(node, N_NORMAL_MEMORY) {
3990		struct kmem_cache_node *n = get_node(s, node);
3991
3992		count += validate_slab_node(s, n, map);
3993	}
3994	kfree(map);
3995	return count;
3996}
3997/*
3998 * Generate lists of code addresses where slabcache objects are allocated
3999 * and freed.
4000 */
4001
4002struct location {
4003	unsigned long count;
4004	unsigned long addr;
4005	long long sum_time;
4006	long min_time;
4007	long max_time;
4008	long min_pid;
4009	long max_pid;
4010	DECLARE_BITMAP(cpus, NR_CPUS);
4011	nodemask_t nodes;
4012};
4013
4014struct loc_track {
4015	unsigned long max;
4016	unsigned long count;
4017	struct location *loc;
4018};
4019
4020static void free_loc_track(struct loc_track *t)
4021{
4022	if (t->max)
4023		free_pages((unsigned long)t->loc,
4024			get_order(sizeof(struct location) * t->max));
4025}
4026
4027static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4028{
4029	struct location *l;
4030	int order;
4031
4032	order = get_order(sizeof(struct location) * max);
4033
4034	l = (void *)__get_free_pages(flags, order);
4035	if (!l)
4036		return 0;
4037
4038	if (t->count) {
4039		memcpy(l, t->loc, sizeof(struct location) * t->count);
4040		free_loc_track(t);
4041	}
4042	t->max = max;
4043	t->loc = l;
4044	return 1;
4045}
4046
4047static int add_location(struct loc_track *t, struct kmem_cache *s,
4048				const struct track *track)
4049{
4050	long start, end, pos;
4051	struct location *l;
4052	unsigned long caddr;
4053	unsigned long age = jiffies - track->when;
4054
4055	start = -1;
4056	end = t->count;
4057
4058	for ( ; ; ) {
4059		pos = start + (end - start + 1) / 2;
4060
4061		/*
4062		 * There is nothing at "end". If we end up there
4063		 * we need to add something to before end.
4064		 */
4065		if (pos == end)
4066			break;
4067
4068		caddr = t->loc[pos].addr;
4069		if (track->addr == caddr) {
4070
4071			l = &t->loc[pos];
4072			l->count++;
4073			if (track->when) {
4074				l->sum_time += age;
4075				if (age < l->min_time)
4076					l->min_time = age;
4077				if (age > l->max_time)
4078					l->max_time = age;
4079
4080				if (track->pid < l->min_pid)
4081					l->min_pid = track->pid;
4082				if (track->pid > l->max_pid)
4083					l->max_pid = track->pid;
4084
4085				cpumask_set_cpu(track->cpu,
4086						to_cpumask(l->cpus));
4087			}
4088			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4089			return 1;
4090		}
4091
4092		if (track->addr < caddr)
4093			end = pos;
4094		else
4095			start = pos;
4096	}
4097
4098	/*
4099	 * Not found. Insert new tracking element.
4100	 */
4101	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4102		return 0;
4103
4104	l = t->loc + pos;
4105	if (pos < t->count)
4106		memmove(l + 1, l,
4107			(t->count - pos) * sizeof(struct location));
4108	t->count++;
4109	l->count = 1;
4110	l->addr = track->addr;
4111	l->sum_time = age;
4112	l->min_time = age;
4113	l->max_time = age;
4114	l->min_pid = track->pid;
4115	l->max_pid = track->pid;
4116	cpumask_clear(to_cpumask(l->cpus));
4117	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4118	nodes_clear(l->nodes);
4119	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4120	return 1;
4121}
4122
4123static void process_slab(struct loc_track *t, struct kmem_cache *s,
4124		struct page *page, enum track_item alloc,
4125		unsigned long *map)
4126{
4127	void *addr = page_address(page);
4128	void *p;
4129
4130	bitmap_zero(map, page->objects);
4131	get_map(s, page, map);
4132
4133	for_each_object(p, s, addr, page->objects)
4134		if (!test_bit(slab_index(p, s, addr), map))
4135			add_location(t, s, get_track(s, p, alloc));
4136}
4137
4138static int list_locations(struct kmem_cache *s, char *buf,
4139					enum track_item alloc)
4140{
4141	int len = 0;
4142	unsigned long i;
4143	struct loc_track t = { 0, 0, NULL };
4144	int node;
4145	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4146				     sizeof(unsigned long), GFP_KERNEL);
 
4147
4148	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4149				     GFP_TEMPORARY)) {
4150		kfree(map);
4151		return sprintf(buf, "Out of memory\n");
4152	}
4153	/* Push back cpu slabs */
4154	flush_all(s);
4155
4156	for_each_node_state(node, N_NORMAL_MEMORY) {
4157		struct kmem_cache_node *n = get_node(s, node);
4158		unsigned long flags;
4159		struct page *page;
4160
4161		if (!atomic_long_read(&n->nr_slabs))
4162			continue;
4163
4164		spin_lock_irqsave(&n->list_lock, flags);
4165		list_for_each_entry(page, &n->partial, lru)
4166			process_slab(&t, s, page, alloc, map);
4167		list_for_each_entry(page, &n->full, lru)
4168			process_slab(&t, s, page, alloc, map);
4169		spin_unlock_irqrestore(&n->list_lock, flags);
4170	}
4171
4172	for (i = 0; i < t.count; i++) {
4173		struct location *l = &t.loc[i];
4174
4175		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4176			break;
4177		len += sprintf(buf + len, "%7ld ", l->count);
4178
4179		if (l->addr)
4180			len += sprintf(buf + len, "%pS", (void *)l->addr);
4181		else
4182			len += sprintf(buf + len, "<not-available>");
4183
4184		if (l->sum_time != l->min_time) {
4185			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4186				l->min_time,
4187				(long)div_u64(l->sum_time, l->count),
4188				l->max_time);
4189		} else
4190			len += sprintf(buf + len, " age=%ld",
4191				l->min_time);
4192
4193		if (l->min_pid != l->max_pid)
4194			len += sprintf(buf + len, " pid=%ld-%ld",
4195				l->min_pid, l->max_pid);
4196		else
4197			len += sprintf(buf + len, " pid=%ld",
4198				l->min_pid);
4199
4200		if (num_online_cpus() > 1 &&
4201				!cpumask_empty(to_cpumask(l->cpus)) &&
4202				len < PAGE_SIZE - 60) {
4203			len += sprintf(buf + len, " cpus=");
4204			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4205						 to_cpumask(l->cpus));
4206		}
4207
4208		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4209				len < PAGE_SIZE - 60) {
4210			len += sprintf(buf + len, " nodes=");
4211			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4212					l->nodes);
4213		}
4214
4215		len += sprintf(buf + len, "\n");
4216	}
4217
4218	free_loc_track(&t);
4219	kfree(map);
4220	if (!t.count)
4221		len += sprintf(buf, "No data\n");
4222	return len;
4223}
4224#endif
4225
4226#ifdef SLUB_RESILIENCY_TEST
4227static void resiliency_test(void)
4228{
4229	u8 *p;
4230
4231	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4232
4233	printk(KERN_ERR "SLUB resiliency testing\n");
4234	printk(KERN_ERR "-----------------------\n");
4235	printk(KERN_ERR "A. Corruption after allocation\n");
4236
4237	p = kzalloc(16, GFP_KERNEL);
4238	p[16] = 0x12;
4239	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4240			" 0x12->0x%p\n\n", p + 16);
4241
4242	validate_slab_cache(kmalloc_caches[4]);
4243
4244	/* Hmmm... The next two are dangerous */
4245	p = kzalloc(32, GFP_KERNEL);
4246	p[32 + sizeof(void *)] = 0x34;
4247	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4248			" 0x34 -> -0x%p\n", p);
4249	printk(KERN_ERR
4250		"If allocated object is overwritten then not detectable\n\n");
4251
4252	validate_slab_cache(kmalloc_caches[5]);
4253	p = kzalloc(64, GFP_KERNEL);
4254	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4255	*p = 0x56;
4256	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4257									p);
4258	printk(KERN_ERR
4259		"If allocated object is overwritten then not detectable\n\n");
4260	validate_slab_cache(kmalloc_caches[6]);
4261
4262	printk(KERN_ERR "\nB. Corruption after free\n");
4263	p = kzalloc(128, GFP_KERNEL);
4264	kfree(p);
4265	*p = 0x78;
4266	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4267	validate_slab_cache(kmalloc_caches[7]);
4268
4269	p = kzalloc(256, GFP_KERNEL);
4270	kfree(p);
4271	p[50] = 0x9a;
4272	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4273			p);
4274	validate_slab_cache(kmalloc_caches[8]);
4275
4276	p = kzalloc(512, GFP_KERNEL);
4277	kfree(p);
4278	p[512] = 0xab;
4279	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4280	validate_slab_cache(kmalloc_caches[9]);
4281}
4282#else
4283#ifdef CONFIG_SYSFS
4284static void resiliency_test(void) {};
4285#endif
4286#endif
4287
4288#ifdef CONFIG_SYSFS
4289enum slab_stat_type {
4290	SL_ALL,			/* All slabs */
4291	SL_PARTIAL,		/* Only partially allocated slabs */
4292	SL_CPU,			/* Only slabs used for cpu caches */
4293	SL_OBJECTS,		/* Determine allocated objects not slabs */
4294	SL_TOTAL		/* Determine object capacity not slabs */
4295};
4296
4297#define SO_ALL		(1 << SL_ALL)
4298#define SO_PARTIAL	(1 << SL_PARTIAL)
4299#define SO_CPU		(1 << SL_CPU)
4300#define SO_OBJECTS	(1 << SL_OBJECTS)
4301#define SO_TOTAL	(1 << SL_TOTAL)
4302
4303static ssize_t show_slab_objects(struct kmem_cache *s,
4304			    char *buf, unsigned long flags)
4305{
4306	unsigned long total = 0;
4307	int node;
4308	int x;
4309	unsigned long *nodes;
4310	unsigned long *per_cpu;
4311
4312	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4313	if (!nodes)
4314		return -ENOMEM;
4315	per_cpu = nodes + nr_node_ids;
4316
4317	if (flags & SO_CPU) {
4318		int cpu;
4319
4320		for_each_possible_cpu(cpu) {
4321			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 
 
 
4322
4323			if (!c || c->node < 0)
 
4324				continue;
4325
4326			if (c->page) {
4327					if (flags & SO_TOTAL)
4328						x = c->page->objects;
 
 
 
 
 
 
 
 
 
 
 
 
 
4329				else if (flags & SO_OBJECTS)
4330					x = c->page->inuse;
4331				else
4332					x = 1;
4333
4334				total += x;
4335				nodes[c->node] += x;
4336			}
4337			per_cpu[c->node]++;
4338		}
4339	}
4340
4341	lock_memory_hotplug();
4342#ifdef CONFIG_SLUB_DEBUG
4343	if (flags & SO_ALL) {
4344		for_each_node_state(node, N_NORMAL_MEMORY) {
4345			struct kmem_cache_node *n = get_node(s, node);
4346
4347		if (flags & SO_TOTAL)
4348			x = atomic_long_read(&n->total_objects);
4349		else if (flags & SO_OBJECTS)
4350			x = atomic_long_read(&n->total_objects) -
4351				count_partial(n, count_free);
4352
 
 
 
 
 
4353			else
4354				x = atomic_long_read(&n->nr_slabs);
4355			total += x;
4356			nodes[node] += x;
4357		}
4358
4359	} else
4360#endif
4361	if (flags & SO_PARTIAL) {
4362		for_each_node_state(node, N_NORMAL_MEMORY) {
4363			struct kmem_cache_node *n = get_node(s, node);
4364
 
4365			if (flags & SO_TOTAL)
4366				x = count_partial(n, count_total);
4367			else if (flags & SO_OBJECTS)
4368				x = count_partial(n, count_inuse);
4369			else
4370				x = n->nr_partial;
4371			total += x;
4372			nodes[node] += x;
4373		}
4374	}
4375	x = sprintf(buf, "%lu", total);
4376#ifdef CONFIG_NUMA
4377	for_each_node_state(node, N_NORMAL_MEMORY)
4378		if (nodes[node])
4379			x += sprintf(buf + x, " N%d=%lu",
4380					node, nodes[node]);
4381#endif
4382	unlock_memory_hotplug();
4383	kfree(nodes);
4384	return x + sprintf(buf + x, "\n");
4385}
4386
4387#ifdef CONFIG_SLUB_DEBUG
4388static int any_slab_objects(struct kmem_cache *s)
4389{
4390	int node;
 
4391
4392	for_each_online_node(node) {
4393		struct kmem_cache_node *n = get_node(s, node);
4394
4395		if (!n)
4396			continue;
4397
4398		if (atomic_long_read(&n->total_objects))
4399			return 1;
4400	}
4401	return 0;
4402}
4403#endif
4404
4405#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4406#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4407
4408struct slab_attribute {
4409	struct attribute attr;
4410	ssize_t (*show)(struct kmem_cache *s, char *buf);
4411	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4412};
4413
4414#define SLAB_ATTR_RO(_name) \
4415	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
 
4416
4417#define SLAB_ATTR(_name) \
4418	static struct slab_attribute _name##_attr =  \
4419	__ATTR(_name, 0644, _name##_show, _name##_store)
4420
4421static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4422{
4423	return sprintf(buf, "%d\n", s->size);
4424}
4425SLAB_ATTR_RO(slab_size);
4426
4427static ssize_t align_show(struct kmem_cache *s, char *buf)
4428{
4429	return sprintf(buf, "%d\n", s->align);
4430}
4431SLAB_ATTR_RO(align);
4432
4433static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4434{
4435	return sprintf(buf, "%d\n", s->objsize);
4436}
4437SLAB_ATTR_RO(object_size);
4438
4439static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4440{
4441	return sprintf(buf, "%d\n", oo_objects(s->oo));
4442}
4443SLAB_ATTR_RO(objs_per_slab);
4444
4445static ssize_t order_store(struct kmem_cache *s,
4446				const char *buf, size_t length)
4447{
4448	unsigned long order;
4449	int err;
4450
4451	err = strict_strtoul(buf, 10, &order);
4452	if (err)
4453		return err;
4454
4455	if (order > slub_max_order || order < slub_min_order)
4456		return -EINVAL;
4457
4458	calculate_sizes(s, order);
4459	return length;
4460}
4461
4462static ssize_t order_show(struct kmem_cache *s, char *buf)
4463{
4464	return sprintf(buf, "%d\n", oo_order(s->oo));
4465}
4466SLAB_ATTR(order);
4467
4468static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4469{
4470	return sprintf(buf, "%lu\n", s->min_partial);
4471}
4472
4473static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4474				 size_t length)
4475{
4476	unsigned long min;
4477	int err;
4478
4479	err = strict_strtoul(buf, 10, &min);
4480	if (err)
4481		return err;
4482
4483	set_min_partial(s, min);
4484	return length;
4485}
4486SLAB_ATTR(min_partial);
4487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4488static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4489{
4490	if (!s->ctor)
4491		return 0;
4492	return sprintf(buf, "%pS\n", s->ctor);
4493}
4494SLAB_ATTR_RO(ctor);
4495
4496static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4497{
4498	return sprintf(buf, "%d\n", s->refcount - 1);
4499}
4500SLAB_ATTR_RO(aliases);
4501
4502static ssize_t partial_show(struct kmem_cache *s, char *buf)
4503{
4504	return show_slab_objects(s, buf, SO_PARTIAL);
4505}
4506SLAB_ATTR_RO(partial);
4507
4508static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4509{
4510	return show_slab_objects(s, buf, SO_CPU);
4511}
4512SLAB_ATTR_RO(cpu_slabs);
4513
4514static ssize_t objects_show(struct kmem_cache *s, char *buf)
4515{
4516	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4517}
4518SLAB_ATTR_RO(objects);
4519
4520static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4521{
4522	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4523}
4524SLAB_ATTR_RO(objects_partial);
4525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4526static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4527{
4528	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4529}
4530
4531static ssize_t reclaim_account_store(struct kmem_cache *s,
4532				const char *buf, size_t length)
4533{
4534	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4535	if (buf[0] == '1')
4536		s->flags |= SLAB_RECLAIM_ACCOUNT;
4537	return length;
4538}
4539SLAB_ATTR(reclaim_account);
4540
4541static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4542{
4543	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4544}
4545SLAB_ATTR_RO(hwcache_align);
4546
4547#ifdef CONFIG_ZONE_DMA
4548static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4549{
4550	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4551}
4552SLAB_ATTR_RO(cache_dma);
4553#endif
4554
4555static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4556{
4557	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4558}
4559SLAB_ATTR_RO(destroy_by_rcu);
4560
4561static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4562{
4563	return sprintf(buf, "%d\n", s->reserved);
4564}
4565SLAB_ATTR_RO(reserved);
4566
4567#ifdef CONFIG_SLUB_DEBUG
4568static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4569{
4570	return show_slab_objects(s, buf, SO_ALL);
4571}
4572SLAB_ATTR_RO(slabs);
4573
4574static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4575{
4576	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4577}
4578SLAB_ATTR_RO(total_objects);
4579
4580static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4581{
4582	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4583}
4584
4585static ssize_t sanity_checks_store(struct kmem_cache *s,
4586				const char *buf, size_t length)
4587{
4588	s->flags &= ~SLAB_DEBUG_FREE;
4589	if (buf[0] == '1') {
4590		s->flags &= ~__CMPXCHG_DOUBLE;
4591		s->flags |= SLAB_DEBUG_FREE;
4592	}
4593	return length;
4594}
4595SLAB_ATTR(sanity_checks);
4596
4597static ssize_t trace_show(struct kmem_cache *s, char *buf)
4598{
4599	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4600}
4601
4602static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4603							size_t length)
4604{
 
 
 
 
 
 
 
 
4605	s->flags &= ~SLAB_TRACE;
4606	if (buf[0] == '1') {
4607		s->flags &= ~__CMPXCHG_DOUBLE;
4608		s->flags |= SLAB_TRACE;
4609	}
4610	return length;
4611}
4612SLAB_ATTR(trace);
4613
4614static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4615{
4616	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4617}
4618
4619static ssize_t red_zone_store(struct kmem_cache *s,
4620				const char *buf, size_t length)
4621{
4622	if (any_slab_objects(s))
4623		return -EBUSY;
4624
4625	s->flags &= ~SLAB_RED_ZONE;
4626	if (buf[0] == '1') {
4627		s->flags &= ~__CMPXCHG_DOUBLE;
4628		s->flags |= SLAB_RED_ZONE;
4629	}
4630	calculate_sizes(s, -1);
4631	return length;
4632}
4633SLAB_ATTR(red_zone);
4634
4635static ssize_t poison_show(struct kmem_cache *s, char *buf)
4636{
4637	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4638}
4639
4640static ssize_t poison_store(struct kmem_cache *s,
4641				const char *buf, size_t length)
4642{
4643	if (any_slab_objects(s))
4644		return -EBUSY;
4645
4646	s->flags &= ~SLAB_POISON;
4647	if (buf[0] == '1') {
4648		s->flags &= ~__CMPXCHG_DOUBLE;
4649		s->flags |= SLAB_POISON;
4650	}
4651	calculate_sizes(s, -1);
4652	return length;
4653}
4654SLAB_ATTR(poison);
4655
4656static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4657{
4658	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4659}
4660
4661static ssize_t store_user_store(struct kmem_cache *s,
4662				const char *buf, size_t length)
4663{
4664	if (any_slab_objects(s))
4665		return -EBUSY;
4666
4667	s->flags &= ~SLAB_STORE_USER;
4668	if (buf[0] == '1') {
4669		s->flags &= ~__CMPXCHG_DOUBLE;
4670		s->flags |= SLAB_STORE_USER;
4671	}
4672	calculate_sizes(s, -1);
4673	return length;
4674}
4675SLAB_ATTR(store_user);
4676
4677static ssize_t validate_show(struct kmem_cache *s, char *buf)
4678{
4679	return 0;
4680}
4681
4682static ssize_t validate_store(struct kmem_cache *s,
4683			const char *buf, size_t length)
4684{
4685	int ret = -EINVAL;
4686
4687	if (buf[0] == '1') {
4688		ret = validate_slab_cache(s);
4689		if (ret >= 0)
4690			ret = length;
4691	}
4692	return ret;
4693}
4694SLAB_ATTR(validate);
4695
4696static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4697{
4698	if (!(s->flags & SLAB_STORE_USER))
4699		return -ENOSYS;
4700	return list_locations(s, buf, TRACK_ALLOC);
4701}
4702SLAB_ATTR_RO(alloc_calls);
4703
4704static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4705{
4706	if (!(s->flags & SLAB_STORE_USER))
4707		return -ENOSYS;
4708	return list_locations(s, buf, TRACK_FREE);
4709}
4710SLAB_ATTR_RO(free_calls);
4711#endif /* CONFIG_SLUB_DEBUG */
4712
4713#ifdef CONFIG_FAILSLAB
4714static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4715{
4716	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4717}
4718
4719static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4720							size_t length)
4721{
 
 
 
4722	s->flags &= ~SLAB_FAILSLAB;
4723	if (buf[0] == '1')
4724		s->flags |= SLAB_FAILSLAB;
4725	return length;
4726}
4727SLAB_ATTR(failslab);
4728#endif
4729
4730static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4731{
4732	return 0;
4733}
4734
4735static ssize_t shrink_store(struct kmem_cache *s,
4736			const char *buf, size_t length)
4737{
4738	if (buf[0] == '1') {
4739		int rc = kmem_cache_shrink(s);
4740
4741		if (rc)
4742			return rc;
4743	} else
4744		return -EINVAL;
4745	return length;
4746}
4747SLAB_ATTR(shrink);
4748
4749#ifdef CONFIG_NUMA
4750static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4751{
4752	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4753}
4754
4755static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4756				const char *buf, size_t length)
4757{
4758	unsigned long ratio;
4759	int err;
4760
4761	err = strict_strtoul(buf, 10, &ratio);
4762	if (err)
4763		return err;
4764
4765	if (ratio <= 100)
4766		s->remote_node_defrag_ratio = ratio * 10;
4767
4768	return length;
4769}
4770SLAB_ATTR(remote_node_defrag_ratio);
4771#endif
4772
4773#ifdef CONFIG_SLUB_STATS
4774static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4775{
4776	unsigned long sum  = 0;
4777	int cpu;
4778	int len;
4779	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4780
4781	if (!data)
4782		return -ENOMEM;
4783
4784	for_each_online_cpu(cpu) {
4785		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4786
4787		data[cpu] = x;
4788		sum += x;
4789	}
4790
4791	len = sprintf(buf, "%lu", sum);
4792
4793#ifdef CONFIG_SMP
4794	for_each_online_cpu(cpu) {
4795		if (data[cpu] && len < PAGE_SIZE - 20)
4796			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4797	}
4798#endif
4799	kfree(data);
4800	return len + sprintf(buf + len, "\n");
4801}
4802
4803static void clear_stat(struct kmem_cache *s, enum stat_item si)
4804{
4805	int cpu;
4806
4807	for_each_online_cpu(cpu)
4808		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4809}
4810
4811#define STAT_ATTR(si, text) 					\
4812static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4813{								\
4814	return show_stat(s, buf, si);				\
4815}								\
4816static ssize_t text##_store(struct kmem_cache *s,		\
4817				const char *buf, size_t length)	\
4818{								\
4819	if (buf[0] != '0')					\
4820		return -EINVAL;					\
4821	clear_stat(s, si);					\
4822	return length;						\
4823}								\
4824SLAB_ATTR(text);						\
4825
4826STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4827STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4828STAT_ATTR(FREE_FASTPATH, free_fastpath);
4829STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4830STAT_ATTR(FREE_FROZEN, free_frozen);
4831STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4832STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4833STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4834STAT_ATTR(ALLOC_SLAB, alloc_slab);
4835STAT_ATTR(ALLOC_REFILL, alloc_refill);
4836STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4837STAT_ATTR(FREE_SLAB, free_slab);
4838STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4839STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4840STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4841STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4842STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4843STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4844STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4845STAT_ATTR(ORDER_FALLBACK, order_fallback);
4846STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4847STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
 
 
 
 
4848#endif
4849
4850static struct attribute *slab_attrs[] = {
4851	&slab_size_attr.attr,
4852	&object_size_attr.attr,
4853	&objs_per_slab_attr.attr,
4854	&order_attr.attr,
4855	&min_partial_attr.attr,
 
4856	&objects_attr.attr,
4857	&objects_partial_attr.attr,
4858	&partial_attr.attr,
4859	&cpu_slabs_attr.attr,
4860	&ctor_attr.attr,
4861	&aliases_attr.attr,
4862	&align_attr.attr,
4863	&hwcache_align_attr.attr,
4864	&reclaim_account_attr.attr,
4865	&destroy_by_rcu_attr.attr,
4866	&shrink_attr.attr,
4867	&reserved_attr.attr,
 
4868#ifdef CONFIG_SLUB_DEBUG
4869	&total_objects_attr.attr,
4870	&slabs_attr.attr,
4871	&sanity_checks_attr.attr,
4872	&trace_attr.attr,
4873	&red_zone_attr.attr,
4874	&poison_attr.attr,
4875	&store_user_attr.attr,
4876	&validate_attr.attr,
4877	&alloc_calls_attr.attr,
4878	&free_calls_attr.attr,
4879#endif
4880#ifdef CONFIG_ZONE_DMA
4881	&cache_dma_attr.attr,
4882#endif
4883#ifdef CONFIG_NUMA
4884	&remote_node_defrag_ratio_attr.attr,
4885#endif
4886#ifdef CONFIG_SLUB_STATS
4887	&alloc_fastpath_attr.attr,
4888	&alloc_slowpath_attr.attr,
4889	&free_fastpath_attr.attr,
4890	&free_slowpath_attr.attr,
4891	&free_frozen_attr.attr,
4892	&free_add_partial_attr.attr,
4893	&free_remove_partial_attr.attr,
4894	&alloc_from_partial_attr.attr,
4895	&alloc_slab_attr.attr,
4896	&alloc_refill_attr.attr,
4897	&alloc_node_mismatch_attr.attr,
4898	&free_slab_attr.attr,
4899	&cpuslab_flush_attr.attr,
4900	&deactivate_full_attr.attr,
4901	&deactivate_empty_attr.attr,
4902	&deactivate_to_head_attr.attr,
4903	&deactivate_to_tail_attr.attr,
4904	&deactivate_remote_frees_attr.attr,
4905	&deactivate_bypass_attr.attr,
4906	&order_fallback_attr.attr,
4907	&cmpxchg_double_fail_attr.attr,
4908	&cmpxchg_double_cpu_fail_attr.attr,
 
 
 
 
4909#endif
4910#ifdef CONFIG_FAILSLAB
4911	&failslab_attr.attr,
4912#endif
4913
4914	NULL
4915};
4916
4917static struct attribute_group slab_attr_group = {
4918	.attrs = slab_attrs,
4919};
4920
4921static ssize_t slab_attr_show(struct kobject *kobj,
4922				struct attribute *attr,
4923				char *buf)
4924{
4925	struct slab_attribute *attribute;
4926	struct kmem_cache *s;
4927	int err;
4928
4929	attribute = to_slab_attr(attr);
4930	s = to_slab(kobj);
4931
4932	if (!attribute->show)
4933		return -EIO;
4934
4935	err = attribute->show(s, buf);
4936
4937	return err;
4938}
4939
4940static ssize_t slab_attr_store(struct kobject *kobj,
4941				struct attribute *attr,
4942				const char *buf, size_t len)
4943{
4944	struct slab_attribute *attribute;
4945	struct kmem_cache *s;
4946	int err;
4947
4948	attribute = to_slab_attr(attr);
4949	s = to_slab(kobj);
4950
4951	if (!attribute->store)
4952		return -EIO;
4953
4954	err = attribute->store(s, buf, len);
 
 
 
 
 
 
 
4955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4956	return err;
4957}
4958
4959static void kmem_cache_release(struct kobject *kobj)
4960{
4961	struct kmem_cache *s = to_slab(kobj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4962
4963	kfree(s->name);
4964	kfree(s);
 
 
 
 
 
 
 
 
 
 
4965}
4966
4967static const struct sysfs_ops slab_sysfs_ops = {
4968	.show = slab_attr_show,
4969	.store = slab_attr_store,
4970};
4971
4972static struct kobj_type slab_ktype = {
4973	.sysfs_ops = &slab_sysfs_ops,
4974	.release = kmem_cache_release
4975};
4976
4977static int uevent_filter(struct kset *kset, struct kobject *kobj)
4978{
4979	struct kobj_type *ktype = get_ktype(kobj);
4980
4981	if (ktype == &slab_ktype)
4982		return 1;
4983	return 0;
4984}
4985
4986static const struct kset_uevent_ops slab_uevent_ops = {
4987	.filter = uevent_filter,
4988};
4989
4990static struct kset *slab_kset;
4991
 
 
 
 
 
 
 
 
 
4992#define ID_STR_LENGTH 64
4993
4994/* Create a unique string id for a slab cache:
4995 *
4996 * Format	:[flags-]size
4997 */
4998static char *create_unique_id(struct kmem_cache *s)
4999{
5000	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5001	char *p = name;
5002
5003	BUG_ON(!name);
5004
5005	*p++ = ':';
5006	/*
5007	 * First flags affecting slabcache operations. We will only
5008	 * get here for aliasable slabs so we do not need to support
5009	 * too many flags. The flags here must cover all flags that
5010	 * are matched during merging to guarantee that the id is
5011	 * unique.
5012	 */
5013	if (s->flags & SLAB_CACHE_DMA)
5014		*p++ = 'd';
5015	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5016		*p++ = 'a';
5017	if (s->flags & SLAB_DEBUG_FREE)
5018		*p++ = 'F';
5019	if (!(s->flags & SLAB_NOTRACK))
5020		*p++ = 't';
 
 
5021	if (p != name + 1)
5022		*p++ = '-';
5023	p += sprintf(p, "%07d", s->size);
 
5024	BUG_ON(p > name + ID_STR_LENGTH - 1);
5025	return name;
5026}
5027
5028static int sysfs_slab_add(struct kmem_cache *s)
5029{
5030	int err;
5031	const char *name;
5032	int unmergeable;
5033
5034	if (slab_state < SYSFS)
5035		/* Defer until later */
5036		return 0;
5037
5038	unmergeable = slab_unmergeable(s);
5039	if (unmergeable) {
5040		/*
5041		 * Slabcache can never be merged so we can use the name proper.
5042		 * This is typically the case for debug situations. In that
5043		 * case we can catch duplicate names easily.
5044		 */
5045		sysfs_remove_link(&slab_kset->kobj, s->name);
5046		name = s->name;
5047	} else {
5048		/*
5049		 * Create a unique name for the slab as a target
5050		 * for the symlinks.
5051		 */
5052		name = create_unique_id(s);
5053	}
5054
5055	s->kobj.kset = slab_kset;
5056	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5057	if (err) {
5058		kobject_put(&s->kobj);
5059		return err;
5060	}
5061
5062	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5063	if (err) {
5064		kobject_del(&s->kobj);
5065		kobject_put(&s->kobj);
5066		return err;
 
 
 
 
 
 
5067	}
 
 
5068	kobject_uevent(&s->kobj, KOBJ_ADD);
5069	if (!unmergeable) {
5070		/* Setup first alias */
5071		sysfs_slab_alias(s, s->name);
5072		kfree(name);
5073	}
5074	return 0;
 
 
 
 
 
 
5075}
5076
5077static void sysfs_slab_remove(struct kmem_cache *s)
5078{
5079	if (slab_state < SYSFS)
5080		/*
5081		 * Sysfs has not been setup yet so no need to remove the
5082		 * cache from sysfs.
5083		 */
5084		return;
5085
 
 
 
5086	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5087	kobject_del(&s->kobj);
5088	kobject_put(&s->kobj);
5089}
5090
5091/*
5092 * Need to buffer aliases during bootup until sysfs becomes
5093 * available lest we lose that information.
5094 */
5095struct saved_alias {
5096	struct kmem_cache *s;
5097	const char *name;
5098	struct saved_alias *next;
5099};
5100
5101static struct saved_alias *alias_list;
5102
5103static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5104{
5105	struct saved_alias *al;
5106
5107	if (slab_state == SYSFS) {
5108		/*
5109		 * If we have a leftover link then remove it.
5110		 */
5111		sysfs_remove_link(&slab_kset->kobj, name);
5112		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5113	}
5114
5115	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5116	if (!al)
5117		return -ENOMEM;
5118
5119	al->s = s;
5120	al->name = name;
5121	al->next = alias_list;
5122	alias_list = al;
5123	return 0;
5124}
5125
5126static int __init slab_sysfs_init(void)
5127{
5128	struct kmem_cache *s;
5129	int err;
5130
5131	down_write(&slub_lock);
5132
5133	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5134	if (!slab_kset) {
5135		up_write(&slub_lock);
5136		printk(KERN_ERR "Cannot register slab subsystem.\n");
5137		return -ENOSYS;
5138	}
5139
5140	slab_state = SYSFS;
5141
5142	list_for_each_entry(s, &slab_caches, list) {
5143		err = sysfs_slab_add(s);
5144		if (err)
5145			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5146						" to sysfs\n", s->name);
5147	}
5148
5149	while (alias_list) {
5150		struct saved_alias *al = alias_list;
5151
5152		alias_list = alias_list->next;
5153		err = sysfs_slab_alias(al->s, al->name);
5154		if (err)
5155			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5156					" %s to sysfs\n", s->name);
5157		kfree(al);
5158	}
5159
5160	up_write(&slub_lock);
5161	resiliency_test();
5162	return 0;
5163}
5164
5165__initcall(slab_sysfs_init);
5166#endif /* CONFIG_SYSFS */
5167
5168/*
5169 * The /proc/slabinfo ABI
5170 */
5171#ifdef CONFIG_SLABINFO
5172static void print_slabinfo_header(struct seq_file *m)
5173{
5174	seq_puts(m, "slabinfo - version: 2.1\n");
5175	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5176		 "<objperslab> <pagesperslab>");
5177	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5178	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5179	seq_putc(m, '\n');
5180}
5181
5182static void *s_start(struct seq_file *m, loff_t *pos)
5183{
5184	loff_t n = *pos;
5185
5186	down_read(&slub_lock);
5187	if (!n)
5188		print_slabinfo_header(m);
5189
5190	return seq_list_start(&slab_caches, *pos);
5191}
5192
5193static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5194{
5195	return seq_list_next(p, &slab_caches, pos);
5196}
5197
5198static void s_stop(struct seq_file *m, void *p)
5199{
5200	up_read(&slub_lock);
5201}
5202
5203static int s_show(struct seq_file *m, void *p)
5204{
5205	unsigned long nr_partials = 0;
5206	unsigned long nr_slabs = 0;
5207	unsigned long nr_inuse = 0;
5208	unsigned long nr_objs = 0;
5209	unsigned long nr_free = 0;
5210	struct kmem_cache *s;
5211	int node;
 
5212
5213	s = list_entry(p, struct kmem_cache, list);
5214
5215	for_each_online_node(node) {
5216		struct kmem_cache_node *n = get_node(s, node);
5217
5218		if (!n)
5219			continue;
5220
5221		nr_partials += n->nr_partial;
5222		nr_slabs += atomic_long_read(&n->nr_slabs);
5223		nr_objs += atomic_long_read(&n->total_objects);
5224		nr_free += count_partial(n, count_free);
5225	}
5226
5227	nr_inuse = nr_objs - nr_free;
5228
5229	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5230		   nr_objs, s->size, oo_objects(s->oo),
5231		   (1 << oo_order(s->oo)));
5232	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5233	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5234		   0UL);
5235	seq_putc(m, '\n');
5236	return 0;
5237}
5238
5239static const struct seq_operations slabinfo_op = {
5240	.start = s_start,
5241	.next = s_next,
5242	.stop = s_stop,
5243	.show = s_show,
5244};
5245
5246static int slabinfo_open(struct inode *inode, struct file *file)
5247{
5248	return seq_open(file, &slabinfo_op);
5249}
5250
5251static const struct file_operations proc_slabinfo_operations = {
5252	.open		= slabinfo_open,
5253	.read		= seq_read,
5254	.llseek		= seq_lseek,
5255	.release	= seq_release,
5256};
5257
5258static int __init slab_proc_init(void)
5259{
5260	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
5261	return 0;
5262}
5263module_init(slab_proc_init);
5264#endif /* CONFIG_SLABINFO */
v4.10.11
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
  19#include "slab.h"
  20#include <linux/proc_fs.h>
  21#include <linux/notifier.h>
  22#include <linux/seq_file.h>
  23#include <linux/kasan.h>
  24#include <linux/kmemcheck.h>
  25#include <linux/cpu.h>
  26#include <linux/cpuset.h>
  27#include <linux/mempolicy.h>
  28#include <linux/ctype.h>
  29#include <linux/debugobjects.h>
  30#include <linux/kallsyms.h>
  31#include <linux/memory.h>
  32#include <linux/math64.h>
  33#include <linux/fault-inject.h>
  34#include <linux/stacktrace.h>
  35#include <linux/prefetch.h>
  36#include <linux/memcontrol.h>
  37
  38#include <trace/events/kmem.h>
  39
  40#include "internal.h"
  41
  42/*
  43 * Lock order:
  44 *   1. slab_mutex (Global Mutex)
  45 *   2. node->list_lock
  46 *   3. slab_lock(page) (Only on some arches and for debugging)
  47 *
  48 *   slab_mutex
  49 *
  50 *   The role of the slab_mutex is to protect the list of all the slabs
  51 *   and to synchronize major metadata changes to slab cache structures.
  52 *
  53 *   The slab_lock is only used for debugging and on arches that do not
  54 *   have the ability to do a cmpxchg_double. It only protects the second
  55 *   double word in the page struct. Meaning
  56 *	A. page->freelist	-> List of object free in a page
  57 *	B. page->counters	-> Counters of objects
  58 *	C. page->frozen		-> frozen state
  59 *
  60 *   If a slab is frozen then it is exempt from list management. It is not
  61 *   on any list. The processor that froze the slab is the one who can
  62 *   perform list operations on the page. Other processors may put objects
  63 *   onto the freelist but the processor that froze the slab is the only
  64 *   one that can retrieve the objects from the page's freelist.
  65 *
  66 *   The list_lock protects the partial and full list on each node and
  67 *   the partial slab counter. If taken then no new slabs may be added or
  68 *   removed from the lists nor make the number of partial slabs be modified.
  69 *   (Note that the total number of slabs is an atomic value that may be
  70 *   modified without taking the list lock).
  71 *
  72 *   The list_lock is a centralized lock and thus we avoid taking it as
  73 *   much as possible. As long as SLUB does not have to handle partial
  74 *   slabs, operations can continue without any centralized lock. F.e.
  75 *   allocating a long series of objects that fill up slabs does not require
  76 *   the list lock.
  77 *   Interrupts are disabled during allocation and deallocation in order to
  78 *   make the slab allocator safe to use in the context of an irq. In addition
  79 *   interrupts are disabled to ensure that the processor does not change
  80 *   while handling per_cpu slabs, due to kernel preemption.
  81 *
  82 * SLUB assigns one slab for allocation to each processor.
  83 * Allocations only occur from these slabs called cpu slabs.
  84 *
  85 * Slabs with free elements are kept on a partial list and during regular
  86 * operations no list for full slabs is used. If an object in a full slab is
  87 * freed then the slab will show up again on the partial lists.
  88 * We track full slabs for debugging purposes though because otherwise we
  89 * cannot scan all objects.
  90 *
  91 * Slabs are freed when they become empty. Teardown and setup is
  92 * minimal so we rely on the page allocators per cpu caches for
  93 * fast frees and allocs.
  94 *
  95 * Overloading of page flags that are otherwise used for LRU management.
  96 *
  97 * PageActive 		The slab is frozen and exempt from list processing.
  98 * 			This means that the slab is dedicated to a purpose
  99 * 			such as satisfying allocations for a specific
 100 * 			processor. Objects may be freed in the slab while
 101 * 			it is frozen but slab_free will then skip the usual
 102 * 			list operations. It is up to the processor holding
 103 * 			the slab to integrate the slab into the slab lists
 104 * 			when the slab is no longer needed.
 105 *
 106 * 			One use of this flag is to mark slabs that are
 107 * 			used for allocations. Then such a slab becomes a cpu
 108 * 			slab. The cpu slab may be equipped with an additional
 109 * 			freelist that allows lockless access to
 110 * 			free objects in addition to the regular freelist
 111 * 			that requires the slab lock.
 112 *
 113 * PageError		Slab requires special handling due to debug
 114 * 			options set. This moves	slab handling out of
 115 * 			the fast path and disables lockless freelists.
 116 */
 117
 
 
 
 118static inline int kmem_cache_debug(struct kmem_cache *s)
 119{
 120#ifdef CONFIG_SLUB_DEBUG
 121	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 122#else
 123	return 0;
 124#endif
 125}
 126
 127void *fixup_red_left(struct kmem_cache *s, void *p)
 128{
 129	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
 130		p += s->red_left_pad;
 131
 132	return p;
 133}
 134
 135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 136{
 137#ifdef CONFIG_SLUB_CPU_PARTIAL
 138	return !kmem_cache_debug(s);
 139#else
 140	return false;
 141#endif
 142}
 143
 144/*
 145 * Issues still to be resolved:
 146 *
 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 148 *
 149 * - Variable sizing of the per node arrays
 150 */
 151
 152/* Enable to test recovery from slab corruption on boot */
 153#undef SLUB_RESILIENCY_TEST
 154
 155/* Enable to log cmpxchg failures */
 156#undef SLUB_DEBUG_CMPXCHG
 157
 158/*
 159 * Mininum number of partial slabs. These will be left on the partial
 160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 161 */
 162#define MIN_PARTIAL 5
 163
 164/*
 165 * Maximum number of desirable partial slabs.
 166 * The existence of more partial slabs makes kmem_cache_shrink
 167 * sort the partial list by the number of objects in use.
 168 */
 169#define MAX_PARTIAL 10
 170
 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 172				SLAB_POISON | SLAB_STORE_USER)
 173
 174/*
 175 * These debug flags cannot use CMPXCHG because there might be consistency
 176 * issues when checking or reading debug information
 177 */
 178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 179				SLAB_TRACE)
 180
 181
 182/*
 183 * Debugging flags that require metadata to be stored in the slab.  These get
 184 * disabled when slub_debug=O is used and a cache's min order increases with
 185 * metadata.
 186 */
 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 188
 
 
 
 
 
 
 
 
 
 
 189#define OO_SHIFT	16
 190#define OO_MASK		((1 << OO_SHIFT) - 1)
 191#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 192
 193/* Internal SLUB flags */
 194#define __OBJECT_POISON		0x80000000UL /* Poison object */
 195#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
 196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197/*
 198 * Tracking user of a slab.
 199 */
 200#define TRACK_ADDRS_COUNT 16
 201struct track {
 202	unsigned long addr;	/* Called from address */
 203#ifdef CONFIG_STACKTRACE
 204	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 205#endif
 206	int cpu;		/* Was running on cpu */
 207	int pid;		/* Pid context */
 208	unsigned long when;	/* When did the operation occur */
 209};
 210
 211enum track_item { TRACK_ALLOC, TRACK_FREE };
 212
 213#ifdef CONFIG_SYSFS
 214static int sysfs_slab_add(struct kmem_cache *);
 215static int sysfs_slab_alias(struct kmem_cache *, const char *);
 216static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 
 217#else
 218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 220							{ return 0; }
 221static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 
 
 
 
 
 222#endif
 223
 224static inline void stat(const struct kmem_cache *s, enum stat_item si)
 225{
 226#ifdef CONFIG_SLUB_STATS
 227	/*
 228	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 229	 * avoid this_cpu_add()'s irq-disable overhead.
 230	 */
 231	raw_cpu_inc(s->cpu_slab->stat[si]);
 232#endif
 233}
 234
 235/********************************************************************
 236 * 			Core slab cache functions
 237 *******************************************************************/
 238
 239static inline void *get_freepointer(struct kmem_cache *s, void *object)
 
 
 
 
 
 
 
 
 
 
 
 
 240{
 241	return *(void **)(object + s->offset);
 
 
 
 
 
 
 
 
 
 
 
 242}
 243
 244static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 245{
 246	prefetch(object + s->offset);
 247}
 248
 249static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 250{
 251	void *p;
 252
 253	if (!debug_pagealloc_enabled())
 254		return get_freepointer(s, object);
 255
 256	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 
 
 
 257	return p;
 258}
 259
 260static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 261{
 262	*(void **)(object + s->offset) = fp;
 263}
 264
 265/* Loop over all objects in a slab */
 266#define for_each_object(__p, __s, __addr, __objects) \
 267	for (__p = fixup_red_left(__s, __addr); \
 268		__p < (__addr) + (__objects) * (__s)->size; \
 269		__p += (__s)->size)
 270
 271#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
 272	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
 273		__idx <= __objects; \
 274		__p += (__s)->size, __idx++)
 275
 276/* Determine object index from a given position */
 277static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 278{
 279	return (p - addr) / s->size;
 280}
 281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282static inline int order_objects(int order, unsigned long size, int reserved)
 283{
 284	return ((PAGE_SIZE << order) - reserved) / size;
 285}
 286
 287static inline struct kmem_cache_order_objects oo_make(int order,
 288		unsigned long size, int reserved)
 289{
 290	struct kmem_cache_order_objects x = {
 291		(order << OO_SHIFT) + order_objects(order, size, reserved)
 292	};
 293
 294	return x;
 295}
 296
 297static inline int oo_order(struct kmem_cache_order_objects x)
 298{
 299	return x.x >> OO_SHIFT;
 300}
 301
 302static inline int oo_objects(struct kmem_cache_order_objects x)
 303{
 304	return x.x & OO_MASK;
 305}
 306
 307/*
 308 * Per slab locking using the pagelock
 309 */
 310static __always_inline void slab_lock(struct page *page)
 311{
 312	VM_BUG_ON_PAGE(PageTail(page), page);
 313	bit_spin_lock(PG_locked, &page->flags);
 314}
 315
 316static __always_inline void slab_unlock(struct page *page)
 317{
 318	VM_BUG_ON_PAGE(PageTail(page), page);
 319	__bit_spin_unlock(PG_locked, &page->flags);
 320}
 321
 322static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
 323{
 324	struct page tmp;
 325	tmp.counters = counters_new;
 326	/*
 327	 * page->counters can cover frozen/inuse/objects as well
 328	 * as page->_refcount.  If we assign to ->counters directly
 329	 * we run the risk of losing updates to page->_refcount, so
 330	 * be careful and only assign to the fields we need.
 331	 */
 332	page->frozen  = tmp.frozen;
 333	page->inuse   = tmp.inuse;
 334	page->objects = tmp.objects;
 335}
 336
 337/* Interrupts must be disabled (for the fallback code to work right) */
 338static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 339		void *freelist_old, unsigned long counters_old,
 340		void *freelist_new, unsigned long counters_new,
 341		const char *n)
 342{
 343	VM_BUG_ON(!irqs_disabled());
 344#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 345    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 346	if (s->flags & __CMPXCHG_DOUBLE) {
 347		if (cmpxchg_double(&page->freelist, &page->counters,
 348				   freelist_old, counters_old,
 349				   freelist_new, counters_new))
 350			return true;
 351	} else
 352#endif
 353	{
 354		slab_lock(page);
 355		if (page->freelist == freelist_old &&
 356					page->counters == counters_old) {
 357			page->freelist = freelist_new;
 358			set_page_slub_counters(page, counters_new);
 359			slab_unlock(page);
 360			return true;
 361		}
 362		slab_unlock(page);
 363	}
 364
 365	cpu_relax();
 366	stat(s, CMPXCHG_DOUBLE_FAIL);
 367
 368#ifdef SLUB_DEBUG_CMPXCHG
 369	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 370#endif
 371
 372	return false;
 373}
 374
 375static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 376		void *freelist_old, unsigned long counters_old,
 377		void *freelist_new, unsigned long counters_new,
 378		const char *n)
 379{
 380#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 381    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 382	if (s->flags & __CMPXCHG_DOUBLE) {
 383		if (cmpxchg_double(&page->freelist, &page->counters,
 384				   freelist_old, counters_old,
 385				   freelist_new, counters_new))
 386			return true;
 387	} else
 388#endif
 389	{
 390		unsigned long flags;
 391
 392		local_irq_save(flags);
 393		slab_lock(page);
 394		if (page->freelist == freelist_old &&
 395					page->counters == counters_old) {
 396			page->freelist = freelist_new;
 397			set_page_slub_counters(page, counters_new);
 398			slab_unlock(page);
 399			local_irq_restore(flags);
 400			return true;
 401		}
 402		slab_unlock(page);
 403		local_irq_restore(flags);
 404	}
 405
 406	cpu_relax();
 407	stat(s, CMPXCHG_DOUBLE_FAIL);
 408
 409#ifdef SLUB_DEBUG_CMPXCHG
 410	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 411#endif
 412
 413	return false;
 414}
 415
 416#ifdef CONFIG_SLUB_DEBUG
 417/*
 418 * Determine a map of object in use on a page.
 419 *
 420 * Node listlock must be held to guarantee that the page does
 421 * not vanish from under us.
 422 */
 423static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 424{
 425	void *p;
 426	void *addr = page_address(page);
 427
 428	for (p = page->freelist; p; p = get_freepointer(s, p))
 429		set_bit(slab_index(p, s, addr), map);
 430}
 431
 432static inline int size_from_object(struct kmem_cache *s)
 433{
 434	if (s->flags & SLAB_RED_ZONE)
 435		return s->size - s->red_left_pad;
 436
 437	return s->size;
 438}
 439
 440static inline void *restore_red_left(struct kmem_cache *s, void *p)
 441{
 442	if (s->flags & SLAB_RED_ZONE)
 443		p -= s->red_left_pad;
 444
 445	return p;
 446}
 447
 448/*
 449 * Debug settings:
 450 */
 451#if defined(CONFIG_SLUB_DEBUG_ON)
 452static int slub_debug = DEBUG_DEFAULT_FLAGS;
 453#else
 454static int slub_debug;
 455#endif
 456
 457static char *slub_debug_slabs;
 458static int disable_higher_order_debug;
 459
 460/*
 461 * slub is about to manipulate internal object metadata.  This memory lies
 462 * outside the range of the allocated object, so accessing it would normally
 463 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 464 * to tell kasan that these accesses are OK.
 465 */
 466static inline void metadata_access_enable(void)
 467{
 468	kasan_disable_current();
 469}
 470
 471static inline void metadata_access_disable(void)
 472{
 473	kasan_enable_current();
 474}
 475
 476/*
 477 * Object debugging
 478 */
 479
 480/* Verify that a pointer has an address that is valid within a slab page */
 481static inline int check_valid_pointer(struct kmem_cache *s,
 482				struct page *page, void *object)
 483{
 484	void *base;
 485
 486	if (!object)
 487		return 1;
 488
 489	base = page_address(page);
 490	object = restore_red_left(s, object);
 491	if (object < base || object >= base + page->objects * s->size ||
 492		(object - base) % s->size) {
 493		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494	}
 495
 496	return 1;
 497}
 498
 499static void print_section(char *level, char *text, u8 *addr,
 500			  unsigned int length)
 501{
 502	metadata_access_enable();
 503	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 504			length, 1);
 505	metadata_access_disable();
 506}
 507
 508static struct track *get_track(struct kmem_cache *s, void *object,
 509	enum track_item alloc)
 510{
 511	struct track *p;
 512
 513	if (s->offset)
 514		p = object + s->offset + sizeof(void *);
 515	else
 516		p = object + s->inuse;
 517
 518	return p + alloc;
 519}
 520
 521static void set_track(struct kmem_cache *s, void *object,
 522			enum track_item alloc, unsigned long addr)
 523{
 524	struct track *p = get_track(s, object, alloc);
 525
 526	if (addr) {
 527#ifdef CONFIG_STACKTRACE
 528		struct stack_trace trace;
 529		int i;
 530
 531		trace.nr_entries = 0;
 532		trace.max_entries = TRACK_ADDRS_COUNT;
 533		trace.entries = p->addrs;
 534		trace.skip = 3;
 535		metadata_access_enable();
 536		save_stack_trace(&trace);
 537		metadata_access_disable();
 538
 539		/* See rant in lockdep.c */
 540		if (trace.nr_entries != 0 &&
 541		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 542			trace.nr_entries--;
 543
 544		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 545			p->addrs[i] = 0;
 546#endif
 547		p->addr = addr;
 548		p->cpu = smp_processor_id();
 549		p->pid = current->pid;
 550		p->when = jiffies;
 551	} else
 552		memset(p, 0, sizeof(struct track));
 553}
 554
 555static void init_tracking(struct kmem_cache *s, void *object)
 556{
 557	if (!(s->flags & SLAB_STORE_USER))
 558		return;
 559
 560	set_track(s, object, TRACK_FREE, 0UL);
 561	set_track(s, object, TRACK_ALLOC, 0UL);
 562}
 563
 564static void print_track(const char *s, struct track *t)
 565{
 566	if (!t->addr)
 567		return;
 568
 569	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 570	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 571#ifdef CONFIG_STACKTRACE
 572	{
 573		int i;
 574		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 575			if (t->addrs[i])
 576				pr_err("\t%pS\n", (void *)t->addrs[i]);
 577			else
 578				break;
 579	}
 580#endif
 581}
 582
 583static void print_tracking(struct kmem_cache *s, void *object)
 584{
 585	if (!(s->flags & SLAB_STORE_USER))
 586		return;
 587
 588	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 589	print_track("Freed", get_track(s, object, TRACK_FREE));
 590}
 591
 592static void print_page_info(struct page *page)
 593{
 594	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 595	       page, page->objects, page->inuse, page->freelist, page->flags);
 596
 597}
 598
 599static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 600{
 601	struct va_format vaf;
 602	va_list args;
 
 603
 604	va_start(args, fmt);
 605	vaf.fmt = fmt;
 606	vaf.va = &args;
 607	pr_err("=============================================================================\n");
 608	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 609	pr_err("-----------------------------------------------------------------------------\n\n");
 610
 611	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 612	va_end(args);
 
 
 
 
 
 613}
 614
 615static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 616{
 617	struct va_format vaf;
 618	va_list args;
 
 619
 620	va_start(args, fmt);
 621	vaf.fmt = fmt;
 622	vaf.va = &args;
 623	pr_err("FIX %s: %pV\n", s->name, &vaf);
 624	va_end(args);
 
 625}
 626
 627static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 628{
 629	unsigned int off;	/* Offset of last byte */
 630	u8 *addr = page_address(page);
 631
 632	print_tracking(s, p);
 633
 634	print_page_info(page);
 635
 636	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 637	       p, p - addr, get_freepointer(s, p));
 
 
 
 638
 639	if (s->flags & SLAB_RED_ZONE)
 640		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
 641			      s->red_left_pad);
 642	else if (p > addr + 16)
 643		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 644
 645	print_section(KERN_ERR, "Object ", p,
 646		      min_t(unsigned long, s->object_size, PAGE_SIZE));
 647	if (s->flags & SLAB_RED_ZONE)
 648		print_section(KERN_ERR, "Redzone ", p + s->object_size,
 649			s->inuse - s->object_size);
 650
 651	if (s->offset)
 652		off = s->offset + sizeof(void *);
 653	else
 654		off = s->inuse;
 655
 656	if (s->flags & SLAB_STORE_USER)
 657		off += 2 * sizeof(struct track);
 658
 659	off += kasan_metadata_size(s);
 660
 661	if (off != size_from_object(s))
 662		/* Beginning of the filler is the free pointer */
 663		print_section(KERN_ERR, "Padding ", p + off,
 664			      size_from_object(s) - off);
 665
 666	dump_stack();
 667}
 668
 669void object_err(struct kmem_cache *s, struct page *page,
 670			u8 *object, char *reason)
 671{
 672	slab_bug(s, "%s", reason);
 673	print_trailer(s, page, object);
 674}
 675
 676static void slab_err(struct kmem_cache *s, struct page *page,
 677			const char *fmt, ...)
 678{
 679	va_list args;
 680	char buf[100];
 681
 682	va_start(args, fmt);
 683	vsnprintf(buf, sizeof(buf), fmt, args);
 684	va_end(args);
 685	slab_bug(s, "%s", buf);
 686	print_page_info(page);
 687	dump_stack();
 688}
 689
 690static void init_object(struct kmem_cache *s, void *object, u8 val)
 691{
 692	u8 *p = object;
 693
 
 
 
 
 
 694	if (s->flags & SLAB_RED_ZONE)
 695		memset(p - s->red_left_pad, val, s->red_left_pad);
 
 696
 697	if (s->flags & __OBJECT_POISON) {
 698		memset(p, POISON_FREE, s->object_size - 1);
 699		p[s->object_size - 1] = POISON_END;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700	}
 701
 702	if (s->flags & SLAB_RED_ZONE)
 703		memset(p + s->object_size, val, s->inuse - s->object_size);
 704}
 705
 706static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 707						void *from, void *to)
 708{
 709	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 710	memset(from, data, to - from);
 711}
 712
 713static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 714			u8 *object, char *what,
 715			u8 *start, unsigned int value, unsigned int bytes)
 716{
 717	u8 *fault;
 718	u8 *end;
 719
 720	metadata_access_enable();
 721	fault = memchr_inv(start, value, bytes);
 722	metadata_access_disable();
 723	if (!fault)
 724		return 1;
 725
 726	end = start + bytes;
 727	while (end > fault && end[-1] == value)
 728		end--;
 729
 730	slab_bug(s, "%s overwritten", what);
 731	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 732					fault, end - 1, fault[0], value);
 733	print_trailer(s, page, object);
 734
 735	restore_bytes(s, what, value, fault, end);
 736	return 0;
 737}
 738
 739/*
 740 * Object layout:
 741 *
 742 * object address
 743 * 	Bytes of the object to be managed.
 744 * 	If the freepointer may overlay the object then the free
 745 * 	pointer is the first word of the object.
 746 *
 747 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 748 * 	0xa5 (POISON_END)
 749 *
 750 * object + s->object_size
 751 * 	Padding to reach word boundary. This is also used for Redzoning.
 752 * 	Padding is extended by another word if Redzoning is enabled and
 753 * 	object_size == inuse.
 754 *
 755 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 756 * 	0xcc (RED_ACTIVE) for objects in use.
 757 *
 758 * object + s->inuse
 759 * 	Meta data starts here.
 760 *
 761 * 	A. Free pointer (if we cannot overwrite object on free)
 762 * 	B. Tracking data for SLAB_STORE_USER
 763 * 	C. Padding to reach required alignment boundary or at mininum
 764 * 		one word if debugging is on to be able to detect writes
 765 * 		before the word boundary.
 766 *
 767 *	Padding is done using 0x5a (POISON_INUSE)
 768 *
 769 * object + s->size
 770 * 	Nothing is used beyond s->size.
 771 *
 772 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 773 * ignored. And therefore no slab options that rely on these boundaries
 774 * may be used with merged slabcaches.
 775 */
 776
 777static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 778{
 779	unsigned long off = s->inuse;	/* The end of info */
 780
 781	if (s->offset)
 782		/* Freepointer is placed after the object. */
 783		off += sizeof(void *);
 784
 785	if (s->flags & SLAB_STORE_USER)
 786		/* We also have user information there */
 787		off += 2 * sizeof(struct track);
 788
 789	off += kasan_metadata_size(s);
 790
 791	if (size_from_object(s) == off)
 792		return 1;
 793
 794	return check_bytes_and_report(s, page, p, "Object padding",
 795			p + off, POISON_INUSE, size_from_object(s) - off);
 796}
 797
 798/* Check the pad bytes at the end of a slab page */
 799static int slab_pad_check(struct kmem_cache *s, struct page *page)
 800{
 801	u8 *start;
 802	u8 *fault;
 803	u8 *end;
 804	int length;
 805	int remainder;
 806
 807	if (!(s->flags & SLAB_POISON))
 808		return 1;
 809
 810	start = page_address(page);
 811	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 812	end = start + length;
 813	remainder = length % s->size;
 814	if (!remainder)
 815		return 1;
 816
 817	metadata_access_enable();
 818	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
 819	metadata_access_disable();
 820	if (!fault)
 821		return 1;
 822	while (end > fault && end[-1] == POISON_INUSE)
 823		end--;
 824
 825	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 826	print_section(KERN_ERR, "Padding ", end - remainder, remainder);
 827
 828	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 829	return 0;
 830}
 831
 832static int check_object(struct kmem_cache *s, struct page *page,
 833					void *object, u8 val)
 834{
 835	u8 *p = object;
 836	u8 *endobject = object + s->object_size;
 837
 838	if (s->flags & SLAB_RED_ZONE) {
 839		if (!check_bytes_and_report(s, page, object, "Redzone",
 840			object - s->red_left_pad, val, s->red_left_pad))
 841			return 0;
 842
 843		if (!check_bytes_and_report(s, page, object, "Redzone",
 844			endobject, val, s->inuse - s->object_size))
 845			return 0;
 846	} else {
 847		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 848			check_bytes_and_report(s, page, p, "Alignment padding",
 849				endobject, POISON_INUSE,
 850				s->inuse - s->object_size);
 851		}
 852	}
 853
 854	if (s->flags & SLAB_POISON) {
 855		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 856			(!check_bytes_and_report(s, page, p, "Poison", p,
 857					POISON_FREE, s->object_size - 1) ||
 858			 !check_bytes_and_report(s, page, p, "Poison",
 859				p + s->object_size - 1, POISON_END, 1)))
 860			return 0;
 861		/*
 862		 * check_pad_bytes cleans up on its own.
 863		 */
 864		check_pad_bytes(s, page, p);
 865	}
 866
 867	if (!s->offset && val == SLUB_RED_ACTIVE)
 868		/*
 869		 * Object and freepointer overlap. Cannot check
 870		 * freepointer while object is allocated.
 871		 */
 872		return 1;
 873
 874	/* Check free pointer validity */
 875	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 876		object_err(s, page, p, "Freepointer corrupt");
 877		/*
 878		 * No choice but to zap it and thus lose the remainder
 879		 * of the free objects in this slab. May cause
 880		 * another error because the object count is now wrong.
 881		 */
 882		set_freepointer(s, p, NULL);
 883		return 0;
 884	}
 885	return 1;
 886}
 887
 888static int check_slab(struct kmem_cache *s, struct page *page)
 889{
 890	int maxobj;
 891
 892	VM_BUG_ON(!irqs_disabled());
 893
 894	if (!PageSlab(page)) {
 895		slab_err(s, page, "Not a valid slab page");
 896		return 0;
 897	}
 898
 899	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 900	if (page->objects > maxobj) {
 901		slab_err(s, page, "objects %u > max %u",
 902			page->objects, maxobj);
 903		return 0;
 904	}
 905	if (page->inuse > page->objects) {
 906		slab_err(s, page, "inuse %u > max %u",
 907			page->inuse, page->objects);
 908		return 0;
 909	}
 910	/* Slab_pad_check fixes things up after itself */
 911	slab_pad_check(s, page);
 912	return 1;
 913}
 914
 915/*
 916 * Determine if a certain object on a page is on the freelist. Must hold the
 917 * slab lock to guarantee that the chains are in a consistent state.
 918 */
 919static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 920{
 921	int nr = 0;
 922	void *fp;
 923	void *object = NULL;
 924	int max_objects;
 925
 926	fp = page->freelist;
 927	while (fp && nr <= page->objects) {
 928		if (fp == search)
 929			return 1;
 930		if (!check_valid_pointer(s, page, fp)) {
 931			if (object) {
 932				object_err(s, page, object,
 933					"Freechain corrupt");
 934				set_freepointer(s, object, NULL);
 
 935			} else {
 936				slab_err(s, page, "Freepointer corrupt");
 937				page->freelist = NULL;
 938				page->inuse = page->objects;
 939				slab_fix(s, "Freelist cleared");
 940				return 0;
 941			}
 942			break;
 943		}
 944		object = fp;
 945		fp = get_freepointer(s, object);
 946		nr++;
 947	}
 948
 949	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 950	if (max_objects > MAX_OBJS_PER_PAGE)
 951		max_objects = MAX_OBJS_PER_PAGE;
 952
 953	if (page->objects != max_objects) {
 954		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
 955			 page->objects, max_objects);
 956		page->objects = max_objects;
 957		slab_fix(s, "Number of objects adjusted.");
 958	}
 959	if (page->inuse != page->objects - nr) {
 960		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
 961			 page->inuse, page->objects - nr);
 962		page->inuse = page->objects - nr;
 963		slab_fix(s, "Object count adjusted.");
 964	}
 965	return search == NULL;
 966}
 967
 968static void trace(struct kmem_cache *s, struct page *page, void *object,
 969								int alloc)
 970{
 971	if (s->flags & SLAB_TRACE) {
 972		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 973			s->name,
 974			alloc ? "alloc" : "free",
 975			object, page->inuse,
 976			page->freelist);
 977
 978		if (!alloc)
 979			print_section(KERN_INFO, "Object ", (void *)object,
 980					s->object_size);
 981
 982		dump_stack();
 983	}
 984}
 985
 986/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987 * Tracking of fully allocated slabs for debugging purposes.
 
 
 988 */
 989static void add_full(struct kmem_cache *s,
 990	struct kmem_cache_node *n, struct page *page)
 991{
 992	if (!(s->flags & SLAB_STORE_USER))
 993		return;
 994
 995	lockdep_assert_held(&n->list_lock);
 996	list_add(&page->lru, &n->full);
 997}
 998
 999static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
 
 
 
1000{
1001	if (!(s->flags & SLAB_STORE_USER))
1002		return;
1003
1004	lockdep_assert_held(&n->list_lock);
1005	list_del(&page->lru);
1006}
1007
1008/* Tracking of the number of slabs for debugging purposes */
1009static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1010{
1011	struct kmem_cache_node *n = get_node(s, node);
1012
1013	return atomic_long_read(&n->nr_slabs);
1014}
1015
1016static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1017{
1018	return atomic_long_read(&n->nr_slabs);
1019}
1020
1021static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1022{
1023	struct kmem_cache_node *n = get_node(s, node);
1024
1025	/*
1026	 * May be called early in order to allocate a slab for the
1027	 * kmem_cache_node structure. Solve the chicken-egg
1028	 * dilemma by deferring the increment of the count during
1029	 * bootstrap (see early_kmem_cache_node_alloc).
1030	 */
1031	if (likely(n)) {
1032		atomic_long_inc(&n->nr_slabs);
1033		atomic_long_add(objects, &n->total_objects);
1034	}
1035}
1036static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1037{
1038	struct kmem_cache_node *n = get_node(s, node);
1039
1040	atomic_long_dec(&n->nr_slabs);
1041	atomic_long_sub(objects, &n->total_objects);
1042}
1043
1044/* Object debug checks for alloc/free paths */
1045static void setup_object_debug(struct kmem_cache *s, struct page *page,
1046								void *object)
1047{
1048	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1049		return;
1050
1051	init_object(s, object, SLUB_RED_INACTIVE);
1052	init_tracking(s, object);
1053}
1054
1055static inline int alloc_consistency_checks(struct kmem_cache *s,
1056					struct page *page,
1057					void *object, unsigned long addr)
1058{
1059	if (!check_slab(s, page))
1060		return 0;
1061
1062	if (!check_valid_pointer(s, page, object)) {
1063		object_err(s, page, object, "Freelist Pointer check fails");
1064		return 0;
1065	}
1066
1067	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1068		return 0;
1069
1070	return 1;
1071}
1072
1073static noinline int alloc_debug_processing(struct kmem_cache *s,
1074					struct page *page,
1075					void *object, unsigned long addr)
1076{
1077	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1078		if (!alloc_consistency_checks(s, page, object, addr))
1079			goto bad;
1080	}
1081
1082	/* Success perform special debug activities for allocs */
1083	if (s->flags & SLAB_STORE_USER)
1084		set_track(s, object, TRACK_ALLOC, addr);
1085	trace(s, page, object, 1);
1086	init_object(s, object, SLUB_RED_ACTIVE);
1087	return 1;
1088
1089bad:
1090	if (PageSlab(page)) {
1091		/*
1092		 * If this is a slab page then lets do the best we can
1093		 * to avoid issues in the future. Marking all objects
1094		 * as used avoids touching the remaining objects.
1095		 */
1096		slab_fix(s, "Marking all objects used");
1097		page->inuse = page->objects;
1098		page->freelist = NULL;
1099	}
1100	return 0;
1101}
1102
1103static inline int free_consistency_checks(struct kmem_cache *s,
1104		struct page *page, void *object, unsigned long addr)
1105{
 
 
 
 
 
 
 
 
 
1106	if (!check_valid_pointer(s, page, object)) {
1107		slab_err(s, page, "Invalid object pointer 0x%p", object);
1108		return 0;
1109	}
1110
1111	if (on_freelist(s, page, object)) {
1112		object_err(s, page, object, "Object already free");
1113		return 0;
1114	}
1115
1116	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1117		return 0;
1118
1119	if (unlikely(s != page->slab_cache)) {
1120		if (!PageSlab(page)) {
1121			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1122				 object);
1123		} else if (!page->slab_cache) {
1124			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1125			       object);
 
1126			dump_stack();
1127		} else
1128			object_err(s, page, object,
1129					"page slab pointer corrupt.");
1130		return 0;
1131	}
1132	return 1;
1133}
1134
1135/* Supports checking bulk free of a constructed freelist */
1136static noinline int free_debug_processing(
1137	struct kmem_cache *s, struct page *page,
1138	void *head, void *tail, int bulk_cnt,
1139	unsigned long addr)
1140{
1141	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1142	void *object = head;
1143	int cnt = 0;
1144	unsigned long uninitialized_var(flags);
1145	int ret = 0;
1146
1147	spin_lock_irqsave(&n->list_lock, flags);
1148	slab_lock(page);
1149
1150	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1151		if (!check_slab(s, page))
1152			goto out;
1153	}
1154
1155next_object:
1156	cnt++;
1157
1158	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1159		if (!free_consistency_checks(s, page, object, addr))
1160			goto out;
1161	}
1162
1163	if (s->flags & SLAB_STORE_USER)
1164		set_track(s, object, TRACK_FREE, addr);
1165	trace(s, page, object, 0);
1166	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1167	init_object(s, object, SLUB_RED_INACTIVE);
1168
1169	/* Reached end of constructed freelist yet? */
1170	if (object != tail) {
1171		object = get_freepointer(s, object);
1172		goto next_object;
1173	}
1174	ret = 1;
1175
1176out:
1177	if (cnt != bulk_cnt)
1178		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1179			 bulk_cnt, cnt);
1180
1181	slab_unlock(page);
1182	spin_unlock_irqrestore(&n->list_lock, flags);
1183	if (!ret)
1184		slab_fix(s, "Object at 0x%p not freed", object);
1185	return ret;
1186}
1187
1188static int __init setup_slub_debug(char *str)
1189{
1190	slub_debug = DEBUG_DEFAULT_FLAGS;
1191	if (*str++ != '=' || !*str)
1192		/*
1193		 * No options specified. Switch on full debugging.
1194		 */
1195		goto out;
1196
1197	if (*str == ',')
1198		/*
1199		 * No options but restriction on slabs. This means full
1200		 * debugging for slabs matching a pattern.
1201		 */
1202		goto check_slabs;
1203
 
 
 
 
 
 
 
 
 
1204	slub_debug = 0;
1205	if (*str == '-')
1206		/*
1207		 * Switch off all debugging measures.
1208		 */
1209		goto out;
1210
1211	/*
1212	 * Determine which debug features should be switched on
1213	 */
1214	for (; *str && *str != ','; str++) {
1215		switch (tolower(*str)) {
1216		case 'f':
1217			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1218			break;
1219		case 'z':
1220			slub_debug |= SLAB_RED_ZONE;
1221			break;
1222		case 'p':
1223			slub_debug |= SLAB_POISON;
1224			break;
1225		case 'u':
1226			slub_debug |= SLAB_STORE_USER;
1227			break;
1228		case 't':
1229			slub_debug |= SLAB_TRACE;
1230			break;
1231		case 'a':
1232			slub_debug |= SLAB_FAILSLAB;
1233			break;
1234		case 'o':
1235			/*
1236			 * Avoid enabling debugging on caches if its minimum
1237			 * order would increase as a result.
1238			 */
1239			disable_higher_order_debug = 1;
1240			break;
1241		default:
1242			pr_err("slub_debug option '%c' unknown. skipped\n",
1243			       *str);
1244		}
1245	}
1246
1247check_slabs:
1248	if (*str == ',')
1249		slub_debug_slabs = str + 1;
1250out:
1251	return 1;
1252}
1253
1254__setup("slub_debug", setup_slub_debug);
1255
1256unsigned long kmem_cache_flags(unsigned long object_size,
1257	unsigned long flags, const char *name,
1258	void (*ctor)(void *))
1259{
1260	/*
1261	 * Enable debugging if selected on the kernel commandline.
1262	 */
1263	if (slub_debug && (!slub_debug_slabs || (name &&
1264		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1265		flags |= slub_debug;
1266
1267	return flags;
1268}
1269#else /* !CONFIG_SLUB_DEBUG */
1270static inline void setup_object_debug(struct kmem_cache *s,
1271			struct page *page, void *object) {}
1272
1273static inline int alloc_debug_processing(struct kmem_cache *s,
1274	struct page *page, void *object, unsigned long addr) { return 0; }
1275
1276static inline int free_debug_processing(
1277	struct kmem_cache *s, struct page *page,
1278	void *head, void *tail, int bulk_cnt,
1279	unsigned long addr) { return 0; }
1280
1281static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1282			{ return 1; }
1283static inline int check_object(struct kmem_cache *s, struct page *page,
1284			void *object, u8 val) { return 1; }
1285static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1286					struct page *page) {}
1287static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288					struct page *page) {}
1289unsigned long kmem_cache_flags(unsigned long object_size,
1290	unsigned long flags, const char *name,
1291	void (*ctor)(void *))
1292{
1293	return flags;
1294}
1295#define slub_debug 0
1296
1297#define disable_higher_order_debug 0
1298
1299static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1300							{ return 0; }
1301static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1302							{ return 0; }
1303static inline void inc_slabs_node(struct kmem_cache *s, int node,
1304							int objects) {}
1305static inline void dec_slabs_node(struct kmem_cache *s, int node,
1306							int objects) {}
1307
1308#endif /* CONFIG_SLUB_DEBUG */
 
1309
1310/*
1311 * Hooks for other subsystems that check memory allocations. In a typical
1312 * production configuration these hooks all should produce no code at all.
1313 */
1314static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1315{
1316	kmemleak_alloc(ptr, size, 1, flags);
1317	kasan_kmalloc_large(ptr, size, flags);
1318}
1319
1320static inline void kfree_hook(const void *x)
1321{
1322	kmemleak_free(x);
1323	kasan_kfree_large(x);
1324}
1325
1326static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1327{
1328	void *freeptr;
1329
1330	kmemleak_free_recursive(x, s->flags);
1331
1332	/*
1333	 * Trouble is that we may no longer disable interrupts in the fast path
1334	 * So in order to make the debug calls that expect irqs to be
1335	 * disabled we need to disable interrupts temporarily.
1336	 */
1337#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1338	{
1339		unsigned long flags;
1340
1341		local_irq_save(flags);
1342		kmemcheck_slab_free(s, x, s->object_size);
1343		debug_check_no_locks_freed(x, s->object_size);
1344		local_irq_restore(flags);
1345	}
1346#endif
1347	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1348		debug_check_no_obj_freed(x, s->object_size);
1349
1350	freeptr = get_freepointer(s, x);
1351	/*
1352	 * kasan_slab_free() may put x into memory quarantine, delaying its
1353	 * reuse. In this case the object's freelist pointer is changed.
1354	 */
1355	kasan_slab_free(s, x);
1356	return freeptr;
1357}
1358
1359static inline void slab_free_freelist_hook(struct kmem_cache *s,
1360					   void *head, void *tail)
1361{
1362/*
1363 * Compiler cannot detect this function can be removed if slab_free_hook()
1364 * evaluates to nothing.  Thus, catch all relevant config debug options here.
1365 */
1366#if defined(CONFIG_KMEMCHECK) ||		\
1367	defined(CONFIG_LOCKDEP)	||		\
1368	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1369	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1370	defined(CONFIG_KASAN)
1371
1372	void *object = head;
1373	void *tail_obj = tail ? : head;
1374	void *freeptr;
1375
1376	do {
1377		freeptr = slab_free_hook(s, object);
1378	} while ((object != tail_obj) && (object = freeptr));
1379#endif
1380}
1381
1382static void setup_object(struct kmem_cache *s, struct page *page,
1383				void *object)
1384{
1385	setup_object_debug(s, page, object);
1386	kasan_init_slab_obj(s, object);
1387	if (unlikely(s->ctor)) {
1388		kasan_unpoison_object_data(s, object);
1389		s->ctor(object);
1390		kasan_poison_object_data(s, object);
1391	}
1392}
1393
1394/*
1395 * Slab allocation and freeing
1396 */
1397static inline struct page *alloc_slab_page(struct kmem_cache *s,
1398		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1399{
1400	struct page *page;
1401	int order = oo_order(oo);
1402
1403	flags |= __GFP_NOTRACK;
1404
1405	if (node == NUMA_NO_NODE)
1406		page = alloc_pages(flags, order);
1407	else
1408		page = __alloc_pages_node(node, flags, order);
1409
1410	if (page && memcg_charge_slab(page, flags, order, s)) {
1411		__free_pages(page, order);
1412		page = NULL;
1413	}
1414
1415	return page;
1416}
1417
1418#ifdef CONFIG_SLAB_FREELIST_RANDOM
1419/* Pre-initialize the random sequence cache */
1420static int init_cache_random_seq(struct kmem_cache *s)
1421{
1422	int err;
1423	unsigned long i, count = oo_objects(s->oo);
1424
1425	/* Bailout if already initialised */
1426	if (s->random_seq)
1427		return 0;
1428
1429	err = cache_random_seq_create(s, count, GFP_KERNEL);
1430	if (err) {
1431		pr_err("SLUB: Unable to initialize free list for %s\n",
1432			s->name);
1433		return err;
1434	}
1435
1436	/* Transform to an offset on the set of pages */
1437	if (s->random_seq) {
1438		for (i = 0; i < count; i++)
1439			s->random_seq[i] *= s->size;
1440	}
1441	return 0;
1442}
1443
1444/* Initialize each random sequence freelist per cache */
1445static void __init init_freelist_randomization(void)
1446{
1447	struct kmem_cache *s;
1448
1449	mutex_lock(&slab_mutex);
1450
1451	list_for_each_entry(s, &slab_caches, list)
1452		init_cache_random_seq(s);
1453
1454	mutex_unlock(&slab_mutex);
1455}
1456
1457/* Get the next entry on the pre-computed freelist randomized */
1458static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1459				unsigned long *pos, void *start,
1460				unsigned long page_limit,
1461				unsigned long freelist_count)
1462{
1463	unsigned int idx;
1464
1465	/*
1466	 * If the target page allocation failed, the number of objects on the
1467	 * page might be smaller than the usual size defined by the cache.
1468	 */
1469	do {
1470		idx = s->random_seq[*pos];
1471		*pos += 1;
1472		if (*pos >= freelist_count)
1473			*pos = 0;
1474	} while (unlikely(idx >= page_limit));
1475
1476	return (char *)start + idx;
1477}
1478
1479/* Shuffle the single linked freelist based on a random pre-computed sequence */
1480static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1481{
1482	void *start;
1483	void *cur;
1484	void *next;
1485	unsigned long idx, pos, page_limit, freelist_count;
1486
1487	if (page->objects < 2 || !s->random_seq)
1488		return false;
1489
1490	freelist_count = oo_objects(s->oo);
1491	pos = get_random_int() % freelist_count;
1492
1493	page_limit = page->objects * s->size;
1494	start = fixup_red_left(s, page_address(page));
1495
1496	/* First entry is used as the base of the freelist */
1497	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1498				freelist_count);
1499	page->freelist = cur;
1500
1501	for (idx = 1; idx < page->objects; idx++) {
1502		setup_object(s, page, cur);
1503		next = next_freelist_entry(s, page, &pos, start, page_limit,
1504			freelist_count);
1505		set_freepointer(s, cur, next);
1506		cur = next;
1507	}
1508	setup_object(s, page, cur);
1509	set_freepointer(s, cur, NULL);
1510
1511	return true;
1512}
1513#else
1514static inline int init_cache_random_seq(struct kmem_cache *s)
1515{
1516	return 0;
1517}
1518static inline void init_freelist_randomization(void) { }
1519static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1520{
1521	return false;
1522}
1523#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1524
1525static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1526{
1527	struct page *page;
1528	struct kmem_cache_order_objects oo = s->oo;
1529	gfp_t alloc_gfp;
1530	void *start, *p;
1531	int idx, order;
1532	bool shuffle;
1533
1534	flags &= gfp_allowed_mask;
1535
1536	if (gfpflags_allow_blocking(flags))
1537		local_irq_enable();
1538
1539	flags |= s->allocflags;
1540
1541	/*
1542	 * Let the initial higher-order allocation fail under memory pressure
1543	 * so we fall-back to the minimum order allocation.
1544	 */
1545	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1546	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1547		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1548
1549	page = alloc_slab_page(s, alloc_gfp, node, oo);
1550	if (unlikely(!page)) {
1551		oo = s->min;
1552		alloc_gfp = flags;
1553		/*
1554		 * Allocation may have failed due to fragmentation.
1555		 * Try a lower order alloc if possible
1556		 */
1557		page = alloc_slab_page(s, alloc_gfp, node, oo);
1558		if (unlikely(!page))
1559			goto out;
1560		stat(s, ORDER_FALLBACK);
1561	}
1562
1563	if (kmemcheck_enabled &&
1564	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
 
 
 
 
 
 
1565		int pages = 1 << oo_order(oo);
1566
1567		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1568
1569		/*
1570		 * Objects from caches that have a constructor don't get
1571		 * cleared when they're allocated, so we need to do it here.
1572		 */
1573		if (s->ctor)
1574			kmemcheck_mark_uninitialized_pages(page, pages);
1575		else
1576			kmemcheck_mark_unallocated_pages(page, pages);
1577	}
1578
1579	page->objects = oo_objects(oo);
 
 
 
 
1580
1581	order = compound_order(page);
1582	page->slab_cache = s;
1583	__SetPageSlab(page);
1584	if (page_is_pfmemalloc(page))
1585		SetPageSlabPfmemalloc(page);
1586
1587	start = page_address(page);
 
 
 
 
 
 
1588
1589	if (unlikely(s->flags & SLAB_POISON))
1590		memset(start, POISON_INUSE, PAGE_SIZE << order);
 
 
 
 
1591
1592	kasan_poison_slab(page);
1593
1594	shuffle = shuffle_freelist(s, page);
1595
1596	if (!shuffle) {
1597		for_each_object_idx(p, idx, s, start, page->objects) {
1598			setup_object(s, page, p);
1599			if (likely(idx < page->objects))
1600				set_freepointer(s, p, p + s->size);
1601			else
1602				set_freepointer(s, p, NULL);
1603		}
1604		page->freelist = fixup_red_left(s, start);
1605	}
1606
1607	page->inuse = page->objects;
1608	page->frozen = 1;
1609
1610out:
1611	if (gfpflags_allow_blocking(flags))
1612		local_irq_disable();
1613	if (!page)
1614		return NULL;
1615
1616	mod_zone_page_state(page_zone(page),
1617		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1618		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1619		1 << oo_order(oo));
1620
1621	inc_slabs_node(s, page_to_nid(page), page->objects);
1622
1623	return page;
1624}
1625
1626static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1627{
1628	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1629		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1630		flags &= ~GFP_SLAB_BUG_MASK;
1631		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1632				invalid_mask, &invalid_mask, flags, &flags);
1633	}
 
 
1634
1635	return allocate_slab(s,
1636		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
 
 
 
1637}
1638
1639static void __free_slab(struct kmem_cache *s, struct page *page)
1640{
1641	int order = compound_order(page);
1642	int pages = 1 << order;
1643
1644	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1645		void *p;
1646
1647		slab_pad_check(s, page);
1648		for_each_object(p, s, page_address(page),
1649						page->objects)
1650			check_object(s, page, p, SLUB_RED_INACTIVE);
1651	}
1652
1653	kmemcheck_free_shadow(page, compound_order(page));
1654
1655	mod_zone_page_state(page_zone(page),
1656		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1657		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1658		-pages);
1659
1660	__ClearPageSlabPfmemalloc(page);
1661	__ClearPageSlab(page);
1662
1663	page_mapcount_reset(page);
1664	if (current->reclaim_state)
1665		current->reclaim_state->reclaimed_slab += pages;
1666	memcg_uncharge_slab(page, order, s);
1667	__free_pages(page, order);
1668}
1669
1670#define need_reserve_slab_rcu						\
1671	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1672
1673static void rcu_free_slab(struct rcu_head *h)
1674{
1675	struct page *page;
1676
1677	if (need_reserve_slab_rcu)
1678		page = virt_to_head_page(h);
1679	else
1680		page = container_of((struct list_head *)h, struct page, lru);
1681
1682	__free_slab(page->slab_cache, page);
1683}
1684
1685static void free_slab(struct kmem_cache *s, struct page *page)
1686{
1687	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1688		struct rcu_head *head;
1689
1690		if (need_reserve_slab_rcu) {
1691			int order = compound_order(page);
1692			int offset = (PAGE_SIZE << order) - s->reserved;
1693
1694			VM_BUG_ON(s->reserved != sizeof(*head));
1695			head = page_address(page) + offset;
1696		} else {
1697			head = &page->rcu_head;
 
 
 
1698		}
1699
1700		call_rcu(head, rcu_free_slab);
1701	} else
1702		__free_slab(s, page);
1703}
1704
1705static void discard_slab(struct kmem_cache *s, struct page *page)
1706{
1707	dec_slabs_node(s, page_to_nid(page), page->objects);
1708	free_slab(s, page);
1709}
1710
1711/*
1712 * Management of partially allocated slabs.
 
 
1713 */
1714static inline void
1715__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1716{
1717	n->nr_partial++;
1718	if (tail == DEACTIVATE_TO_TAIL)
1719		list_add_tail(&page->lru, &n->partial);
1720	else
1721		list_add(&page->lru, &n->partial);
1722}
1723
1724static inline void add_partial(struct kmem_cache_node *n,
1725				struct page *page, int tail)
1726{
1727	lockdep_assert_held(&n->list_lock);
1728	__add_partial(n, page, tail);
1729}
1730
1731static inline void remove_partial(struct kmem_cache_node *n,
1732					struct page *page)
1733{
1734	lockdep_assert_held(&n->list_lock);
1735	list_del(&page->lru);
1736	n->nr_partial--;
1737}
1738
1739/*
1740 * Remove slab from the partial list, freeze it and
1741 * return the pointer to the freelist.
1742 *
1743 * Returns a list of objects or NULL if it fails.
1744 */
1745static inline void *acquire_slab(struct kmem_cache *s,
1746		struct kmem_cache_node *n, struct page *page,
1747		int mode, int *objects)
1748{
1749	void *freelist;
1750	unsigned long counters;
1751	struct page new;
1752
1753	lockdep_assert_held(&n->list_lock);
1754
1755	/*
1756	 * Zap the freelist and set the frozen bit.
1757	 * The old freelist is the list of objects for the
1758	 * per cpu allocation list.
1759	 */
1760	freelist = page->freelist;
1761	counters = page->counters;
1762	new.counters = counters;
1763	*objects = new.objects - new.inuse;
1764	if (mode) {
1765		new.inuse = page->objects;
1766		new.freelist = NULL;
1767	} else {
1768		new.freelist = freelist;
1769	}
1770
1771	VM_BUG_ON(new.frozen);
1772	new.frozen = 1;
1773
1774	if (!__cmpxchg_double_slab(s, page,
1775			freelist, counters,
1776			new.freelist, new.counters,
1777			"acquire_slab"))
1778		return NULL;
1779
1780	remove_partial(n, page);
1781	WARN_ON(!freelist);
1782	return freelist;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783}
1784
1785static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1786static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1787
1788/*
1789 * Try to allocate a partial slab from a specific node.
1790 */
1791static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1792				struct kmem_cache_cpu *c, gfp_t flags)
1793{
1794	struct page *page, *page2;
1795	void *object = NULL;
1796	int available = 0;
1797	int objects;
1798
1799	/*
1800	 * Racy check. If we mistakenly see no partial slabs then we
1801	 * just allocate an empty slab. If we mistakenly try to get a
1802	 * partial slab and there is none available then get_partials()
1803	 * will return NULL.
1804	 */
1805	if (!n || !n->nr_partial)
1806		return NULL;
1807
1808	spin_lock(&n->list_lock);
1809	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1810		void *t;
1811
1812		if (!pfmemalloc_match(page, flags))
1813			continue;
1814
1815		t = acquire_slab(s, n, page, object == NULL, &objects);
1816		if (!t)
1817			break;
1818
1819		available += objects;
1820		if (!object) {
1821			c->page = page;
1822			stat(s, ALLOC_FROM_PARTIAL);
1823			object = t;
1824		} else {
1825			put_cpu_partial(s, page, 0);
1826			stat(s, CPU_PARTIAL_NODE);
1827		}
1828		if (!kmem_cache_has_cpu_partial(s)
1829			|| available > s->cpu_partial / 2)
1830			break;
1831
1832	}
1833	spin_unlock(&n->list_lock);
1834	return object;
1835}
1836
1837/*
1838 * Get a page from somewhere. Search in increasing NUMA distances.
1839 */
1840static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1841		struct kmem_cache_cpu *c)
1842{
1843#ifdef CONFIG_NUMA
1844	struct zonelist *zonelist;
1845	struct zoneref *z;
1846	struct zone *zone;
1847	enum zone_type high_zoneidx = gfp_zone(flags);
1848	void *object;
1849	unsigned int cpuset_mems_cookie;
1850
1851	/*
1852	 * The defrag ratio allows a configuration of the tradeoffs between
1853	 * inter node defragmentation and node local allocations. A lower
1854	 * defrag_ratio increases the tendency to do local allocations
1855	 * instead of attempting to obtain partial slabs from other nodes.
1856	 *
1857	 * If the defrag_ratio is set to 0 then kmalloc() always
1858	 * returns node local objects. If the ratio is higher then kmalloc()
1859	 * may return off node objects because partial slabs are obtained
1860	 * from other nodes and filled up.
1861	 *
1862	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1863	 * (which makes defrag_ratio = 1000) then every (well almost)
1864	 * allocation will first attempt to defrag slab caches on other nodes.
1865	 * This means scanning over all nodes to look for partial slabs which
1866	 * may be expensive if we do it every time we are trying to find a slab
1867	 * with available objects.
1868	 */
1869	if (!s->remote_node_defrag_ratio ||
1870			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1871		return NULL;
1872
1873	do {
1874		cpuset_mems_cookie = read_mems_allowed_begin();
1875		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1876		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1877			struct kmem_cache_node *n;
1878
1879			n = get_node(s, zone_to_nid(zone));
1880
1881			if (n && cpuset_zone_allowed(zone, flags) &&
1882					n->nr_partial > s->min_partial) {
1883				object = get_partial_node(s, n, c, flags);
1884				if (object) {
1885					/*
1886					 * Don't check read_mems_allowed_retry()
1887					 * here - if mems_allowed was updated in
1888					 * parallel, that was a harmless race
1889					 * between allocation and the cpuset
1890					 * update
1891					 */
1892					return object;
1893				}
1894			}
1895		}
1896	} while (read_mems_allowed_retry(cpuset_mems_cookie));
 
1897#endif
1898	return NULL;
1899}
1900
1901/*
1902 * Get a partial page, lock it and return it.
1903 */
1904static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1905		struct kmem_cache_cpu *c)
1906{
1907	void *object;
1908	int searchnode = node;
1909
1910	if (node == NUMA_NO_NODE)
1911		searchnode = numa_mem_id();
1912	else if (!node_present_pages(node))
1913		searchnode = node_to_mem_node(node);
1914
1915	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1916	if (object || node != NUMA_NO_NODE)
1917		return object;
1918
1919	return get_any_partial(s, flags, c);
1920}
1921
1922#ifdef CONFIG_PREEMPT
1923/*
1924 * Calculate the next globally unique transaction for disambiguiation
1925 * during cmpxchg. The transactions start with the cpu number and are then
1926 * incremented by CONFIG_NR_CPUS.
1927 */
1928#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1929#else
1930/*
1931 * No preemption supported therefore also no need to check for
1932 * different cpus.
1933 */
1934#define TID_STEP 1
1935#endif
1936
1937static inline unsigned long next_tid(unsigned long tid)
1938{
1939	return tid + TID_STEP;
1940}
1941
1942static inline unsigned int tid_to_cpu(unsigned long tid)
1943{
1944	return tid % TID_STEP;
1945}
1946
1947static inline unsigned long tid_to_event(unsigned long tid)
1948{
1949	return tid / TID_STEP;
1950}
1951
1952static inline unsigned int init_tid(int cpu)
1953{
1954	return cpu;
1955}
1956
1957static inline void note_cmpxchg_failure(const char *n,
1958		const struct kmem_cache *s, unsigned long tid)
1959{
1960#ifdef SLUB_DEBUG_CMPXCHG
1961	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1962
1963	pr_info("%s %s: cmpxchg redo ", n, s->name);
1964
1965#ifdef CONFIG_PREEMPT
1966	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1967		pr_warn("due to cpu change %d -> %d\n",
1968			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1969	else
1970#endif
1971	if (tid_to_event(tid) != tid_to_event(actual_tid))
1972		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1973			tid_to_event(tid), tid_to_event(actual_tid));
1974	else
1975		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1976			actual_tid, tid, next_tid(tid));
1977#endif
1978	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1979}
1980
1981static void init_kmem_cache_cpus(struct kmem_cache *s)
1982{
1983	int cpu;
1984
1985	for_each_possible_cpu(cpu)
1986		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1987}
 
 
 
1988
1989/*
1990 * Remove the cpu slab
1991 */
1992static void deactivate_slab(struct kmem_cache *s, struct page *page,
1993				void *freelist)
1994{
1995	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
 
1996	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1997	int lock = 0;
1998	enum slab_modes l = M_NONE, m = M_NONE;
 
1999	void *nextfree;
2000	int tail = DEACTIVATE_TO_HEAD;
2001	struct page new;
2002	struct page old;
2003
2004	if (page->freelist) {
2005		stat(s, DEACTIVATE_REMOTE_FREES);
2006		tail = DEACTIVATE_TO_TAIL;
2007	}
2008
 
 
 
 
 
2009	/*
2010	 * Stage one: Free all available per cpu objects back
2011	 * to the page freelist while it is still frozen. Leave the
2012	 * last one.
2013	 *
2014	 * There is no need to take the list->lock because the page
2015	 * is still frozen.
2016	 */
2017	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2018		void *prior;
2019		unsigned long counters;
2020
2021		do {
2022			prior = page->freelist;
2023			counters = page->counters;
2024			set_freepointer(s, freelist, prior);
2025			new.counters = counters;
2026			new.inuse--;
2027			VM_BUG_ON(!new.frozen);
2028
2029		} while (!__cmpxchg_double_slab(s, page,
2030			prior, counters,
2031			freelist, new.counters,
2032			"drain percpu freelist"));
2033
2034		freelist = nextfree;
2035	}
2036
2037	/*
2038	 * Stage two: Ensure that the page is unfrozen while the
2039	 * list presence reflects the actual number of objects
2040	 * during unfreeze.
2041	 *
2042	 * We setup the list membership and then perform a cmpxchg
2043	 * with the count. If there is a mismatch then the page
2044	 * is not unfrozen but the page is on the wrong list.
2045	 *
2046	 * Then we restart the process which may have to remove
2047	 * the page from the list that we just put it on again
2048	 * because the number of objects in the slab may have
2049	 * changed.
2050	 */
2051redo:
2052
2053	old.freelist = page->freelist;
2054	old.counters = page->counters;
2055	VM_BUG_ON(!old.frozen);
2056
2057	/* Determine target state of the slab */
2058	new.counters = old.counters;
2059	if (freelist) {
2060		new.inuse--;
2061		set_freepointer(s, freelist, old.freelist);
2062		new.freelist = freelist;
2063	} else
2064		new.freelist = old.freelist;
2065
2066	new.frozen = 0;
2067
2068	if (!new.inuse && n->nr_partial >= s->min_partial)
2069		m = M_FREE;
2070	else if (new.freelist) {
2071		m = M_PARTIAL;
2072		if (!lock) {
2073			lock = 1;
2074			/*
2075			 * Taking the spinlock removes the possiblity
2076			 * that acquire_slab() will see a slab page that
2077			 * is frozen
2078			 */
2079			spin_lock(&n->list_lock);
2080		}
2081	} else {
2082		m = M_FULL;
2083		if (kmem_cache_debug(s) && !lock) {
2084			lock = 1;
2085			/*
2086			 * This also ensures that the scanning of full
2087			 * slabs from diagnostic functions will not see
2088			 * any frozen slabs.
2089			 */
2090			spin_lock(&n->list_lock);
2091		}
2092	}
2093
2094	if (l != m) {
2095
2096		if (l == M_PARTIAL)
2097
2098			remove_partial(n, page);
2099
2100		else if (l == M_FULL)
2101
2102			remove_full(s, n, page);
2103
2104		if (m == M_PARTIAL) {
2105
2106			add_partial(n, page, tail);
2107			stat(s, tail);
2108
2109		} else if (m == M_FULL) {
2110
2111			stat(s, DEACTIVATE_FULL);
2112			add_full(s, n, page);
2113
2114		}
2115	}
2116
2117	l = m;
2118	if (!__cmpxchg_double_slab(s, page,
2119				old.freelist, old.counters,
2120				new.freelist, new.counters,
2121				"unfreezing slab"))
2122		goto redo;
2123
2124	if (lock)
2125		spin_unlock(&n->list_lock);
2126
2127	if (m == M_FREE) {
2128		stat(s, DEACTIVATE_EMPTY);
2129		discard_slab(s, page);
2130		stat(s, FREE_SLAB);
2131	}
2132}
2133
2134/*
2135 * Unfreeze all the cpu partial slabs.
2136 *
2137 * This function must be called with interrupts disabled
2138 * for the cpu using c (or some other guarantee must be there
2139 * to guarantee no concurrent accesses).
2140 */
2141static void unfreeze_partials(struct kmem_cache *s,
2142		struct kmem_cache_cpu *c)
2143{
2144#ifdef CONFIG_SLUB_CPU_PARTIAL
2145	struct kmem_cache_node *n = NULL, *n2 = NULL;
2146	struct page *page, *discard_page = NULL;
2147
2148	while ((page = c->partial)) {
2149		struct page new;
2150		struct page old;
2151
2152		c->partial = page->next;
2153
2154		n2 = get_node(s, page_to_nid(page));
2155		if (n != n2) {
2156			if (n)
2157				spin_unlock(&n->list_lock);
2158
2159			n = n2;
2160			spin_lock(&n->list_lock);
2161		}
2162
2163		do {
2164
2165			old.freelist = page->freelist;
2166			old.counters = page->counters;
2167			VM_BUG_ON(!old.frozen);
2168
2169			new.counters = old.counters;
2170			new.freelist = old.freelist;
2171
2172			new.frozen = 0;
2173
2174		} while (!__cmpxchg_double_slab(s, page,
2175				old.freelist, old.counters,
2176				new.freelist, new.counters,
2177				"unfreezing slab"));
2178
2179		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2180			page->next = discard_page;
2181			discard_page = page;
2182		} else {
2183			add_partial(n, page, DEACTIVATE_TO_TAIL);
2184			stat(s, FREE_ADD_PARTIAL);
2185		}
2186	}
2187
2188	if (n)
2189		spin_unlock(&n->list_lock);
2190
2191	while (discard_page) {
2192		page = discard_page;
2193		discard_page = discard_page->next;
2194
2195		stat(s, DEACTIVATE_EMPTY);
2196		discard_slab(s, page);
2197		stat(s, FREE_SLAB);
2198	}
2199#endif
2200}
2201
2202/*
2203 * Put a page that was just frozen (in __slab_free) into a partial page
2204 * slot if available. This is done without interrupts disabled and without
2205 * preemption disabled. The cmpxchg is racy and may put the partial page
2206 * onto a random cpus partial slot.
2207 *
2208 * If we did not find a slot then simply move all the partials to the
2209 * per node partial list.
2210 */
2211static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2212{
2213#ifdef CONFIG_SLUB_CPU_PARTIAL
2214	struct page *oldpage;
2215	int pages;
2216	int pobjects;
2217
2218	preempt_disable();
2219	do {
2220		pages = 0;
2221		pobjects = 0;
2222		oldpage = this_cpu_read(s->cpu_slab->partial);
2223
2224		if (oldpage) {
2225			pobjects = oldpage->pobjects;
2226			pages = oldpage->pages;
2227			if (drain && pobjects > s->cpu_partial) {
2228				unsigned long flags;
2229				/*
2230				 * partial array is full. Move the existing
2231				 * set to the per node partial list.
2232				 */
2233				local_irq_save(flags);
2234				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2235				local_irq_restore(flags);
2236				oldpage = NULL;
2237				pobjects = 0;
2238				pages = 0;
2239				stat(s, CPU_PARTIAL_DRAIN);
2240			}
2241		}
2242
2243		pages++;
2244		pobjects += page->objects - page->inuse;
2245
2246		page->pages = pages;
2247		page->pobjects = pobjects;
2248		page->next = oldpage;
2249
2250	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2251								!= oldpage);
2252	if (unlikely(!s->cpu_partial)) {
2253		unsigned long flags;
2254
2255		local_irq_save(flags);
2256		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2257		local_irq_restore(flags);
2258	}
2259	preempt_enable();
2260#endif
2261}
2262
2263static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2264{
2265	stat(s, CPUSLAB_FLUSH);
2266	deactivate_slab(s, c->page, c->freelist);
2267
2268	c->tid = next_tid(c->tid);
2269	c->page = NULL;
2270	c->freelist = NULL;
2271}
2272
2273/*
2274 * Flush cpu slab.
2275 *
2276 * Called from IPI handler with interrupts disabled.
2277 */
2278static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2279{
2280	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2281
2282	if (likely(c)) {
2283		if (c->page)
2284			flush_slab(s, c);
2285
2286		unfreeze_partials(s, c);
2287	}
2288}
2289
2290static void flush_cpu_slab(void *d)
2291{
2292	struct kmem_cache *s = d;
2293
2294	__flush_cpu_slab(s, smp_processor_id());
2295}
2296
2297static bool has_cpu_slab(int cpu, void *info)
2298{
2299	struct kmem_cache *s = info;
2300	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2301
2302	return c->page || c->partial;
2303}
2304
2305static void flush_all(struct kmem_cache *s)
2306{
2307	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2308}
2309
2310/*
2311 * Use the cpu notifier to insure that the cpu slabs are flushed when
2312 * necessary.
2313 */
2314static int slub_cpu_dead(unsigned int cpu)
2315{
2316	struct kmem_cache *s;
2317	unsigned long flags;
2318
2319	mutex_lock(&slab_mutex);
2320	list_for_each_entry(s, &slab_caches, list) {
2321		local_irq_save(flags);
2322		__flush_cpu_slab(s, cpu);
2323		local_irq_restore(flags);
2324	}
2325	mutex_unlock(&slab_mutex);
2326	return 0;
2327}
2328
2329/*
2330 * Check if the objects in a per cpu structure fit numa
2331 * locality expectations.
2332 */
2333static inline int node_match(struct page *page, int node)
2334{
2335#ifdef CONFIG_NUMA
2336	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2337		return 0;
2338#endif
2339	return 1;
2340}
2341
2342#ifdef CONFIG_SLUB_DEBUG
2343static int count_free(struct page *page)
2344{
2345	return page->objects - page->inuse;
2346}
2347
2348static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2349{
2350	return atomic_long_read(&n->total_objects);
2351}
2352#endif /* CONFIG_SLUB_DEBUG */
2353
2354#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2355static unsigned long count_partial(struct kmem_cache_node *n,
2356					int (*get_count)(struct page *))
2357{
2358	unsigned long flags;
2359	unsigned long x = 0;
2360	struct page *page;
2361
2362	spin_lock_irqsave(&n->list_lock, flags);
2363	list_for_each_entry(page, &n->partial, lru)
2364		x += get_count(page);
2365	spin_unlock_irqrestore(&n->list_lock, flags);
2366	return x;
2367}
2368#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
 
 
 
 
 
 
 
 
2369
2370static noinline void
2371slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2372{
2373#ifdef CONFIG_SLUB_DEBUG
2374	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2375				      DEFAULT_RATELIMIT_BURST);
2376	int node;
2377	struct kmem_cache_node *n;
2378
2379	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2380		return;
2381
2382	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2383		nid, gfpflags, &gfpflags);
2384	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2385		s->name, s->object_size, s->size, oo_order(s->oo),
2386		oo_order(s->min));
2387
2388	if (oo_order(s->min) > get_order(s->object_size))
2389		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2390			s->name);
2391
2392	for_each_kmem_cache_node(s, node, n) {
 
2393		unsigned long nr_slabs;
2394		unsigned long nr_objs;
2395		unsigned long nr_free;
2396
 
 
 
2397		nr_free  = count_partial(n, count_free);
2398		nr_slabs = node_nr_slabs(n);
2399		nr_objs  = node_nr_objs(n);
2400
2401		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
 
2402			node, nr_slabs, nr_objs, nr_free);
2403	}
2404#endif
2405}
2406
2407static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2408			int node, struct kmem_cache_cpu **pc)
2409{
2410	void *freelist;
2411	struct kmem_cache_cpu *c = *pc;
2412	struct page *page;
2413
2414	freelist = get_partial(s, flags, node, c);
2415
2416	if (freelist)
2417		return freelist;
2418
2419	page = new_slab(s, flags, node);
2420	if (page) {
2421		c = raw_cpu_ptr(s->cpu_slab);
2422		if (c->page)
2423			flush_slab(s, c);
2424
2425		/*
2426		 * No other reference to the page yet so we can
2427		 * muck around with it freely without cmpxchg
2428		 */
2429		freelist = page->freelist;
2430		page->freelist = NULL;
2431
2432		stat(s, ALLOC_SLAB);
2433		c->page = page;
2434		*pc = c;
2435	} else
2436		freelist = NULL;
2437
2438	return freelist;
2439}
2440
2441static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2442{
2443	if (unlikely(PageSlabPfmemalloc(page)))
2444		return gfp_pfmemalloc_allowed(gfpflags);
2445
2446	return true;
2447}
2448
2449/*
2450 * Check the page->freelist of a page and either transfer the freelist to the
2451 * per cpu freelist or deactivate the page.
2452 *
2453 * The page is still frozen if the return value is not NULL.
2454 *
2455 * If this function returns NULL then the page has been unfrozen.
2456 *
2457 * This function must be called with interrupt disabled.
2458 */
2459static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2460{
2461	struct page new;
2462	unsigned long counters;
2463	void *freelist;
2464
2465	do {
2466		freelist = page->freelist;
2467		counters = page->counters;
2468
2469		new.counters = counters;
2470		VM_BUG_ON(!new.frozen);
2471
2472		new.inuse = page->objects;
2473		new.frozen = freelist != NULL;
2474
2475	} while (!__cmpxchg_double_slab(s, page,
2476		freelist, counters,
2477		NULL, new.counters,
2478		"get_freelist"));
2479
2480	return freelist;
2481}
2482
2483/*
2484 * Slow path. The lockless freelist is empty or we need to perform
2485 * debugging duties.
2486 *
 
 
2487 * Processing is still very fast if new objects have been freed to the
2488 * regular freelist. In that case we simply take over the regular freelist
2489 * as the lockless freelist and zap the regular freelist.
2490 *
2491 * If that is not working then we fall back to the partial lists. We take the
2492 * first element of the freelist as the object to allocate now and move the
2493 * rest of the freelist to the lockless freelist.
2494 *
2495 * And if we were unable to get a new slab from the partial slab lists then
2496 * we need to allocate a new slab. This is the slowest path since it involves
2497 * a call to the page allocator and the setup of a new slab.
2498 *
2499 * Version of __slab_alloc to use when we know that interrupts are
2500 * already disabled (which is the case for bulk allocation).
2501 */
2502static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2503			  unsigned long addr, struct kmem_cache_cpu *c)
2504{
2505	void *freelist;
2506	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507
2508	page = c->page;
2509	if (!page)
2510		goto new_slab;
2511redo:
2512
2513	if (unlikely(!node_match(page, node))) {
2514		int searchnode = node;
 
 
 
2515
2516		if (node != NUMA_NO_NODE && !node_present_pages(node))
2517			searchnode = node_to_mem_node(node);
2518
2519		if (unlikely(!node_match(page, searchnode))) {
2520			stat(s, ALLOC_NODE_MISMATCH);
2521			deactivate_slab(s, page, c->freelist);
2522			c->page = NULL;
2523			c->freelist = NULL;
2524			goto new_slab;
2525		}
2526	}
2527
2528	/*
2529	 * By rights, we should be searching for a slab page that was
2530	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2531	 * information when the page leaves the per-cpu allocator
2532	 */
2533	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2534		deactivate_slab(s, page, c->freelist);
2535		c->page = NULL;
2536		c->freelist = NULL;
2537		goto new_slab;
2538	}
2539
2540	/* must check again c->freelist in case of cpu migration or IRQ */
2541	freelist = c->freelist;
2542	if (freelist)
2543		goto load_freelist;
2544
2545	freelist = get_freelist(s, page);
 
 
 
2546
2547	if (!freelist) {
2548		c->page = NULL;
2549		stat(s, DEACTIVATE_BYPASS);
2550		goto new_slab;
2551	}
2552
2553	stat(s, ALLOC_REFILL);
2554
2555load_freelist:
2556	/*
2557	 * freelist is pointing to the list of objects to be used.
2558	 * page is pointing to the page from which the objects are obtained.
2559	 * That page must be frozen for per cpu allocations to work.
2560	 */
2561	VM_BUG_ON(!c->page->frozen);
2562	c->freelist = get_freepointer(s, freelist);
2563	c->tid = next_tid(c->tid);
2564	return freelist;
 
2565
2566new_slab:
 
 
 
 
2567
2568	if (c->partial) {
2569		page = c->page = c->partial;
2570		c->partial = page->next;
2571		stat(s, CPU_PARTIAL_ALLOC);
2572		c->freelist = NULL;
2573		goto redo;
2574	}
2575
2576	freelist = new_slab_objects(s, gfpflags, node, &c);
 
 
 
 
 
 
 
 
 
 
 
 
 
2577
2578	if (unlikely(!freelist)) {
2579		slab_out_of_memory(s, gfpflags, node);
2580		return NULL;
2581	}
2582
2583	page = c->page;
2584	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2585		goto load_freelist;
 
 
 
 
 
2586
2587	/* Only entered in the debug case */
2588	if (kmem_cache_debug(s) &&
2589			!alloc_debug_processing(s, page, freelist, addr))
2590		goto new_slab;	/* Slab failed checks. Next slab needed */
2591
2592	deactivate_slab(s, page, get_freepointer(s, freelist));
 
2593	c->page = NULL;
2594	c->freelist = NULL;
2595	return freelist;
2596}
2597
2598/*
2599 * Another one that disabled interrupt and compensates for possible
2600 * cpu changes by refetching the per cpu area pointer.
2601 */
2602static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2603			  unsigned long addr, struct kmem_cache_cpu *c)
2604{
2605	void *p;
2606	unsigned long flags;
2607
2608	local_irq_save(flags);
2609#ifdef CONFIG_PREEMPT
2610	/*
2611	 * We may have been preempted and rescheduled on a different
2612	 * cpu before disabling interrupts. Need to reload cpu area
2613	 * pointer.
2614	 */
2615	c = this_cpu_ptr(s->cpu_slab);
2616#endif
2617
2618	p = ___slab_alloc(s, gfpflags, node, addr, c);
2619	local_irq_restore(flags);
2620	return p;
2621}
2622
2623/*
2624 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2625 * have the fastpath folded into their functions. So no function call
2626 * overhead for requests that can be satisfied on the fastpath.
2627 *
2628 * The fastpath works by first checking if the lockless freelist can be used.
2629 * If not then __slab_alloc is called for slow processing.
2630 *
2631 * Otherwise we can simply pick the next object from the lockless free list.
2632 */
2633static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2634		gfp_t gfpflags, int node, unsigned long addr)
2635{
2636	void *object;
2637	struct kmem_cache_cpu *c;
2638	struct page *page;
2639	unsigned long tid;
2640
2641	s = slab_pre_alloc_hook(s, gfpflags);
2642	if (!s)
2643		return NULL;
 
2644redo:
 
2645	/*
2646	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2647	 * enabled. We may switch back and forth between cpus while
2648	 * reading from one cpu area. That does not matter as long
2649	 * as we end up on the original cpu again when doing the cmpxchg.
2650	 *
2651	 * We should guarantee that tid and kmem_cache are retrieved on
2652	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2653	 * to check if it is matched or not.
2654	 */
2655	do {
2656		tid = this_cpu_read(s->cpu_slab->tid);
2657		c = raw_cpu_ptr(s->cpu_slab);
2658	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2659		 unlikely(tid != READ_ONCE(c->tid)));
2660
2661	/*
2662	 * Irqless object alloc/free algorithm used here depends on sequence
2663	 * of fetching cpu_slab's data. tid should be fetched before anything
2664	 * on c to guarantee that object and page associated with previous tid
2665	 * won't be used with current tid. If we fetch tid first, object and
2666	 * page could be one associated with next tid and our alloc/free
2667	 * request will be failed. In this case, we will retry. So, no problem.
2668	 */
2669	barrier();
2670
2671	/*
2672	 * The transaction ids are globally unique per cpu and per operation on
2673	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2674	 * occurs on the right processor and that there was no operation on the
2675	 * linked list in between.
2676	 */
 
 
2677
2678	object = c->freelist;
2679	page = c->page;
2680	if (unlikely(!object || !node_match(page, node))) {
2681		object = __slab_alloc(s, gfpflags, node, addr, c);
2682		stat(s, ALLOC_SLOWPATH);
2683	} else {
2684		void *next_object = get_freepointer_safe(s, object);
2685
 
2686		/*
2687		 * The cmpxchg will only match if there was no additional
2688		 * operation and if we are on the right processor.
2689		 *
2690		 * The cmpxchg does the following atomically (without lock
2691		 * semantics!)
2692		 * 1. Relocate first pointer to the current per cpu area.
2693		 * 2. Verify that tid and freelist have not been changed
2694		 * 3. If they were not changed replace tid and freelist
2695		 *
2696		 * Since this is without lock semantics the protection is only
2697		 * against code executing on this cpu *not* from access by
2698		 * other cpus.
2699		 */
2700		if (unlikely(!this_cpu_cmpxchg_double(
2701				s->cpu_slab->freelist, s->cpu_slab->tid,
2702				object, tid,
2703				next_object, next_tid(tid)))) {
2704
2705			note_cmpxchg_failure("slab_alloc", s, tid);
2706			goto redo;
2707		}
2708		prefetch_freepointer(s, next_object);
2709		stat(s, ALLOC_FASTPATH);
2710	}
2711
2712	if (unlikely(gfpflags & __GFP_ZERO) && object)
2713		memset(object, 0, s->object_size);
2714
2715	slab_post_alloc_hook(s, gfpflags, 1, &object);
2716
2717	return object;
2718}
2719
2720static __always_inline void *slab_alloc(struct kmem_cache *s,
2721		gfp_t gfpflags, unsigned long addr)
2722{
2723	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2724}
2725
2726void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2727{
2728	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2729
2730	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2731				s->size, gfpflags);
2732
2733	return ret;
2734}
2735EXPORT_SYMBOL(kmem_cache_alloc);
2736
2737#ifdef CONFIG_TRACING
2738void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2739{
2740	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2741	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2742	kasan_kmalloc(s, ret, size, gfpflags);
2743	return ret;
2744}
2745EXPORT_SYMBOL(kmem_cache_alloc_trace);
 
 
 
 
 
 
 
 
2746#endif
2747
2748#ifdef CONFIG_NUMA
2749void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2750{
2751	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2752
2753	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2754				    s->object_size, s->size, gfpflags, node);
2755
2756	return ret;
2757}
2758EXPORT_SYMBOL(kmem_cache_alloc_node);
2759
2760#ifdef CONFIG_TRACING
2761void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2762				    gfp_t gfpflags,
2763				    int node, size_t size)
2764{
2765	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2766
2767	trace_kmalloc_node(_RET_IP_, ret,
2768			   size, s->size, gfpflags, node);
2769
2770	kasan_kmalloc(s, ret, size, gfpflags);
2771	return ret;
2772}
2773EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2774#endif
2775#endif
2776
2777/*
2778 * Slow path handling. This may still be called frequently since objects
2779 * have a longer lifetime than the cpu slabs in most processing loads.
2780 *
2781 * So we still attempt to reduce cache line usage. Just take the slab
2782 * lock and free the item. If there is no additional partial page
2783 * handling required then we can return immediately.
2784 */
2785static void __slab_free(struct kmem_cache *s, struct page *page,
2786			void *head, void *tail, int cnt,
2787			unsigned long addr)
2788
2789{
2790	void *prior;
 
2791	int was_frozen;
 
2792	struct page new;
2793	unsigned long counters;
2794	struct kmem_cache_node *n = NULL;
2795	unsigned long uninitialized_var(flags);
2796
2797	stat(s, FREE_SLOWPATH);
2798
2799	if (kmem_cache_debug(s) &&
2800	    !free_debug_processing(s, page, head, tail, cnt, addr))
2801		return;
2802
2803	do {
2804		if (unlikely(n)) {
2805			spin_unlock_irqrestore(&n->list_lock, flags);
2806			n = NULL;
2807		}
2808		prior = page->freelist;
2809		counters = page->counters;
2810		set_freepointer(s, tail, prior);
2811		new.counters = counters;
2812		was_frozen = new.frozen;
2813		new.inuse -= cnt;
2814		if ((!new.inuse || !prior) && !was_frozen) {
2815
2816			if (kmem_cache_has_cpu_partial(s) && !prior) {
2817
2818				/*
2819				 * Slab was on no list before and will be
2820				 * partially empty
2821				 * We can defer the list move and instead
2822				 * freeze it.
2823				 */
2824				new.frozen = 1;
2825
2826			} else { /* Needs to be taken off a list */
2827
2828				n = get_node(s, page_to_nid(page));
2829				/*
2830				 * Speculatively acquire the list_lock.
2831				 * If the cmpxchg does not succeed then we may
2832				 * drop the list_lock without any processing.
2833				 *
2834				 * Otherwise the list_lock will synchronize with
2835				 * other processors updating the list of slabs.
2836				 */
2837				spin_lock_irqsave(&n->list_lock, flags);
2838
2839			}
2840		}
 
2841
2842	} while (!cmpxchg_double_slab(s, page,
2843		prior, counters,
2844		head, new.counters,
2845		"__slab_free"));
2846
2847	if (likely(!n)) {
2848
2849		/*
2850		 * If we just froze the page then put it onto the
2851		 * per cpu partial list.
2852		 */
2853		if (new.frozen && !was_frozen) {
2854			put_cpu_partial(s, page, 1);
2855			stat(s, CPU_PARTIAL_FREE);
2856		}
2857		/*
2858		 * The list lock was not taken therefore no list
2859		 * activity can be necessary.
2860		 */
2861		if (was_frozen)
2862			stat(s, FREE_FROZEN);
2863		return;
2864	}
2865
2866	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2867		goto slab_empty;
 
 
 
 
 
 
 
2868
2869	/*
2870	 * Objects left in the slab. If it was not on the partial list before
2871	 * then add it.
2872	 */
2873	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2874		if (kmem_cache_debug(s))
2875			remove_full(s, n, page);
2876		add_partial(n, page, DEACTIVATE_TO_TAIL);
2877		stat(s, FREE_ADD_PARTIAL);
2878	}
2879	spin_unlock_irqrestore(&n->list_lock, flags);
2880	return;
2881
2882slab_empty:
2883	if (prior) {
2884		/*
2885		 * Slab on the partial list.
2886		 */
2887		remove_partial(n, page);
2888		stat(s, FREE_REMOVE_PARTIAL);
2889	} else {
2890		/* Slab must be on the full list */
2891		remove_full(s, n, page);
2892	}
2893
2894	spin_unlock_irqrestore(&n->list_lock, flags);
2895	stat(s, FREE_SLAB);
2896	discard_slab(s, page);
2897}
2898
2899/*
2900 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2901 * can perform fastpath freeing without additional function calls.
2902 *
2903 * The fastpath is only possible if we are freeing to the current cpu slab
2904 * of this processor. This typically the case if we have just allocated
2905 * the item before.
2906 *
2907 * If fastpath is not possible then fall back to __slab_free where we deal
2908 * with all sorts of special processing.
2909 *
2910 * Bulk free of a freelist with several objects (all pointing to the
2911 * same page) possible by specifying head and tail ptr, plus objects
2912 * count (cnt). Bulk free indicated by tail pointer being set.
2913 */
2914static __always_inline void do_slab_free(struct kmem_cache *s,
2915				struct page *page, void *head, void *tail,
2916				int cnt, unsigned long addr)
2917{
2918	void *tail_obj = tail ? : head;
2919	struct kmem_cache_cpu *c;
2920	unsigned long tid;
 
 
 
2921redo:
 
2922	/*
2923	 * Determine the currently cpus per cpu slab.
2924	 * The cpu may change afterward. However that does not matter since
2925	 * data is retrieved via this pointer. If we are on the same cpu
2926	 * during the cmpxchg then the free will succeed.
2927	 */
2928	do {
2929		tid = this_cpu_read(s->cpu_slab->tid);
2930		c = raw_cpu_ptr(s->cpu_slab);
2931	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2932		 unlikely(tid != READ_ONCE(c->tid)));
2933
2934	/* Same with comment on barrier() in slab_alloc_node() */
2935	barrier();
2936
2937	if (likely(page == c->page)) {
2938		set_freepointer(s, tail_obj, c->freelist);
2939
2940		if (unlikely(!this_cpu_cmpxchg_double(
2941				s->cpu_slab->freelist, s->cpu_slab->tid,
2942				c->freelist, tid,
2943				head, next_tid(tid)))) {
2944
2945			note_cmpxchg_failure("slab_free", s, tid);
2946			goto redo;
2947		}
2948		stat(s, FREE_FASTPATH);
2949	} else
2950		__slab_free(s, page, head, tail_obj, cnt, addr);
2951
2952}
2953
2954static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2955				      void *head, void *tail, int cnt,
2956				      unsigned long addr)
2957{
2958	slab_free_freelist_hook(s, head, tail);
2959	/*
2960	 * slab_free_freelist_hook() could have put the items into quarantine.
2961	 * If so, no need to free them.
2962	 */
2963	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2964		return;
2965	do_slab_free(s, page, head, tail, cnt, addr);
2966}
2967
2968#ifdef CONFIG_KASAN
2969void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2970{
2971	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2972}
2973#endif
2974
2975void kmem_cache_free(struct kmem_cache *s, void *x)
2976{
2977	s = cache_from_obj(s, x);
2978	if (!s)
2979		return;
2980	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2981	trace_kmem_cache_free(_RET_IP_, x);
2982}
2983EXPORT_SYMBOL(kmem_cache_free);
2984
2985struct detached_freelist {
2986	struct page *page;
2987	void *tail;
2988	void *freelist;
2989	int cnt;
2990	struct kmem_cache *s;
2991};
2992
2993/*
2994 * This function progressively scans the array with free objects (with
2995 * a limited look ahead) and extract objects belonging to the same
2996 * page.  It builds a detached freelist directly within the given
2997 * page/objects.  This can happen without any need for
2998 * synchronization, because the objects are owned by running process.
2999 * The freelist is build up as a single linked list in the objects.
3000 * The idea is, that this detached freelist can then be bulk
3001 * transferred to the real freelist(s), but only requiring a single
3002 * synchronization primitive.  Look ahead in the array is limited due
3003 * to performance reasons.
3004 */
3005static inline
3006int build_detached_freelist(struct kmem_cache *s, size_t size,
3007			    void **p, struct detached_freelist *df)
3008{
3009	size_t first_skipped_index = 0;
3010	int lookahead = 3;
3011	void *object;
3012	struct page *page;
3013
3014	/* Always re-init detached_freelist */
3015	df->page = NULL;
3016
3017	do {
3018		object = p[--size];
3019		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3020	} while (!object && size);
3021
3022	if (!object)
3023		return 0;
3024
3025	page = virt_to_head_page(object);
3026	if (!s) {
3027		/* Handle kalloc'ed objects */
3028		if (unlikely(!PageSlab(page))) {
3029			BUG_ON(!PageCompound(page));
3030			kfree_hook(object);
3031			__free_pages(page, compound_order(page));
3032			p[size] = NULL; /* mark object processed */
3033			return size;
3034		}
3035		/* Derive kmem_cache from object */
3036		df->s = page->slab_cache;
3037	} else {
3038		df->s = cache_from_obj(s, object); /* Support for memcg */
3039	}
3040
3041	/* Start new detached freelist */
3042	df->page = page;
3043	set_freepointer(df->s, object, NULL);
3044	df->tail = object;
3045	df->freelist = object;
3046	p[size] = NULL; /* mark object processed */
3047	df->cnt = 1;
3048
3049	while (size) {
3050		object = p[--size];
3051		if (!object)
3052			continue; /* Skip processed objects */
3053
3054		/* df->page is always set at this point */
3055		if (df->page == virt_to_head_page(object)) {
3056			/* Opportunity build freelist */
3057			set_freepointer(df->s, object, df->freelist);
3058			df->freelist = object;
3059			df->cnt++;
3060			p[size] = NULL; /* mark object processed */
3061
3062			continue;
3063		}
3064
3065		/* Limit look ahead search */
3066		if (!--lookahead)
3067			break;
3068
3069		if (!first_skipped_index)
3070			first_skipped_index = size + 1;
3071	}
3072
3073	return first_skipped_index;
3074}
3075
3076/* Note that interrupts must be enabled when calling this function. */
3077void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3078{
3079	if (WARN_ON(!size))
3080		return;
3081
3082	do {
3083		struct detached_freelist df;
3084
3085		size = build_detached_freelist(s, size, p, &df);
3086		if (!df.page)
3087			continue;
3088
3089		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3090	} while (likely(size));
3091}
3092EXPORT_SYMBOL(kmem_cache_free_bulk);
3093
3094/* Note that interrupts must be enabled when calling this function. */
3095int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3096			  void **p)
3097{
3098	struct kmem_cache_cpu *c;
3099	int i;
3100
3101	/* memcg and kmem_cache debug support */
3102	s = slab_pre_alloc_hook(s, flags);
3103	if (unlikely(!s))
3104		return false;
3105	/*
3106	 * Drain objects in the per cpu slab, while disabling local
3107	 * IRQs, which protects against PREEMPT and interrupts
3108	 * handlers invoking normal fastpath.
3109	 */
3110	local_irq_disable();
3111	c = this_cpu_ptr(s->cpu_slab);
3112
3113	for (i = 0; i < size; i++) {
3114		void *object = c->freelist;
3115
3116		if (unlikely(!object)) {
3117			/*
3118			 * Invoking slow path likely have side-effect
3119			 * of re-populating per CPU c->freelist
3120			 */
3121			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3122					    _RET_IP_, c);
3123			if (unlikely(!p[i]))
3124				goto error;
3125
3126			c = this_cpu_ptr(s->cpu_slab);
3127			continue; /* goto for-loop */
3128		}
3129		c->freelist = get_freepointer(s, object);
3130		p[i] = object;
3131	}
3132	c->tid = next_tid(c->tid);
3133	local_irq_enable();
3134
3135	/* Clear memory outside IRQ disabled fastpath loop */
3136	if (unlikely(flags & __GFP_ZERO)) {
3137		int j;
3138
3139		for (j = 0; j < i; j++)
3140			memset(p[j], 0, s->object_size);
3141	}
3142
3143	/* memcg and kmem_cache debug support */
3144	slab_post_alloc_hook(s, flags, size, p);
3145	return i;
3146error:
3147	local_irq_enable();
3148	slab_post_alloc_hook(s, flags, i, p);
3149	__kmem_cache_free_bulk(s, i, p);
3150	return 0;
3151}
3152EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3153
3154
3155/*
3156 * Object placement in a slab is made very easy because we always start at
3157 * offset 0. If we tune the size of the object to the alignment then we can
3158 * get the required alignment by putting one properly sized object after
3159 * another.
3160 *
3161 * Notice that the allocation order determines the sizes of the per cpu
3162 * caches. Each processor has always one slab available for allocations.
3163 * Increasing the allocation order reduces the number of times that slabs
3164 * must be moved on and off the partial lists and is therefore a factor in
3165 * locking overhead.
3166 */
3167
3168/*
3169 * Mininum / Maximum order of slab pages. This influences locking overhead
3170 * and slab fragmentation. A higher order reduces the number of partial slabs
3171 * and increases the number of allocations possible without having to
3172 * take the list_lock.
3173 */
3174static int slub_min_order;
3175static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3176static int slub_min_objects;
3177
3178/*
 
 
 
 
 
 
3179 * Calculate the order of allocation given an slab object size.
3180 *
3181 * The order of allocation has significant impact on performance and other
3182 * system components. Generally order 0 allocations should be preferred since
3183 * order 0 does not cause fragmentation in the page allocator. Larger objects
3184 * be problematic to put into order 0 slabs because there may be too much
3185 * unused space left. We go to a higher order if more than 1/16th of the slab
3186 * would be wasted.
3187 *
3188 * In order to reach satisfactory performance we must ensure that a minimum
3189 * number of objects is in one slab. Otherwise we may generate too much
3190 * activity on the partial lists which requires taking the list_lock. This is
3191 * less a concern for large slabs though which are rarely used.
3192 *
3193 * slub_max_order specifies the order where we begin to stop considering the
3194 * number of objects in a slab as critical. If we reach slub_max_order then
3195 * we try to keep the page order as low as possible. So we accept more waste
3196 * of space in favor of a small page order.
3197 *
3198 * Higher order allocations also allow the placement of more objects in a
3199 * slab and thereby reduce object handling overhead. If the user has
3200 * requested a higher mininum order then we start with that one instead of
3201 * the smallest order which will fit the object.
3202 */
3203static inline int slab_order(int size, int min_objects,
3204				int max_order, int fract_leftover, int reserved)
3205{
3206	int order;
3207	int rem;
3208	int min_order = slub_min_order;
3209
3210	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3211		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3212
3213	for (order = max(min_order, get_order(min_objects * size + reserved));
 
3214			order <= max_order; order++) {
3215
3216		unsigned long slab_size = PAGE_SIZE << order;
3217
 
 
 
3218		rem = (slab_size - reserved) % size;
3219
3220		if (rem <= slab_size / fract_leftover)
3221			break;
 
3222	}
3223
3224	return order;
3225}
3226
3227static inline int calculate_order(int size, int reserved)
3228{
3229	int order;
3230	int min_objects;
3231	int fraction;
3232	int max_objects;
3233
3234	/*
3235	 * Attempt to find best configuration for a slab. This
3236	 * works by first attempting to generate a layout with
3237	 * the best configuration and backing off gradually.
3238	 *
3239	 * First we increase the acceptable waste in a slab. Then
3240	 * we reduce the minimum objects required in a slab.
3241	 */
3242	min_objects = slub_min_objects;
3243	if (!min_objects)
3244		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3245	max_objects = order_objects(slub_max_order, size, reserved);
3246	min_objects = min(min_objects, max_objects);
3247
3248	while (min_objects > 1) {
3249		fraction = 16;
3250		while (fraction >= 4) {
3251			order = slab_order(size, min_objects,
3252					slub_max_order, fraction, reserved);
3253			if (order <= slub_max_order)
3254				return order;
3255			fraction /= 2;
3256		}
3257		min_objects--;
3258	}
3259
3260	/*
3261	 * We were unable to place multiple objects in a slab. Now
3262	 * lets see if we can place a single object there.
3263	 */
3264	order = slab_order(size, 1, slub_max_order, 1, reserved);
3265	if (order <= slub_max_order)
3266		return order;
3267
3268	/*
3269	 * Doh this slab cannot be placed using slub_max_order.
3270	 */
3271	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3272	if (order < MAX_ORDER)
3273		return order;
3274	return -ENOSYS;
3275}
3276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3277static void
3278init_kmem_cache_node(struct kmem_cache_node *n)
3279{
3280	n->nr_partial = 0;
3281	spin_lock_init(&n->list_lock);
3282	INIT_LIST_HEAD(&n->partial);
3283#ifdef CONFIG_SLUB_DEBUG
3284	atomic_long_set(&n->nr_slabs, 0);
3285	atomic_long_set(&n->total_objects, 0);
3286	INIT_LIST_HEAD(&n->full);
3287#endif
3288}
3289
3290static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3291{
3292	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3293			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3294
3295	/*
3296	 * Must align to double word boundary for the double cmpxchg
3297	 * instructions to work; see __pcpu_double_call_return_bool().
3298	 */
3299	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3300				     2 * sizeof(void *));
3301
3302	if (!s->cpu_slab)
3303		return 0;
3304
3305	init_kmem_cache_cpus(s);
3306
3307	return 1;
3308}
3309
3310static struct kmem_cache *kmem_cache_node;
3311
3312/*
3313 * No kmalloc_node yet so do it by hand. We know that this is the first
3314 * slab on the node for this slabcache. There are no concurrent accesses
3315 * possible.
3316 *
3317 * Note that this function only works on the kmem_cache_node
3318 * when allocating for the kmem_cache_node. This is used for bootstrapping
3319 * memory on a fresh node that has no slab structures yet.
3320 */
3321static void early_kmem_cache_node_alloc(int node)
3322{
3323	struct page *page;
3324	struct kmem_cache_node *n;
3325
3326	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3327
3328	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3329
3330	BUG_ON(!page);
3331	if (page_to_nid(page) != node) {
3332		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3333		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
 
 
3334	}
3335
3336	n = page->freelist;
3337	BUG_ON(!n);
3338	page->freelist = get_freepointer(kmem_cache_node, n);
3339	page->inuse = 1;
3340	page->frozen = 0;
3341	kmem_cache_node->node[node] = n;
3342#ifdef CONFIG_SLUB_DEBUG
3343	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3344	init_tracking(kmem_cache_node, n);
3345#endif
3346	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3347		      GFP_KERNEL);
3348	init_kmem_cache_node(n);
3349	inc_slabs_node(kmem_cache_node, node, page->objects);
3350
3351	/*
3352	 * No locks need to be taken here as it has just been
3353	 * initialized and there is no concurrent access.
3354	 */
3355	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3356}
3357
3358static void free_kmem_cache_nodes(struct kmem_cache *s)
3359{
3360	int node;
3361	struct kmem_cache_node *n;
3362
3363	for_each_kmem_cache_node(s, node, n) {
3364		kmem_cache_free(kmem_cache_node, n);
 
 
 
 
3365		s->node[node] = NULL;
3366	}
3367}
3368
3369void __kmem_cache_release(struct kmem_cache *s)
3370{
3371	cache_random_seq_destroy(s);
3372	free_percpu(s->cpu_slab);
3373	free_kmem_cache_nodes(s);
3374}
3375
3376static int init_kmem_cache_nodes(struct kmem_cache *s)
3377{
3378	int node;
3379
3380	for_each_node_state(node, N_NORMAL_MEMORY) {
3381		struct kmem_cache_node *n;
3382
3383		if (slab_state == DOWN) {
3384			early_kmem_cache_node_alloc(node);
3385			continue;
3386		}
3387		n = kmem_cache_alloc_node(kmem_cache_node,
3388						GFP_KERNEL, node);
3389
3390		if (!n) {
3391			free_kmem_cache_nodes(s);
3392			return 0;
3393		}
3394
3395		s->node[node] = n;
3396		init_kmem_cache_node(n);
3397	}
3398	return 1;
3399}
3400
3401static void set_min_partial(struct kmem_cache *s, unsigned long min)
3402{
3403	if (min < MIN_PARTIAL)
3404		min = MIN_PARTIAL;
3405	else if (min > MAX_PARTIAL)
3406		min = MAX_PARTIAL;
3407	s->min_partial = min;
3408}
3409
3410/*
3411 * calculate_sizes() determines the order and the distribution of data within
3412 * a slab object.
3413 */
3414static int calculate_sizes(struct kmem_cache *s, int forced_order)
3415{
3416	unsigned long flags = s->flags;
3417	size_t size = s->object_size;
 
3418	int order;
3419
3420	/*
3421	 * Round up object size to the next word boundary. We can only
3422	 * place the free pointer at word boundaries and this determines
3423	 * the possible location of the free pointer.
3424	 */
3425	size = ALIGN(size, sizeof(void *));
3426
3427#ifdef CONFIG_SLUB_DEBUG
3428	/*
3429	 * Determine if we can poison the object itself. If the user of
3430	 * the slab may touch the object after free or before allocation
3431	 * then we should never poison the object itself.
3432	 */
3433	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3434			!s->ctor)
3435		s->flags |= __OBJECT_POISON;
3436	else
3437		s->flags &= ~__OBJECT_POISON;
3438
3439
3440	/*
3441	 * If we are Redzoning then check if there is some space between the
3442	 * end of the object and the free pointer. If not then add an
3443	 * additional word to have some bytes to store Redzone information.
3444	 */
3445	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3446		size += sizeof(void *);
3447#endif
3448
3449	/*
3450	 * With that we have determined the number of bytes in actual use
3451	 * by the object. This is the potential offset to the free pointer.
3452	 */
3453	s->inuse = size;
3454
3455	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3456		s->ctor)) {
3457		/*
3458		 * Relocate free pointer after the object if it is not
3459		 * permitted to overwrite the first word of the object on
3460		 * kmem_cache_free.
3461		 *
3462		 * This is the case if we do RCU, have a constructor or
3463		 * destructor or are poisoning the objects.
3464		 */
3465		s->offset = size;
3466		size += sizeof(void *);
3467	}
3468
3469#ifdef CONFIG_SLUB_DEBUG
3470	if (flags & SLAB_STORE_USER)
3471		/*
3472		 * Need to store information about allocs and frees after
3473		 * the object.
3474		 */
3475		size += 2 * sizeof(struct track);
3476#endif
3477
3478	kasan_cache_create(s, &size, &s->flags);
3479#ifdef CONFIG_SLUB_DEBUG
3480	if (flags & SLAB_RED_ZONE) {
3481		/*
3482		 * Add some empty padding so that we can catch
3483		 * overwrites from earlier objects rather than let
3484		 * tracking information or the free pointer be
3485		 * corrupted if a user writes before the start
3486		 * of the object.
3487		 */
3488		size += sizeof(void *);
 
3489
3490		s->red_left_pad = sizeof(void *);
3491		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3492		size += s->red_left_pad;
3493	}
3494#endif
 
 
3495
3496	/*
3497	 * SLUB stores one object immediately after another beginning from
3498	 * offset 0. In order to align the objects we have to simply size
3499	 * each object to conform to the alignment.
3500	 */
3501	size = ALIGN(size, s->align);
3502	s->size = size;
3503	if (forced_order >= 0)
3504		order = forced_order;
3505	else
3506		order = calculate_order(size, s->reserved);
3507
3508	if (order < 0)
3509		return 0;
3510
3511	s->allocflags = 0;
3512	if (order)
3513		s->allocflags |= __GFP_COMP;
3514
3515	if (s->flags & SLAB_CACHE_DMA)
3516		s->allocflags |= GFP_DMA;
3517
3518	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3519		s->allocflags |= __GFP_RECLAIMABLE;
3520
3521	/*
3522	 * Determine the number of objects per slab
3523	 */
3524	s->oo = oo_make(order, size, s->reserved);
3525	s->min = oo_make(get_order(size), size, s->reserved);
3526	if (oo_objects(s->oo) > oo_objects(s->max))
3527		s->max = s->oo;
3528
3529	return !!oo_objects(s->oo);
 
3530}
3531
3532static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3533{
3534	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
 
 
 
 
 
 
 
 
3535	s->reserved = 0;
3536
3537	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3538		s->reserved = sizeof(struct rcu_head);
3539
3540	if (!calculate_sizes(s, -1))
3541		goto error;
3542	if (disable_higher_order_debug) {
3543		/*
3544		 * Disable debugging flags that store metadata if the min slab
3545		 * order increased.
3546		 */
3547		if (get_order(s->size) > get_order(s->object_size)) {
3548			s->flags &= ~DEBUG_METADATA_FLAGS;
3549			s->offset = 0;
3550			if (!calculate_sizes(s, -1))
3551				goto error;
3552		}
3553	}
3554
3555#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3556    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3557	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3558		/* Enable fast mode */
3559		s->flags |= __CMPXCHG_DOUBLE;
3560#endif
3561
3562	/*
3563	 * The larger the object size is, the more pages we want on the partial
3564	 * list to avoid pounding the page allocator excessively.
3565	 */
3566	set_min_partial(s, ilog2(s->size) / 2);
3567
3568	/*
3569	 * cpu_partial determined the maximum number of objects kept in the
3570	 * per cpu partial lists of a processor.
3571	 *
3572	 * Per cpu partial lists mainly contain slabs that just have one
3573	 * object freed. If they are used for allocation then they can be
3574	 * filled up again with minimal effort. The slab will never hit the
3575	 * per node partial lists and therefore no locking will be required.
3576	 *
3577	 * This setting also determines
3578	 *
3579	 * A) The number of objects from per cpu partial slabs dumped to the
3580	 *    per node list when we reach the limit.
3581	 * B) The number of objects in cpu partial slabs to extract from the
3582	 *    per node list when we run out of per cpu objects. We only fetch
3583	 *    50% to keep some capacity around for frees.
3584	 */
3585	if (!kmem_cache_has_cpu_partial(s))
3586		s->cpu_partial = 0;
3587	else if (s->size >= PAGE_SIZE)
3588		s->cpu_partial = 2;
3589	else if (s->size >= 1024)
3590		s->cpu_partial = 6;
3591	else if (s->size >= 256)
3592		s->cpu_partial = 13;
3593	else
3594		s->cpu_partial = 30;
3595
3596#ifdef CONFIG_NUMA
3597	s->remote_node_defrag_ratio = 1000;
3598#endif
3599
3600	/* Initialize the pre-computed randomized freelist if slab is up */
3601	if (slab_state >= UP) {
3602		if (init_cache_random_seq(s))
3603			goto error;
3604	}
3605
3606	if (!init_kmem_cache_nodes(s))
3607		goto error;
3608
3609	if (alloc_kmem_cache_cpus(s))
3610		return 0;
3611
3612	free_kmem_cache_nodes(s);
3613error:
3614	if (flags & SLAB_PANIC)
3615		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3616		      s->name, (unsigned long)s->size, s->size,
3617		      oo_order(s->oo), s->offset, flags);
3618	return -EINVAL;
 
 
 
 
 
 
 
 
 
3619}
 
3620
3621static void list_slab_objects(struct kmem_cache *s, struct page *page,
3622							const char *text)
3623{
3624#ifdef CONFIG_SLUB_DEBUG
3625	void *addr = page_address(page);
3626	void *p;
3627	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3628				     sizeof(long), GFP_ATOMIC);
3629	if (!map)
3630		return;
3631	slab_err(s, page, text, s->name);
3632	slab_lock(page);
3633
3634	get_map(s, page, map);
3635	for_each_object(p, s, addr, page->objects) {
3636
3637		if (!test_bit(slab_index(p, s, addr), map)) {
3638			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
 
3639			print_tracking(s, p);
3640		}
3641	}
3642	slab_unlock(page);
3643	kfree(map);
3644#endif
3645}
3646
3647/*
3648 * Attempt to free all partial slabs on a node.
3649 * This is called from __kmem_cache_shutdown(). We must take list_lock
3650 * because sysfs file might still access partial list after the shutdowning.
3651 */
3652static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3653{
3654	LIST_HEAD(discard);
3655	struct page *page, *h;
3656
3657	BUG_ON(irqs_disabled());
3658	spin_lock_irq(&n->list_lock);
3659	list_for_each_entry_safe(page, h, &n->partial, lru) {
3660		if (!page->inuse) {
3661			remove_partial(n, page);
3662			list_add(&page->lru, &discard);
3663		} else {
3664			list_slab_objects(s, page,
3665			"Objects remaining in %s on __kmem_cache_shutdown()");
3666		}
3667	}
3668	spin_unlock_irq(&n->list_lock);
3669
3670	list_for_each_entry_safe(page, h, &discard, lru)
3671		discard_slab(s, page);
3672}
3673
3674/*
3675 * Release all resources used by a slab cache.
3676 */
3677int __kmem_cache_shutdown(struct kmem_cache *s)
3678{
3679	int node;
3680	struct kmem_cache_node *n;
3681
3682	flush_all(s);
 
3683	/* Attempt to free all objects */
3684	for_each_kmem_cache_node(s, node, n) {
 
 
3685		free_partial(s, n);
3686		if (n->nr_partial || slabs_node(s, node))
3687			return 1;
3688	}
 
3689	return 0;
3690}
3691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692/********************************************************************
3693 *		Kmalloc subsystem
3694 *******************************************************************/
3695
 
 
 
 
 
 
 
 
 
3696static int __init setup_slub_min_order(char *str)
3697{
3698	get_option(&str, &slub_min_order);
3699
3700	return 1;
3701}
3702
3703__setup("slub_min_order=", setup_slub_min_order);
3704
3705static int __init setup_slub_max_order(char *str)
3706{
3707	get_option(&str, &slub_max_order);
3708	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3709
3710	return 1;
3711}
3712
3713__setup("slub_max_order=", setup_slub_max_order);
3714
3715static int __init setup_slub_min_objects(char *str)
3716{
3717	get_option(&str, &slub_min_objects);
3718
3719	return 1;
3720}
3721
3722__setup("slub_min_objects=", setup_slub_min_objects);
3723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3724void *__kmalloc(size_t size, gfp_t flags)
3725{
3726	struct kmem_cache *s;
3727	void *ret;
3728
3729	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3730		return kmalloc_large(size, flags);
3731
3732	s = kmalloc_slab(size, flags);
3733
3734	if (unlikely(ZERO_OR_NULL_PTR(s)))
3735		return s;
3736
3737	ret = slab_alloc(s, flags, _RET_IP_);
3738
3739	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3740
3741	kasan_kmalloc(s, ret, size, flags);
3742
3743	return ret;
3744}
3745EXPORT_SYMBOL(__kmalloc);
3746
3747#ifdef CONFIG_NUMA
3748static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3749{
3750	struct page *page;
3751	void *ptr = NULL;
3752
3753	flags |= __GFP_COMP | __GFP_NOTRACK;
3754	page = alloc_pages_node(node, flags, get_order(size));
3755	if (page)
3756		ptr = page_address(page);
3757
3758	kmalloc_large_node_hook(ptr, size, flags);
3759	return ptr;
3760}
3761
3762void *__kmalloc_node(size_t size, gfp_t flags, int node)
3763{
3764	struct kmem_cache *s;
3765	void *ret;
3766
3767	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3768		ret = kmalloc_large_node(size, flags, node);
3769
3770		trace_kmalloc_node(_RET_IP_, ret,
3771				   size, PAGE_SIZE << get_order(size),
3772				   flags, node);
3773
3774		return ret;
3775	}
3776
3777	s = kmalloc_slab(size, flags);
3778
3779	if (unlikely(ZERO_OR_NULL_PTR(s)))
3780		return s;
3781
3782	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3783
3784	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3785
3786	kasan_kmalloc(s, ret, size, flags);
3787
3788	return ret;
3789}
3790EXPORT_SYMBOL(__kmalloc_node);
3791#endif
3792
3793#ifdef CONFIG_HARDENED_USERCOPY
3794/*
3795 * Rejects objects that are incorrectly sized.
3796 *
3797 * Returns NULL if check passes, otherwise const char * to name of cache
3798 * to indicate an error.
3799 */
3800const char *__check_heap_object(const void *ptr, unsigned long n,
3801				struct page *page)
3802{
3803	struct kmem_cache *s;
3804	unsigned long offset;
3805	size_t object_size;
3806
3807	/* Find object and usable object size. */
3808	s = page->slab_cache;
3809	object_size = slab_ksize(s);
3810
3811	/* Reject impossible pointers. */
3812	if (ptr < page_address(page))
3813		return s->name;
3814
3815	/* Find offset within object. */
3816	offset = (ptr - page_address(page)) % s->size;
3817
3818	/* Adjust for redzone and reject if within the redzone. */
3819	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3820		if (offset < s->red_left_pad)
3821			return s->name;
3822		offset -= s->red_left_pad;
3823	}
3824
3825	/* Allow address range falling entirely within object size. */
3826	if (offset <= object_size && n <= object_size - offset)
3827		return NULL;
3828
3829	return s->name;
3830}
3831#endif /* CONFIG_HARDENED_USERCOPY */
3832
3833static size_t __ksize(const void *object)
 
3834{
3835	struct page *page;
 
 
 
3836
3837	if (unlikely(object == ZERO_SIZE_PTR))
3838		return 0;
3839
3840	page = virt_to_head_page(object);
3841
 
3842	if (unlikely(!PageSlab(page))) {
3843		WARN_ON(!PageCompound(page));
3844		return PAGE_SIZE << compound_order(page);
 
3845	}
3846
3847	return slab_ksize(page->slab_cache);
3848}
 
 
 
 
 
 
3849
3850size_t ksize(const void *object)
3851{
3852	size_t size = __ksize(object);
3853	/* We assume that ksize callers could use whole allocated area,
3854	 * so we need to unpoison this area.
3855	 */
3856	kasan_unpoison_shadow(object, size);
3857	return size;
3858}
3859EXPORT_SYMBOL(ksize);
 
3860
3861void kfree(const void *x)
3862{
3863	struct page *page;
3864	void *object = (void *)x;
3865
3866	trace_kfree(_RET_IP_, x);
3867
3868	if (unlikely(ZERO_OR_NULL_PTR(x)))
3869		return;
3870
3871	page = virt_to_head_page(x);
3872	if (unlikely(!PageSlab(page))) {
3873		BUG_ON(!PageCompound(page));
3874		kfree_hook(x);
3875		__free_pages(page, compound_order(page));
3876		return;
3877	}
3878	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3879}
3880EXPORT_SYMBOL(kfree);
3881
3882#define SHRINK_PROMOTE_MAX 32
3883
3884/*
3885 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3886 * up most to the head of the partial lists. New allocations will then
3887 * fill those up and thus they can be removed from the partial lists.
 
3888 *
3889 * The slabs with the least items are placed last. This results in them
3890 * being allocated from last increasing the chance that the last objects
3891 * are freed in them.
3892 */
3893int __kmem_cache_shrink(struct kmem_cache *s)
3894{
3895	int node;
3896	int i;
3897	struct kmem_cache_node *n;
3898	struct page *page;
3899	struct page *t;
3900	struct list_head discard;
3901	struct list_head promote[SHRINK_PROMOTE_MAX];
 
3902	unsigned long flags;
3903	int ret = 0;
 
 
3904
3905	flush_all(s);
3906	for_each_kmem_cache_node(s, node, n) {
3907		INIT_LIST_HEAD(&discard);
3908		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3909			INIT_LIST_HEAD(promote + i);
 
 
 
 
3910
3911		spin_lock_irqsave(&n->list_lock, flags);
3912
3913		/*
3914		 * Build lists of slabs to discard or promote.
3915		 *
3916		 * Note that concurrent frees may occur while we hold the
3917		 * list_lock. page->inuse here is the upper limit.
3918		 */
3919		list_for_each_entry_safe(page, t, &n->partial, lru) {
3920			int free = page->objects - page->inuse;
3921
3922			/* Do not reread page->inuse */
3923			barrier();
3924
3925			/* We do not keep full slabs on the list */
3926			BUG_ON(free <= 0);
3927
3928			if (free == page->objects) {
3929				list_move(&page->lru, &discard);
3930				n->nr_partial--;
3931			} else if (free <= SHRINK_PROMOTE_MAX)
3932				list_move(&page->lru, promote + free - 1);
3933		}
3934
3935		/*
3936		 * Promote the slabs filled up most to the head of the
3937		 * partial list.
3938		 */
3939		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3940			list_splice(promote + i, &n->partial);
3941
3942		spin_unlock_irqrestore(&n->list_lock, flags);
3943
3944		/* Release empty slabs */
3945		list_for_each_entry_safe(page, t, &discard, lru)
3946			discard_slab(s, page);
3947
3948		if (slabs_node(s, node))
3949			ret = 1;
3950	}
3951
3952	return ret;
 
3953}
 
3954
 
3955static int slab_mem_going_offline_callback(void *arg)
3956{
3957	struct kmem_cache *s;
3958
3959	mutex_lock(&slab_mutex);
3960	list_for_each_entry(s, &slab_caches, list)
3961		__kmem_cache_shrink(s);
3962	mutex_unlock(&slab_mutex);
3963
3964	return 0;
3965}
3966
3967static void slab_mem_offline_callback(void *arg)
3968{
3969	struct kmem_cache_node *n;
3970	struct kmem_cache *s;
3971	struct memory_notify *marg = arg;
3972	int offline_node;
3973
3974	offline_node = marg->status_change_nid_normal;
3975
3976	/*
3977	 * If the node still has available memory. we need kmem_cache_node
3978	 * for it yet.
3979	 */
3980	if (offline_node < 0)
3981		return;
3982
3983	mutex_lock(&slab_mutex);
3984	list_for_each_entry(s, &slab_caches, list) {
3985		n = get_node(s, offline_node);
3986		if (n) {
3987			/*
3988			 * if n->nr_slabs > 0, slabs still exist on the node
3989			 * that is going down. We were unable to free them,
3990			 * and offline_pages() function shouldn't call this
3991			 * callback. So, we must fail.
3992			 */
3993			BUG_ON(slabs_node(s, offline_node));
3994
3995			s->node[offline_node] = NULL;
3996			kmem_cache_free(kmem_cache_node, n);
3997		}
3998	}
3999	mutex_unlock(&slab_mutex);
4000}
4001
4002static int slab_mem_going_online_callback(void *arg)
4003{
4004	struct kmem_cache_node *n;
4005	struct kmem_cache *s;
4006	struct memory_notify *marg = arg;
4007	int nid = marg->status_change_nid_normal;
4008	int ret = 0;
4009
4010	/*
4011	 * If the node's memory is already available, then kmem_cache_node is
4012	 * already created. Nothing to do.
4013	 */
4014	if (nid < 0)
4015		return 0;
4016
4017	/*
4018	 * We are bringing a node online. No memory is available yet. We must
4019	 * allocate a kmem_cache_node structure in order to bring the node
4020	 * online.
4021	 */
4022	mutex_lock(&slab_mutex);
4023	list_for_each_entry(s, &slab_caches, list) {
4024		/*
4025		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4026		 *      since memory is not yet available from the node that
4027		 *      is brought up.
4028		 */
4029		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4030		if (!n) {
4031			ret = -ENOMEM;
4032			goto out;
4033		}
4034		init_kmem_cache_node(n);
4035		s->node[nid] = n;
4036	}
4037out:
4038	mutex_unlock(&slab_mutex);
4039	return ret;
4040}
4041
4042static int slab_memory_callback(struct notifier_block *self,
4043				unsigned long action, void *arg)
4044{
4045	int ret = 0;
4046
4047	switch (action) {
4048	case MEM_GOING_ONLINE:
4049		ret = slab_mem_going_online_callback(arg);
4050		break;
4051	case MEM_GOING_OFFLINE:
4052		ret = slab_mem_going_offline_callback(arg);
4053		break;
4054	case MEM_OFFLINE:
4055	case MEM_CANCEL_ONLINE:
4056		slab_mem_offline_callback(arg);
4057		break;
4058	case MEM_ONLINE:
4059	case MEM_CANCEL_OFFLINE:
4060		break;
4061	}
4062	if (ret)
4063		ret = notifier_from_errno(ret);
4064	else
4065		ret = NOTIFY_OK;
4066	return ret;
4067}
4068
4069static struct notifier_block slab_memory_callback_nb = {
4070	.notifier_call = slab_memory_callback,
4071	.priority = SLAB_CALLBACK_PRI,
4072};
4073
4074/********************************************************************
4075 *			Basic setup of slabs
4076 *******************************************************************/
4077
4078/*
4079 * Used for early kmem_cache structures that were allocated using
4080 * the page allocator. Allocate them properly then fix up the pointers
4081 * that may be pointing to the wrong kmem_cache structure.
4082 */
4083
4084static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4085{
4086	int node;
4087	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4088	struct kmem_cache_node *n;
4089
4090	memcpy(s, static_cache, kmem_cache->object_size);
 
4091
4092	/*
4093	 * This runs very early, and only the boot processor is supposed to be
4094	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4095	 * IPIs around.
4096	 */
4097	__flush_cpu_slab(s, smp_processor_id());
4098	for_each_kmem_cache_node(s, node, n) {
4099		struct page *p;
4100
4101		list_for_each_entry(p, &n->partial, lru)
4102			p->slab_cache = s;
 
4103
4104#ifdef CONFIG_SLUB_DEBUG
4105		list_for_each_entry(p, &n->full, lru)
4106			p->slab_cache = s;
4107#endif
 
4108	}
4109	slab_init_memcg_params(s);
4110	list_add(&s->list, &slab_caches);
4111	return s;
4112}
4113
4114void __init kmem_cache_init(void)
4115{
4116	static __initdata struct kmem_cache boot_kmem_cache,
4117		boot_kmem_cache_node;
 
 
 
 
 
 
 
4118
4119	if (debug_guardpage_minorder())
4120		slub_max_order = 0;
 
 
4121
4122	kmem_cache_node = &boot_kmem_cache_node;
4123	kmem_cache = &boot_kmem_cache;
 
 
 
 
4124
4125	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4126		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
 
4127
4128	register_hotmemory_notifier(&slab_memory_callback_nb);
4129
4130	/* Able to allocate the per node structures */
4131	slab_state = PARTIAL;
4132
4133	create_boot_cache(kmem_cache, "kmem_cache",
4134			offsetof(struct kmem_cache, node) +
4135				nr_node_ids * sizeof(struct kmem_cache_node *),
4136		       SLAB_HWCACHE_ALIGN);
4137
4138	kmem_cache = bootstrap(&boot_kmem_cache);
4139
4140	/*
4141	 * Allocate kmem_cache_node properly from the kmem_cache slab.
4142	 * kmem_cache_node is separately allocated so no need to
4143	 * update any list pointers.
4144	 */
4145	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
 
 
 
 
 
 
 
 
 
 
 
4146
4147	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4148	setup_kmalloc_cache_index_table();
4149	create_kmalloc_caches(0);
4150
4151	/* Setup random freelists for each cache */
4152	init_freelist_randomization();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4153
4154	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4155				  slub_cpu_dead);
 
4156
4157	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4158		cache_line_size(),
 
 
 
 
 
 
 
 
4159		slub_min_order, slub_max_order, slub_min_objects,
4160		nr_cpu_ids, nr_node_ids);
4161}
4162
4163void __init kmem_cache_init_late(void)
4164{
4165}
4166
4167struct kmem_cache *
4168__kmem_cache_alias(const char *name, size_t size, size_t align,
4169		   unsigned long flags, void (*ctor)(void *))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4170{
4171	struct kmem_cache *s, *c;
 
 
 
 
4172
 
4173	s = find_mergeable(size, align, flags, name, ctor);
4174	if (s) {
4175		s->refcount++;
4176
4177		/*
4178		 * Adjust the object sizes so that we clear
4179		 * the complete object on kzalloc.
4180		 */
4181		s->object_size = max(s->object_size, (int)size);
4182		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4183
4184		for_each_memcg_cache(c, s) {
4185			c->object_size = s->object_size;
4186			c->inuse = max_t(int, c->inuse,
4187					 ALIGN(size, sizeof(void *)));
4188		}
 
 
 
4189
4190		if (sysfs_slab_alias(s, name)) {
4191			s->refcount--;
4192			s = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4193		}
 
 
4194	}
 
 
4195
 
 
 
 
4196	return s;
4197}
 
4198
4199int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
 
 
 
 
 
 
4200{
4201	int err;
 
 
4202
4203	err = kmem_cache_open(s, flags);
4204	if (err)
4205		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4206
4207	/* Mutex is not taken during early boot */
4208	if (slab_state <= UP)
4209		return 0;
4210
4211	memcg_propagate_slab_attrs(s);
4212	err = sysfs_slab_add(s);
4213	if (err)
4214		__kmem_cache_release(s);
4215
4216	return err;
4217}
4218
4219void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4220{
4221	struct kmem_cache *s;
4222	void *ret;
4223
4224	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4225		return kmalloc_large(size, gfpflags);
4226
4227	s = kmalloc_slab(size, gfpflags);
4228
4229	if (unlikely(ZERO_OR_NULL_PTR(s)))
4230		return s;
4231
4232	ret = slab_alloc(s, gfpflags, caller);
4233
4234	/* Honor the call site pointer we received. */
4235	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4236
4237	return ret;
4238}
4239
4240#ifdef CONFIG_NUMA
4241void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4242					int node, unsigned long caller)
4243{
4244	struct kmem_cache *s;
4245	void *ret;
4246
4247	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4248		ret = kmalloc_large_node(size, gfpflags, node);
4249
4250		trace_kmalloc_node(caller, ret,
4251				   size, PAGE_SIZE << get_order(size),
4252				   gfpflags, node);
4253
4254		return ret;
4255	}
4256
4257	s = kmalloc_slab(size, gfpflags);
4258
4259	if (unlikely(ZERO_OR_NULL_PTR(s)))
4260		return s;
4261
4262	ret = slab_alloc_node(s, gfpflags, node, caller);
4263
4264	/* Honor the call site pointer we received. */
4265	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4266
4267	return ret;
4268}
4269#endif
4270
4271#ifdef CONFIG_SYSFS
4272static int count_inuse(struct page *page)
4273{
4274	return page->inuse;
4275}
4276
4277static int count_total(struct page *page)
4278{
4279	return page->objects;
4280}
4281#endif
4282
4283#ifdef CONFIG_SLUB_DEBUG
4284static int validate_slab(struct kmem_cache *s, struct page *page,
4285						unsigned long *map)
4286{
4287	void *p;
4288	void *addr = page_address(page);
4289
4290	if (!check_slab(s, page) ||
4291			!on_freelist(s, page, NULL))
4292		return 0;
4293
4294	/* Now we know that a valid freelist exists */
4295	bitmap_zero(map, page->objects);
4296
4297	get_map(s, page, map);
4298	for_each_object(p, s, addr, page->objects) {
4299		if (test_bit(slab_index(p, s, addr), map))
4300			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4301				return 0;
4302	}
4303
4304	for_each_object(p, s, addr, page->objects)
4305		if (!test_bit(slab_index(p, s, addr), map))
4306			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4307				return 0;
4308	return 1;
4309}
4310
4311static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4312						unsigned long *map)
4313{
4314	slab_lock(page);
4315	validate_slab(s, page, map);
4316	slab_unlock(page);
4317}
4318
4319static int validate_slab_node(struct kmem_cache *s,
4320		struct kmem_cache_node *n, unsigned long *map)
4321{
4322	unsigned long count = 0;
4323	struct page *page;
4324	unsigned long flags;
4325
4326	spin_lock_irqsave(&n->list_lock, flags);
4327
4328	list_for_each_entry(page, &n->partial, lru) {
4329		validate_slab_slab(s, page, map);
4330		count++;
4331	}
4332	if (count != n->nr_partial)
4333		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4334		       s->name, count, n->nr_partial);
4335
4336	if (!(s->flags & SLAB_STORE_USER))
4337		goto out;
4338
4339	list_for_each_entry(page, &n->full, lru) {
4340		validate_slab_slab(s, page, map);
4341		count++;
4342	}
4343	if (count != atomic_long_read(&n->nr_slabs))
4344		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4345		       s->name, count, atomic_long_read(&n->nr_slabs));
 
4346
4347out:
4348	spin_unlock_irqrestore(&n->list_lock, flags);
4349	return count;
4350}
4351
4352static long validate_slab_cache(struct kmem_cache *s)
4353{
4354	int node;
4355	unsigned long count = 0;
4356	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4357				sizeof(unsigned long), GFP_KERNEL);
4358	struct kmem_cache_node *n;
4359
4360	if (!map)
4361		return -ENOMEM;
4362
4363	flush_all(s);
4364	for_each_kmem_cache_node(s, node, n)
 
 
4365		count += validate_slab_node(s, n, map);
 
4366	kfree(map);
4367	return count;
4368}
4369/*
4370 * Generate lists of code addresses where slabcache objects are allocated
4371 * and freed.
4372 */
4373
4374struct location {
4375	unsigned long count;
4376	unsigned long addr;
4377	long long sum_time;
4378	long min_time;
4379	long max_time;
4380	long min_pid;
4381	long max_pid;
4382	DECLARE_BITMAP(cpus, NR_CPUS);
4383	nodemask_t nodes;
4384};
4385
4386struct loc_track {
4387	unsigned long max;
4388	unsigned long count;
4389	struct location *loc;
4390};
4391
4392static void free_loc_track(struct loc_track *t)
4393{
4394	if (t->max)
4395		free_pages((unsigned long)t->loc,
4396			get_order(sizeof(struct location) * t->max));
4397}
4398
4399static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4400{
4401	struct location *l;
4402	int order;
4403
4404	order = get_order(sizeof(struct location) * max);
4405
4406	l = (void *)__get_free_pages(flags, order);
4407	if (!l)
4408		return 0;
4409
4410	if (t->count) {
4411		memcpy(l, t->loc, sizeof(struct location) * t->count);
4412		free_loc_track(t);
4413	}
4414	t->max = max;
4415	t->loc = l;
4416	return 1;
4417}
4418
4419static int add_location(struct loc_track *t, struct kmem_cache *s,
4420				const struct track *track)
4421{
4422	long start, end, pos;
4423	struct location *l;
4424	unsigned long caddr;
4425	unsigned long age = jiffies - track->when;
4426
4427	start = -1;
4428	end = t->count;
4429
4430	for ( ; ; ) {
4431		pos = start + (end - start + 1) / 2;
4432
4433		/*
4434		 * There is nothing at "end". If we end up there
4435		 * we need to add something to before end.
4436		 */
4437		if (pos == end)
4438			break;
4439
4440		caddr = t->loc[pos].addr;
4441		if (track->addr == caddr) {
4442
4443			l = &t->loc[pos];
4444			l->count++;
4445			if (track->when) {
4446				l->sum_time += age;
4447				if (age < l->min_time)
4448					l->min_time = age;
4449				if (age > l->max_time)
4450					l->max_time = age;
4451
4452				if (track->pid < l->min_pid)
4453					l->min_pid = track->pid;
4454				if (track->pid > l->max_pid)
4455					l->max_pid = track->pid;
4456
4457				cpumask_set_cpu(track->cpu,
4458						to_cpumask(l->cpus));
4459			}
4460			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4461			return 1;
4462		}
4463
4464		if (track->addr < caddr)
4465			end = pos;
4466		else
4467			start = pos;
4468	}
4469
4470	/*
4471	 * Not found. Insert new tracking element.
4472	 */
4473	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4474		return 0;
4475
4476	l = t->loc + pos;
4477	if (pos < t->count)
4478		memmove(l + 1, l,
4479			(t->count - pos) * sizeof(struct location));
4480	t->count++;
4481	l->count = 1;
4482	l->addr = track->addr;
4483	l->sum_time = age;
4484	l->min_time = age;
4485	l->max_time = age;
4486	l->min_pid = track->pid;
4487	l->max_pid = track->pid;
4488	cpumask_clear(to_cpumask(l->cpus));
4489	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4490	nodes_clear(l->nodes);
4491	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4492	return 1;
4493}
4494
4495static void process_slab(struct loc_track *t, struct kmem_cache *s,
4496		struct page *page, enum track_item alloc,
4497		unsigned long *map)
4498{
4499	void *addr = page_address(page);
4500	void *p;
4501
4502	bitmap_zero(map, page->objects);
4503	get_map(s, page, map);
4504
4505	for_each_object(p, s, addr, page->objects)
4506		if (!test_bit(slab_index(p, s, addr), map))
4507			add_location(t, s, get_track(s, p, alloc));
4508}
4509
4510static int list_locations(struct kmem_cache *s, char *buf,
4511					enum track_item alloc)
4512{
4513	int len = 0;
4514	unsigned long i;
4515	struct loc_track t = { 0, 0, NULL };
4516	int node;
4517	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4518				     sizeof(unsigned long), GFP_KERNEL);
4519	struct kmem_cache_node *n;
4520
4521	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4522				     GFP_TEMPORARY)) {
4523		kfree(map);
4524		return sprintf(buf, "Out of memory\n");
4525	}
4526	/* Push back cpu slabs */
4527	flush_all(s);
4528
4529	for_each_kmem_cache_node(s, node, n) {
 
4530		unsigned long flags;
4531		struct page *page;
4532
4533		if (!atomic_long_read(&n->nr_slabs))
4534			continue;
4535
4536		spin_lock_irqsave(&n->list_lock, flags);
4537		list_for_each_entry(page, &n->partial, lru)
4538			process_slab(&t, s, page, alloc, map);
4539		list_for_each_entry(page, &n->full, lru)
4540			process_slab(&t, s, page, alloc, map);
4541		spin_unlock_irqrestore(&n->list_lock, flags);
4542	}
4543
4544	for (i = 0; i < t.count; i++) {
4545		struct location *l = &t.loc[i];
4546
4547		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4548			break;
4549		len += sprintf(buf + len, "%7ld ", l->count);
4550
4551		if (l->addr)
4552			len += sprintf(buf + len, "%pS", (void *)l->addr);
4553		else
4554			len += sprintf(buf + len, "<not-available>");
4555
4556		if (l->sum_time != l->min_time) {
4557			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4558				l->min_time,
4559				(long)div_u64(l->sum_time, l->count),
4560				l->max_time);
4561		} else
4562			len += sprintf(buf + len, " age=%ld",
4563				l->min_time);
4564
4565		if (l->min_pid != l->max_pid)
4566			len += sprintf(buf + len, " pid=%ld-%ld",
4567				l->min_pid, l->max_pid);
4568		else
4569			len += sprintf(buf + len, " pid=%ld",
4570				l->min_pid);
4571
4572		if (num_online_cpus() > 1 &&
4573				!cpumask_empty(to_cpumask(l->cpus)) &&
4574				len < PAGE_SIZE - 60)
4575			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4576					 " cpus=%*pbl",
4577					 cpumask_pr_args(to_cpumask(l->cpus)));
 
4578
4579		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4580				len < PAGE_SIZE - 60)
4581			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4582					 " nodes=%*pbl",
4583					 nodemask_pr_args(&l->nodes));
 
4584
4585		len += sprintf(buf + len, "\n");
4586	}
4587
4588	free_loc_track(&t);
4589	kfree(map);
4590	if (!t.count)
4591		len += sprintf(buf, "No data\n");
4592	return len;
4593}
4594#endif
4595
4596#ifdef SLUB_RESILIENCY_TEST
4597static void __init resiliency_test(void)
4598{
4599	u8 *p;
4600
4601	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4602
4603	pr_err("SLUB resiliency testing\n");
4604	pr_err("-----------------------\n");
4605	pr_err("A. Corruption after allocation\n");
4606
4607	p = kzalloc(16, GFP_KERNEL);
4608	p[16] = 0x12;
4609	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4610	       p + 16);
4611
4612	validate_slab_cache(kmalloc_caches[4]);
4613
4614	/* Hmmm... The next two are dangerous */
4615	p = kzalloc(32, GFP_KERNEL);
4616	p[32 + sizeof(void *)] = 0x34;
4617	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4618	       p);
4619	pr_err("If allocated object is overwritten then not detectable\n\n");
 
4620
4621	validate_slab_cache(kmalloc_caches[5]);
4622	p = kzalloc(64, GFP_KERNEL);
4623	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4624	*p = 0x56;
4625	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4626	       p);
4627	pr_err("If allocated object is overwritten then not detectable\n\n");
 
4628	validate_slab_cache(kmalloc_caches[6]);
4629
4630	pr_err("\nB. Corruption after free\n");
4631	p = kzalloc(128, GFP_KERNEL);
4632	kfree(p);
4633	*p = 0x78;
4634	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4635	validate_slab_cache(kmalloc_caches[7]);
4636
4637	p = kzalloc(256, GFP_KERNEL);
4638	kfree(p);
4639	p[50] = 0x9a;
4640	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
 
4641	validate_slab_cache(kmalloc_caches[8]);
4642
4643	p = kzalloc(512, GFP_KERNEL);
4644	kfree(p);
4645	p[512] = 0xab;
4646	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4647	validate_slab_cache(kmalloc_caches[9]);
4648}
4649#else
4650#ifdef CONFIG_SYSFS
4651static void resiliency_test(void) {};
4652#endif
4653#endif
4654
4655#ifdef CONFIG_SYSFS
4656enum slab_stat_type {
4657	SL_ALL,			/* All slabs */
4658	SL_PARTIAL,		/* Only partially allocated slabs */
4659	SL_CPU,			/* Only slabs used for cpu caches */
4660	SL_OBJECTS,		/* Determine allocated objects not slabs */
4661	SL_TOTAL		/* Determine object capacity not slabs */
4662};
4663
4664#define SO_ALL		(1 << SL_ALL)
4665#define SO_PARTIAL	(1 << SL_PARTIAL)
4666#define SO_CPU		(1 << SL_CPU)
4667#define SO_OBJECTS	(1 << SL_OBJECTS)
4668#define SO_TOTAL	(1 << SL_TOTAL)
4669
4670static ssize_t show_slab_objects(struct kmem_cache *s,
4671			    char *buf, unsigned long flags)
4672{
4673	unsigned long total = 0;
4674	int node;
4675	int x;
4676	unsigned long *nodes;
 
4677
4678	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4679	if (!nodes)
4680		return -ENOMEM;
 
4681
4682	if (flags & SO_CPU) {
4683		int cpu;
4684
4685		for_each_possible_cpu(cpu) {
4686			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4687							       cpu);
4688			int node;
4689			struct page *page;
4690
4691			page = READ_ONCE(c->page);
4692			if (!page)
4693				continue;
4694
4695			node = page_to_nid(page);
4696			if (flags & SO_TOTAL)
4697				x = page->objects;
4698			else if (flags & SO_OBJECTS)
4699				x = page->inuse;
4700			else
4701				x = 1;
4702
4703			total += x;
4704			nodes[node] += x;
4705
4706			page = READ_ONCE(c->partial);
4707			if (page) {
4708				node = page_to_nid(page);
4709				if (flags & SO_TOTAL)
4710					WARN_ON_ONCE(1);
4711				else if (flags & SO_OBJECTS)
4712					WARN_ON_ONCE(1);
4713				else
4714					x = page->pages;
 
4715				total += x;
4716				nodes[node] += x;
4717			}
 
4718		}
4719	}
4720
4721	get_online_mems();
4722#ifdef CONFIG_SLUB_DEBUG
4723	if (flags & SO_ALL) {
4724		struct kmem_cache_node *n;
 
4725
4726		for_each_kmem_cache_node(s, node, n) {
 
 
 
 
4727
4728			if (flags & SO_TOTAL)
4729				x = atomic_long_read(&n->total_objects);
4730			else if (flags & SO_OBJECTS)
4731				x = atomic_long_read(&n->total_objects) -
4732					count_partial(n, count_free);
4733			else
4734				x = atomic_long_read(&n->nr_slabs);
4735			total += x;
4736			nodes[node] += x;
4737		}
4738
4739	} else
4740#endif
4741	if (flags & SO_PARTIAL) {
4742		struct kmem_cache_node *n;
 
4743
4744		for_each_kmem_cache_node(s, node, n) {
4745			if (flags & SO_TOTAL)
4746				x = count_partial(n, count_total);
4747			else if (flags & SO_OBJECTS)
4748				x = count_partial(n, count_inuse);
4749			else
4750				x = n->nr_partial;
4751			total += x;
4752			nodes[node] += x;
4753		}
4754	}
4755	x = sprintf(buf, "%lu", total);
4756#ifdef CONFIG_NUMA
4757	for (node = 0; node < nr_node_ids; node++)
4758		if (nodes[node])
4759			x += sprintf(buf + x, " N%d=%lu",
4760					node, nodes[node]);
4761#endif
4762	put_online_mems();
4763	kfree(nodes);
4764	return x + sprintf(buf + x, "\n");
4765}
4766
4767#ifdef CONFIG_SLUB_DEBUG
4768static int any_slab_objects(struct kmem_cache *s)
4769{
4770	int node;
4771	struct kmem_cache_node *n;
4772
4773	for_each_kmem_cache_node(s, node, n)
 
 
 
 
 
4774		if (atomic_long_read(&n->total_objects))
4775			return 1;
4776
4777	return 0;
4778}
4779#endif
4780
4781#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4782#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4783
4784struct slab_attribute {
4785	struct attribute attr;
4786	ssize_t (*show)(struct kmem_cache *s, char *buf);
4787	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4788};
4789
4790#define SLAB_ATTR_RO(_name) \
4791	static struct slab_attribute _name##_attr = \
4792	__ATTR(_name, 0400, _name##_show, NULL)
4793
4794#define SLAB_ATTR(_name) \
4795	static struct slab_attribute _name##_attr =  \
4796	__ATTR(_name, 0600, _name##_show, _name##_store)
4797
4798static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4799{
4800	return sprintf(buf, "%d\n", s->size);
4801}
4802SLAB_ATTR_RO(slab_size);
4803
4804static ssize_t align_show(struct kmem_cache *s, char *buf)
4805{
4806	return sprintf(buf, "%d\n", s->align);
4807}
4808SLAB_ATTR_RO(align);
4809
4810static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4811{
4812	return sprintf(buf, "%d\n", s->object_size);
4813}
4814SLAB_ATTR_RO(object_size);
4815
4816static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4817{
4818	return sprintf(buf, "%d\n", oo_objects(s->oo));
4819}
4820SLAB_ATTR_RO(objs_per_slab);
4821
4822static ssize_t order_store(struct kmem_cache *s,
4823				const char *buf, size_t length)
4824{
4825	unsigned long order;
4826	int err;
4827
4828	err = kstrtoul(buf, 10, &order);
4829	if (err)
4830		return err;
4831
4832	if (order > slub_max_order || order < slub_min_order)
4833		return -EINVAL;
4834
4835	calculate_sizes(s, order);
4836	return length;
4837}
4838
4839static ssize_t order_show(struct kmem_cache *s, char *buf)
4840{
4841	return sprintf(buf, "%d\n", oo_order(s->oo));
4842}
4843SLAB_ATTR(order);
4844
4845static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4846{
4847	return sprintf(buf, "%lu\n", s->min_partial);
4848}
4849
4850static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4851				 size_t length)
4852{
4853	unsigned long min;
4854	int err;
4855
4856	err = kstrtoul(buf, 10, &min);
4857	if (err)
4858		return err;
4859
4860	set_min_partial(s, min);
4861	return length;
4862}
4863SLAB_ATTR(min_partial);
4864
4865static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4866{
4867	return sprintf(buf, "%u\n", s->cpu_partial);
4868}
4869
4870static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4871				 size_t length)
4872{
4873	unsigned long objects;
4874	int err;
4875
4876	err = kstrtoul(buf, 10, &objects);
4877	if (err)
4878		return err;
4879	if (objects && !kmem_cache_has_cpu_partial(s))
4880		return -EINVAL;
4881
4882	s->cpu_partial = objects;
4883	flush_all(s);
4884	return length;
4885}
4886SLAB_ATTR(cpu_partial);
4887
4888static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4889{
4890	if (!s->ctor)
4891		return 0;
4892	return sprintf(buf, "%pS\n", s->ctor);
4893}
4894SLAB_ATTR_RO(ctor);
4895
4896static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4897{
4898	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4899}
4900SLAB_ATTR_RO(aliases);
4901
4902static ssize_t partial_show(struct kmem_cache *s, char *buf)
4903{
4904	return show_slab_objects(s, buf, SO_PARTIAL);
4905}
4906SLAB_ATTR_RO(partial);
4907
4908static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4909{
4910	return show_slab_objects(s, buf, SO_CPU);
4911}
4912SLAB_ATTR_RO(cpu_slabs);
4913
4914static ssize_t objects_show(struct kmem_cache *s, char *buf)
4915{
4916	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4917}
4918SLAB_ATTR_RO(objects);
4919
4920static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4921{
4922	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4923}
4924SLAB_ATTR_RO(objects_partial);
4925
4926static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4927{
4928	int objects = 0;
4929	int pages = 0;
4930	int cpu;
4931	int len;
4932
4933	for_each_online_cpu(cpu) {
4934		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4935
4936		if (page) {
4937			pages += page->pages;
4938			objects += page->pobjects;
4939		}
4940	}
4941
4942	len = sprintf(buf, "%d(%d)", objects, pages);
4943
4944#ifdef CONFIG_SMP
4945	for_each_online_cpu(cpu) {
4946		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4947
4948		if (page && len < PAGE_SIZE - 20)
4949			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4950				page->pobjects, page->pages);
4951	}
4952#endif
4953	return len + sprintf(buf + len, "\n");
4954}
4955SLAB_ATTR_RO(slabs_cpu_partial);
4956
4957static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4958{
4959	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4960}
4961
4962static ssize_t reclaim_account_store(struct kmem_cache *s,
4963				const char *buf, size_t length)
4964{
4965	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4966	if (buf[0] == '1')
4967		s->flags |= SLAB_RECLAIM_ACCOUNT;
4968	return length;
4969}
4970SLAB_ATTR(reclaim_account);
4971
4972static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4973{
4974	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4975}
4976SLAB_ATTR_RO(hwcache_align);
4977
4978#ifdef CONFIG_ZONE_DMA
4979static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4980{
4981	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4982}
4983SLAB_ATTR_RO(cache_dma);
4984#endif
4985
4986static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4987{
4988	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4989}
4990SLAB_ATTR_RO(destroy_by_rcu);
4991
4992static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4993{
4994	return sprintf(buf, "%d\n", s->reserved);
4995}
4996SLAB_ATTR_RO(reserved);
4997
4998#ifdef CONFIG_SLUB_DEBUG
4999static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5000{
5001	return show_slab_objects(s, buf, SO_ALL);
5002}
5003SLAB_ATTR_RO(slabs);
5004
5005static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5006{
5007	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5008}
5009SLAB_ATTR_RO(total_objects);
5010
5011static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5012{
5013	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5014}
5015
5016static ssize_t sanity_checks_store(struct kmem_cache *s,
5017				const char *buf, size_t length)
5018{
5019	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5020	if (buf[0] == '1') {
5021		s->flags &= ~__CMPXCHG_DOUBLE;
5022		s->flags |= SLAB_CONSISTENCY_CHECKS;
5023	}
5024	return length;
5025}
5026SLAB_ATTR(sanity_checks);
5027
5028static ssize_t trace_show(struct kmem_cache *s, char *buf)
5029{
5030	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5031}
5032
5033static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5034							size_t length)
5035{
5036	/*
5037	 * Tracing a merged cache is going to give confusing results
5038	 * as well as cause other issues like converting a mergeable
5039	 * cache into an umergeable one.
5040	 */
5041	if (s->refcount > 1)
5042		return -EINVAL;
5043
5044	s->flags &= ~SLAB_TRACE;
5045	if (buf[0] == '1') {
5046		s->flags &= ~__CMPXCHG_DOUBLE;
5047		s->flags |= SLAB_TRACE;
5048	}
5049	return length;
5050}
5051SLAB_ATTR(trace);
5052
5053static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5054{
5055	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5056}
5057
5058static ssize_t red_zone_store(struct kmem_cache *s,
5059				const char *buf, size_t length)
5060{
5061	if (any_slab_objects(s))
5062		return -EBUSY;
5063
5064	s->flags &= ~SLAB_RED_ZONE;
5065	if (buf[0] == '1') {
 
5066		s->flags |= SLAB_RED_ZONE;
5067	}
5068	calculate_sizes(s, -1);
5069	return length;
5070}
5071SLAB_ATTR(red_zone);
5072
5073static ssize_t poison_show(struct kmem_cache *s, char *buf)
5074{
5075	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5076}
5077
5078static ssize_t poison_store(struct kmem_cache *s,
5079				const char *buf, size_t length)
5080{
5081	if (any_slab_objects(s))
5082		return -EBUSY;
5083
5084	s->flags &= ~SLAB_POISON;
5085	if (buf[0] == '1') {
 
5086		s->flags |= SLAB_POISON;
5087	}
5088	calculate_sizes(s, -1);
5089	return length;
5090}
5091SLAB_ATTR(poison);
5092
5093static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5094{
5095	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5096}
5097
5098static ssize_t store_user_store(struct kmem_cache *s,
5099				const char *buf, size_t length)
5100{
5101	if (any_slab_objects(s))
5102		return -EBUSY;
5103
5104	s->flags &= ~SLAB_STORE_USER;
5105	if (buf[0] == '1') {
5106		s->flags &= ~__CMPXCHG_DOUBLE;
5107		s->flags |= SLAB_STORE_USER;
5108	}
5109	calculate_sizes(s, -1);
5110	return length;
5111}
5112SLAB_ATTR(store_user);
5113
5114static ssize_t validate_show(struct kmem_cache *s, char *buf)
5115{
5116	return 0;
5117}
5118
5119static ssize_t validate_store(struct kmem_cache *s,
5120			const char *buf, size_t length)
5121{
5122	int ret = -EINVAL;
5123
5124	if (buf[0] == '1') {
5125		ret = validate_slab_cache(s);
5126		if (ret >= 0)
5127			ret = length;
5128	}
5129	return ret;
5130}
5131SLAB_ATTR(validate);
5132
5133static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5134{
5135	if (!(s->flags & SLAB_STORE_USER))
5136		return -ENOSYS;
5137	return list_locations(s, buf, TRACK_ALLOC);
5138}
5139SLAB_ATTR_RO(alloc_calls);
5140
5141static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5142{
5143	if (!(s->flags & SLAB_STORE_USER))
5144		return -ENOSYS;
5145	return list_locations(s, buf, TRACK_FREE);
5146}
5147SLAB_ATTR_RO(free_calls);
5148#endif /* CONFIG_SLUB_DEBUG */
5149
5150#ifdef CONFIG_FAILSLAB
5151static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5152{
5153	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5154}
5155
5156static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5157							size_t length)
5158{
5159	if (s->refcount > 1)
5160		return -EINVAL;
5161
5162	s->flags &= ~SLAB_FAILSLAB;
5163	if (buf[0] == '1')
5164		s->flags |= SLAB_FAILSLAB;
5165	return length;
5166}
5167SLAB_ATTR(failslab);
5168#endif
5169
5170static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5171{
5172	return 0;
5173}
5174
5175static ssize_t shrink_store(struct kmem_cache *s,
5176			const char *buf, size_t length)
5177{
5178	if (buf[0] == '1')
5179		kmem_cache_shrink(s);
5180	else
 
 
 
5181		return -EINVAL;
5182	return length;
5183}
5184SLAB_ATTR(shrink);
5185
5186#ifdef CONFIG_NUMA
5187static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5188{
5189	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5190}
5191
5192static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5193				const char *buf, size_t length)
5194{
5195	unsigned long ratio;
5196	int err;
5197
5198	err = kstrtoul(buf, 10, &ratio);
5199	if (err)
5200		return err;
5201
5202	if (ratio <= 100)
5203		s->remote_node_defrag_ratio = ratio * 10;
5204
5205	return length;
5206}
5207SLAB_ATTR(remote_node_defrag_ratio);
5208#endif
5209
5210#ifdef CONFIG_SLUB_STATS
5211static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5212{
5213	unsigned long sum  = 0;
5214	int cpu;
5215	int len;
5216	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5217
5218	if (!data)
5219		return -ENOMEM;
5220
5221	for_each_online_cpu(cpu) {
5222		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5223
5224		data[cpu] = x;
5225		sum += x;
5226	}
5227
5228	len = sprintf(buf, "%lu", sum);
5229
5230#ifdef CONFIG_SMP
5231	for_each_online_cpu(cpu) {
5232		if (data[cpu] && len < PAGE_SIZE - 20)
5233			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5234	}
5235#endif
5236	kfree(data);
5237	return len + sprintf(buf + len, "\n");
5238}
5239
5240static void clear_stat(struct kmem_cache *s, enum stat_item si)
5241{
5242	int cpu;
5243
5244	for_each_online_cpu(cpu)
5245		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5246}
5247
5248#define STAT_ATTR(si, text) 					\
5249static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5250{								\
5251	return show_stat(s, buf, si);				\
5252}								\
5253static ssize_t text##_store(struct kmem_cache *s,		\
5254				const char *buf, size_t length)	\
5255{								\
5256	if (buf[0] != '0')					\
5257		return -EINVAL;					\
5258	clear_stat(s, si);					\
5259	return length;						\
5260}								\
5261SLAB_ATTR(text);						\
5262
5263STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5264STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5265STAT_ATTR(FREE_FASTPATH, free_fastpath);
5266STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5267STAT_ATTR(FREE_FROZEN, free_frozen);
5268STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5269STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5270STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5271STAT_ATTR(ALLOC_SLAB, alloc_slab);
5272STAT_ATTR(ALLOC_REFILL, alloc_refill);
5273STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5274STAT_ATTR(FREE_SLAB, free_slab);
5275STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5276STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5277STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5278STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5279STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5280STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5281STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5282STAT_ATTR(ORDER_FALLBACK, order_fallback);
5283STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5284STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5285STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5286STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5287STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5288STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5289#endif
5290
5291static struct attribute *slab_attrs[] = {
5292	&slab_size_attr.attr,
5293	&object_size_attr.attr,
5294	&objs_per_slab_attr.attr,
5295	&order_attr.attr,
5296	&min_partial_attr.attr,
5297	&cpu_partial_attr.attr,
5298	&objects_attr.attr,
5299	&objects_partial_attr.attr,
5300	&partial_attr.attr,
5301	&cpu_slabs_attr.attr,
5302	&ctor_attr.attr,
5303	&aliases_attr.attr,
5304	&align_attr.attr,
5305	&hwcache_align_attr.attr,
5306	&reclaim_account_attr.attr,
5307	&destroy_by_rcu_attr.attr,
5308	&shrink_attr.attr,
5309	&reserved_attr.attr,
5310	&slabs_cpu_partial_attr.attr,
5311#ifdef CONFIG_SLUB_DEBUG
5312	&total_objects_attr.attr,
5313	&slabs_attr.attr,
5314	&sanity_checks_attr.attr,
5315	&trace_attr.attr,
5316	&red_zone_attr.attr,
5317	&poison_attr.attr,
5318	&store_user_attr.attr,
5319	&validate_attr.attr,
5320	&alloc_calls_attr.attr,
5321	&free_calls_attr.attr,
5322#endif
5323#ifdef CONFIG_ZONE_DMA
5324	&cache_dma_attr.attr,
5325#endif
5326#ifdef CONFIG_NUMA
5327	&remote_node_defrag_ratio_attr.attr,
5328#endif
5329#ifdef CONFIG_SLUB_STATS
5330	&alloc_fastpath_attr.attr,
5331	&alloc_slowpath_attr.attr,
5332	&free_fastpath_attr.attr,
5333	&free_slowpath_attr.attr,
5334	&free_frozen_attr.attr,
5335	&free_add_partial_attr.attr,
5336	&free_remove_partial_attr.attr,
5337	&alloc_from_partial_attr.attr,
5338	&alloc_slab_attr.attr,
5339	&alloc_refill_attr.attr,
5340	&alloc_node_mismatch_attr.attr,
5341	&free_slab_attr.attr,
5342	&cpuslab_flush_attr.attr,
5343	&deactivate_full_attr.attr,
5344	&deactivate_empty_attr.attr,
5345	&deactivate_to_head_attr.attr,
5346	&deactivate_to_tail_attr.attr,
5347	&deactivate_remote_frees_attr.attr,
5348	&deactivate_bypass_attr.attr,
5349	&order_fallback_attr.attr,
5350	&cmpxchg_double_fail_attr.attr,
5351	&cmpxchg_double_cpu_fail_attr.attr,
5352	&cpu_partial_alloc_attr.attr,
5353	&cpu_partial_free_attr.attr,
5354	&cpu_partial_node_attr.attr,
5355	&cpu_partial_drain_attr.attr,
5356#endif
5357#ifdef CONFIG_FAILSLAB
5358	&failslab_attr.attr,
5359#endif
5360
5361	NULL
5362};
5363
5364static struct attribute_group slab_attr_group = {
5365	.attrs = slab_attrs,
5366};
5367
5368static ssize_t slab_attr_show(struct kobject *kobj,
5369				struct attribute *attr,
5370				char *buf)
5371{
5372	struct slab_attribute *attribute;
5373	struct kmem_cache *s;
5374	int err;
5375
5376	attribute = to_slab_attr(attr);
5377	s = to_slab(kobj);
5378
5379	if (!attribute->show)
5380		return -EIO;
5381
5382	err = attribute->show(s, buf);
5383
5384	return err;
5385}
5386
5387static ssize_t slab_attr_store(struct kobject *kobj,
5388				struct attribute *attr,
5389				const char *buf, size_t len)
5390{
5391	struct slab_attribute *attribute;
5392	struct kmem_cache *s;
5393	int err;
5394
5395	attribute = to_slab_attr(attr);
5396	s = to_slab(kobj);
5397
5398	if (!attribute->store)
5399		return -EIO;
5400
5401	err = attribute->store(s, buf, len);
5402#ifdef CONFIG_MEMCG
5403	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5404		struct kmem_cache *c;
5405
5406		mutex_lock(&slab_mutex);
5407		if (s->max_attr_size < len)
5408			s->max_attr_size = len;
5409
5410		/*
5411		 * This is a best effort propagation, so this function's return
5412		 * value will be determined by the parent cache only. This is
5413		 * basically because not all attributes will have a well
5414		 * defined semantics for rollbacks - most of the actions will
5415		 * have permanent effects.
5416		 *
5417		 * Returning the error value of any of the children that fail
5418		 * is not 100 % defined, in the sense that users seeing the
5419		 * error code won't be able to know anything about the state of
5420		 * the cache.
5421		 *
5422		 * Only returning the error code for the parent cache at least
5423		 * has well defined semantics. The cache being written to
5424		 * directly either failed or succeeded, in which case we loop
5425		 * through the descendants with best-effort propagation.
5426		 */
5427		for_each_memcg_cache(c, s)
5428			attribute->store(c, buf, len);
5429		mutex_unlock(&slab_mutex);
5430	}
5431#endif
5432	return err;
5433}
5434
5435static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5436{
5437#ifdef CONFIG_MEMCG
5438	int i;
5439	char *buffer = NULL;
5440	struct kmem_cache *root_cache;
5441
5442	if (is_root_cache(s))
5443		return;
5444
5445	root_cache = s->memcg_params.root_cache;
5446
5447	/*
5448	 * This mean this cache had no attribute written. Therefore, no point
5449	 * in copying default values around
5450	 */
5451	if (!root_cache->max_attr_size)
5452		return;
5453
5454	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5455		char mbuf[64];
5456		char *buf;
5457		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5458
5459		if (!attr || !attr->store || !attr->show)
5460			continue;
5461
5462		/*
5463		 * It is really bad that we have to allocate here, so we will
5464		 * do it only as a fallback. If we actually allocate, though,
5465		 * we can just use the allocated buffer until the end.
5466		 *
5467		 * Most of the slub attributes will tend to be very small in
5468		 * size, but sysfs allows buffers up to a page, so they can
5469		 * theoretically happen.
5470		 */
5471		if (buffer)
5472			buf = buffer;
5473		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5474			buf = mbuf;
5475		else {
5476			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5477			if (WARN_ON(!buffer))
5478				continue;
5479			buf = buffer;
5480		}
5481
5482		attr->show(root_cache, buf);
5483		attr->store(s, buf, strlen(buf));
5484	}
5485
5486	if (buffer)
5487		free_page((unsigned long)buffer);
5488#endif
5489}
5490
5491static void kmem_cache_release(struct kobject *k)
5492{
5493	slab_kmem_cache_release(to_slab(k));
5494}
5495
5496static const struct sysfs_ops slab_sysfs_ops = {
5497	.show = slab_attr_show,
5498	.store = slab_attr_store,
5499};
5500
5501static struct kobj_type slab_ktype = {
5502	.sysfs_ops = &slab_sysfs_ops,
5503	.release = kmem_cache_release,
5504};
5505
5506static int uevent_filter(struct kset *kset, struct kobject *kobj)
5507{
5508	struct kobj_type *ktype = get_ktype(kobj);
5509
5510	if (ktype == &slab_ktype)
5511		return 1;
5512	return 0;
5513}
5514
5515static const struct kset_uevent_ops slab_uevent_ops = {
5516	.filter = uevent_filter,
5517};
5518
5519static struct kset *slab_kset;
5520
5521static inline struct kset *cache_kset(struct kmem_cache *s)
5522{
5523#ifdef CONFIG_MEMCG
5524	if (!is_root_cache(s))
5525		return s->memcg_params.root_cache->memcg_kset;
5526#endif
5527	return slab_kset;
5528}
5529
5530#define ID_STR_LENGTH 64
5531
5532/* Create a unique string id for a slab cache:
5533 *
5534 * Format	:[flags-]size
5535 */
5536static char *create_unique_id(struct kmem_cache *s)
5537{
5538	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5539	char *p = name;
5540
5541	BUG_ON(!name);
5542
5543	*p++ = ':';
5544	/*
5545	 * First flags affecting slabcache operations. We will only
5546	 * get here for aliasable slabs so we do not need to support
5547	 * too many flags. The flags here must cover all flags that
5548	 * are matched during merging to guarantee that the id is
5549	 * unique.
5550	 */
5551	if (s->flags & SLAB_CACHE_DMA)
5552		*p++ = 'd';
5553	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5554		*p++ = 'a';
5555	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5556		*p++ = 'F';
5557	if (!(s->flags & SLAB_NOTRACK))
5558		*p++ = 't';
5559	if (s->flags & SLAB_ACCOUNT)
5560		*p++ = 'A';
5561	if (p != name + 1)
5562		*p++ = '-';
5563	p += sprintf(p, "%07d", s->size);
5564
5565	BUG_ON(p > name + ID_STR_LENGTH - 1);
5566	return name;
5567}
5568
5569static int sysfs_slab_add(struct kmem_cache *s)
5570{
5571	int err;
5572	const char *name;
5573	int unmergeable = slab_unmergeable(s);
 
 
 
 
5574
 
5575	if (unmergeable) {
5576		/*
5577		 * Slabcache can never be merged so we can use the name proper.
5578		 * This is typically the case for debug situations. In that
5579		 * case we can catch duplicate names easily.
5580		 */
5581		sysfs_remove_link(&slab_kset->kobj, s->name);
5582		name = s->name;
5583	} else {
5584		/*
5585		 * Create a unique name for the slab as a target
5586		 * for the symlinks.
5587		 */
5588		name = create_unique_id(s);
5589	}
5590
5591	s->kobj.kset = cache_kset(s);
5592	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5593	if (err)
5594		goto out;
 
 
5595
5596	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5597	if (err)
5598		goto out_del_kobj;
5599
5600#ifdef CONFIG_MEMCG
5601	if (is_root_cache(s)) {
5602		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5603		if (!s->memcg_kset) {
5604			err = -ENOMEM;
5605			goto out_del_kobj;
5606		}
5607	}
5608#endif
5609
5610	kobject_uevent(&s->kobj, KOBJ_ADD);
5611	if (!unmergeable) {
5612		/* Setup first alias */
5613		sysfs_slab_alias(s, s->name);
 
5614	}
5615out:
5616	if (!unmergeable)
5617		kfree(name);
5618	return err;
5619out_del_kobj:
5620	kobject_del(&s->kobj);
5621	goto out;
5622}
5623
5624void sysfs_slab_remove(struct kmem_cache *s)
5625{
5626	if (slab_state < FULL)
5627		/*
5628		 * Sysfs has not been setup yet so no need to remove the
5629		 * cache from sysfs.
5630		 */
5631		return;
5632
5633#ifdef CONFIG_MEMCG
5634	kset_unregister(s->memcg_kset);
5635#endif
5636	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5637	kobject_del(&s->kobj);
5638	kobject_put(&s->kobj);
5639}
5640
5641/*
5642 * Need to buffer aliases during bootup until sysfs becomes
5643 * available lest we lose that information.
5644 */
5645struct saved_alias {
5646	struct kmem_cache *s;
5647	const char *name;
5648	struct saved_alias *next;
5649};
5650
5651static struct saved_alias *alias_list;
5652
5653static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5654{
5655	struct saved_alias *al;
5656
5657	if (slab_state == FULL) {
5658		/*
5659		 * If we have a leftover link then remove it.
5660		 */
5661		sysfs_remove_link(&slab_kset->kobj, name);
5662		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5663	}
5664
5665	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5666	if (!al)
5667		return -ENOMEM;
5668
5669	al->s = s;
5670	al->name = name;
5671	al->next = alias_list;
5672	alias_list = al;
5673	return 0;
5674}
5675
5676static int __init slab_sysfs_init(void)
5677{
5678	struct kmem_cache *s;
5679	int err;
5680
5681	mutex_lock(&slab_mutex);
5682
5683	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5684	if (!slab_kset) {
5685		mutex_unlock(&slab_mutex);
5686		pr_err("Cannot register slab subsystem.\n");
5687		return -ENOSYS;
5688	}
5689
5690	slab_state = FULL;
5691
5692	list_for_each_entry(s, &slab_caches, list) {
5693		err = sysfs_slab_add(s);
5694		if (err)
5695			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5696			       s->name);
5697	}
5698
5699	while (alias_list) {
5700		struct saved_alias *al = alias_list;
5701
5702		alias_list = alias_list->next;
5703		err = sysfs_slab_alias(al->s, al->name);
5704		if (err)
5705			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5706			       al->name);
5707		kfree(al);
5708	}
5709
5710	mutex_unlock(&slab_mutex);
5711	resiliency_test();
5712	return 0;
5713}
5714
5715__initcall(slab_sysfs_init);
5716#endif /* CONFIG_SYSFS */
5717
5718/*
5719 * The /proc/slabinfo ABI
5720 */
5721#ifdef CONFIG_SLABINFO
5722void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5723{
 
5724	unsigned long nr_slabs = 0;
 
5725	unsigned long nr_objs = 0;
5726	unsigned long nr_free = 0;
 
5727	int node;
5728	struct kmem_cache_node *n;
5729
5730	for_each_kmem_cache_node(s, node, n) {
5731		nr_slabs += node_nr_slabs(n);
5732		nr_objs += node_nr_objs(n);
 
 
 
 
 
 
 
 
5733		nr_free += count_partial(n, count_free);
5734	}
5735
5736	sinfo->active_objs = nr_objs - nr_free;
5737	sinfo->num_objs = nr_objs;
5738	sinfo->active_slabs = nr_slabs;
5739	sinfo->num_slabs = nr_slabs;
5740	sinfo->objects_per_slab = oo_objects(s->oo);
5741	sinfo->cache_order = oo_order(s->oo);
 
 
 
 
5742}
5743
5744void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
 
 
 
 
 
 
 
5745{
 
5746}
5747
5748ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5749		       size_t count, loff_t *ppos)
 
 
 
 
 
 
5750{
5751	return -EIO;
 
5752}
 
5753#endif /* CONFIG_SLABINFO */