Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "trace.h"
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  32{
  33	struct f2fs_nm_info *nm_i = NM_I(sbi);
  34	struct sysinfo val;
  35	unsigned long avail_ram;
  36	unsigned long mem_size = 0;
  37	bool res = false;
  38
  39	si_meminfo(&val);
  40
  41	/* only uses low memory */
  42	avail_ram = val.totalram - val.totalhigh;
  43
  44	/*
  45	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46	 */
  47	if (type == FREE_NIDS) {
  48		mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
  49				sizeof(struct free_nid)) >> PAGE_SHIFT;
  50		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51	} else if (type == NAT_ENTRIES) {
  52		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53							PAGE_SHIFT;
  54		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  55		if (excess_cached_nats(sbi))
  56			res = false;
  57	} else if (type == DIRTY_DENTS) {
  58		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  59			return false;
  60		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  61		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  62	} else if (type == INO_ENTRIES) {
  63		int i;
  64
  65		for (i = 0; i <= UPDATE_INO; i++)
  66			mem_size += (sbi->im[i].ino_num *
  67				sizeof(struct ino_entry)) >> PAGE_SHIFT;
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  69	} else if (type == EXTENT_CACHE) {
  70		mem_size = (atomic_read(&sbi->total_ext_tree) *
  71				sizeof(struct extent_tree) +
  72				atomic_read(&sbi->total_ext_node) *
  73				sizeof(struct extent_node)) >> PAGE_SHIFT;
  74		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  75	} else {
  76		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return true;
  78	}
  79	return res;
  80}
  81
  82static void clear_node_page_dirty(struct page *page)
  83{
  84	struct address_space *mapping = page->mapping;
  85	unsigned int long flags;
  86
  87	if (PageDirty(page)) {
  88		spin_lock_irqsave(&mapping->tree_lock, flags);
  89		radix_tree_tag_clear(&mapping->page_tree,
  90				page_index(page),
  91				PAGECACHE_TAG_DIRTY);
  92		spin_unlock_irqrestore(&mapping->tree_lock, flags);
  93
  94		clear_page_dirty_for_io(page);
  95		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  96	}
  97	ClearPageUptodate(page);
  98}
  99
 100static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 101{
 102	pgoff_t index = current_nat_addr(sbi, nid);
 103	return get_meta_page(sbi, index);
 104}
 105
 106static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 107{
 108	struct page *src_page;
 109	struct page *dst_page;
 110	pgoff_t src_off;
 111	pgoff_t dst_off;
 112	void *src_addr;
 113	void *dst_addr;
 114	struct f2fs_nm_info *nm_i = NM_I(sbi);
 115
 116	src_off = current_nat_addr(sbi, nid);
 117	dst_off = next_nat_addr(sbi, src_off);
 118
 119	/* get current nat block page with lock */
 120	src_page = get_meta_page(sbi, src_off);
 121	dst_page = grab_meta_page(sbi, dst_off);
 122	f2fs_bug_on(sbi, PageDirty(src_page));
 123
 124	src_addr = page_address(src_page);
 125	dst_addr = page_address(dst_page);
 126	memcpy(dst_addr, src_addr, PAGE_SIZE);
 127	set_page_dirty(dst_page);
 128	f2fs_put_page(src_page, 1);
 129
 130	set_to_next_nat(nm_i, nid);
 131
 132	return dst_page;
 133}
 134
 135static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 136{
 137	return radix_tree_lookup(&nm_i->nat_root, n);
 138}
 139
 140static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 141		nid_t start, unsigned int nr, struct nat_entry **ep)
 142{
 143	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 144}
 145
 146static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 147{
 148	list_del(&e->list);
 149	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 150	nm_i->nat_cnt--;
 151	kmem_cache_free(nat_entry_slab, e);
 152}
 153
 154static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 155						struct nat_entry *ne)
 156{
 157	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 158	struct nat_entry_set *head;
 159
 160	if (get_nat_flag(ne, IS_DIRTY))
 161		return;
 162
 163	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 164	if (!head) {
 165		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 166
 167		INIT_LIST_HEAD(&head->entry_list);
 168		INIT_LIST_HEAD(&head->set_list);
 169		head->set = set;
 170		head->entry_cnt = 0;
 171		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 172	}
 173	list_move_tail(&ne->list, &head->entry_list);
 174	nm_i->dirty_nat_cnt++;
 175	head->entry_cnt++;
 176	set_nat_flag(ne, IS_DIRTY, true);
 177}
 178
 179static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 180						struct nat_entry *ne)
 181{
 182	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 183	struct nat_entry_set *head;
 184
 185	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 186	if (head) {
 187		list_move_tail(&ne->list, &nm_i->nat_entries);
 188		set_nat_flag(ne, IS_DIRTY, false);
 189		head->entry_cnt--;
 190		nm_i->dirty_nat_cnt--;
 191	}
 192}
 193
 194static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 195		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 196{
 197	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 198							start, nr);
 199}
 200
 201int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 202{
 203	struct f2fs_nm_info *nm_i = NM_I(sbi);
 204	struct nat_entry *e;
 205	bool need = false;
 206
 207	down_read(&nm_i->nat_tree_lock);
 208	e = __lookup_nat_cache(nm_i, nid);
 209	if (e) {
 210		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 211				!get_nat_flag(e, HAS_FSYNCED_INODE))
 212			need = true;
 213	}
 214	up_read(&nm_i->nat_tree_lock);
 215	return need;
 216}
 217
 218bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 219{
 220	struct f2fs_nm_info *nm_i = NM_I(sbi);
 221	struct nat_entry *e;
 222	bool is_cp = true;
 223
 224	down_read(&nm_i->nat_tree_lock);
 225	e = __lookup_nat_cache(nm_i, nid);
 226	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 227		is_cp = false;
 228	up_read(&nm_i->nat_tree_lock);
 229	return is_cp;
 230}
 231
 232bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 233{
 234	struct f2fs_nm_info *nm_i = NM_I(sbi);
 235	struct nat_entry *e;
 236	bool need_update = true;
 237
 238	down_read(&nm_i->nat_tree_lock);
 239	e = __lookup_nat_cache(nm_i, ino);
 240	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 241			(get_nat_flag(e, IS_CHECKPOINTED) ||
 242			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 243		need_update = false;
 244	up_read(&nm_i->nat_tree_lock);
 245	return need_update;
 246}
 247
 248static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 249{
 250	struct nat_entry *new;
 251
 252	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 253	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 254	memset(new, 0, sizeof(struct nat_entry));
 255	nat_set_nid(new, nid);
 256	nat_reset_flag(new);
 257	list_add_tail(&new->list, &nm_i->nat_entries);
 258	nm_i->nat_cnt++;
 259	return new;
 260}
 261
 262static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 263						struct f2fs_nat_entry *ne)
 264{
 265	struct f2fs_nm_info *nm_i = NM_I(sbi);
 266	struct nat_entry *e;
 267
 268	e = __lookup_nat_cache(nm_i, nid);
 269	if (!e) {
 270		e = grab_nat_entry(nm_i, nid);
 271		node_info_from_raw_nat(&e->ni, ne);
 272	} else {
 273		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 274				nat_get_blkaddr(e) !=
 275					le32_to_cpu(ne->block_addr) ||
 276				nat_get_version(e) != ne->version);
 277	}
 278}
 279
 280static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 281			block_t new_blkaddr, bool fsync_done)
 282{
 283	struct f2fs_nm_info *nm_i = NM_I(sbi);
 284	struct nat_entry *e;
 285
 286	down_write(&nm_i->nat_tree_lock);
 287	e = __lookup_nat_cache(nm_i, ni->nid);
 288	if (!e) {
 289		e = grab_nat_entry(nm_i, ni->nid);
 290		copy_node_info(&e->ni, ni);
 291		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 292	} else if (new_blkaddr == NEW_ADDR) {
 293		/*
 294		 * when nid is reallocated,
 295		 * previous nat entry can be remained in nat cache.
 296		 * So, reinitialize it with new information.
 297		 */
 298		copy_node_info(&e->ni, ni);
 299		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 300	}
 301
 302	/* sanity check */
 303	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 304	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 305			new_blkaddr == NULL_ADDR);
 306	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 307			new_blkaddr == NEW_ADDR);
 308	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 309			nat_get_blkaddr(e) != NULL_ADDR &&
 310			new_blkaddr == NEW_ADDR);
 311
 312	/* increment version no as node is removed */
 313	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 314		unsigned char version = nat_get_version(e);
 315		nat_set_version(e, inc_node_version(version));
 316
 317		/* in order to reuse the nid */
 318		if (nm_i->next_scan_nid > ni->nid)
 319			nm_i->next_scan_nid = ni->nid;
 320	}
 321
 322	/* change address */
 323	nat_set_blkaddr(e, new_blkaddr);
 324	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 325		set_nat_flag(e, IS_CHECKPOINTED, false);
 326	__set_nat_cache_dirty(nm_i, e);
 327
 328	/* update fsync_mark if its inode nat entry is still alive */
 329	if (ni->nid != ni->ino)
 330		e = __lookup_nat_cache(nm_i, ni->ino);
 331	if (e) {
 332		if (fsync_done && ni->nid == ni->ino)
 333			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 334		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 335	}
 336	up_write(&nm_i->nat_tree_lock);
 337}
 338
 339int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 340{
 341	struct f2fs_nm_info *nm_i = NM_I(sbi);
 342	int nr = nr_shrink;
 343
 344	if (!down_write_trylock(&nm_i->nat_tree_lock))
 345		return 0;
 346
 347	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 348		struct nat_entry *ne;
 349		ne = list_first_entry(&nm_i->nat_entries,
 350					struct nat_entry, list);
 351		__del_from_nat_cache(nm_i, ne);
 352		nr_shrink--;
 353	}
 354	up_write(&nm_i->nat_tree_lock);
 355	return nr - nr_shrink;
 356}
 357
 358/*
 359 * This function always returns success
 360 */
 361void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 362{
 363	struct f2fs_nm_info *nm_i = NM_I(sbi);
 364	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 365	struct f2fs_journal *journal = curseg->journal;
 366	nid_t start_nid = START_NID(nid);
 367	struct f2fs_nat_block *nat_blk;
 368	struct page *page = NULL;
 369	struct f2fs_nat_entry ne;
 370	struct nat_entry *e;
 371	int i;
 372
 373	ni->nid = nid;
 374
 375	/* Check nat cache */
 376	down_read(&nm_i->nat_tree_lock);
 377	e = __lookup_nat_cache(nm_i, nid);
 378	if (e) {
 379		ni->ino = nat_get_ino(e);
 380		ni->blk_addr = nat_get_blkaddr(e);
 381		ni->version = nat_get_version(e);
 382		up_read(&nm_i->nat_tree_lock);
 383		return;
 384	}
 385
 386	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 387
 388	/* Check current segment summary */
 389	down_read(&curseg->journal_rwsem);
 390	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 391	if (i >= 0) {
 392		ne = nat_in_journal(journal, i);
 393		node_info_from_raw_nat(ni, &ne);
 394	}
 395	up_read(&curseg->journal_rwsem);
 396	if (i >= 0)
 397		goto cache;
 398
 399	/* Fill node_info from nat page */
 400	page = get_current_nat_page(sbi, start_nid);
 401	nat_blk = (struct f2fs_nat_block *)page_address(page);
 402	ne = nat_blk->entries[nid - start_nid];
 403	node_info_from_raw_nat(ni, &ne);
 404	f2fs_put_page(page, 1);
 405cache:
 406	up_read(&nm_i->nat_tree_lock);
 407	/* cache nat entry */
 408	down_write(&nm_i->nat_tree_lock);
 409	cache_nat_entry(sbi, nid, &ne);
 410	up_write(&nm_i->nat_tree_lock);
 411}
 412
 413/*
 414 * readahead MAX_RA_NODE number of node pages.
 415 */
 416static void ra_node_pages(struct page *parent, int start, int n)
 417{
 418	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 419	struct blk_plug plug;
 420	int i, end;
 421	nid_t nid;
 422
 423	blk_start_plug(&plug);
 424
 425	/* Then, try readahead for siblings of the desired node */
 426	end = start + n;
 427	end = min(end, NIDS_PER_BLOCK);
 428	for (i = start; i < end; i++) {
 429		nid = get_nid(parent, i, false);
 430		ra_node_page(sbi, nid);
 431	}
 432
 433	blk_finish_plug(&plug);
 434}
 435
 436pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 437{
 438	const long direct_index = ADDRS_PER_INODE(dn->inode);
 439	const long direct_blks = ADDRS_PER_BLOCK;
 440	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 441	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 442	int cur_level = dn->cur_level;
 443	int max_level = dn->max_level;
 444	pgoff_t base = 0;
 445
 446	if (!dn->max_level)
 447		return pgofs + 1;
 448
 449	while (max_level-- > cur_level)
 450		skipped_unit *= NIDS_PER_BLOCK;
 451
 452	switch (dn->max_level) {
 453	case 3:
 454		base += 2 * indirect_blks;
 455	case 2:
 456		base += 2 * direct_blks;
 457	case 1:
 458		base += direct_index;
 459		break;
 460	default:
 461		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 462	}
 463
 464	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 465}
 466
 467/*
 468 * The maximum depth is four.
 469 * Offset[0] will have raw inode offset.
 470 */
 471static int get_node_path(struct inode *inode, long block,
 472				int offset[4], unsigned int noffset[4])
 473{
 474	const long direct_index = ADDRS_PER_INODE(inode);
 475	const long direct_blks = ADDRS_PER_BLOCK;
 476	const long dptrs_per_blk = NIDS_PER_BLOCK;
 477	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 478	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 479	int n = 0;
 480	int level = 0;
 481
 482	noffset[0] = 0;
 483
 484	if (block < direct_index) {
 485		offset[n] = block;
 486		goto got;
 487	}
 488	block -= direct_index;
 489	if (block < direct_blks) {
 490		offset[n++] = NODE_DIR1_BLOCK;
 491		noffset[n] = 1;
 492		offset[n] = block;
 493		level = 1;
 494		goto got;
 495	}
 496	block -= direct_blks;
 497	if (block < direct_blks) {
 498		offset[n++] = NODE_DIR2_BLOCK;
 499		noffset[n] = 2;
 500		offset[n] = block;
 501		level = 1;
 502		goto got;
 503	}
 504	block -= direct_blks;
 505	if (block < indirect_blks) {
 506		offset[n++] = NODE_IND1_BLOCK;
 507		noffset[n] = 3;
 508		offset[n++] = block / direct_blks;
 509		noffset[n] = 4 + offset[n - 1];
 510		offset[n] = block % direct_blks;
 511		level = 2;
 512		goto got;
 513	}
 514	block -= indirect_blks;
 515	if (block < indirect_blks) {
 516		offset[n++] = NODE_IND2_BLOCK;
 517		noffset[n] = 4 + dptrs_per_blk;
 518		offset[n++] = block / direct_blks;
 519		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 520		offset[n] = block % direct_blks;
 521		level = 2;
 522		goto got;
 523	}
 524	block -= indirect_blks;
 525	if (block < dindirect_blks) {
 526		offset[n++] = NODE_DIND_BLOCK;
 527		noffset[n] = 5 + (dptrs_per_blk * 2);
 528		offset[n++] = block / indirect_blks;
 529		noffset[n] = 6 + (dptrs_per_blk * 2) +
 530			      offset[n - 1] * (dptrs_per_blk + 1);
 531		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 532		noffset[n] = 7 + (dptrs_per_blk * 2) +
 533			      offset[n - 2] * (dptrs_per_blk + 1) +
 534			      offset[n - 1];
 535		offset[n] = block % direct_blks;
 536		level = 3;
 537		goto got;
 538	} else {
 539		BUG();
 540	}
 541got:
 542	return level;
 543}
 544
 545/*
 546 * Caller should call f2fs_put_dnode(dn).
 547 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 548 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 549 * In the case of RDONLY_NODE, we don't need to care about mutex.
 550 */
 551int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 552{
 553	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 554	struct page *npage[4];
 555	struct page *parent = NULL;
 556	int offset[4];
 557	unsigned int noffset[4];
 558	nid_t nids[4];
 559	int level, i = 0;
 560	int err = 0;
 561
 562	level = get_node_path(dn->inode, index, offset, noffset);
 563
 564	nids[0] = dn->inode->i_ino;
 565	npage[0] = dn->inode_page;
 566
 567	if (!npage[0]) {
 568		npage[0] = get_node_page(sbi, nids[0]);
 569		if (IS_ERR(npage[0]))
 570			return PTR_ERR(npage[0]);
 571	}
 572
 573	/* if inline_data is set, should not report any block indices */
 574	if (f2fs_has_inline_data(dn->inode) && index) {
 575		err = -ENOENT;
 576		f2fs_put_page(npage[0], 1);
 577		goto release_out;
 578	}
 579
 580	parent = npage[0];
 581	if (level != 0)
 582		nids[1] = get_nid(parent, offset[0], true);
 583	dn->inode_page = npage[0];
 584	dn->inode_page_locked = true;
 585
 586	/* get indirect or direct nodes */
 587	for (i = 1; i <= level; i++) {
 588		bool done = false;
 589
 590		if (!nids[i] && mode == ALLOC_NODE) {
 591			/* alloc new node */
 592			if (!alloc_nid(sbi, &(nids[i]))) {
 593				err = -ENOSPC;
 594				goto release_pages;
 595			}
 596
 597			dn->nid = nids[i];
 598			npage[i] = new_node_page(dn, noffset[i], NULL);
 599			if (IS_ERR(npage[i])) {
 600				alloc_nid_failed(sbi, nids[i]);
 601				err = PTR_ERR(npage[i]);
 602				goto release_pages;
 603			}
 604
 605			set_nid(parent, offset[i - 1], nids[i], i == 1);
 606			alloc_nid_done(sbi, nids[i]);
 607			done = true;
 608		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 609			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 610			if (IS_ERR(npage[i])) {
 611				err = PTR_ERR(npage[i]);
 612				goto release_pages;
 613			}
 614			done = true;
 615		}
 616		if (i == 1) {
 617			dn->inode_page_locked = false;
 618			unlock_page(parent);
 619		} else {
 620			f2fs_put_page(parent, 1);
 621		}
 622
 623		if (!done) {
 624			npage[i] = get_node_page(sbi, nids[i]);
 625			if (IS_ERR(npage[i])) {
 626				err = PTR_ERR(npage[i]);
 627				f2fs_put_page(npage[0], 0);
 628				goto release_out;
 629			}
 630		}
 631		if (i < level) {
 632			parent = npage[i];
 633			nids[i + 1] = get_nid(parent, offset[i], false);
 634		}
 635	}
 636	dn->nid = nids[level];
 637	dn->ofs_in_node = offset[level];
 638	dn->node_page = npage[level];
 639	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 640	return 0;
 641
 642release_pages:
 643	f2fs_put_page(parent, 1);
 644	if (i > 1)
 645		f2fs_put_page(npage[0], 0);
 646release_out:
 647	dn->inode_page = NULL;
 648	dn->node_page = NULL;
 649	if (err == -ENOENT) {
 650		dn->cur_level = i;
 651		dn->max_level = level;
 652		dn->ofs_in_node = offset[level];
 653	}
 654	return err;
 655}
 656
 657static void truncate_node(struct dnode_of_data *dn)
 658{
 659	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 660	struct node_info ni;
 661
 662	get_node_info(sbi, dn->nid, &ni);
 663	if (dn->inode->i_blocks == 0) {
 664		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 665		goto invalidate;
 666	}
 667	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 668
 669	/* Deallocate node address */
 670	invalidate_blocks(sbi, ni.blk_addr);
 671	dec_valid_node_count(sbi, dn->inode);
 672	set_node_addr(sbi, &ni, NULL_ADDR, false);
 673
 674	if (dn->nid == dn->inode->i_ino) {
 675		remove_orphan_inode(sbi, dn->nid);
 676		dec_valid_inode_count(sbi);
 677		f2fs_inode_synced(dn->inode);
 678	}
 679invalidate:
 680	clear_node_page_dirty(dn->node_page);
 681	set_sbi_flag(sbi, SBI_IS_DIRTY);
 682
 683	f2fs_put_page(dn->node_page, 1);
 684
 685	invalidate_mapping_pages(NODE_MAPPING(sbi),
 686			dn->node_page->index, dn->node_page->index);
 687
 688	dn->node_page = NULL;
 689	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 690}
 691
 692static int truncate_dnode(struct dnode_of_data *dn)
 693{
 694	struct page *page;
 695
 696	if (dn->nid == 0)
 697		return 1;
 698
 699	/* get direct node */
 700	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 701	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 702		return 1;
 703	else if (IS_ERR(page))
 704		return PTR_ERR(page);
 705
 706	/* Make dnode_of_data for parameter */
 707	dn->node_page = page;
 708	dn->ofs_in_node = 0;
 709	truncate_data_blocks(dn);
 710	truncate_node(dn);
 711	return 1;
 712}
 713
 714static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 715						int ofs, int depth)
 716{
 717	struct dnode_of_data rdn = *dn;
 718	struct page *page;
 719	struct f2fs_node *rn;
 720	nid_t child_nid;
 721	unsigned int child_nofs;
 722	int freed = 0;
 723	int i, ret;
 724
 725	if (dn->nid == 0)
 726		return NIDS_PER_BLOCK + 1;
 727
 728	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 729
 730	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 731	if (IS_ERR(page)) {
 732		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 733		return PTR_ERR(page);
 734	}
 735
 736	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 737
 738	rn = F2FS_NODE(page);
 739	if (depth < 3) {
 740		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 741			child_nid = le32_to_cpu(rn->in.nid[i]);
 742			if (child_nid == 0)
 743				continue;
 744			rdn.nid = child_nid;
 745			ret = truncate_dnode(&rdn);
 746			if (ret < 0)
 747				goto out_err;
 748			if (set_nid(page, i, 0, false))
 749				dn->node_changed = true;
 750		}
 751	} else {
 752		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 753		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 754			child_nid = le32_to_cpu(rn->in.nid[i]);
 755			if (child_nid == 0) {
 756				child_nofs += NIDS_PER_BLOCK + 1;
 757				continue;
 758			}
 759			rdn.nid = child_nid;
 760			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 761			if (ret == (NIDS_PER_BLOCK + 1)) {
 762				if (set_nid(page, i, 0, false))
 763					dn->node_changed = true;
 764				child_nofs += ret;
 765			} else if (ret < 0 && ret != -ENOENT) {
 766				goto out_err;
 767			}
 768		}
 769		freed = child_nofs;
 770	}
 771
 772	if (!ofs) {
 773		/* remove current indirect node */
 774		dn->node_page = page;
 775		truncate_node(dn);
 776		freed++;
 777	} else {
 778		f2fs_put_page(page, 1);
 779	}
 780	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 781	return freed;
 782
 783out_err:
 784	f2fs_put_page(page, 1);
 785	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 786	return ret;
 787}
 788
 789static int truncate_partial_nodes(struct dnode_of_data *dn,
 790			struct f2fs_inode *ri, int *offset, int depth)
 791{
 792	struct page *pages[2];
 793	nid_t nid[3];
 794	nid_t child_nid;
 795	int err = 0;
 796	int i;
 797	int idx = depth - 2;
 798
 799	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 800	if (!nid[0])
 801		return 0;
 802
 803	/* get indirect nodes in the path */
 804	for (i = 0; i < idx + 1; i++) {
 805		/* reference count'll be increased */
 806		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 807		if (IS_ERR(pages[i])) {
 808			err = PTR_ERR(pages[i]);
 809			idx = i - 1;
 810			goto fail;
 811		}
 812		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 813	}
 814
 815	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 816
 817	/* free direct nodes linked to a partial indirect node */
 818	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 819		child_nid = get_nid(pages[idx], i, false);
 820		if (!child_nid)
 821			continue;
 822		dn->nid = child_nid;
 823		err = truncate_dnode(dn);
 824		if (err < 0)
 825			goto fail;
 826		if (set_nid(pages[idx], i, 0, false))
 827			dn->node_changed = true;
 828	}
 829
 830	if (offset[idx + 1] == 0) {
 831		dn->node_page = pages[idx];
 832		dn->nid = nid[idx];
 833		truncate_node(dn);
 834	} else {
 835		f2fs_put_page(pages[idx], 1);
 836	}
 837	offset[idx]++;
 838	offset[idx + 1] = 0;
 839	idx--;
 840fail:
 841	for (i = idx; i >= 0; i--)
 842		f2fs_put_page(pages[i], 1);
 843
 844	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 845
 846	return err;
 847}
 848
 849/*
 850 * All the block addresses of data and nodes should be nullified.
 851 */
 852int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 853{
 854	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 855	int err = 0, cont = 1;
 856	int level, offset[4], noffset[4];
 857	unsigned int nofs = 0;
 858	struct f2fs_inode *ri;
 859	struct dnode_of_data dn;
 860	struct page *page;
 861
 862	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 863
 864	level = get_node_path(inode, from, offset, noffset);
 865
 866	page = get_node_page(sbi, inode->i_ino);
 867	if (IS_ERR(page)) {
 868		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 869		return PTR_ERR(page);
 870	}
 871
 872	set_new_dnode(&dn, inode, page, NULL, 0);
 873	unlock_page(page);
 874
 875	ri = F2FS_INODE(page);
 876	switch (level) {
 877	case 0:
 878	case 1:
 879		nofs = noffset[1];
 880		break;
 881	case 2:
 882		nofs = noffset[1];
 883		if (!offset[level - 1])
 884			goto skip_partial;
 885		err = truncate_partial_nodes(&dn, ri, offset, level);
 886		if (err < 0 && err != -ENOENT)
 887			goto fail;
 888		nofs += 1 + NIDS_PER_BLOCK;
 889		break;
 890	case 3:
 891		nofs = 5 + 2 * NIDS_PER_BLOCK;
 892		if (!offset[level - 1])
 893			goto skip_partial;
 894		err = truncate_partial_nodes(&dn, ri, offset, level);
 895		if (err < 0 && err != -ENOENT)
 896			goto fail;
 897		break;
 898	default:
 899		BUG();
 900	}
 901
 902skip_partial:
 903	while (cont) {
 904		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 905		switch (offset[0]) {
 906		case NODE_DIR1_BLOCK:
 907		case NODE_DIR2_BLOCK:
 908			err = truncate_dnode(&dn);
 909			break;
 910
 911		case NODE_IND1_BLOCK:
 912		case NODE_IND2_BLOCK:
 913			err = truncate_nodes(&dn, nofs, offset[1], 2);
 914			break;
 915
 916		case NODE_DIND_BLOCK:
 917			err = truncate_nodes(&dn, nofs, offset[1], 3);
 918			cont = 0;
 919			break;
 920
 921		default:
 922			BUG();
 923		}
 924		if (err < 0 && err != -ENOENT)
 925			goto fail;
 926		if (offset[1] == 0 &&
 927				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 928			lock_page(page);
 929			BUG_ON(page->mapping != NODE_MAPPING(sbi));
 930			f2fs_wait_on_page_writeback(page, NODE, true);
 931			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 932			set_page_dirty(page);
 933			unlock_page(page);
 934		}
 935		offset[1] = 0;
 936		offset[0]++;
 937		nofs += err;
 938	}
 939fail:
 940	f2fs_put_page(page, 0);
 941	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 942	return err > 0 ? 0 : err;
 943}
 944
 945int truncate_xattr_node(struct inode *inode, struct page *page)
 946{
 947	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 948	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 949	struct dnode_of_data dn;
 950	struct page *npage;
 951
 952	if (!nid)
 953		return 0;
 954
 955	npage = get_node_page(sbi, nid);
 956	if (IS_ERR(npage))
 957		return PTR_ERR(npage);
 958
 959	f2fs_i_xnid_write(inode, 0);
 960
 961	/* need to do checkpoint during fsync */
 962	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 963
 964	set_new_dnode(&dn, inode, page, npage, nid);
 965
 966	if (page)
 967		dn.inode_page_locked = true;
 968	truncate_node(&dn);
 969	return 0;
 970}
 971
 972/*
 973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 974 * f2fs_unlock_op().
 975 */
 976int remove_inode_page(struct inode *inode)
 977{
 978	struct dnode_of_data dn;
 979	int err;
 980
 981	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 982	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 983	if (err)
 984		return err;
 985
 986	err = truncate_xattr_node(inode, dn.inode_page);
 987	if (err) {
 988		f2fs_put_dnode(&dn);
 989		return err;
 990	}
 991
 992	/* remove potential inline_data blocks */
 993	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 994				S_ISLNK(inode->i_mode))
 995		truncate_data_blocks_range(&dn, 1);
 996
 997	/* 0 is possible, after f2fs_new_inode() has failed */
 998	f2fs_bug_on(F2FS_I_SB(inode),
 999			inode->i_blocks != 0 && inode->i_blocks != 1);
1000
1001	/* will put inode & node pages */
1002	truncate_node(&dn);
1003	return 0;
1004}
1005
1006struct page *new_inode_page(struct inode *inode)
1007{
1008	struct dnode_of_data dn;
1009
1010	/* allocate inode page for new inode */
1011	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1012
1013	/* caller should f2fs_put_page(page, 1); */
1014	return new_node_page(&dn, 0, NULL);
1015}
1016
1017struct page *new_node_page(struct dnode_of_data *dn,
1018				unsigned int ofs, struct page *ipage)
1019{
1020	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1021	struct node_info old_ni, new_ni;
1022	struct page *page;
1023	int err;
1024
1025	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1026		return ERR_PTR(-EPERM);
1027
1028	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1029	if (!page)
1030		return ERR_PTR(-ENOMEM);
1031
1032	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1033		err = -ENOSPC;
1034		goto fail;
1035	}
1036
1037	get_node_info(sbi, dn->nid, &old_ni);
1038
1039	/* Reinitialize old_ni with new node page */
1040	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1041	new_ni = old_ni;
1042	new_ni.ino = dn->inode->i_ino;
1043	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1044
1045	f2fs_wait_on_page_writeback(page, NODE, true);
1046	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1047	set_cold_node(dn->inode, page);
1048	if (!PageUptodate(page))
1049		SetPageUptodate(page);
1050	if (set_page_dirty(page))
1051		dn->node_changed = true;
1052
1053	if (f2fs_has_xattr_block(ofs))
1054		f2fs_i_xnid_write(dn->inode, dn->nid);
1055
1056	if (ofs == 0)
1057		inc_valid_inode_count(sbi);
1058	return page;
1059
1060fail:
1061	clear_node_page_dirty(page);
1062	f2fs_put_page(page, 1);
1063	return ERR_PTR(err);
1064}
1065
1066/*
1067 * Caller should do after getting the following values.
1068 * 0: f2fs_put_page(page, 0)
1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1070 */
1071static int read_node_page(struct page *page, int op_flags)
1072{
1073	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1074	struct node_info ni;
1075	struct f2fs_io_info fio = {
1076		.sbi = sbi,
1077		.type = NODE,
1078		.op = REQ_OP_READ,
1079		.op_flags = op_flags,
1080		.page = page,
1081		.encrypted_page = NULL,
1082	};
1083
1084	if (PageUptodate(page))
1085		return LOCKED_PAGE;
1086
1087	get_node_info(sbi, page->index, &ni);
1088
1089	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1090		ClearPageUptodate(page);
1091		return -ENOENT;
1092	}
1093
1094	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1095	return f2fs_submit_page_bio(&fio);
1096}
1097
1098/*
1099 * Readahead a node page
1100 */
1101void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1102{
1103	struct page *apage;
1104	int err;
1105
1106	if (!nid)
1107		return;
1108	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1109
1110	rcu_read_lock();
1111	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1112	rcu_read_unlock();
1113	if (apage)
1114		return;
1115
1116	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1117	if (!apage)
1118		return;
1119
1120	err = read_node_page(apage, REQ_RAHEAD);
1121	f2fs_put_page(apage, err ? 1 : 0);
1122}
1123
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125					struct page *parent, int start)
1126{
1127	struct page *page;
1128	int err;
1129
1130	if (!nid)
1131		return ERR_PTR(-ENOENT);
1132	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133repeat:
1134	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1135	if (!page)
1136		return ERR_PTR(-ENOMEM);
1137
1138	err = read_node_page(page, 0);
1139	if (err < 0) {
1140		f2fs_put_page(page, 1);
1141		return ERR_PTR(err);
1142	} else if (err == LOCKED_PAGE) {
1143		goto page_hit;
1144	}
1145
1146	if (parent)
1147		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1148
1149	lock_page(page);
1150
1151	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1152		f2fs_put_page(page, 1);
1153		goto repeat;
1154	}
1155
1156	if (unlikely(!PageUptodate(page)))
1157		goto out_err;
1158page_hit:
1159	if(unlikely(nid != nid_of_node(page))) {
1160		f2fs_bug_on(sbi, 1);
1161		ClearPageUptodate(page);
1162out_err:
1163		f2fs_put_page(page, 1);
1164		return ERR_PTR(-EIO);
1165	}
1166	return page;
1167}
1168
1169struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1170{
1171	return __get_node_page(sbi, nid, NULL, 0);
1172}
1173
1174struct page *get_node_page_ra(struct page *parent, int start)
1175{
1176	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1177	nid_t nid = get_nid(parent, start, false);
1178
1179	return __get_node_page(sbi, nid, parent, start);
1180}
1181
1182static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1183{
1184	struct inode *inode;
1185	struct page *page;
1186	int ret;
1187
1188	/* should flush inline_data before evict_inode */
1189	inode = ilookup(sbi->sb, ino);
1190	if (!inode)
1191		return;
1192
1193	page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1194	if (!page)
1195		goto iput_out;
1196
1197	if (!PageUptodate(page))
1198		goto page_out;
1199
1200	if (!PageDirty(page))
1201		goto page_out;
1202
1203	if (!clear_page_dirty_for_io(page))
1204		goto page_out;
1205
1206	ret = f2fs_write_inline_data(inode, page);
1207	inode_dec_dirty_pages(inode);
1208	remove_dirty_inode(inode);
1209	if (ret)
1210		set_page_dirty(page);
1211page_out:
1212	f2fs_put_page(page, 1);
1213iput_out:
1214	iput(inode);
1215}
1216
1217void move_node_page(struct page *node_page, int gc_type)
1218{
1219	if (gc_type == FG_GC) {
1220		struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1221		struct writeback_control wbc = {
1222			.sync_mode = WB_SYNC_ALL,
1223			.nr_to_write = 1,
1224			.for_reclaim = 0,
1225		};
1226
1227		set_page_dirty(node_page);
1228		f2fs_wait_on_page_writeback(node_page, NODE, true);
1229
1230		f2fs_bug_on(sbi, PageWriteback(node_page));
1231		if (!clear_page_dirty_for_io(node_page))
1232			goto out_page;
1233
1234		if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1235			unlock_page(node_page);
1236		goto release_page;
1237	} else {
1238		/* set page dirty and write it */
1239		if (!PageWriteback(node_page))
1240			set_page_dirty(node_page);
1241	}
1242out_page:
1243	unlock_page(node_page);
1244release_page:
1245	f2fs_put_page(node_page, 0);
1246}
1247
1248static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1249{
1250	pgoff_t index, end;
1251	struct pagevec pvec;
1252	struct page *last_page = NULL;
1253
1254	pagevec_init(&pvec, 0);
1255	index = 0;
1256	end = ULONG_MAX;
1257
1258	while (index <= end) {
1259		int i, nr_pages;
1260		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1261				PAGECACHE_TAG_DIRTY,
1262				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1263		if (nr_pages == 0)
1264			break;
1265
1266		for (i = 0; i < nr_pages; i++) {
1267			struct page *page = pvec.pages[i];
1268
1269			if (unlikely(f2fs_cp_error(sbi))) {
1270				f2fs_put_page(last_page, 0);
1271				pagevec_release(&pvec);
1272				return ERR_PTR(-EIO);
1273			}
1274
1275			if (!IS_DNODE(page) || !is_cold_node(page))
1276				continue;
1277			if (ino_of_node(page) != ino)
1278				continue;
1279
1280			lock_page(page);
1281
1282			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1283continue_unlock:
1284				unlock_page(page);
1285				continue;
1286			}
1287			if (ino_of_node(page) != ino)
1288				goto continue_unlock;
1289
1290			if (!PageDirty(page)) {
1291				/* someone wrote it for us */
1292				goto continue_unlock;
1293			}
1294
1295			if (last_page)
1296				f2fs_put_page(last_page, 0);
1297
1298			get_page(page);
1299			last_page = page;
1300			unlock_page(page);
1301		}
1302		pagevec_release(&pvec);
1303		cond_resched();
1304	}
1305	return last_page;
1306}
1307
1308int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1309			struct writeback_control *wbc, bool atomic)
1310{
1311	pgoff_t index, end;
1312	struct pagevec pvec;
1313	int ret = 0;
1314	struct page *last_page = NULL;
1315	bool marked = false;
1316	nid_t ino = inode->i_ino;
1317	int nwritten = 0;
1318
1319	if (atomic) {
1320		last_page = last_fsync_dnode(sbi, ino);
1321		if (IS_ERR_OR_NULL(last_page))
1322			return PTR_ERR_OR_ZERO(last_page);
1323	}
1324retry:
1325	pagevec_init(&pvec, 0);
1326	index = 0;
1327	end = ULONG_MAX;
1328
1329	while (index <= end) {
1330		int i, nr_pages;
1331		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1332				PAGECACHE_TAG_DIRTY,
1333				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1334		if (nr_pages == 0)
1335			break;
1336
1337		for (i = 0; i < nr_pages; i++) {
1338			struct page *page = pvec.pages[i];
1339
1340			if (unlikely(f2fs_cp_error(sbi))) {
1341				f2fs_put_page(last_page, 0);
1342				pagevec_release(&pvec);
1343				ret = -EIO;
1344				goto out;
1345			}
1346
1347			if (!IS_DNODE(page) || !is_cold_node(page))
1348				continue;
1349			if (ino_of_node(page) != ino)
1350				continue;
1351
1352			lock_page(page);
1353
1354			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1355continue_unlock:
1356				unlock_page(page);
1357				continue;
1358			}
1359			if (ino_of_node(page) != ino)
1360				goto continue_unlock;
1361
1362			if (!PageDirty(page) && page != last_page) {
1363				/* someone wrote it for us */
1364				goto continue_unlock;
1365			}
1366
1367			f2fs_wait_on_page_writeback(page, NODE, true);
1368			BUG_ON(PageWriteback(page));
1369
1370			if (!atomic || page == last_page) {
1371				set_fsync_mark(page, 1);
1372				if (IS_INODE(page)) {
1373					if (is_inode_flag_set(inode,
1374								FI_DIRTY_INODE))
1375						update_inode(inode, page);
1376					set_dentry_mark(page,
1377						need_dentry_mark(sbi, ino));
1378				}
1379				/*  may be written by other thread */
1380				if (!PageDirty(page))
1381					set_page_dirty(page);
1382			}
1383
1384			if (!clear_page_dirty_for_io(page))
1385				goto continue_unlock;
1386
1387			ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1388			if (ret) {
1389				unlock_page(page);
1390				f2fs_put_page(last_page, 0);
1391				break;
1392			} else {
1393				nwritten++;
1394			}
1395
1396			if (page == last_page) {
1397				f2fs_put_page(page, 0);
1398				marked = true;
1399				break;
1400			}
1401		}
1402		pagevec_release(&pvec);
1403		cond_resched();
1404
1405		if (ret || marked)
1406			break;
1407	}
1408	if (!ret && atomic && !marked) {
1409		f2fs_msg(sbi->sb, KERN_DEBUG,
1410			"Retry to write fsync mark: ino=%u, idx=%lx",
1411					ino, last_page->index);
1412		lock_page(last_page);
1413		f2fs_wait_on_page_writeback(last_page, NODE, true);
1414		set_page_dirty(last_page);
1415		unlock_page(last_page);
1416		goto retry;
1417	}
1418out:
1419	if (nwritten)
1420		f2fs_submit_merged_bio_cond(sbi, NULL, NULL, ino, NODE, WRITE);
1421	return ret ? -EIO: 0;
1422}
1423
1424int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1425{
1426	pgoff_t index, end;
1427	struct pagevec pvec;
1428	int step = 0;
1429	int nwritten = 0;
1430	int ret = 0;
1431
1432	pagevec_init(&pvec, 0);
1433
1434next_step:
1435	index = 0;
1436	end = ULONG_MAX;
1437
1438	while (index <= end) {
1439		int i, nr_pages;
1440		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1441				PAGECACHE_TAG_DIRTY,
1442				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1443		if (nr_pages == 0)
1444			break;
1445
1446		for (i = 0; i < nr_pages; i++) {
1447			struct page *page = pvec.pages[i];
1448
1449			if (unlikely(f2fs_cp_error(sbi))) {
1450				pagevec_release(&pvec);
1451				ret = -EIO;
1452				goto out;
1453			}
1454
1455			/*
1456			 * flushing sequence with step:
1457			 * 0. indirect nodes
1458			 * 1. dentry dnodes
1459			 * 2. file dnodes
1460			 */
1461			if (step == 0 && IS_DNODE(page))
1462				continue;
1463			if (step == 1 && (!IS_DNODE(page) ||
1464						is_cold_node(page)))
1465				continue;
1466			if (step == 2 && (!IS_DNODE(page) ||
1467						!is_cold_node(page)))
1468				continue;
1469lock_node:
1470			if (!trylock_page(page))
1471				continue;
1472
1473			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1474continue_unlock:
1475				unlock_page(page);
1476				continue;
1477			}
1478
1479			if (!PageDirty(page)) {
1480				/* someone wrote it for us */
1481				goto continue_unlock;
1482			}
1483
1484			/* flush inline_data */
1485			if (is_inline_node(page)) {
1486				clear_inline_node(page);
1487				unlock_page(page);
1488				flush_inline_data(sbi, ino_of_node(page));
1489				goto lock_node;
1490			}
1491
1492			f2fs_wait_on_page_writeback(page, NODE, true);
1493
1494			BUG_ON(PageWriteback(page));
1495			if (!clear_page_dirty_for_io(page))
1496				goto continue_unlock;
1497
1498			set_fsync_mark(page, 0);
1499			set_dentry_mark(page, 0);
1500
1501			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1502				unlock_page(page);
1503			else
1504				nwritten++;
1505
1506			if (--wbc->nr_to_write == 0)
1507				break;
1508		}
1509		pagevec_release(&pvec);
1510		cond_resched();
1511
1512		if (wbc->nr_to_write == 0) {
1513			step = 2;
1514			break;
1515		}
1516	}
1517
1518	if (step < 2) {
1519		step++;
1520		goto next_step;
1521	}
1522out:
1523	if (nwritten)
1524		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1525	return ret;
1526}
1527
1528int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1529{
1530	pgoff_t index = 0, end = ULONG_MAX;
1531	struct pagevec pvec;
1532	int ret2, ret = 0;
1533
1534	pagevec_init(&pvec, 0);
1535
1536	while (index <= end) {
1537		int i, nr_pages;
1538		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1539				PAGECACHE_TAG_WRITEBACK,
1540				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1541		if (nr_pages == 0)
1542			break;
1543
1544		for (i = 0; i < nr_pages; i++) {
1545			struct page *page = pvec.pages[i];
1546
1547			/* until radix tree lookup accepts end_index */
1548			if (unlikely(page->index > end))
1549				continue;
1550
1551			if (ino && ino_of_node(page) == ino) {
1552				f2fs_wait_on_page_writeback(page, NODE, true);
1553				if (TestClearPageError(page))
1554					ret = -EIO;
1555			}
1556		}
1557		pagevec_release(&pvec);
1558		cond_resched();
1559	}
1560
1561	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1562	if (!ret)
1563		ret = ret2;
1564	return ret;
1565}
1566
1567static int f2fs_write_node_page(struct page *page,
1568				struct writeback_control *wbc)
1569{
1570	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1571	nid_t nid;
1572	struct node_info ni;
1573	struct f2fs_io_info fio = {
1574		.sbi = sbi,
1575		.type = NODE,
1576		.op = REQ_OP_WRITE,
1577		.op_flags = wbc_to_write_flags(wbc),
1578		.page = page,
1579		.encrypted_page = NULL,
1580	};
1581
1582	trace_f2fs_writepage(page, NODE);
1583
1584	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1585		goto redirty_out;
1586	if (unlikely(f2fs_cp_error(sbi)))
1587		goto redirty_out;
1588
1589	/* get old block addr of this node page */
1590	nid = nid_of_node(page);
1591	f2fs_bug_on(sbi, page->index != nid);
1592
1593	if (wbc->for_reclaim) {
1594		if (!down_read_trylock(&sbi->node_write))
1595			goto redirty_out;
1596	} else {
1597		down_read(&sbi->node_write);
1598	}
1599
1600	get_node_info(sbi, nid, &ni);
1601
1602	/* This page is already truncated */
1603	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1604		ClearPageUptodate(page);
1605		dec_page_count(sbi, F2FS_DIRTY_NODES);
1606		up_read(&sbi->node_write);
1607		unlock_page(page);
1608		return 0;
1609	}
1610
1611	set_page_writeback(page);
1612	fio.old_blkaddr = ni.blk_addr;
1613	write_node_page(nid, &fio);
1614	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1615	dec_page_count(sbi, F2FS_DIRTY_NODES);
1616	up_read(&sbi->node_write);
1617
1618	if (wbc->for_reclaim)
1619		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1620
1621	unlock_page(page);
1622
1623	if (unlikely(f2fs_cp_error(sbi)))
1624		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1625
1626	return 0;
1627
1628redirty_out:
1629	redirty_page_for_writepage(wbc, page);
1630	return AOP_WRITEPAGE_ACTIVATE;
1631}
1632
1633static int f2fs_write_node_pages(struct address_space *mapping,
1634			    struct writeback_control *wbc)
1635{
1636	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1637	struct blk_plug plug;
1638	long diff;
1639
1640	/* balancing f2fs's metadata in background */
1641	f2fs_balance_fs_bg(sbi);
1642
1643	/* collect a number of dirty node pages and write together */
1644	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1645		goto skip_write;
1646
1647	trace_f2fs_writepages(mapping->host, wbc, NODE);
1648
1649	diff = nr_pages_to_write(sbi, NODE, wbc);
1650	wbc->sync_mode = WB_SYNC_NONE;
1651	blk_start_plug(&plug);
1652	sync_node_pages(sbi, wbc);
1653	blk_finish_plug(&plug);
1654	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1655	return 0;
1656
1657skip_write:
1658	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1659	trace_f2fs_writepages(mapping->host, wbc, NODE);
1660	return 0;
1661}
1662
1663static int f2fs_set_node_page_dirty(struct page *page)
1664{
1665	trace_f2fs_set_page_dirty(page, NODE);
1666
1667	if (!PageUptodate(page))
1668		SetPageUptodate(page);
1669	if (!PageDirty(page)) {
1670		f2fs_set_page_dirty_nobuffers(page);
1671		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1672		SetPagePrivate(page);
1673		f2fs_trace_pid(page);
1674		return 1;
1675	}
1676	return 0;
1677}
1678
1679/*
1680 * Structure of the f2fs node operations
1681 */
1682const struct address_space_operations f2fs_node_aops = {
1683	.writepage	= f2fs_write_node_page,
1684	.writepages	= f2fs_write_node_pages,
1685	.set_page_dirty	= f2fs_set_node_page_dirty,
1686	.invalidatepage	= f2fs_invalidate_page,
1687	.releasepage	= f2fs_release_page,
1688#ifdef CONFIG_MIGRATION
1689	.migratepage    = f2fs_migrate_page,
1690#endif
1691};
1692
1693static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1694						nid_t n)
1695{
1696	return radix_tree_lookup(&nm_i->free_nid_root, n);
1697}
1698
1699static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1700			struct free_nid *i, enum nid_list list, bool new)
1701{
1702	struct f2fs_nm_info *nm_i = NM_I(sbi);
1703
1704	if (new) {
1705		int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1706		if (err)
1707			return err;
1708	}
1709
1710	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1711						i->state != NID_ALLOC);
1712	nm_i->nid_cnt[list]++;
1713	list_add_tail(&i->list, &nm_i->nid_list[list]);
1714	return 0;
1715}
1716
1717static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1718			struct free_nid *i, enum nid_list list, bool reuse)
1719{
1720	struct f2fs_nm_info *nm_i = NM_I(sbi);
1721
1722	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1723						i->state != NID_ALLOC);
1724	nm_i->nid_cnt[list]--;
1725	list_del(&i->list);
1726	if (!reuse)
1727		radix_tree_delete(&nm_i->free_nid_root, i->nid);
1728}
1729
1730static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1731{
1732	struct f2fs_nm_info *nm_i = NM_I(sbi);
1733	struct free_nid *i;
1734	struct nat_entry *ne;
1735	int err;
1736
1737	/* 0 nid should not be used */
1738	if (unlikely(nid == 0))
1739		return 0;
1740
1741	if (build) {
1742		/* do not add allocated nids */
1743		ne = __lookup_nat_cache(nm_i, nid);
1744		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1745				nat_get_blkaddr(ne) != NULL_ADDR))
1746			return 0;
1747	}
1748
1749	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1750	i->nid = nid;
1751	i->state = NID_NEW;
1752
1753	if (radix_tree_preload(GFP_NOFS)) {
1754		kmem_cache_free(free_nid_slab, i);
1755		return 0;
1756	}
1757
1758	spin_lock(&nm_i->nid_list_lock);
1759	err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1760	spin_unlock(&nm_i->nid_list_lock);
1761	radix_tree_preload_end();
1762	if (err) {
1763		kmem_cache_free(free_nid_slab, i);
1764		return 0;
1765	}
1766	return 1;
1767}
1768
1769static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1770{
1771	struct f2fs_nm_info *nm_i = NM_I(sbi);
1772	struct free_nid *i;
1773	bool need_free = false;
1774
1775	spin_lock(&nm_i->nid_list_lock);
1776	i = __lookup_free_nid_list(nm_i, nid);
1777	if (i && i->state == NID_NEW) {
1778		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1779		need_free = true;
1780	}
1781	spin_unlock(&nm_i->nid_list_lock);
1782
1783	if (need_free)
1784		kmem_cache_free(free_nid_slab, i);
1785}
1786
1787static void scan_nat_page(struct f2fs_sb_info *sbi,
1788			struct page *nat_page, nid_t start_nid)
1789{
1790	struct f2fs_nm_info *nm_i = NM_I(sbi);
1791	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1792	block_t blk_addr;
1793	int i;
1794
1795	i = start_nid % NAT_ENTRY_PER_BLOCK;
1796
1797	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1798
1799		if (unlikely(start_nid >= nm_i->max_nid))
1800			break;
1801
1802		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1803		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1804		if (blk_addr == NULL_ADDR)
1805			add_free_nid(sbi, start_nid, true);
1806	}
1807}
1808
1809static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1810{
1811	struct f2fs_nm_info *nm_i = NM_I(sbi);
1812	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1813	struct f2fs_journal *journal = curseg->journal;
1814	int i = 0;
1815	nid_t nid = nm_i->next_scan_nid;
1816
1817	/* Enough entries */
1818	if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1819		return;
1820
1821	if (!sync && !available_free_memory(sbi, FREE_NIDS))
1822		return;
1823
1824	/* readahead nat pages to be scanned */
1825	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1826							META_NAT, true);
1827
1828	down_read(&nm_i->nat_tree_lock);
1829
1830	while (1) {
1831		struct page *page = get_current_nat_page(sbi, nid);
1832
1833		scan_nat_page(sbi, page, nid);
1834		f2fs_put_page(page, 1);
1835
1836		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1837		if (unlikely(nid >= nm_i->max_nid))
1838			nid = 0;
1839
1840		if (++i >= FREE_NID_PAGES)
1841			break;
1842	}
1843
1844	/* go to the next free nat pages to find free nids abundantly */
1845	nm_i->next_scan_nid = nid;
1846
1847	/* find free nids from current sum_pages */
1848	down_read(&curseg->journal_rwsem);
1849	for (i = 0; i < nats_in_cursum(journal); i++) {
1850		block_t addr;
1851
1852		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1853		nid = le32_to_cpu(nid_in_journal(journal, i));
1854		if (addr == NULL_ADDR)
1855			add_free_nid(sbi, nid, true);
1856		else
1857			remove_free_nid(sbi, nid);
1858	}
1859	up_read(&curseg->journal_rwsem);
1860	up_read(&nm_i->nat_tree_lock);
1861
1862	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1863					nm_i->ra_nid_pages, META_NAT, false);
1864}
1865
1866void build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1867{
1868	mutex_lock(&NM_I(sbi)->build_lock);
1869	__build_free_nids(sbi, sync);
1870	mutex_unlock(&NM_I(sbi)->build_lock);
1871}
1872
1873/*
1874 * If this function returns success, caller can obtain a new nid
1875 * from second parameter of this function.
1876 * The returned nid could be used ino as well as nid when inode is created.
1877 */
1878bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1879{
1880	struct f2fs_nm_info *nm_i = NM_I(sbi);
1881	struct free_nid *i = NULL;
1882retry:
1883#ifdef CONFIG_F2FS_FAULT_INJECTION
1884	if (time_to_inject(sbi, FAULT_ALLOC_NID))
1885		return false;
1886#endif
1887	spin_lock(&nm_i->nid_list_lock);
1888
1889	if (unlikely(nm_i->available_nids == 0)) {
1890		spin_unlock(&nm_i->nid_list_lock);
1891		return false;
1892	}
1893
1894	/* We should not use stale free nids created by build_free_nids */
1895	if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
1896		f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
1897		i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
1898					struct free_nid, list);
1899		*nid = i->nid;
1900
1901		__remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
1902		i->state = NID_ALLOC;
1903		__insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
1904		nm_i->available_nids--;
1905		spin_unlock(&nm_i->nid_list_lock);
1906		return true;
1907	}
1908	spin_unlock(&nm_i->nid_list_lock);
1909
1910	/* Let's scan nat pages and its caches to get free nids */
1911	build_free_nids(sbi, true);
1912	goto retry;
1913}
1914
1915/*
1916 * alloc_nid() should be called prior to this function.
1917 */
1918void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1919{
1920	struct f2fs_nm_info *nm_i = NM_I(sbi);
1921	struct free_nid *i;
1922
1923	spin_lock(&nm_i->nid_list_lock);
1924	i = __lookup_free_nid_list(nm_i, nid);
1925	f2fs_bug_on(sbi, !i);
1926	__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1927	spin_unlock(&nm_i->nid_list_lock);
1928
1929	kmem_cache_free(free_nid_slab, i);
1930}
1931
1932/*
1933 * alloc_nid() should be called prior to this function.
1934 */
1935void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1936{
1937	struct f2fs_nm_info *nm_i = NM_I(sbi);
1938	struct free_nid *i;
1939	bool need_free = false;
1940
1941	if (!nid)
1942		return;
1943
1944	spin_lock(&nm_i->nid_list_lock);
1945	i = __lookup_free_nid_list(nm_i, nid);
1946	f2fs_bug_on(sbi, !i);
1947
1948	if (!available_free_memory(sbi, FREE_NIDS)) {
1949		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1950		need_free = true;
1951	} else {
1952		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
1953		i->state = NID_NEW;
1954		__insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
1955	}
1956
1957	nm_i->available_nids++;
1958
1959	spin_unlock(&nm_i->nid_list_lock);
1960
1961	if (need_free)
1962		kmem_cache_free(free_nid_slab, i);
1963}
1964
1965int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1966{
1967	struct f2fs_nm_info *nm_i = NM_I(sbi);
1968	struct free_nid *i, *next;
1969	int nr = nr_shrink;
1970
1971	if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1972		return 0;
1973
1974	if (!mutex_trylock(&nm_i->build_lock))
1975		return 0;
1976
1977	spin_lock(&nm_i->nid_list_lock);
1978	list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
1979									list) {
1980		if (nr_shrink <= 0 ||
1981				nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1982			break;
1983
1984		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1985		kmem_cache_free(free_nid_slab, i);
1986		nr_shrink--;
1987	}
1988	spin_unlock(&nm_i->nid_list_lock);
1989	mutex_unlock(&nm_i->build_lock);
1990
1991	return nr - nr_shrink;
1992}
1993
1994void recover_inline_xattr(struct inode *inode, struct page *page)
1995{
1996	void *src_addr, *dst_addr;
1997	size_t inline_size;
1998	struct page *ipage;
1999	struct f2fs_inode *ri;
2000
2001	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2002	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2003
2004	ri = F2FS_INODE(page);
2005	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2006		clear_inode_flag(inode, FI_INLINE_XATTR);
2007		goto update_inode;
2008	}
2009
2010	dst_addr = inline_xattr_addr(ipage);
2011	src_addr = inline_xattr_addr(page);
2012	inline_size = inline_xattr_size(inode);
2013
2014	f2fs_wait_on_page_writeback(ipage, NODE, true);
2015	memcpy(dst_addr, src_addr, inline_size);
2016update_inode:
2017	update_inode(inode, ipage);
2018	f2fs_put_page(ipage, 1);
2019}
2020
2021void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2022{
2023	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2024	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2025	nid_t new_xnid = nid_of_node(page);
2026	struct node_info ni;
2027
2028	/* 1: invalidate the previous xattr nid */
2029	if (!prev_xnid)
2030		goto recover_xnid;
2031
2032	/* Deallocate node address */
2033	get_node_info(sbi, prev_xnid, &ni);
2034	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2035	invalidate_blocks(sbi, ni.blk_addr);
2036	dec_valid_node_count(sbi, inode);
2037	set_node_addr(sbi, &ni, NULL_ADDR, false);
2038
2039recover_xnid:
2040	/* 2: allocate new xattr nid */
2041	if (unlikely(!inc_valid_node_count(sbi, inode)))
2042		f2fs_bug_on(sbi, 1);
2043
2044	remove_free_nid(sbi, new_xnid);
2045	get_node_info(sbi, new_xnid, &ni);
2046	ni.ino = inode->i_ino;
2047	set_node_addr(sbi, &ni, NEW_ADDR, false);
2048	f2fs_i_xnid_write(inode, new_xnid);
2049
2050	/* 3: update xattr blkaddr */
2051	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2052	set_node_addr(sbi, &ni, blkaddr, false);
2053}
2054
2055int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2056{
2057	struct f2fs_inode *src, *dst;
2058	nid_t ino = ino_of_node(page);
2059	struct node_info old_ni, new_ni;
2060	struct page *ipage;
2061
2062	get_node_info(sbi, ino, &old_ni);
2063
2064	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2065		return -EINVAL;
2066retry:
2067	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2068	if (!ipage) {
2069		congestion_wait(BLK_RW_ASYNC, HZ/50);
2070		goto retry;
2071	}
2072
2073	/* Should not use this inode from free nid list */
2074	remove_free_nid(sbi, ino);
2075
2076	if (!PageUptodate(ipage))
2077		SetPageUptodate(ipage);
2078	fill_node_footer(ipage, ino, ino, 0, true);
2079
2080	src = F2FS_INODE(page);
2081	dst = F2FS_INODE(ipage);
2082
2083	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2084	dst->i_size = 0;
2085	dst->i_blocks = cpu_to_le64(1);
2086	dst->i_links = cpu_to_le32(1);
2087	dst->i_xattr_nid = 0;
2088	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2089
2090	new_ni = old_ni;
2091	new_ni.ino = ino;
2092
2093	if (unlikely(!inc_valid_node_count(sbi, NULL)))
2094		WARN_ON(1);
2095	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2096	inc_valid_inode_count(sbi);
2097	set_page_dirty(ipage);
2098	f2fs_put_page(ipage, 1);
2099	return 0;
2100}
2101
2102int restore_node_summary(struct f2fs_sb_info *sbi,
2103			unsigned int segno, struct f2fs_summary_block *sum)
2104{
2105	struct f2fs_node *rn;
2106	struct f2fs_summary *sum_entry;
2107	block_t addr;
2108	int i, idx, last_offset, nrpages;
2109
2110	/* scan the node segment */
2111	last_offset = sbi->blocks_per_seg;
2112	addr = START_BLOCK(sbi, segno);
2113	sum_entry = &sum->entries[0];
2114
2115	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2116		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2117
2118		/* readahead node pages */
2119		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2120
2121		for (idx = addr; idx < addr + nrpages; idx++) {
2122			struct page *page = get_tmp_page(sbi, idx);
2123
2124			rn = F2FS_NODE(page);
2125			sum_entry->nid = rn->footer.nid;
2126			sum_entry->version = 0;
2127			sum_entry->ofs_in_node = 0;
2128			sum_entry++;
2129			f2fs_put_page(page, 1);
2130		}
2131
2132		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2133							addr + nrpages);
2134	}
2135	return 0;
2136}
2137
2138static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2139{
2140	struct f2fs_nm_info *nm_i = NM_I(sbi);
2141	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2142	struct f2fs_journal *journal = curseg->journal;
2143	int i;
2144
2145	down_write(&curseg->journal_rwsem);
2146	for (i = 0; i < nats_in_cursum(journal); i++) {
2147		struct nat_entry *ne;
2148		struct f2fs_nat_entry raw_ne;
2149		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2150
2151		raw_ne = nat_in_journal(journal, i);
2152
2153		ne = __lookup_nat_cache(nm_i, nid);
2154		if (!ne) {
2155			ne = grab_nat_entry(nm_i, nid);
2156			node_info_from_raw_nat(&ne->ni, &raw_ne);
2157		}
2158
2159		/*
2160		 * if a free nat in journal has not been used after last
2161		 * checkpoint, we should remove it from available nids,
2162		 * since later we will add it again.
2163		 */
2164		if (!get_nat_flag(ne, IS_DIRTY) &&
2165				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2166			spin_lock(&nm_i->nid_list_lock);
2167			nm_i->available_nids--;
2168			spin_unlock(&nm_i->nid_list_lock);
2169		}
2170
2171		__set_nat_cache_dirty(nm_i, ne);
2172	}
2173	update_nats_in_cursum(journal, -i);
2174	up_write(&curseg->journal_rwsem);
2175}
2176
2177static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2178						struct list_head *head, int max)
2179{
2180	struct nat_entry_set *cur;
2181
2182	if (nes->entry_cnt >= max)
2183		goto add_out;
2184
2185	list_for_each_entry(cur, head, set_list) {
2186		if (cur->entry_cnt >= nes->entry_cnt) {
2187			list_add(&nes->set_list, cur->set_list.prev);
2188			return;
2189		}
2190	}
2191add_out:
2192	list_add_tail(&nes->set_list, head);
2193}
2194
2195static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2196					struct nat_entry_set *set)
2197{
2198	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2199	struct f2fs_journal *journal = curseg->journal;
2200	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2201	bool to_journal = true;
2202	struct f2fs_nat_block *nat_blk;
2203	struct nat_entry *ne, *cur;
2204	struct page *page = NULL;
2205
2206	/*
2207	 * there are two steps to flush nat entries:
2208	 * #1, flush nat entries to journal in current hot data summary block.
2209	 * #2, flush nat entries to nat page.
2210	 */
2211	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2212		to_journal = false;
2213
2214	if (to_journal) {
2215		down_write(&curseg->journal_rwsem);
2216	} else {
2217		page = get_next_nat_page(sbi, start_nid);
2218		nat_blk = page_address(page);
2219		f2fs_bug_on(sbi, !nat_blk);
2220	}
2221
2222	/* flush dirty nats in nat entry set */
2223	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2224		struct f2fs_nat_entry *raw_ne;
2225		nid_t nid = nat_get_nid(ne);
2226		int offset;
2227
2228		if (nat_get_blkaddr(ne) == NEW_ADDR)
2229			continue;
2230
2231		if (to_journal) {
2232			offset = lookup_journal_in_cursum(journal,
2233							NAT_JOURNAL, nid, 1);
2234			f2fs_bug_on(sbi, offset < 0);
2235			raw_ne = &nat_in_journal(journal, offset);
2236			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2237		} else {
2238			raw_ne = &nat_blk->entries[nid - start_nid];
2239		}
2240		raw_nat_from_node_info(raw_ne, &ne->ni);
2241		nat_reset_flag(ne);
2242		__clear_nat_cache_dirty(NM_I(sbi), ne);
2243		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2244			add_free_nid(sbi, nid, false);
2245			spin_lock(&NM_I(sbi)->nid_list_lock);
2246			NM_I(sbi)->available_nids++;
2247			spin_unlock(&NM_I(sbi)->nid_list_lock);
2248		}
2249	}
2250
2251	if (to_journal)
2252		up_write(&curseg->journal_rwsem);
2253	else
2254		f2fs_put_page(page, 1);
2255
2256	f2fs_bug_on(sbi, set->entry_cnt);
2257
2258	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2259	kmem_cache_free(nat_entry_set_slab, set);
2260}
2261
2262/*
2263 * This function is called during the checkpointing process.
2264 */
2265void flush_nat_entries(struct f2fs_sb_info *sbi)
2266{
2267	struct f2fs_nm_info *nm_i = NM_I(sbi);
2268	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2269	struct f2fs_journal *journal = curseg->journal;
2270	struct nat_entry_set *setvec[SETVEC_SIZE];
2271	struct nat_entry_set *set, *tmp;
2272	unsigned int found;
2273	nid_t set_idx = 0;
2274	LIST_HEAD(sets);
2275
2276	if (!nm_i->dirty_nat_cnt)
2277		return;
2278
2279	down_write(&nm_i->nat_tree_lock);
2280
2281	/*
2282	 * if there are no enough space in journal to store dirty nat
2283	 * entries, remove all entries from journal and merge them
2284	 * into nat entry set.
2285	 */
2286	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2287		remove_nats_in_journal(sbi);
2288
2289	while ((found = __gang_lookup_nat_set(nm_i,
2290					set_idx, SETVEC_SIZE, setvec))) {
2291		unsigned idx;
2292		set_idx = setvec[found - 1]->set + 1;
2293		for (idx = 0; idx < found; idx++)
2294			__adjust_nat_entry_set(setvec[idx], &sets,
2295						MAX_NAT_JENTRIES(journal));
2296	}
2297
2298	/* flush dirty nats in nat entry set */
2299	list_for_each_entry_safe(set, tmp, &sets, set_list)
2300		__flush_nat_entry_set(sbi, set);
2301
2302	up_write(&nm_i->nat_tree_lock);
2303
2304	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2305}
2306
2307static int init_node_manager(struct f2fs_sb_info *sbi)
2308{
2309	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2310	struct f2fs_nm_info *nm_i = NM_I(sbi);
2311	unsigned char *version_bitmap;
2312	unsigned int nat_segs, nat_blocks;
2313
2314	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2315
2316	/* segment_count_nat includes pair segment so divide to 2. */
2317	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2318	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2319
2320	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2321
2322	/* not used nids: 0, node, meta, (and root counted as valid node) */
2323	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2324							F2FS_RESERVED_NODE_NUM;
2325	nm_i->nid_cnt[FREE_NID_LIST] = 0;
2326	nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2327	nm_i->nat_cnt = 0;
2328	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2329	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2330	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2331
2332	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2333	INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2334	INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2335	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2336	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2337	INIT_LIST_HEAD(&nm_i->nat_entries);
2338
2339	mutex_init(&nm_i->build_lock);
2340	spin_lock_init(&nm_i->nid_list_lock);
2341	init_rwsem(&nm_i->nat_tree_lock);
2342
2343	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2344	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2345	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2346	if (!version_bitmap)
2347		return -EFAULT;
2348
2349	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2350					GFP_KERNEL);
2351	if (!nm_i->nat_bitmap)
2352		return -ENOMEM;
2353	return 0;
2354}
2355
2356int build_node_manager(struct f2fs_sb_info *sbi)
2357{
2358	int err;
2359
2360	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2361	if (!sbi->nm_info)
2362		return -ENOMEM;
2363
2364	err = init_node_manager(sbi);
2365	if (err)
2366		return err;
2367
2368	build_free_nids(sbi, true);
2369	return 0;
2370}
2371
2372void destroy_node_manager(struct f2fs_sb_info *sbi)
2373{
2374	struct f2fs_nm_info *nm_i = NM_I(sbi);
2375	struct free_nid *i, *next_i;
2376	struct nat_entry *natvec[NATVEC_SIZE];
2377	struct nat_entry_set *setvec[SETVEC_SIZE];
2378	nid_t nid = 0;
2379	unsigned int found;
2380
2381	if (!nm_i)
2382		return;
2383
2384	/* destroy free nid list */
2385	spin_lock(&nm_i->nid_list_lock);
2386	list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2387									list) {
2388		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2389		spin_unlock(&nm_i->nid_list_lock);
2390		kmem_cache_free(free_nid_slab, i);
2391		spin_lock(&nm_i->nid_list_lock);
2392	}
2393	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2394	f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2395	f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2396	spin_unlock(&nm_i->nid_list_lock);
2397
2398	/* destroy nat cache */
2399	down_write(&nm_i->nat_tree_lock);
2400	while ((found = __gang_lookup_nat_cache(nm_i,
2401					nid, NATVEC_SIZE, natvec))) {
2402		unsigned idx;
2403
2404		nid = nat_get_nid(natvec[found - 1]) + 1;
2405		for (idx = 0; idx < found; idx++)
2406			__del_from_nat_cache(nm_i, natvec[idx]);
2407	}
2408	f2fs_bug_on(sbi, nm_i->nat_cnt);
2409
2410	/* destroy nat set cache */
2411	nid = 0;
2412	while ((found = __gang_lookup_nat_set(nm_i,
2413					nid, SETVEC_SIZE, setvec))) {
2414		unsigned idx;
2415
2416		nid = setvec[found - 1]->set + 1;
2417		for (idx = 0; idx < found; idx++) {
2418			/* entry_cnt is not zero, when cp_error was occurred */
2419			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2420			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2421			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2422		}
2423	}
2424	up_write(&nm_i->nat_tree_lock);
2425
2426	kfree(nm_i->nat_bitmap);
2427	sbi->nm_info = NULL;
2428	kfree(nm_i);
2429}
2430
2431int __init create_node_manager_caches(void)
2432{
2433	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2434			sizeof(struct nat_entry));
2435	if (!nat_entry_slab)
2436		goto fail;
2437
2438	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2439			sizeof(struct free_nid));
2440	if (!free_nid_slab)
2441		goto destroy_nat_entry;
2442
2443	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2444			sizeof(struct nat_entry_set));
2445	if (!nat_entry_set_slab)
2446		goto destroy_free_nid;
2447	return 0;
2448
2449destroy_free_nid:
2450	kmem_cache_destroy(free_nid_slab);
2451destroy_nat_entry:
2452	kmem_cache_destroy(nat_entry_slab);
2453fail:
2454	return -ENOMEM;
2455}
2456
2457void destroy_node_manager_caches(void)
2458{
2459	kmem_cache_destroy(nat_entry_set_slab);
2460	kmem_cache_destroy(free_nid_slab);
2461	kmem_cache_destroy(nat_entry_slab);
2462}