Loading...
1/*
2 * linux/fs/ext4/indirect.c
3 *
4 * from
5 *
6 * linux/fs/ext4/inode.c
7 *
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
12 *
13 * from
14 *
15 * linux/fs/minix/inode.c
16 *
17 * Copyright (C) 1991, 1992 Linus Torvalds
18 *
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
21 */
22
23#include <linux/module.h>
24#include "ext4_jbd2.h"
25#include "truncate.h"
26
27#include <trace/events/ext4.h>
28
29typedef struct {
30 __le32 *p;
31 __le32 key;
32 struct buffer_head *bh;
33} Indirect;
34
35static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36{
37 p->key = *(p->p = v);
38 p->bh = bh;
39}
40
41/**
42 * ext4_block_to_path - parse the block number into array of offsets
43 * @inode: inode in question (we are only interested in its superblock)
44 * @i_block: block number to be parsed
45 * @offsets: array to store the offsets in
46 * @boundary: set this non-zero if the referred-to block is likely to be
47 * followed (on disk) by an indirect block.
48 *
49 * To store the locations of file's data ext4 uses a data structure common
50 * for UNIX filesystems - tree of pointers anchored in the inode, with
51 * data blocks at leaves and indirect blocks in intermediate nodes.
52 * This function translates the block number into path in that tree -
53 * return value is the path length and @offsets[n] is the offset of
54 * pointer to (n+1)th node in the nth one. If @block is out of range
55 * (negative or too large) warning is printed and zero returned.
56 *
57 * Note: function doesn't find node addresses, so no IO is needed. All
58 * we need to know is the capacity of indirect blocks (taken from the
59 * inode->i_sb).
60 */
61
62/*
63 * Portability note: the last comparison (check that we fit into triple
64 * indirect block) is spelled differently, because otherwise on an
65 * architecture with 32-bit longs and 8Kb pages we might get into trouble
66 * if our filesystem had 8Kb blocks. We might use long long, but that would
67 * kill us on x86. Oh, well, at least the sign propagation does not matter -
68 * i_block would have to be negative in the very beginning, so we would not
69 * get there at all.
70 */
71
72static int ext4_block_to_path(struct inode *inode,
73 ext4_lblk_t i_block,
74 ext4_lblk_t offsets[4], int *boundary)
75{
76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78 const long direct_blocks = EXT4_NDIR_BLOCKS,
79 indirect_blocks = ptrs,
80 double_blocks = (1 << (ptrs_bits * 2));
81 int n = 0;
82 int final = 0;
83
84 if (i_block < direct_blocks) {
85 offsets[n++] = i_block;
86 final = direct_blocks;
87 } else if ((i_block -= direct_blocks) < indirect_blocks) {
88 offsets[n++] = EXT4_IND_BLOCK;
89 offsets[n++] = i_block;
90 final = ptrs;
91 } else if ((i_block -= indirect_blocks) < double_blocks) {
92 offsets[n++] = EXT4_DIND_BLOCK;
93 offsets[n++] = i_block >> ptrs_bits;
94 offsets[n++] = i_block & (ptrs - 1);
95 final = ptrs;
96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97 offsets[n++] = EXT4_TIND_BLOCK;
98 offsets[n++] = i_block >> (ptrs_bits * 2);
99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100 offsets[n++] = i_block & (ptrs - 1);
101 final = ptrs;
102 } else {
103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104 i_block + direct_blocks +
105 indirect_blocks + double_blocks, inode->i_ino);
106 }
107 if (boundary)
108 *boundary = final - 1 - (i_block & (ptrs - 1));
109 return n;
110}
111
112/**
113 * ext4_get_branch - read the chain of indirect blocks leading to data
114 * @inode: inode in question
115 * @depth: depth of the chain (1 - direct pointer, etc.)
116 * @offsets: offsets of pointers in inode/indirect blocks
117 * @chain: place to store the result
118 * @err: here we store the error value
119 *
120 * Function fills the array of triples <key, p, bh> and returns %NULL
121 * if everything went OK or the pointer to the last filled triple
122 * (incomplete one) otherwise. Upon the return chain[i].key contains
123 * the number of (i+1)-th block in the chain (as it is stored in memory,
124 * i.e. little-endian 32-bit), chain[i].p contains the address of that
125 * number (it points into struct inode for i==0 and into the bh->b_data
126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127 * block for i>0 and NULL for i==0. In other words, it holds the block
128 * numbers of the chain, addresses they were taken from (and where we can
129 * verify that chain did not change) and buffer_heads hosting these
130 * numbers.
131 *
132 * Function stops when it stumbles upon zero pointer (absent block)
133 * (pointer to last triple returned, *@err == 0)
134 * or when it gets an IO error reading an indirect block
135 * (ditto, *@err == -EIO)
136 * or when it reads all @depth-1 indirect blocks successfully and finds
137 * the whole chain, all way to the data (returns %NULL, *err == 0).
138 *
139 * Need to be called with
140 * down_read(&EXT4_I(inode)->i_data_sem)
141 */
142static Indirect *ext4_get_branch(struct inode *inode, int depth,
143 ext4_lblk_t *offsets,
144 Indirect chain[4], int *err)
145{
146 struct super_block *sb = inode->i_sb;
147 Indirect *p = chain;
148 struct buffer_head *bh;
149
150 *err = 0;
151 /* i_data is not going away, no lock needed */
152 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
153 if (!p->key)
154 goto no_block;
155 while (--depth) {
156 bh = sb_getblk(sb, le32_to_cpu(p->key));
157 if (unlikely(!bh))
158 goto failure;
159
160 if (!bh_uptodate_or_lock(bh)) {
161 if (bh_submit_read(bh) < 0) {
162 put_bh(bh);
163 goto failure;
164 }
165 /* validate block references */
166 if (ext4_check_indirect_blockref(inode, bh)) {
167 put_bh(bh);
168 goto failure;
169 }
170 }
171
172 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
173 /* Reader: end */
174 if (!p->key)
175 goto no_block;
176 }
177 return NULL;
178
179failure:
180 *err = -EIO;
181no_block:
182 return p;
183}
184
185/**
186 * ext4_find_near - find a place for allocation with sufficient locality
187 * @inode: owner
188 * @ind: descriptor of indirect block.
189 *
190 * This function returns the preferred place for block allocation.
191 * It is used when heuristic for sequential allocation fails.
192 * Rules are:
193 * + if there is a block to the left of our position - allocate near it.
194 * + if pointer will live in indirect block - allocate near that block.
195 * + if pointer will live in inode - allocate in the same
196 * cylinder group.
197 *
198 * In the latter case we colour the starting block by the callers PID to
199 * prevent it from clashing with concurrent allocations for a different inode
200 * in the same block group. The PID is used here so that functionally related
201 * files will be close-by on-disk.
202 *
203 * Caller must make sure that @ind is valid and will stay that way.
204 */
205static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
206{
207 struct ext4_inode_info *ei = EXT4_I(inode);
208 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
209 __le32 *p;
210
211 /* Try to find previous block */
212 for (p = ind->p - 1; p >= start; p--) {
213 if (*p)
214 return le32_to_cpu(*p);
215 }
216
217 /* No such thing, so let's try location of indirect block */
218 if (ind->bh)
219 return ind->bh->b_blocknr;
220
221 /*
222 * It is going to be referred to from the inode itself? OK, just put it
223 * into the same cylinder group then.
224 */
225 return ext4_inode_to_goal_block(inode);
226}
227
228/**
229 * ext4_find_goal - find a preferred place for allocation.
230 * @inode: owner
231 * @block: block we want
232 * @partial: pointer to the last triple within a chain
233 *
234 * Normally this function find the preferred place for block allocation,
235 * returns it.
236 * Because this is only used for non-extent files, we limit the block nr
237 * to 32 bits.
238 */
239static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
240 Indirect *partial)
241{
242 ext4_fsblk_t goal;
243
244 /*
245 * XXX need to get goal block from mballoc's data structures
246 */
247
248 goal = ext4_find_near(inode, partial);
249 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
250 return goal;
251}
252
253/**
254 * ext4_blks_to_allocate - Look up the block map and count the number
255 * of direct blocks need to be allocated for the given branch.
256 *
257 * @branch: chain of indirect blocks
258 * @k: number of blocks need for indirect blocks
259 * @blks: number of data blocks to be mapped.
260 * @blocks_to_boundary: the offset in the indirect block
261 *
262 * return the total number of blocks to be allocate, including the
263 * direct and indirect blocks.
264 */
265static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
266 int blocks_to_boundary)
267{
268 unsigned int count = 0;
269
270 /*
271 * Simple case, [t,d]Indirect block(s) has not allocated yet
272 * then it's clear blocks on that path have not allocated
273 */
274 if (k > 0) {
275 /* right now we don't handle cross boundary allocation */
276 if (blks < blocks_to_boundary + 1)
277 count += blks;
278 else
279 count += blocks_to_boundary + 1;
280 return count;
281 }
282
283 count++;
284 while (count < blks && count <= blocks_to_boundary &&
285 le32_to_cpu(*(branch[0].p + count)) == 0) {
286 count++;
287 }
288 return count;
289}
290
291/**
292 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
293 * @handle: handle for this transaction
294 * @inode: inode which needs allocated blocks
295 * @iblock: the logical block to start allocated at
296 * @goal: preferred physical block of allocation
297 * @indirect_blks: the number of blocks need to allocate for indirect
298 * blocks
299 * @blks: number of desired blocks
300 * @new_blocks: on return it will store the new block numbers for
301 * the indirect blocks(if needed) and the first direct block,
302 * @err: on return it will store the error code
303 *
304 * This function will return the number of blocks allocated as
305 * requested by the passed-in parameters.
306 */
307static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
308 ext4_lblk_t iblock, ext4_fsblk_t goal,
309 int indirect_blks, int blks,
310 ext4_fsblk_t new_blocks[4], int *err)
311{
312 struct ext4_allocation_request ar;
313 int target, i;
314 unsigned long count = 0, blk_allocated = 0;
315 int index = 0;
316 ext4_fsblk_t current_block = 0;
317 int ret = 0;
318
319 /*
320 * Here we try to allocate the requested multiple blocks at once,
321 * on a best-effort basis.
322 * To build a branch, we should allocate blocks for
323 * the indirect blocks(if not allocated yet), and at least
324 * the first direct block of this branch. That's the
325 * minimum number of blocks need to allocate(required)
326 */
327 /* first we try to allocate the indirect blocks */
328 target = indirect_blks;
329 while (target > 0) {
330 count = target;
331 /* allocating blocks for indirect blocks and direct blocks */
332 current_block = ext4_new_meta_blocks(handle, inode, goal,
333 0, &count, err);
334 if (*err)
335 goto failed_out;
336
337 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
338 EXT4_ERROR_INODE(inode,
339 "current_block %llu + count %lu > %d!",
340 current_block, count,
341 EXT4_MAX_BLOCK_FILE_PHYS);
342 *err = -EIO;
343 goto failed_out;
344 }
345
346 target -= count;
347 /* allocate blocks for indirect blocks */
348 while (index < indirect_blks && count) {
349 new_blocks[index++] = current_block++;
350 count--;
351 }
352 if (count > 0) {
353 /*
354 * save the new block number
355 * for the first direct block
356 */
357 new_blocks[index] = current_block;
358 printk(KERN_INFO "%s returned more blocks than "
359 "requested\n", __func__);
360 WARN_ON(1);
361 break;
362 }
363 }
364
365 target = blks - count ;
366 blk_allocated = count;
367 if (!target)
368 goto allocated;
369 /* Now allocate data blocks */
370 memset(&ar, 0, sizeof(ar));
371 ar.inode = inode;
372 ar.goal = goal;
373 ar.len = target;
374 ar.logical = iblock;
375 if (S_ISREG(inode->i_mode))
376 /* enable in-core preallocation only for regular files */
377 ar.flags = EXT4_MB_HINT_DATA;
378
379 current_block = ext4_mb_new_blocks(handle, &ar, err);
380 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
381 EXT4_ERROR_INODE(inode,
382 "current_block %llu + ar.len %d > %d!",
383 current_block, ar.len,
384 EXT4_MAX_BLOCK_FILE_PHYS);
385 *err = -EIO;
386 goto failed_out;
387 }
388
389 if (*err && (target == blks)) {
390 /*
391 * if the allocation failed and we didn't allocate
392 * any blocks before
393 */
394 goto failed_out;
395 }
396 if (!*err) {
397 if (target == blks) {
398 /*
399 * save the new block number
400 * for the first direct block
401 */
402 new_blocks[index] = current_block;
403 }
404 blk_allocated += ar.len;
405 }
406allocated:
407 /* total number of blocks allocated for direct blocks */
408 ret = blk_allocated;
409 *err = 0;
410 return ret;
411failed_out:
412 for (i = 0; i < index; i++)
413 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
414 return ret;
415}
416
417/**
418 * ext4_alloc_branch - allocate and set up a chain of blocks.
419 * @handle: handle for this transaction
420 * @inode: owner
421 * @indirect_blks: number of allocated indirect blocks
422 * @blks: number of allocated direct blocks
423 * @goal: preferred place for allocation
424 * @offsets: offsets (in the blocks) to store the pointers to next.
425 * @branch: place to store the chain in.
426 *
427 * This function allocates blocks, zeroes out all but the last one,
428 * links them into chain and (if we are synchronous) writes them to disk.
429 * In other words, it prepares a branch that can be spliced onto the
430 * inode. It stores the information about that chain in the branch[], in
431 * the same format as ext4_get_branch() would do. We are calling it after
432 * we had read the existing part of chain and partial points to the last
433 * triple of that (one with zero ->key). Upon the exit we have the same
434 * picture as after the successful ext4_get_block(), except that in one
435 * place chain is disconnected - *branch->p is still zero (we did not
436 * set the last link), but branch->key contains the number that should
437 * be placed into *branch->p to fill that gap.
438 *
439 * If allocation fails we free all blocks we've allocated (and forget
440 * their buffer_heads) and return the error value the from failed
441 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
442 * as described above and return 0.
443 */
444static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
445 ext4_lblk_t iblock, int indirect_blks,
446 int *blks, ext4_fsblk_t goal,
447 ext4_lblk_t *offsets, Indirect *branch)
448{
449 int blocksize = inode->i_sb->s_blocksize;
450 int i, n = 0;
451 int err = 0;
452 struct buffer_head *bh;
453 int num;
454 ext4_fsblk_t new_blocks[4];
455 ext4_fsblk_t current_block;
456
457 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
458 *blks, new_blocks, &err);
459 if (err)
460 return err;
461
462 branch[0].key = cpu_to_le32(new_blocks[0]);
463 /*
464 * metadata blocks and data blocks are allocated.
465 */
466 for (n = 1; n <= indirect_blks; n++) {
467 /*
468 * Get buffer_head for parent block, zero it out
469 * and set the pointer to new one, then send
470 * parent to disk.
471 */
472 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
473 if (unlikely(!bh)) {
474 err = -EIO;
475 goto failed;
476 }
477
478 branch[n].bh = bh;
479 lock_buffer(bh);
480 BUFFER_TRACE(bh, "call get_create_access");
481 err = ext4_journal_get_create_access(handle, bh);
482 if (err) {
483 /* Don't brelse(bh) here; it's done in
484 * ext4_journal_forget() below */
485 unlock_buffer(bh);
486 goto failed;
487 }
488
489 memset(bh->b_data, 0, blocksize);
490 branch[n].p = (__le32 *) bh->b_data + offsets[n];
491 branch[n].key = cpu_to_le32(new_blocks[n]);
492 *branch[n].p = branch[n].key;
493 if (n == indirect_blks) {
494 current_block = new_blocks[n];
495 /*
496 * End of chain, update the last new metablock of
497 * the chain to point to the new allocated
498 * data blocks numbers
499 */
500 for (i = 1; i < num; i++)
501 *(branch[n].p + i) = cpu_to_le32(++current_block);
502 }
503 BUFFER_TRACE(bh, "marking uptodate");
504 set_buffer_uptodate(bh);
505 unlock_buffer(bh);
506
507 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
508 err = ext4_handle_dirty_metadata(handle, inode, bh);
509 if (err)
510 goto failed;
511 }
512 *blks = num;
513 return err;
514failed:
515 /* Allocation failed, free what we already allocated */
516 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
517 for (i = 1; i <= n ; i++) {
518 /*
519 * branch[i].bh is newly allocated, so there is no
520 * need to revoke the block, which is why we don't
521 * need to set EXT4_FREE_BLOCKS_METADATA.
522 */
523 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
524 EXT4_FREE_BLOCKS_FORGET);
525 }
526 for (i = n+1; i < indirect_blks; i++)
527 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
528
529 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
530
531 return err;
532}
533
534/**
535 * ext4_splice_branch - splice the allocated branch onto inode.
536 * @handle: handle for this transaction
537 * @inode: owner
538 * @block: (logical) number of block we are adding
539 * @chain: chain of indirect blocks (with a missing link - see
540 * ext4_alloc_branch)
541 * @where: location of missing link
542 * @num: number of indirect blocks we are adding
543 * @blks: number of direct blocks we are adding
544 *
545 * This function fills the missing link and does all housekeeping needed in
546 * inode (->i_blocks, etc.). In case of success we end up with the full
547 * chain to new block and return 0.
548 */
549static int ext4_splice_branch(handle_t *handle, struct inode *inode,
550 ext4_lblk_t block, Indirect *where, int num,
551 int blks)
552{
553 int i;
554 int err = 0;
555 ext4_fsblk_t current_block;
556
557 /*
558 * If we're splicing into a [td]indirect block (as opposed to the
559 * inode) then we need to get write access to the [td]indirect block
560 * before the splice.
561 */
562 if (where->bh) {
563 BUFFER_TRACE(where->bh, "get_write_access");
564 err = ext4_journal_get_write_access(handle, where->bh);
565 if (err)
566 goto err_out;
567 }
568 /* That's it */
569
570 *where->p = where->key;
571
572 /*
573 * Update the host buffer_head or inode to point to more just allocated
574 * direct blocks blocks
575 */
576 if (num == 0 && blks > 1) {
577 current_block = le32_to_cpu(where->key) + 1;
578 for (i = 1; i < blks; i++)
579 *(where->p + i) = cpu_to_le32(current_block++);
580 }
581
582 /* We are done with atomic stuff, now do the rest of housekeeping */
583 /* had we spliced it onto indirect block? */
584 if (where->bh) {
585 /*
586 * If we spliced it onto an indirect block, we haven't
587 * altered the inode. Note however that if it is being spliced
588 * onto an indirect block at the very end of the file (the
589 * file is growing) then we *will* alter the inode to reflect
590 * the new i_size. But that is not done here - it is done in
591 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
592 */
593 jbd_debug(5, "splicing indirect only\n");
594 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
595 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
596 if (err)
597 goto err_out;
598 } else {
599 /*
600 * OK, we spliced it into the inode itself on a direct block.
601 */
602 ext4_mark_inode_dirty(handle, inode);
603 jbd_debug(5, "splicing direct\n");
604 }
605 return err;
606
607err_out:
608 for (i = 1; i <= num; i++) {
609 /*
610 * branch[i].bh is newly allocated, so there is no
611 * need to revoke the block, which is why we don't
612 * need to set EXT4_FREE_BLOCKS_METADATA.
613 */
614 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
615 EXT4_FREE_BLOCKS_FORGET);
616 }
617 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
618 blks, 0);
619
620 return err;
621}
622
623/*
624 * The ext4_ind_map_blocks() function handles non-extents inodes
625 * (i.e., using the traditional indirect/double-indirect i_blocks
626 * scheme) for ext4_map_blocks().
627 *
628 * Allocation strategy is simple: if we have to allocate something, we will
629 * have to go the whole way to leaf. So let's do it before attaching anything
630 * to tree, set linkage between the newborn blocks, write them if sync is
631 * required, recheck the path, free and repeat if check fails, otherwise
632 * set the last missing link (that will protect us from any truncate-generated
633 * removals - all blocks on the path are immune now) and possibly force the
634 * write on the parent block.
635 * That has a nice additional property: no special recovery from the failed
636 * allocations is needed - we simply release blocks and do not touch anything
637 * reachable from inode.
638 *
639 * `handle' can be NULL if create == 0.
640 *
641 * return > 0, # of blocks mapped or allocated.
642 * return = 0, if plain lookup failed.
643 * return < 0, error case.
644 *
645 * The ext4_ind_get_blocks() function should be called with
646 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
647 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
648 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
649 * blocks.
650 */
651int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
652 struct ext4_map_blocks *map,
653 int flags)
654{
655 int err = -EIO;
656 ext4_lblk_t offsets[4];
657 Indirect chain[4];
658 Indirect *partial;
659 ext4_fsblk_t goal;
660 int indirect_blks;
661 int blocks_to_boundary = 0;
662 int depth;
663 int count = 0;
664 ext4_fsblk_t first_block = 0;
665
666 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
667 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
668 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
669 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
670 &blocks_to_boundary);
671
672 if (depth == 0)
673 goto out;
674
675 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
676
677 /* Simplest case - block found, no allocation needed */
678 if (!partial) {
679 first_block = le32_to_cpu(chain[depth - 1].key);
680 count++;
681 /*map more blocks*/
682 while (count < map->m_len && count <= blocks_to_boundary) {
683 ext4_fsblk_t blk;
684
685 blk = le32_to_cpu(*(chain[depth-1].p + count));
686
687 if (blk == first_block + count)
688 count++;
689 else
690 break;
691 }
692 goto got_it;
693 }
694
695 /* Next simple case - plain lookup or failed read of indirect block */
696 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
697 goto cleanup;
698
699 /*
700 * Okay, we need to do block allocation.
701 */
702 goal = ext4_find_goal(inode, map->m_lblk, partial);
703
704 /* the number of blocks need to allocate for [d,t]indirect blocks */
705 indirect_blks = (chain + depth) - partial - 1;
706
707 /*
708 * Next look up the indirect map to count the totoal number of
709 * direct blocks to allocate for this branch.
710 */
711 count = ext4_blks_to_allocate(partial, indirect_blks,
712 map->m_len, blocks_to_boundary);
713 /*
714 * Block out ext4_truncate while we alter the tree
715 */
716 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
717 &count, goal,
718 offsets + (partial - chain), partial);
719
720 /*
721 * The ext4_splice_branch call will free and forget any buffers
722 * on the new chain if there is a failure, but that risks using
723 * up transaction credits, especially for bitmaps where the
724 * credits cannot be returned. Can we handle this somehow? We
725 * may need to return -EAGAIN upwards in the worst case. --sct
726 */
727 if (!err)
728 err = ext4_splice_branch(handle, inode, map->m_lblk,
729 partial, indirect_blks, count);
730 if (err)
731 goto cleanup;
732
733 map->m_flags |= EXT4_MAP_NEW;
734
735 ext4_update_inode_fsync_trans(handle, inode, 1);
736got_it:
737 map->m_flags |= EXT4_MAP_MAPPED;
738 map->m_pblk = le32_to_cpu(chain[depth-1].key);
739 map->m_len = count;
740 if (count > blocks_to_boundary)
741 map->m_flags |= EXT4_MAP_BOUNDARY;
742 err = count;
743 /* Clean up and exit */
744 partial = chain + depth - 1; /* the whole chain */
745cleanup:
746 while (partial > chain) {
747 BUFFER_TRACE(partial->bh, "call brelse");
748 brelse(partial->bh);
749 partial--;
750 }
751out:
752 trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
753 map->m_pblk, map->m_len, err);
754 return err;
755}
756
757/*
758 * O_DIRECT for ext3 (or indirect map) based files
759 *
760 * If the O_DIRECT write will extend the file then add this inode to the
761 * orphan list. So recovery will truncate it back to the original size
762 * if the machine crashes during the write.
763 *
764 * If the O_DIRECT write is intantiating holes inside i_size and the machine
765 * crashes then stale disk data _may_ be exposed inside the file. But current
766 * VFS code falls back into buffered path in that case so we are safe.
767 */
768ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
769 const struct iovec *iov, loff_t offset,
770 unsigned long nr_segs)
771{
772 struct file *file = iocb->ki_filp;
773 struct inode *inode = file->f_mapping->host;
774 struct ext4_inode_info *ei = EXT4_I(inode);
775 handle_t *handle;
776 ssize_t ret;
777 int orphan = 0;
778 size_t count = iov_length(iov, nr_segs);
779 int retries = 0;
780
781 if (rw == WRITE) {
782 loff_t final_size = offset + count;
783
784 if (final_size > inode->i_size) {
785 /* Credits for sb + inode write */
786 handle = ext4_journal_start(inode, 2);
787 if (IS_ERR(handle)) {
788 ret = PTR_ERR(handle);
789 goto out;
790 }
791 ret = ext4_orphan_add(handle, inode);
792 if (ret) {
793 ext4_journal_stop(handle);
794 goto out;
795 }
796 orphan = 1;
797 ei->i_disksize = inode->i_size;
798 ext4_journal_stop(handle);
799 }
800 }
801
802retry:
803 if (rw == READ && ext4_should_dioread_nolock(inode)) {
804 if (unlikely(!list_empty(&ei->i_completed_io_list))) {
805 mutex_lock(&inode->i_mutex);
806 ext4_flush_completed_IO(inode);
807 mutex_unlock(&inode->i_mutex);
808 }
809 ret = __blockdev_direct_IO(rw, iocb, inode,
810 inode->i_sb->s_bdev, iov,
811 offset, nr_segs,
812 ext4_get_block, NULL, NULL, 0);
813 } else {
814 ret = blockdev_direct_IO(rw, iocb, inode, iov,
815 offset, nr_segs, ext4_get_block);
816
817 if (unlikely((rw & WRITE) && ret < 0)) {
818 loff_t isize = i_size_read(inode);
819 loff_t end = offset + iov_length(iov, nr_segs);
820
821 if (end > isize)
822 ext4_truncate_failed_write(inode);
823 }
824 }
825 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
826 goto retry;
827
828 if (orphan) {
829 int err;
830
831 /* Credits for sb + inode write */
832 handle = ext4_journal_start(inode, 2);
833 if (IS_ERR(handle)) {
834 /* This is really bad luck. We've written the data
835 * but cannot extend i_size. Bail out and pretend
836 * the write failed... */
837 ret = PTR_ERR(handle);
838 if (inode->i_nlink)
839 ext4_orphan_del(NULL, inode);
840
841 goto out;
842 }
843 if (inode->i_nlink)
844 ext4_orphan_del(handle, inode);
845 if (ret > 0) {
846 loff_t end = offset + ret;
847 if (end > inode->i_size) {
848 ei->i_disksize = end;
849 i_size_write(inode, end);
850 /*
851 * We're going to return a positive `ret'
852 * here due to non-zero-length I/O, so there's
853 * no way of reporting error returns from
854 * ext4_mark_inode_dirty() to userspace. So
855 * ignore it.
856 */
857 ext4_mark_inode_dirty(handle, inode);
858 }
859 }
860 err = ext4_journal_stop(handle);
861 if (ret == 0)
862 ret = err;
863 }
864out:
865 return ret;
866}
867
868/*
869 * Calculate the number of metadata blocks need to reserve
870 * to allocate a new block at @lblocks for non extent file based file
871 */
872int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
873{
874 struct ext4_inode_info *ei = EXT4_I(inode);
875 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
876 int blk_bits;
877
878 if (lblock < EXT4_NDIR_BLOCKS)
879 return 0;
880
881 lblock -= EXT4_NDIR_BLOCKS;
882
883 if (ei->i_da_metadata_calc_len &&
884 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
885 ei->i_da_metadata_calc_len++;
886 return 0;
887 }
888 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
889 ei->i_da_metadata_calc_len = 1;
890 blk_bits = order_base_2(lblock);
891 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
892}
893
894int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
895{
896 int indirects;
897
898 /* if nrblocks are contiguous */
899 if (chunk) {
900 /*
901 * With N contiguous data blocks, we need at most
902 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
903 * 2 dindirect blocks, and 1 tindirect block
904 */
905 return DIV_ROUND_UP(nrblocks,
906 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
907 }
908 /*
909 * if nrblocks are not contiguous, worse case, each block touch
910 * a indirect block, and each indirect block touch a double indirect
911 * block, plus a triple indirect block
912 */
913 indirects = nrblocks * 2 + 1;
914 return indirects;
915}
916
917/*
918 * Truncate transactions can be complex and absolutely huge. So we need to
919 * be able to restart the transaction at a conventient checkpoint to make
920 * sure we don't overflow the journal.
921 *
922 * start_transaction gets us a new handle for a truncate transaction,
923 * and extend_transaction tries to extend the existing one a bit. If
924 * extend fails, we need to propagate the failure up and restart the
925 * transaction in the top-level truncate loop. --sct
926 */
927static handle_t *start_transaction(struct inode *inode)
928{
929 handle_t *result;
930
931 result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
932 if (!IS_ERR(result))
933 return result;
934
935 ext4_std_error(inode->i_sb, PTR_ERR(result));
936 return result;
937}
938
939/*
940 * Try to extend this transaction for the purposes of truncation.
941 *
942 * Returns 0 if we managed to create more room. If we can't create more
943 * room, and the transaction must be restarted we return 1.
944 */
945static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
946{
947 if (!ext4_handle_valid(handle))
948 return 0;
949 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
950 return 0;
951 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
952 return 0;
953 return 1;
954}
955
956/*
957 * Probably it should be a library function... search for first non-zero word
958 * or memcmp with zero_page, whatever is better for particular architecture.
959 * Linus?
960 */
961static inline int all_zeroes(__le32 *p, __le32 *q)
962{
963 while (p < q)
964 if (*p++)
965 return 0;
966 return 1;
967}
968
969/**
970 * ext4_find_shared - find the indirect blocks for partial truncation.
971 * @inode: inode in question
972 * @depth: depth of the affected branch
973 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
974 * @chain: place to store the pointers to partial indirect blocks
975 * @top: place to the (detached) top of branch
976 *
977 * This is a helper function used by ext4_truncate().
978 *
979 * When we do truncate() we may have to clean the ends of several
980 * indirect blocks but leave the blocks themselves alive. Block is
981 * partially truncated if some data below the new i_size is referred
982 * from it (and it is on the path to the first completely truncated
983 * data block, indeed). We have to free the top of that path along
984 * with everything to the right of the path. Since no allocation
985 * past the truncation point is possible until ext4_truncate()
986 * finishes, we may safely do the latter, but top of branch may
987 * require special attention - pageout below the truncation point
988 * might try to populate it.
989 *
990 * We atomically detach the top of branch from the tree, store the
991 * block number of its root in *@top, pointers to buffer_heads of
992 * partially truncated blocks - in @chain[].bh and pointers to
993 * their last elements that should not be removed - in
994 * @chain[].p. Return value is the pointer to last filled element
995 * of @chain.
996 *
997 * The work left to caller to do the actual freeing of subtrees:
998 * a) free the subtree starting from *@top
999 * b) free the subtrees whose roots are stored in
1000 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1001 * c) free the subtrees growing from the inode past the @chain[0].
1002 * (no partially truncated stuff there). */
1003
1004static Indirect *ext4_find_shared(struct inode *inode, int depth,
1005 ext4_lblk_t offsets[4], Indirect chain[4],
1006 __le32 *top)
1007{
1008 Indirect *partial, *p;
1009 int k, err;
1010
1011 *top = 0;
1012 /* Make k index the deepest non-null offset + 1 */
1013 for (k = depth; k > 1 && !offsets[k-1]; k--)
1014 ;
1015 partial = ext4_get_branch(inode, k, offsets, chain, &err);
1016 /* Writer: pointers */
1017 if (!partial)
1018 partial = chain + k-1;
1019 /*
1020 * If the branch acquired continuation since we've looked at it -
1021 * fine, it should all survive and (new) top doesn't belong to us.
1022 */
1023 if (!partial->key && *partial->p)
1024 /* Writer: end */
1025 goto no_top;
1026 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
1027 ;
1028 /*
1029 * OK, we've found the last block that must survive. The rest of our
1030 * branch should be detached before unlocking. However, if that rest
1031 * of branch is all ours and does not grow immediately from the inode
1032 * it's easier to cheat and just decrement partial->p.
1033 */
1034 if (p == chain + k - 1 && p > chain) {
1035 p->p--;
1036 } else {
1037 *top = *p->p;
1038 /* Nope, don't do this in ext4. Must leave the tree intact */
1039#if 0
1040 *p->p = 0;
1041#endif
1042 }
1043 /* Writer: end */
1044
1045 while (partial > p) {
1046 brelse(partial->bh);
1047 partial--;
1048 }
1049no_top:
1050 return partial;
1051}
1052
1053/*
1054 * Zero a number of block pointers in either an inode or an indirect block.
1055 * If we restart the transaction we must again get write access to the
1056 * indirect block for further modification.
1057 *
1058 * We release `count' blocks on disk, but (last - first) may be greater
1059 * than `count' because there can be holes in there.
1060 *
1061 * Return 0 on success, 1 on invalid block range
1062 * and < 0 on fatal error.
1063 */
1064static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
1065 struct buffer_head *bh,
1066 ext4_fsblk_t block_to_free,
1067 unsigned long count, __le32 *first,
1068 __le32 *last)
1069{
1070 __le32 *p;
1071 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
1072 int err;
1073
1074 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1075 flags |= EXT4_FREE_BLOCKS_METADATA;
1076
1077 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
1078 count)) {
1079 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
1080 "blocks %llu len %lu",
1081 (unsigned long long) block_to_free, count);
1082 return 1;
1083 }
1084
1085 if (try_to_extend_transaction(handle, inode)) {
1086 if (bh) {
1087 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1088 err = ext4_handle_dirty_metadata(handle, inode, bh);
1089 if (unlikely(err))
1090 goto out_err;
1091 }
1092 err = ext4_mark_inode_dirty(handle, inode);
1093 if (unlikely(err))
1094 goto out_err;
1095 err = ext4_truncate_restart_trans(handle, inode,
1096 ext4_blocks_for_truncate(inode));
1097 if (unlikely(err))
1098 goto out_err;
1099 if (bh) {
1100 BUFFER_TRACE(bh, "retaking write access");
1101 err = ext4_journal_get_write_access(handle, bh);
1102 if (unlikely(err))
1103 goto out_err;
1104 }
1105 }
1106
1107 for (p = first; p < last; p++)
1108 *p = 0;
1109
1110 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1111 return 0;
1112out_err:
1113 ext4_std_error(inode->i_sb, err);
1114 return err;
1115}
1116
1117/**
1118 * ext4_free_data - free a list of data blocks
1119 * @handle: handle for this transaction
1120 * @inode: inode we are dealing with
1121 * @this_bh: indirect buffer_head which contains *@first and *@last
1122 * @first: array of block numbers
1123 * @last: points immediately past the end of array
1124 *
1125 * We are freeing all blocks referred from that array (numbers are stored as
1126 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1127 *
1128 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1129 * blocks are contiguous then releasing them at one time will only affect one
1130 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1131 * actually use a lot of journal space.
1132 *
1133 * @this_bh will be %NULL if @first and @last point into the inode's direct
1134 * block pointers.
1135 */
1136static void ext4_free_data(handle_t *handle, struct inode *inode,
1137 struct buffer_head *this_bh,
1138 __le32 *first, __le32 *last)
1139{
1140 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
1141 unsigned long count = 0; /* Number of blocks in the run */
1142 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1143 corresponding to
1144 block_to_free */
1145 ext4_fsblk_t nr; /* Current block # */
1146 __le32 *p; /* Pointer into inode/ind
1147 for current block */
1148 int err = 0;
1149
1150 if (this_bh) { /* For indirect block */
1151 BUFFER_TRACE(this_bh, "get_write_access");
1152 err = ext4_journal_get_write_access(handle, this_bh);
1153 /* Important: if we can't update the indirect pointers
1154 * to the blocks, we can't free them. */
1155 if (err)
1156 return;
1157 }
1158
1159 for (p = first; p < last; p++) {
1160 nr = le32_to_cpu(*p);
1161 if (nr) {
1162 /* accumulate blocks to free if they're contiguous */
1163 if (count == 0) {
1164 block_to_free = nr;
1165 block_to_free_p = p;
1166 count = 1;
1167 } else if (nr == block_to_free + count) {
1168 count++;
1169 } else {
1170 err = ext4_clear_blocks(handle, inode, this_bh,
1171 block_to_free, count,
1172 block_to_free_p, p);
1173 if (err)
1174 break;
1175 block_to_free = nr;
1176 block_to_free_p = p;
1177 count = 1;
1178 }
1179 }
1180 }
1181
1182 if (!err && count > 0)
1183 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1184 count, block_to_free_p, p);
1185 if (err < 0)
1186 /* fatal error */
1187 return;
1188
1189 if (this_bh) {
1190 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1191
1192 /*
1193 * The buffer head should have an attached journal head at this
1194 * point. However, if the data is corrupted and an indirect
1195 * block pointed to itself, it would have been detached when
1196 * the block was cleared. Check for this instead of OOPSing.
1197 */
1198 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1199 ext4_handle_dirty_metadata(handle, inode, this_bh);
1200 else
1201 EXT4_ERROR_INODE(inode,
1202 "circular indirect block detected at "
1203 "block %llu",
1204 (unsigned long long) this_bh->b_blocknr);
1205 }
1206}
1207
1208/**
1209 * ext4_free_branches - free an array of branches
1210 * @handle: JBD handle for this transaction
1211 * @inode: inode we are dealing with
1212 * @parent_bh: the buffer_head which contains *@first and *@last
1213 * @first: array of block numbers
1214 * @last: pointer immediately past the end of array
1215 * @depth: depth of the branches to free
1216 *
1217 * We are freeing all blocks referred from these branches (numbers are
1218 * stored as little-endian 32-bit) and updating @inode->i_blocks
1219 * appropriately.
1220 */
1221static void ext4_free_branches(handle_t *handle, struct inode *inode,
1222 struct buffer_head *parent_bh,
1223 __le32 *first, __le32 *last, int depth)
1224{
1225 ext4_fsblk_t nr;
1226 __le32 *p;
1227
1228 if (ext4_handle_is_aborted(handle))
1229 return;
1230
1231 if (depth--) {
1232 struct buffer_head *bh;
1233 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1234 p = last;
1235 while (--p >= first) {
1236 nr = le32_to_cpu(*p);
1237 if (!nr)
1238 continue; /* A hole */
1239
1240 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1241 nr, 1)) {
1242 EXT4_ERROR_INODE(inode,
1243 "invalid indirect mapped "
1244 "block %lu (level %d)",
1245 (unsigned long) nr, depth);
1246 break;
1247 }
1248
1249 /* Go read the buffer for the next level down */
1250 bh = sb_bread(inode->i_sb, nr);
1251
1252 /*
1253 * A read failure? Report error and clear slot
1254 * (should be rare).
1255 */
1256 if (!bh) {
1257 EXT4_ERROR_INODE_BLOCK(inode, nr,
1258 "Read failure");
1259 continue;
1260 }
1261
1262 /* This zaps the entire block. Bottom up. */
1263 BUFFER_TRACE(bh, "free child branches");
1264 ext4_free_branches(handle, inode, bh,
1265 (__le32 *) bh->b_data,
1266 (__le32 *) bh->b_data + addr_per_block,
1267 depth);
1268 brelse(bh);
1269
1270 /*
1271 * Everything below this this pointer has been
1272 * released. Now let this top-of-subtree go.
1273 *
1274 * We want the freeing of this indirect block to be
1275 * atomic in the journal with the updating of the
1276 * bitmap block which owns it. So make some room in
1277 * the journal.
1278 *
1279 * We zero the parent pointer *after* freeing its
1280 * pointee in the bitmaps, so if extend_transaction()
1281 * for some reason fails to put the bitmap changes and
1282 * the release into the same transaction, recovery
1283 * will merely complain about releasing a free block,
1284 * rather than leaking blocks.
1285 */
1286 if (ext4_handle_is_aborted(handle))
1287 return;
1288 if (try_to_extend_transaction(handle, inode)) {
1289 ext4_mark_inode_dirty(handle, inode);
1290 ext4_truncate_restart_trans(handle, inode,
1291 ext4_blocks_for_truncate(inode));
1292 }
1293
1294 /*
1295 * The forget flag here is critical because if
1296 * we are journaling (and not doing data
1297 * journaling), we have to make sure a revoke
1298 * record is written to prevent the journal
1299 * replay from overwriting the (former)
1300 * indirect block if it gets reallocated as a
1301 * data block. This must happen in the same
1302 * transaction where the data blocks are
1303 * actually freed.
1304 */
1305 ext4_free_blocks(handle, inode, NULL, nr, 1,
1306 EXT4_FREE_BLOCKS_METADATA|
1307 EXT4_FREE_BLOCKS_FORGET);
1308
1309 if (parent_bh) {
1310 /*
1311 * The block which we have just freed is
1312 * pointed to by an indirect block: journal it
1313 */
1314 BUFFER_TRACE(parent_bh, "get_write_access");
1315 if (!ext4_journal_get_write_access(handle,
1316 parent_bh)){
1317 *p = 0;
1318 BUFFER_TRACE(parent_bh,
1319 "call ext4_handle_dirty_metadata");
1320 ext4_handle_dirty_metadata(handle,
1321 inode,
1322 parent_bh);
1323 }
1324 }
1325 }
1326 } else {
1327 /* We have reached the bottom of the tree. */
1328 BUFFER_TRACE(parent_bh, "free data blocks");
1329 ext4_free_data(handle, inode, parent_bh, first, last);
1330 }
1331}
1332
1333void ext4_ind_truncate(struct inode *inode)
1334{
1335 handle_t *handle;
1336 struct ext4_inode_info *ei = EXT4_I(inode);
1337 __le32 *i_data = ei->i_data;
1338 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1339 struct address_space *mapping = inode->i_mapping;
1340 ext4_lblk_t offsets[4];
1341 Indirect chain[4];
1342 Indirect *partial;
1343 __le32 nr = 0;
1344 int n = 0;
1345 ext4_lblk_t last_block, max_block;
1346 unsigned blocksize = inode->i_sb->s_blocksize;
1347
1348 handle = start_transaction(inode);
1349 if (IS_ERR(handle))
1350 return; /* AKPM: return what? */
1351
1352 last_block = (inode->i_size + blocksize-1)
1353 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1354 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1355 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1356
1357 if (inode->i_size & (blocksize - 1))
1358 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
1359 goto out_stop;
1360
1361 if (last_block != max_block) {
1362 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1363 if (n == 0)
1364 goto out_stop; /* error */
1365 }
1366
1367 /*
1368 * OK. This truncate is going to happen. We add the inode to the
1369 * orphan list, so that if this truncate spans multiple transactions,
1370 * and we crash, we will resume the truncate when the filesystem
1371 * recovers. It also marks the inode dirty, to catch the new size.
1372 *
1373 * Implication: the file must always be in a sane, consistent
1374 * truncatable state while each transaction commits.
1375 */
1376 if (ext4_orphan_add(handle, inode))
1377 goto out_stop;
1378
1379 /*
1380 * From here we block out all ext4_get_block() callers who want to
1381 * modify the block allocation tree.
1382 */
1383 down_write(&ei->i_data_sem);
1384
1385 ext4_discard_preallocations(inode);
1386
1387 /*
1388 * The orphan list entry will now protect us from any crash which
1389 * occurs before the truncate completes, so it is now safe to propagate
1390 * the new, shorter inode size (held for now in i_size) into the
1391 * on-disk inode. We do this via i_disksize, which is the value which
1392 * ext4 *really* writes onto the disk inode.
1393 */
1394 ei->i_disksize = inode->i_size;
1395
1396 if (last_block == max_block) {
1397 /*
1398 * It is unnecessary to free any data blocks if last_block is
1399 * equal to the indirect block limit.
1400 */
1401 goto out_unlock;
1402 } else if (n == 1) { /* direct blocks */
1403 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1404 i_data + EXT4_NDIR_BLOCKS);
1405 goto do_indirects;
1406 }
1407
1408 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1409 /* Kill the top of shared branch (not detached) */
1410 if (nr) {
1411 if (partial == chain) {
1412 /* Shared branch grows from the inode */
1413 ext4_free_branches(handle, inode, NULL,
1414 &nr, &nr+1, (chain+n-1) - partial);
1415 *partial->p = 0;
1416 /*
1417 * We mark the inode dirty prior to restart,
1418 * and prior to stop. No need for it here.
1419 */
1420 } else {
1421 /* Shared branch grows from an indirect block */
1422 BUFFER_TRACE(partial->bh, "get_write_access");
1423 ext4_free_branches(handle, inode, partial->bh,
1424 partial->p,
1425 partial->p+1, (chain+n-1) - partial);
1426 }
1427 }
1428 /* Clear the ends of indirect blocks on the shared branch */
1429 while (partial > chain) {
1430 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1431 (__le32*)partial->bh->b_data+addr_per_block,
1432 (chain+n-1) - partial);
1433 BUFFER_TRACE(partial->bh, "call brelse");
1434 brelse(partial->bh);
1435 partial--;
1436 }
1437do_indirects:
1438 /* Kill the remaining (whole) subtrees */
1439 switch (offsets[0]) {
1440 default:
1441 nr = i_data[EXT4_IND_BLOCK];
1442 if (nr) {
1443 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1444 i_data[EXT4_IND_BLOCK] = 0;
1445 }
1446 case EXT4_IND_BLOCK:
1447 nr = i_data[EXT4_DIND_BLOCK];
1448 if (nr) {
1449 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1450 i_data[EXT4_DIND_BLOCK] = 0;
1451 }
1452 case EXT4_DIND_BLOCK:
1453 nr = i_data[EXT4_TIND_BLOCK];
1454 if (nr) {
1455 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1456 i_data[EXT4_TIND_BLOCK] = 0;
1457 }
1458 case EXT4_TIND_BLOCK:
1459 ;
1460 }
1461
1462out_unlock:
1463 up_write(&ei->i_data_sem);
1464 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1465 ext4_mark_inode_dirty(handle, inode);
1466
1467 /*
1468 * In a multi-transaction truncate, we only make the final transaction
1469 * synchronous
1470 */
1471 if (IS_SYNC(inode))
1472 ext4_handle_sync(handle);
1473out_stop:
1474 /*
1475 * If this was a simple ftruncate(), and the file will remain alive
1476 * then we need to clear up the orphan record which we created above.
1477 * However, if this was a real unlink then we were called by
1478 * ext4_delete_inode(), and we allow that function to clean up the
1479 * orphan info for us.
1480 */
1481 if (inode->i_nlink)
1482 ext4_orphan_del(handle, inode);
1483
1484 ext4_journal_stop(handle);
1485 trace_ext4_truncate_exit(inode);
1486}
1487
1/*
2 * linux/fs/ext4/indirect.c
3 *
4 * from
5 *
6 * linux/fs/ext4/inode.c
7 *
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
12 *
13 * from
14 *
15 * linux/fs/minix/inode.c
16 *
17 * Copyright (C) 1991, 1992 Linus Torvalds
18 *
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
21 */
22
23#include "ext4_jbd2.h"
24#include "truncate.h"
25#include <linux/dax.h>
26#include <linux/uio.h>
27
28#include <trace/events/ext4.h>
29
30typedef struct {
31 __le32 *p;
32 __le32 key;
33 struct buffer_head *bh;
34} Indirect;
35
36static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
37{
38 p->key = *(p->p = v);
39 p->bh = bh;
40}
41
42/**
43 * ext4_block_to_path - parse the block number into array of offsets
44 * @inode: inode in question (we are only interested in its superblock)
45 * @i_block: block number to be parsed
46 * @offsets: array to store the offsets in
47 * @boundary: set this non-zero if the referred-to block is likely to be
48 * followed (on disk) by an indirect block.
49 *
50 * To store the locations of file's data ext4 uses a data structure common
51 * for UNIX filesystems - tree of pointers anchored in the inode, with
52 * data blocks at leaves and indirect blocks in intermediate nodes.
53 * This function translates the block number into path in that tree -
54 * return value is the path length and @offsets[n] is the offset of
55 * pointer to (n+1)th node in the nth one. If @block is out of range
56 * (negative or too large) warning is printed and zero returned.
57 *
58 * Note: function doesn't find node addresses, so no IO is needed. All
59 * we need to know is the capacity of indirect blocks (taken from the
60 * inode->i_sb).
61 */
62
63/*
64 * Portability note: the last comparison (check that we fit into triple
65 * indirect block) is spelled differently, because otherwise on an
66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
67 * if our filesystem had 8Kb blocks. We might use long long, but that would
68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
69 * i_block would have to be negative in the very beginning, so we would not
70 * get there at all.
71 */
72
73static int ext4_block_to_path(struct inode *inode,
74 ext4_lblk_t i_block,
75 ext4_lblk_t offsets[4], int *boundary)
76{
77 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
78 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
79 const long direct_blocks = EXT4_NDIR_BLOCKS,
80 indirect_blocks = ptrs,
81 double_blocks = (1 << (ptrs_bits * 2));
82 int n = 0;
83 int final = 0;
84
85 if (i_block < direct_blocks) {
86 offsets[n++] = i_block;
87 final = direct_blocks;
88 } else if ((i_block -= direct_blocks) < indirect_blocks) {
89 offsets[n++] = EXT4_IND_BLOCK;
90 offsets[n++] = i_block;
91 final = ptrs;
92 } else if ((i_block -= indirect_blocks) < double_blocks) {
93 offsets[n++] = EXT4_DIND_BLOCK;
94 offsets[n++] = i_block >> ptrs_bits;
95 offsets[n++] = i_block & (ptrs - 1);
96 final = ptrs;
97 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
98 offsets[n++] = EXT4_TIND_BLOCK;
99 offsets[n++] = i_block >> (ptrs_bits * 2);
100 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
101 offsets[n++] = i_block & (ptrs - 1);
102 final = ptrs;
103 } else {
104 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
105 i_block + direct_blocks +
106 indirect_blocks + double_blocks, inode->i_ino);
107 }
108 if (boundary)
109 *boundary = final - 1 - (i_block & (ptrs - 1));
110 return n;
111}
112
113/**
114 * ext4_get_branch - read the chain of indirect blocks leading to data
115 * @inode: inode in question
116 * @depth: depth of the chain (1 - direct pointer, etc.)
117 * @offsets: offsets of pointers in inode/indirect blocks
118 * @chain: place to store the result
119 * @err: here we store the error value
120 *
121 * Function fills the array of triples <key, p, bh> and returns %NULL
122 * if everything went OK or the pointer to the last filled triple
123 * (incomplete one) otherwise. Upon the return chain[i].key contains
124 * the number of (i+1)-th block in the chain (as it is stored in memory,
125 * i.e. little-endian 32-bit), chain[i].p contains the address of that
126 * number (it points into struct inode for i==0 and into the bh->b_data
127 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
128 * block for i>0 and NULL for i==0. In other words, it holds the block
129 * numbers of the chain, addresses they were taken from (and where we can
130 * verify that chain did not change) and buffer_heads hosting these
131 * numbers.
132 *
133 * Function stops when it stumbles upon zero pointer (absent block)
134 * (pointer to last triple returned, *@err == 0)
135 * or when it gets an IO error reading an indirect block
136 * (ditto, *@err == -EIO)
137 * or when it reads all @depth-1 indirect blocks successfully and finds
138 * the whole chain, all way to the data (returns %NULL, *err == 0).
139 *
140 * Need to be called with
141 * down_read(&EXT4_I(inode)->i_data_sem)
142 */
143static Indirect *ext4_get_branch(struct inode *inode, int depth,
144 ext4_lblk_t *offsets,
145 Indirect chain[4], int *err)
146{
147 struct super_block *sb = inode->i_sb;
148 Indirect *p = chain;
149 struct buffer_head *bh;
150 int ret = -EIO;
151
152 *err = 0;
153 /* i_data is not going away, no lock needed */
154 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
155 if (!p->key)
156 goto no_block;
157 while (--depth) {
158 bh = sb_getblk(sb, le32_to_cpu(p->key));
159 if (unlikely(!bh)) {
160 ret = -ENOMEM;
161 goto failure;
162 }
163
164 if (!bh_uptodate_or_lock(bh)) {
165 if (bh_submit_read(bh) < 0) {
166 put_bh(bh);
167 goto failure;
168 }
169 /* validate block references */
170 if (ext4_check_indirect_blockref(inode, bh)) {
171 put_bh(bh);
172 goto failure;
173 }
174 }
175
176 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
177 /* Reader: end */
178 if (!p->key)
179 goto no_block;
180 }
181 return NULL;
182
183failure:
184 *err = ret;
185no_block:
186 return p;
187}
188
189/**
190 * ext4_find_near - find a place for allocation with sufficient locality
191 * @inode: owner
192 * @ind: descriptor of indirect block.
193 *
194 * This function returns the preferred place for block allocation.
195 * It is used when heuristic for sequential allocation fails.
196 * Rules are:
197 * + if there is a block to the left of our position - allocate near it.
198 * + if pointer will live in indirect block - allocate near that block.
199 * + if pointer will live in inode - allocate in the same
200 * cylinder group.
201 *
202 * In the latter case we colour the starting block by the callers PID to
203 * prevent it from clashing with concurrent allocations for a different inode
204 * in the same block group. The PID is used here so that functionally related
205 * files will be close-by on-disk.
206 *
207 * Caller must make sure that @ind is valid and will stay that way.
208 */
209static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
210{
211 struct ext4_inode_info *ei = EXT4_I(inode);
212 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
213 __le32 *p;
214
215 /* Try to find previous block */
216 for (p = ind->p - 1; p >= start; p--) {
217 if (*p)
218 return le32_to_cpu(*p);
219 }
220
221 /* No such thing, so let's try location of indirect block */
222 if (ind->bh)
223 return ind->bh->b_blocknr;
224
225 /*
226 * It is going to be referred to from the inode itself? OK, just put it
227 * into the same cylinder group then.
228 */
229 return ext4_inode_to_goal_block(inode);
230}
231
232/**
233 * ext4_find_goal - find a preferred place for allocation.
234 * @inode: owner
235 * @block: block we want
236 * @partial: pointer to the last triple within a chain
237 *
238 * Normally this function find the preferred place for block allocation,
239 * returns it.
240 * Because this is only used for non-extent files, we limit the block nr
241 * to 32 bits.
242 */
243static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
244 Indirect *partial)
245{
246 ext4_fsblk_t goal;
247
248 /*
249 * XXX need to get goal block from mballoc's data structures
250 */
251
252 goal = ext4_find_near(inode, partial);
253 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
254 return goal;
255}
256
257/**
258 * ext4_blks_to_allocate - Look up the block map and count the number
259 * of direct blocks need to be allocated for the given branch.
260 *
261 * @branch: chain of indirect blocks
262 * @k: number of blocks need for indirect blocks
263 * @blks: number of data blocks to be mapped.
264 * @blocks_to_boundary: the offset in the indirect block
265 *
266 * return the total number of blocks to be allocate, including the
267 * direct and indirect blocks.
268 */
269static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
270 int blocks_to_boundary)
271{
272 unsigned int count = 0;
273
274 /*
275 * Simple case, [t,d]Indirect block(s) has not allocated yet
276 * then it's clear blocks on that path have not allocated
277 */
278 if (k > 0) {
279 /* right now we don't handle cross boundary allocation */
280 if (blks < blocks_to_boundary + 1)
281 count += blks;
282 else
283 count += blocks_to_boundary + 1;
284 return count;
285 }
286
287 count++;
288 while (count < blks && count <= blocks_to_boundary &&
289 le32_to_cpu(*(branch[0].p + count)) == 0) {
290 count++;
291 }
292 return count;
293}
294
295/**
296 * ext4_alloc_branch - allocate and set up a chain of blocks.
297 * @handle: handle for this transaction
298 * @inode: owner
299 * @indirect_blks: number of allocated indirect blocks
300 * @blks: number of allocated direct blocks
301 * @goal: preferred place for allocation
302 * @offsets: offsets (in the blocks) to store the pointers to next.
303 * @branch: place to store the chain in.
304 *
305 * This function allocates blocks, zeroes out all but the last one,
306 * links them into chain and (if we are synchronous) writes them to disk.
307 * In other words, it prepares a branch that can be spliced onto the
308 * inode. It stores the information about that chain in the branch[], in
309 * the same format as ext4_get_branch() would do. We are calling it after
310 * we had read the existing part of chain and partial points to the last
311 * triple of that (one with zero ->key). Upon the exit we have the same
312 * picture as after the successful ext4_get_block(), except that in one
313 * place chain is disconnected - *branch->p is still zero (we did not
314 * set the last link), but branch->key contains the number that should
315 * be placed into *branch->p to fill that gap.
316 *
317 * If allocation fails we free all blocks we've allocated (and forget
318 * their buffer_heads) and return the error value the from failed
319 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
320 * as described above and return 0.
321 */
322static int ext4_alloc_branch(handle_t *handle,
323 struct ext4_allocation_request *ar,
324 int indirect_blks, ext4_lblk_t *offsets,
325 Indirect *branch)
326{
327 struct buffer_head * bh;
328 ext4_fsblk_t b, new_blocks[4];
329 __le32 *p;
330 int i, j, err, len = 1;
331
332 for (i = 0; i <= indirect_blks; i++) {
333 if (i == indirect_blks) {
334 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
335 } else
336 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
337 ar->inode, ar->goal,
338 ar->flags & EXT4_MB_DELALLOC_RESERVED,
339 NULL, &err);
340 if (err) {
341 i--;
342 goto failed;
343 }
344 branch[i].key = cpu_to_le32(new_blocks[i]);
345 if (i == 0)
346 continue;
347
348 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
349 if (unlikely(!bh)) {
350 err = -ENOMEM;
351 goto failed;
352 }
353 lock_buffer(bh);
354 BUFFER_TRACE(bh, "call get_create_access");
355 err = ext4_journal_get_create_access(handle, bh);
356 if (err) {
357 unlock_buffer(bh);
358 goto failed;
359 }
360
361 memset(bh->b_data, 0, bh->b_size);
362 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
363 b = new_blocks[i];
364
365 if (i == indirect_blks)
366 len = ar->len;
367 for (j = 0; j < len; j++)
368 *p++ = cpu_to_le32(b++);
369
370 BUFFER_TRACE(bh, "marking uptodate");
371 set_buffer_uptodate(bh);
372 unlock_buffer(bh);
373
374 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
375 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
376 if (err)
377 goto failed;
378 }
379 return 0;
380failed:
381 for (; i >= 0; i--) {
382 /*
383 * We want to ext4_forget() only freshly allocated indirect
384 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and
385 * buffer at branch[0].bh is indirect block / inode already
386 * existing before ext4_alloc_branch() was called.
387 */
388 if (i > 0 && i != indirect_blks && branch[i].bh)
389 ext4_forget(handle, 1, ar->inode, branch[i].bh,
390 branch[i].bh->b_blocknr);
391 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
392 (i == indirect_blks) ? ar->len : 1, 0);
393 }
394 return err;
395}
396
397/**
398 * ext4_splice_branch - splice the allocated branch onto inode.
399 * @handle: handle for this transaction
400 * @inode: owner
401 * @block: (logical) number of block we are adding
402 * @chain: chain of indirect blocks (with a missing link - see
403 * ext4_alloc_branch)
404 * @where: location of missing link
405 * @num: number of indirect blocks we are adding
406 * @blks: number of direct blocks we are adding
407 *
408 * This function fills the missing link and does all housekeeping needed in
409 * inode (->i_blocks, etc.). In case of success we end up with the full
410 * chain to new block and return 0.
411 */
412static int ext4_splice_branch(handle_t *handle,
413 struct ext4_allocation_request *ar,
414 Indirect *where, int num)
415{
416 int i;
417 int err = 0;
418 ext4_fsblk_t current_block;
419
420 /*
421 * If we're splicing into a [td]indirect block (as opposed to the
422 * inode) then we need to get write access to the [td]indirect block
423 * before the splice.
424 */
425 if (where->bh) {
426 BUFFER_TRACE(where->bh, "get_write_access");
427 err = ext4_journal_get_write_access(handle, where->bh);
428 if (err)
429 goto err_out;
430 }
431 /* That's it */
432
433 *where->p = where->key;
434
435 /*
436 * Update the host buffer_head or inode to point to more just allocated
437 * direct blocks blocks
438 */
439 if (num == 0 && ar->len > 1) {
440 current_block = le32_to_cpu(where->key) + 1;
441 for (i = 1; i < ar->len; i++)
442 *(where->p + i) = cpu_to_le32(current_block++);
443 }
444
445 /* We are done with atomic stuff, now do the rest of housekeeping */
446 /* had we spliced it onto indirect block? */
447 if (where->bh) {
448 /*
449 * If we spliced it onto an indirect block, we haven't
450 * altered the inode. Note however that if it is being spliced
451 * onto an indirect block at the very end of the file (the
452 * file is growing) then we *will* alter the inode to reflect
453 * the new i_size. But that is not done here - it is done in
454 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
455 */
456 jbd_debug(5, "splicing indirect only\n");
457 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
458 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
459 if (err)
460 goto err_out;
461 } else {
462 /*
463 * OK, we spliced it into the inode itself on a direct block.
464 */
465 ext4_mark_inode_dirty(handle, ar->inode);
466 jbd_debug(5, "splicing direct\n");
467 }
468 return err;
469
470err_out:
471 for (i = 1; i <= num; i++) {
472 /*
473 * branch[i].bh is newly allocated, so there is no
474 * need to revoke the block, which is why we don't
475 * need to set EXT4_FREE_BLOCKS_METADATA.
476 */
477 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
478 EXT4_FREE_BLOCKS_FORGET);
479 }
480 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
481 ar->len, 0);
482
483 return err;
484}
485
486/*
487 * The ext4_ind_map_blocks() function handles non-extents inodes
488 * (i.e., using the traditional indirect/double-indirect i_blocks
489 * scheme) for ext4_map_blocks().
490 *
491 * Allocation strategy is simple: if we have to allocate something, we will
492 * have to go the whole way to leaf. So let's do it before attaching anything
493 * to tree, set linkage between the newborn blocks, write them if sync is
494 * required, recheck the path, free and repeat if check fails, otherwise
495 * set the last missing link (that will protect us from any truncate-generated
496 * removals - all blocks on the path are immune now) and possibly force the
497 * write on the parent block.
498 * That has a nice additional property: no special recovery from the failed
499 * allocations is needed - we simply release blocks and do not touch anything
500 * reachable from inode.
501 *
502 * `handle' can be NULL if create == 0.
503 *
504 * return > 0, # of blocks mapped or allocated.
505 * return = 0, if plain lookup failed.
506 * return < 0, error case.
507 *
508 * The ext4_ind_get_blocks() function should be called with
509 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
510 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
511 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
512 * blocks.
513 */
514int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
515 struct ext4_map_blocks *map,
516 int flags)
517{
518 struct ext4_allocation_request ar;
519 int err = -EIO;
520 ext4_lblk_t offsets[4];
521 Indirect chain[4];
522 Indirect *partial;
523 int indirect_blks;
524 int blocks_to_boundary = 0;
525 int depth;
526 int count = 0;
527 ext4_fsblk_t first_block = 0;
528
529 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
530 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
531 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
532 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
533 &blocks_to_boundary);
534
535 if (depth == 0)
536 goto out;
537
538 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
539
540 /* Simplest case - block found, no allocation needed */
541 if (!partial) {
542 first_block = le32_to_cpu(chain[depth - 1].key);
543 count++;
544 /*map more blocks*/
545 while (count < map->m_len && count <= blocks_to_boundary) {
546 ext4_fsblk_t blk;
547
548 blk = le32_to_cpu(*(chain[depth-1].p + count));
549
550 if (blk == first_block + count)
551 count++;
552 else
553 break;
554 }
555 goto got_it;
556 }
557
558 /* Next simple case - plain lookup failed */
559 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
560 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
561 int i;
562
563 /* Count number blocks in a subtree under 'partial' */
564 count = 1;
565 for (i = 0; partial + i != chain + depth - 1; i++)
566 count *= epb;
567 /* Fill in size of a hole we found */
568 map->m_pblk = 0;
569 map->m_len = min_t(unsigned int, map->m_len, count);
570 goto cleanup;
571 }
572
573 /* Failed read of indirect block */
574 if (err == -EIO)
575 goto cleanup;
576
577 /*
578 * Okay, we need to do block allocation.
579 */
580 if (ext4_has_feature_bigalloc(inode->i_sb)) {
581 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
582 "non-extent mapped inodes with bigalloc");
583 return -EFSCORRUPTED;
584 }
585
586 /* Set up for the direct block allocation */
587 memset(&ar, 0, sizeof(ar));
588 ar.inode = inode;
589 ar.logical = map->m_lblk;
590 if (S_ISREG(inode->i_mode))
591 ar.flags = EXT4_MB_HINT_DATA;
592 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
593 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
594 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
595 ar.flags |= EXT4_MB_USE_RESERVED;
596
597 ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
598
599 /* the number of blocks need to allocate for [d,t]indirect blocks */
600 indirect_blks = (chain + depth) - partial - 1;
601
602 /*
603 * Next look up the indirect map to count the totoal number of
604 * direct blocks to allocate for this branch.
605 */
606 ar.len = ext4_blks_to_allocate(partial, indirect_blks,
607 map->m_len, blocks_to_boundary);
608
609 /*
610 * Block out ext4_truncate while we alter the tree
611 */
612 err = ext4_alloc_branch(handle, &ar, indirect_blks,
613 offsets + (partial - chain), partial);
614
615 /*
616 * The ext4_splice_branch call will free and forget any buffers
617 * on the new chain if there is a failure, but that risks using
618 * up transaction credits, especially for bitmaps where the
619 * credits cannot be returned. Can we handle this somehow? We
620 * may need to return -EAGAIN upwards in the worst case. --sct
621 */
622 if (!err)
623 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
624 if (err)
625 goto cleanup;
626
627 map->m_flags |= EXT4_MAP_NEW;
628
629 ext4_update_inode_fsync_trans(handle, inode, 1);
630 count = ar.len;
631got_it:
632 map->m_flags |= EXT4_MAP_MAPPED;
633 map->m_pblk = le32_to_cpu(chain[depth-1].key);
634 map->m_len = count;
635 if (count > blocks_to_boundary)
636 map->m_flags |= EXT4_MAP_BOUNDARY;
637 err = count;
638 /* Clean up and exit */
639 partial = chain + depth - 1; /* the whole chain */
640cleanup:
641 while (partial > chain) {
642 BUFFER_TRACE(partial->bh, "call brelse");
643 brelse(partial->bh);
644 partial--;
645 }
646out:
647 trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
648 return err;
649}
650
651/*
652 * Calculate the number of metadata blocks need to reserve
653 * to allocate a new block at @lblocks for non extent file based file
654 */
655int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
656{
657 struct ext4_inode_info *ei = EXT4_I(inode);
658 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
659 int blk_bits;
660
661 if (lblock < EXT4_NDIR_BLOCKS)
662 return 0;
663
664 lblock -= EXT4_NDIR_BLOCKS;
665
666 if (ei->i_da_metadata_calc_len &&
667 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
668 ei->i_da_metadata_calc_len++;
669 return 0;
670 }
671 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
672 ei->i_da_metadata_calc_len = 1;
673 blk_bits = order_base_2(lblock);
674 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
675}
676
677/*
678 * Calculate number of indirect blocks touched by mapping @nrblocks logically
679 * contiguous blocks
680 */
681int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
682{
683 /*
684 * With N contiguous data blocks, we need at most
685 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
686 * 2 dindirect blocks, and 1 tindirect block
687 */
688 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
689}
690
691/*
692 * Truncate transactions can be complex and absolutely huge. So we need to
693 * be able to restart the transaction at a conventient checkpoint to make
694 * sure we don't overflow the journal.
695 *
696 * Try to extend this transaction for the purposes of truncation. If
697 * extend fails, we need to propagate the failure up and restart the
698 * transaction in the top-level truncate loop. --sct
699 *
700 * Returns 0 if we managed to create more room. If we can't create more
701 * room, and the transaction must be restarted we return 1.
702 */
703static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
704{
705 if (!ext4_handle_valid(handle))
706 return 0;
707 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
708 return 0;
709 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
710 return 0;
711 return 1;
712}
713
714/*
715 * Probably it should be a library function... search for first non-zero word
716 * or memcmp with zero_page, whatever is better for particular architecture.
717 * Linus?
718 */
719static inline int all_zeroes(__le32 *p, __le32 *q)
720{
721 while (p < q)
722 if (*p++)
723 return 0;
724 return 1;
725}
726
727/**
728 * ext4_find_shared - find the indirect blocks for partial truncation.
729 * @inode: inode in question
730 * @depth: depth of the affected branch
731 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
732 * @chain: place to store the pointers to partial indirect blocks
733 * @top: place to the (detached) top of branch
734 *
735 * This is a helper function used by ext4_truncate().
736 *
737 * When we do truncate() we may have to clean the ends of several
738 * indirect blocks but leave the blocks themselves alive. Block is
739 * partially truncated if some data below the new i_size is referred
740 * from it (and it is on the path to the first completely truncated
741 * data block, indeed). We have to free the top of that path along
742 * with everything to the right of the path. Since no allocation
743 * past the truncation point is possible until ext4_truncate()
744 * finishes, we may safely do the latter, but top of branch may
745 * require special attention - pageout below the truncation point
746 * might try to populate it.
747 *
748 * We atomically detach the top of branch from the tree, store the
749 * block number of its root in *@top, pointers to buffer_heads of
750 * partially truncated blocks - in @chain[].bh and pointers to
751 * their last elements that should not be removed - in
752 * @chain[].p. Return value is the pointer to last filled element
753 * of @chain.
754 *
755 * The work left to caller to do the actual freeing of subtrees:
756 * a) free the subtree starting from *@top
757 * b) free the subtrees whose roots are stored in
758 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
759 * c) free the subtrees growing from the inode past the @chain[0].
760 * (no partially truncated stuff there). */
761
762static Indirect *ext4_find_shared(struct inode *inode, int depth,
763 ext4_lblk_t offsets[4], Indirect chain[4],
764 __le32 *top)
765{
766 Indirect *partial, *p;
767 int k, err;
768
769 *top = 0;
770 /* Make k index the deepest non-null offset + 1 */
771 for (k = depth; k > 1 && !offsets[k-1]; k--)
772 ;
773 partial = ext4_get_branch(inode, k, offsets, chain, &err);
774 /* Writer: pointers */
775 if (!partial)
776 partial = chain + k-1;
777 /*
778 * If the branch acquired continuation since we've looked at it -
779 * fine, it should all survive and (new) top doesn't belong to us.
780 */
781 if (!partial->key && *partial->p)
782 /* Writer: end */
783 goto no_top;
784 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
785 ;
786 /*
787 * OK, we've found the last block that must survive. The rest of our
788 * branch should be detached before unlocking. However, if that rest
789 * of branch is all ours and does not grow immediately from the inode
790 * it's easier to cheat and just decrement partial->p.
791 */
792 if (p == chain + k - 1 && p > chain) {
793 p->p--;
794 } else {
795 *top = *p->p;
796 /* Nope, don't do this in ext4. Must leave the tree intact */
797#if 0
798 *p->p = 0;
799#endif
800 }
801 /* Writer: end */
802
803 while (partial > p) {
804 brelse(partial->bh);
805 partial--;
806 }
807no_top:
808 return partial;
809}
810
811/*
812 * Zero a number of block pointers in either an inode or an indirect block.
813 * If we restart the transaction we must again get write access to the
814 * indirect block for further modification.
815 *
816 * We release `count' blocks on disk, but (last - first) may be greater
817 * than `count' because there can be holes in there.
818 *
819 * Return 0 on success, 1 on invalid block range
820 * and < 0 on fatal error.
821 */
822static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
823 struct buffer_head *bh,
824 ext4_fsblk_t block_to_free,
825 unsigned long count, __le32 *first,
826 __le32 *last)
827{
828 __le32 *p;
829 int flags = EXT4_FREE_BLOCKS_VALIDATED;
830 int err;
831
832 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
833 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
834 else if (ext4_should_journal_data(inode))
835 flags |= EXT4_FREE_BLOCKS_FORGET;
836
837 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
838 count)) {
839 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
840 "blocks %llu len %lu",
841 (unsigned long long) block_to_free, count);
842 return 1;
843 }
844
845 if (try_to_extend_transaction(handle, inode)) {
846 if (bh) {
847 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
848 err = ext4_handle_dirty_metadata(handle, inode, bh);
849 if (unlikely(err))
850 goto out_err;
851 }
852 err = ext4_mark_inode_dirty(handle, inode);
853 if (unlikely(err))
854 goto out_err;
855 err = ext4_truncate_restart_trans(handle, inode,
856 ext4_blocks_for_truncate(inode));
857 if (unlikely(err))
858 goto out_err;
859 if (bh) {
860 BUFFER_TRACE(bh, "retaking write access");
861 err = ext4_journal_get_write_access(handle, bh);
862 if (unlikely(err))
863 goto out_err;
864 }
865 }
866
867 for (p = first; p < last; p++)
868 *p = 0;
869
870 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
871 return 0;
872out_err:
873 ext4_std_error(inode->i_sb, err);
874 return err;
875}
876
877/**
878 * ext4_free_data - free a list of data blocks
879 * @handle: handle for this transaction
880 * @inode: inode we are dealing with
881 * @this_bh: indirect buffer_head which contains *@first and *@last
882 * @first: array of block numbers
883 * @last: points immediately past the end of array
884 *
885 * We are freeing all blocks referred from that array (numbers are stored as
886 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
887 *
888 * We accumulate contiguous runs of blocks to free. Conveniently, if these
889 * blocks are contiguous then releasing them at one time will only affect one
890 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
891 * actually use a lot of journal space.
892 *
893 * @this_bh will be %NULL if @first and @last point into the inode's direct
894 * block pointers.
895 */
896static void ext4_free_data(handle_t *handle, struct inode *inode,
897 struct buffer_head *this_bh,
898 __le32 *first, __le32 *last)
899{
900 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
901 unsigned long count = 0; /* Number of blocks in the run */
902 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
903 corresponding to
904 block_to_free */
905 ext4_fsblk_t nr; /* Current block # */
906 __le32 *p; /* Pointer into inode/ind
907 for current block */
908 int err = 0;
909
910 if (this_bh) { /* For indirect block */
911 BUFFER_TRACE(this_bh, "get_write_access");
912 err = ext4_journal_get_write_access(handle, this_bh);
913 /* Important: if we can't update the indirect pointers
914 * to the blocks, we can't free them. */
915 if (err)
916 return;
917 }
918
919 for (p = first; p < last; p++) {
920 nr = le32_to_cpu(*p);
921 if (nr) {
922 /* accumulate blocks to free if they're contiguous */
923 if (count == 0) {
924 block_to_free = nr;
925 block_to_free_p = p;
926 count = 1;
927 } else if (nr == block_to_free + count) {
928 count++;
929 } else {
930 err = ext4_clear_blocks(handle, inode, this_bh,
931 block_to_free, count,
932 block_to_free_p, p);
933 if (err)
934 break;
935 block_to_free = nr;
936 block_to_free_p = p;
937 count = 1;
938 }
939 }
940 }
941
942 if (!err && count > 0)
943 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
944 count, block_to_free_p, p);
945 if (err < 0)
946 /* fatal error */
947 return;
948
949 if (this_bh) {
950 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
951
952 /*
953 * The buffer head should have an attached journal head at this
954 * point. However, if the data is corrupted and an indirect
955 * block pointed to itself, it would have been detached when
956 * the block was cleared. Check for this instead of OOPSing.
957 */
958 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
959 ext4_handle_dirty_metadata(handle, inode, this_bh);
960 else
961 EXT4_ERROR_INODE(inode,
962 "circular indirect block detected at "
963 "block %llu",
964 (unsigned long long) this_bh->b_blocknr);
965 }
966}
967
968/**
969 * ext4_free_branches - free an array of branches
970 * @handle: JBD handle for this transaction
971 * @inode: inode we are dealing with
972 * @parent_bh: the buffer_head which contains *@first and *@last
973 * @first: array of block numbers
974 * @last: pointer immediately past the end of array
975 * @depth: depth of the branches to free
976 *
977 * We are freeing all blocks referred from these branches (numbers are
978 * stored as little-endian 32-bit) and updating @inode->i_blocks
979 * appropriately.
980 */
981static void ext4_free_branches(handle_t *handle, struct inode *inode,
982 struct buffer_head *parent_bh,
983 __le32 *first, __le32 *last, int depth)
984{
985 ext4_fsblk_t nr;
986 __le32 *p;
987
988 if (ext4_handle_is_aborted(handle))
989 return;
990
991 if (depth--) {
992 struct buffer_head *bh;
993 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
994 p = last;
995 while (--p >= first) {
996 nr = le32_to_cpu(*p);
997 if (!nr)
998 continue; /* A hole */
999
1000 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1001 nr, 1)) {
1002 EXT4_ERROR_INODE(inode,
1003 "invalid indirect mapped "
1004 "block %lu (level %d)",
1005 (unsigned long) nr, depth);
1006 break;
1007 }
1008
1009 /* Go read the buffer for the next level down */
1010 bh = sb_bread(inode->i_sb, nr);
1011
1012 /*
1013 * A read failure? Report error and clear slot
1014 * (should be rare).
1015 */
1016 if (!bh) {
1017 EXT4_ERROR_INODE_BLOCK(inode, nr,
1018 "Read failure");
1019 continue;
1020 }
1021
1022 /* This zaps the entire block. Bottom up. */
1023 BUFFER_TRACE(bh, "free child branches");
1024 ext4_free_branches(handle, inode, bh,
1025 (__le32 *) bh->b_data,
1026 (__le32 *) bh->b_data + addr_per_block,
1027 depth);
1028 brelse(bh);
1029
1030 /*
1031 * Everything below this this pointer has been
1032 * released. Now let this top-of-subtree go.
1033 *
1034 * We want the freeing of this indirect block to be
1035 * atomic in the journal with the updating of the
1036 * bitmap block which owns it. So make some room in
1037 * the journal.
1038 *
1039 * We zero the parent pointer *after* freeing its
1040 * pointee in the bitmaps, so if extend_transaction()
1041 * for some reason fails to put the bitmap changes and
1042 * the release into the same transaction, recovery
1043 * will merely complain about releasing a free block,
1044 * rather than leaking blocks.
1045 */
1046 if (ext4_handle_is_aborted(handle))
1047 return;
1048 if (try_to_extend_transaction(handle, inode)) {
1049 ext4_mark_inode_dirty(handle, inode);
1050 ext4_truncate_restart_trans(handle, inode,
1051 ext4_blocks_for_truncate(inode));
1052 }
1053
1054 /*
1055 * The forget flag here is critical because if
1056 * we are journaling (and not doing data
1057 * journaling), we have to make sure a revoke
1058 * record is written to prevent the journal
1059 * replay from overwriting the (former)
1060 * indirect block if it gets reallocated as a
1061 * data block. This must happen in the same
1062 * transaction where the data blocks are
1063 * actually freed.
1064 */
1065 ext4_free_blocks(handle, inode, NULL, nr, 1,
1066 EXT4_FREE_BLOCKS_METADATA|
1067 EXT4_FREE_BLOCKS_FORGET);
1068
1069 if (parent_bh) {
1070 /*
1071 * The block which we have just freed is
1072 * pointed to by an indirect block: journal it
1073 */
1074 BUFFER_TRACE(parent_bh, "get_write_access");
1075 if (!ext4_journal_get_write_access(handle,
1076 parent_bh)){
1077 *p = 0;
1078 BUFFER_TRACE(parent_bh,
1079 "call ext4_handle_dirty_metadata");
1080 ext4_handle_dirty_metadata(handle,
1081 inode,
1082 parent_bh);
1083 }
1084 }
1085 }
1086 } else {
1087 /* We have reached the bottom of the tree. */
1088 BUFFER_TRACE(parent_bh, "free data blocks");
1089 ext4_free_data(handle, inode, parent_bh, first, last);
1090 }
1091}
1092
1093void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1094{
1095 struct ext4_inode_info *ei = EXT4_I(inode);
1096 __le32 *i_data = ei->i_data;
1097 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1098 ext4_lblk_t offsets[4];
1099 Indirect chain[4];
1100 Indirect *partial;
1101 __le32 nr = 0;
1102 int n = 0;
1103 ext4_lblk_t last_block, max_block;
1104 unsigned blocksize = inode->i_sb->s_blocksize;
1105
1106 last_block = (inode->i_size + blocksize-1)
1107 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1108 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1109 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1110
1111 if (last_block != max_block) {
1112 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1113 if (n == 0)
1114 return;
1115 }
1116
1117 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1118
1119 /*
1120 * The orphan list entry will now protect us from any crash which
1121 * occurs before the truncate completes, so it is now safe to propagate
1122 * the new, shorter inode size (held for now in i_size) into the
1123 * on-disk inode. We do this via i_disksize, which is the value which
1124 * ext4 *really* writes onto the disk inode.
1125 */
1126 ei->i_disksize = inode->i_size;
1127
1128 if (last_block == max_block) {
1129 /*
1130 * It is unnecessary to free any data blocks if last_block is
1131 * equal to the indirect block limit.
1132 */
1133 return;
1134 } else if (n == 1) { /* direct blocks */
1135 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1136 i_data + EXT4_NDIR_BLOCKS);
1137 goto do_indirects;
1138 }
1139
1140 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1141 /* Kill the top of shared branch (not detached) */
1142 if (nr) {
1143 if (partial == chain) {
1144 /* Shared branch grows from the inode */
1145 ext4_free_branches(handle, inode, NULL,
1146 &nr, &nr+1, (chain+n-1) - partial);
1147 *partial->p = 0;
1148 /*
1149 * We mark the inode dirty prior to restart,
1150 * and prior to stop. No need for it here.
1151 */
1152 } else {
1153 /* Shared branch grows from an indirect block */
1154 BUFFER_TRACE(partial->bh, "get_write_access");
1155 ext4_free_branches(handle, inode, partial->bh,
1156 partial->p,
1157 partial->p+1, (chain+n-1) - partial);
1158 }
1159 }
1160 /* Clear the ends of indirect blocks on the shared branch */
1161 while (partial > chain) {
1162 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1163 (__le32*)partial->bh->b_data+addr_per_block,
1164 (chain+n-1) - partial);
1165 BUFFER_TRACE(partial->bh, "call brelse");
1166 brelse(partial->bh);
1167 partial--;
1168 }
1169do_indirects:
1170 /* Kill the remaining (whole) subtrees */
1171 switch (offsets[0]) {
1172 default:
1173 nr = i_data[EXT4_IND_BLOCK];
1174 if (nr) {
1175 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1176 i_data[EXT4_IND_BLOCK] = 0;
1177 }
1178 case EXT4_IND_BLOCK:
1179 nr = i_data[EXT4_DIND_BLOCK];
1180 if (nr) {
1181 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1182 i_data[EXT4_DIND_BLOCK] = 0;
1183 }
1184 case EXT4_DIND_BLOCK:
1185 nr = i_data[EXT4_TIND_BLOCK];
1186 if (nr) {
1187 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1188 i_data[EXT4_TIND_BLOCK] = 0;
1189 }
1190 case EXT4_TIND_BLOCK:
1191 ;
1192 }
1193}
1194
1195/**
1196 * ext4_ind_remove_space - remove space from the range
1197 * @handle: JBD handle for this transaction
1198 * @inode: inode we are dealing with
1199 * @start: First block to remove
1200 * @end: One block after the last block to remove (exclusive)
1201 *
1202 * Free the blocks in the defined range (end is exclusive endpoint of
1203 * range). This is used by ext4_punch_hole().
1204 */
1205int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1206 ext4_lblk_t start, ext4_lblk_t end)
1207{
1208 struct ext4_inode_info *ei = EXT4_I(inode);
1209 __le32 *i_data = ei->i_data;
1210 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1211 ext4_lblk_t offsets[4], offsets2[4];
1212 Indirect chain[4], chain2[4];
1213 Indirect *partial, *partial2;
1214 ext4_lblk_t max_block;
1215 __le32 nr = 0, nr2 = 0;
1216 int n = 0, n2 = 0;
1217 unsigned blocksize = inode->i_sb->s_blocksize;
1218
1219 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1220 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1221 if (end >= max_block)
1222 end = max_block;
1223 if ((start >= end) || (start > max_block))
1224 return 0;
1225
1226 n = ext4_block_to_path(inode, start, offsets, NULL);
1227 n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1228
1229 BUG_ON(n > n2);
1230
1231 if ((n == 1) && (n == n2)) {
1232 /* We're punching only within direct block range */
1233 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1234 i_data + offsets2[0]);
1235 return 0;
1236 } else if (n2 > n) {
1237 /*
1238 * Start and end are on a different levels so we're going to
1239 * free partial block at start, and partial block at end of
1240 * the range. If there are some levels in between then
1241 * do_indirects label will take care of that.
1242 */
1243
1244 if (n == 1) {
1245 /*
1246 * Start is at the direct block level, free
1247 * everything to the end of the level.
1248 */
1249 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1250 i_data + EXT4_NDIR_BLOCKS);
1251 goto end_range;
1252 }
1253
1254
1255 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1256 if (nr) {
1257 if (partial == chain) {
1258 /* Shared branch grows from the inode */
1259 ext4_free_branches(handle, inode, NULL,
1260 &nr, &nr+1, (chain+n-1) - partial);
1261 *partial->p = 0;
1262 } else {
1263 /* Shared branch grows from an indirect block */
1264 BUFFER_TRACE(partial->bh, "get_write_access");
1265 ext4_free_branches(handle, inode, partial->bh,
1266 partial->p,
1267 partial->p+1, (chain+n-1) - partial);
1268 }
1269 }
1270
1271 /*
1272 * Clear the ends of indirect blocks on the shared branch
1273 * at the start of the range
1274 */
1275 while (partial > chain) {
1276 ext4_free_branches(handle, inode, partial->bh,
1277 partial->p + 1,
1278 (__le32 *)partial->bh->b_data+addr_per_block,
1279 (chain+n-1) - partial);
1280 BUFFER_TRACE(partial->bh, "call brelse");
1281 brelse(partial->bh);
1282 partial--;
1283 }
1284
1285end_range:
1286 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1287 if (nr2) {
1288 if (partial2 == chain2) {
1289 /*
1290 * Remember, end is exclusive so here we're at
1291 * the start of the next level we're not going
1292 * to free. Everything was covered by the start
1293 * of the range.
1294 */
1295 goto do_indirects;
1296 }
1297 } else {
1298 /*
1299 * ext4_find_shared returns Indirect structure which
1300 * points to the last element which should not be
1301 * removed by truncate. But this is end of the range
1302 * in punch_hole so we need to point to the next element
1303 */
1304 partial2->p++;
1305 }
1306
1307 /*
1308 * Clear the ends of indirect blocks on the shared branch
1309 * at the end of the range
1310 */
1311 while (partial2 > chain2) {
1312 ext4_free_branches(handle, inode, partial2->bh,
1313 (__le32 *)partial2->bh->b_data,
1314 partial2->p,
1315 (chain2+n2-1) - partial2);
1316 BUFFER_TRACE(partial2->bh, "call brelse");
1317 brelse(partial2->bh);
1318 partial2--;
1319 }
1320 goto do_indirects;
1321 }
1322
1323 /* Punch happened within the same level (n == n2) */
1324 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1325 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1326
1327 /* Free top, but only if partial2 isn't its subtree. */
1328 if (nr) {
1329 int level = min(partial - chain, partial2 - chain2);
1330 int i;
1331 int subtree = 1;
1332
1333 for (i = 0; i <= level; i++) {
1334 if (offsets[i] != offsets2[i]) {
1335 subtree = 0;
1336 break;
1337 }
1338 }
1339
1340 if (!subtree) {
1341 if (partial == chain) {
1342 /* Shared branch grows from the inode */
1343 ext4_free_branches(handle, inode, NULL,
1344 &nr, &nr+1,
1345 (chain+n-1) - partial);
1346 *partial->p = 0;
1347 } else {
1348 /* Shared branch grows from an indirect block */
1349 BUFFER_TRACE(partial->bh, "get_write_access");
1350 ext4_free_branches(handle, inode, partial->bh,
1351 partial->p,
1352 partial->p+1,
1353 (chain+n-1) - partial);
1354 }
1355 }
1356 }
1357
1358 if (!nr2) {
1359 /*
1360 * ext4_find_shared returns Indirect structure which
1361 * points to the last element which should not be
1362 * removed by truncate. But this is end of the range
1363 * in punch_hole so we need to point to the next element
1364 */
1365 partial2->p++;
1366 }
1367
1368 while (partial > chain || partial2 > chain2) {
1369 int depth = (chain+n-1) - partial;
1370 int depth2 = (chain2+n2-1) - partial2;
1371
1372 if (partial > chain && partial2 > chain2 &&
1373 partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1374 /*
1375 * We've converged on the same block. Clear the range,
1376 * then we're done.
1377 */
1378 ext4_free_branches(handle, inode, partial->bh,
1379 partial->p + 1,
1380 partial2->p,
1381 (chain+n-1) - partial);
1382 BUFFER_TRACE(partial->bh, "call brelse");
1383 brelse(partial->bh);
1384 BUFFER_TRACE(partial2->bh, "call brelse");
1385 brelse(partial2->bh);
1386 return 0;
1387 }
1388
1389 /*
1390 * The start and end partial branches may not be at the same
1391 * level even though the punch happened within one level. So, we
1392 * give them a chance to arrive at the same level, then walk
1393 * them in step with each other until we converge on the same
1394 * block.
1395 */
1396 if (partial > chain && depth <= depth2) {
1397 ext4_free_branches(handle, inode, partial->bh,
1398 partial->p + 1,
1399 (__le32 *)partial->bh->b_data+addr_per_block,
1400 (chain+n-1) - partial);
1401 BUFFER_TRACE(partial->bh, "call brelse");
1402 brelse(partial->bh);
1403 partial--;
1404 }
1405 if (partial2 > chain2 && depth2 <= depth) {
1406 ext4_free_branches(handle, inode, partial2->bh,
1407 (__le32 *)partial2->bh->b_data,
1408 partial2->p,
1409 (chain2+n2-1) - partial2);
1410 BUFFER_TRACE(partial2->bh, "call brelse");
1411 brelse(partial2->bh);
1412 partial2--;
1413 }
1414 }
1415 return 0;
1416
1417do_indirects:
1418 /* Kill the remaining (whole) subtrees */
1419 switch (offsets[0]) {
1420 default:
1421 if (++n >= n2)
1422 return 0;
1423 nr = i_data[EXT4_IND_BLOCK];
1424 if (nr) {
1425 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1426 i_data[EXT4_IND_BLOCK] = 0;
1427 }
1428 case EXT4_IND_BLOCK:
1429 if (++n >= n2)
1430 return 0;
1431 nr = i_data[EXT4_DIND_BLOCK];
1432 if (nr) {
1433 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1434 i_data[EXT4_DIND_BLOCK] = 0;
1435 }
1436 case EXT4_DIND_BLOCK:
1437 if (++n >= n2)
1438 return 0;
1439 nr = i_data[EXT4_TIND_BLOCK];
1440 if (nr) {
1441 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1442 i_data[EXT4_TIND_BLOCK] = 0;
1443 }
1444 case EXT4_TIND_BLOCK:
1445 ;
1446 }
1447 return 0;
1448}