Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Ultra Wide Band
  3 * AES-128 CCM Encryption
  4 *
  5 * Copyright (C) 2007 Intel Corporation
  6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License version
 10 * 2 as published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program; if not, write to the Free Software
 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 20 * 02110-1301, USA.
 21 *
 22 *
 23 * We don't do any encryption here; we use the Linux Kernel's AES-128
 24 * crypto modules to construct keys and payload blocks in a way
 25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
 26 * there.
 27 *
 28 * Thanks a zillion to John Keys for his help and clarifications over
 29 * the designed-by-a-committee text.
 30 *
 31 * So the idea is that there is this basic Pseudo-Random-Function
 32 * defined in WUSB1.0[6.5] which is the core of everything. It works
 33 * by tweaking some blocks, AES crypting them and then xoring
 34 * something else with them (this seems to be called CBC(AES) -- can
 35 * you tell I know jack about crypto?). So we just funnel it into the
 36 * Linux Crypto API.
 37 *
 38 * We leave a crypto test module so we can verify that vectors match,
 39 * every now and then.
 40 *
 41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
 42 *             am learning a lot...
 43 *
 44 *             Conveniently, some data structures that need to be
 45 *             funneled through AES are...16 bytes in size!
 46 */
 47
 
 48#include <linux/crypto.h>
 49#include <linux/module.h>
 50#include <linux/err.h>
 51#include <linux/uwb.h>
 52#include <linux/slab.h>
 53#include <linux/usb/wusb.h>
 54#include <linux/scatterlist.h>
 55
 56static int debug_crypto_verify = 0;
 57
 58module_param(debug_crypto_verify, int, 0);
 59MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
 60
 61static void wusb_key_dump(const void *buf, size_t len)
 62{
 63	print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
 64		       buf, len, 0);
 65}
 66
 67/*
 68 * Block of data, as understood by AES-CCM
 69 *
 70 * The code assumes this structure is nothing but a 16 byte array
 71 * (packed in a struct to avoid common mess ups that I usually do with
 72 * arrays and enforcing type checking).
 73 */
 74struct aes_ccm_block {
 75	u8 data[16];
 76} __attribute__((packed));
 77
 78/*
 79 * Counter-mode Blocks (WUSB1.0[6.4])
 80 *
 81 * According to CCM (or so it seems), for the purpose of calculating
 82 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
 83 * ... BN.
 84 *
 85 * B0 contains flags, the CCM nonce and l(m).
 86 *
 87 * B1 contains l(a), the MAC header, the encryption offset and padding.
 88 *
 89 * If EO is nonzero, additional blocks are built from payload bytes
 90 * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
 91 * padding is not xmitted.
 92 */
 93
 94/* WUSB1.0[T6.4] */
 95struct aes_ccm_b0 {
 96	u8 flags;	/* 0x59, per CCM spec */
 97	struct aes_ccm_nonce ccm_nonce;
 98	__be16 lm;
 99} __attribute__((packed));
100
101/* WUSB1.0[T6.5] */
102struct aes_ccm_b1 {
103	__be16 la;
104	u8 mac_header[10];
105	__le16 eo;
106	u8 security_reserved;	/* This is always zero */
107	u8 padding;		/* 0 */
108} __attribute__((packed));
109
110/*
111 * Encryption Blocks (WUSB1.0[6.4.4])
112 *
113 * CCM uses Ax blocks to generate a keystream with which the MIC and
114 * the message's payload are encoded. A0 always encrypts/decrypts the
115 * MIC. Ax (x>0) are used for the successive payload blocks.
116 *
117 * The x is the counter, and is increased for each block.
118 */
119struct aes_ccm_a {
120	u8 flags;	/* 0x01, per CCM spec */
121	struct aes_ccm_nonce ccm_nonce;
122	__be16 counter;	/* Value of x */
123} __attribute__((packed));
124
125static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
126			 size_t size)
127{
128	u8 *bo = _bo;
129	const u8 *bi1 = _bi1, *bi2 = _bi2;
130	size_t itr;
131	for (itr = 0; itr < size; itr++)
132		bo[itr] = bi1[itr] ^ bi2[itr];
133}
134
 
 
 
 
 
 
 
135/*
136 * CC-MAC function WUSB1.0[6.5]
137 *
138 * Take a data string and produce the encrypted CBC Counter-mode MIC
139 *
140 * Note the names for most function arguments are made to (more or
141 * less) match those used in the pseudo-function definition given in
142 * WUSB1.0[6.5].
143 *
144 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
145 *
146 * @tfm_aes: AES cipher handle (initialized)
147 *
148 * @mic: buffer for placing the computed MIC (Message Integrity
149 *       Code). This is exactly 8 bytes, and we expect the buffer to
150 *       be at least eight bytes in length.
151 *
152 * @key: 128 bit symmetric key
153 *
154 * @n: CCM nonce
155 *
156 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
157 *     we use exactly 14 bytes).
158 *
159 * @b: data stream to be processed; cannot be a global or const local
160 *     (will confuse the scatterlists)
161 *
162 * @blen: size of b...
163 *
164 * Still not very clear how this is done, but looks like this: we
165 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
166 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
167 * take the payload and divide it in blocks (16 bytes), xor them with
168 * the previous crypto result (16 bytes) and crypt it, repeat the next
169 * block with the output of the previous one, rinse wash (I guess this
170 * is what AES CBC mode means...but I truly have no idea). So we use
171 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
172 * Vector) is 16 bytes and is set to zero, so
173 *
174 * See rfc3610. Linux crypto has a CBC implementation, but the
175 * documentation is scarce, to say the least, and the example code is
176 * so intricated that is difficult to understand how things work. Most
177 * of this is guess work -- bite me.
178 *
179 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
180 *     using the 14 bytes of @a to fill up
181 *     b1.{mac_header,e0,security_reserved,padding}.
182 *
183 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
184 *       l(m) is orthogonal, they bear no relationship, so it is not
185 *       in conflict with the parameter's relation that
186 *       WUSB1.0[6.4.2]) defines.
187 *
188 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
189 *       first errata released on 2005/07.
190 *
191 * NOTE: we need to clean IV to zero at each invocation to make sure
192 *       we start with a fresh empty Initial Vector, so that the CBC
193 *       works ok.
194 *
195 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
196 *       what sg[4] is for. Maybe there is a smarter way to do this.
197 */
198static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
199			struct crypto_cipher *tfm_aes, void *mic,
 
 
200			const struct aes_ccm_nonce *n,
201			const struct aes_ccm_label *a, const void *b,
202			size_t blen)
203{
204	int result = 0;
205	struct blkcipher_desc desc;
206	struct aes_ccm_b0 b0;
207	struct aes_ccm_b1 b1;
208	struct aes_ccm_a ax;
209	struct scatterlist sg[4], sg_dst;
210	void *iv, *dst_buf;
211	size_t ivsize, dst_size;
212	const u8 bzero[16] = { 0 };
213	size_t zero_padding;
214
215	/*
216	 * These checks should be compile time optimized out
217	 * ensure @a fills b1's mac_header and following fields
218	 */
219	WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
220	WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
221	WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
222	WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
223
224	result = -ENOMEM;
225	zero_padding = sizeof(struct aes_ccm_block)
226		- blen % sizeof(struct aes_ccm_block);
227	zero_padding = blen % sizeof(struct aes_ccm_block);
228	if (zero_padding)
229		zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
230	dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
 
231	dst_buf = kzalloc(dst_size, GFP_KERNEL);
232	if (dst_buf == NULL) {
233		printk(KERN_ERR "E: can't alloc destination buffer\n");
234		goto error_dst_buf;
235	}
236
237	iv = crypto_blkcipher_crt(tfm_cbc)->iv;
238	ivsize = crypto_blkcipher_ivsize(tfm_cbc);
239	memset(iv, 0, ivsize);
240
241	/* Setup B0 */
242	b0.flags = 0x59;	/* Format B0 */
243	b0.ccm_nonce = *n;
244	b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */
245
246	/* Setup B1
247	 *
248	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
249	 * says that to initialize B1 from A with 'l(a) = blen +
250	 * 14'--after clarification, it means to use A's contents
251	 * for MAC Header, EO, sec reserved and padding.
252	 */
253	b1.la = cpu_to_be16(blen + 14);
254	memcpy(&b1.mac_header, a, sizeof(*a));
255
256	sg_init_table(sg, ARRAY_SIZE(sg));
257	sg_set_buf(&sg[0], &b0, sizeof(b0));
258	sg_set_buf(&sg[1], &b1, sizeof(b1));
259	sg_set_buf(&sg[2], b, blen);
260	/* 0 if well behaved :) */
261	sg_set_buf(&sg[3], bzero, zero_padding);
262	sg_init_one(&sg_dst, dst_buf, dst_size);
263
264	desc.tfm = tfm_cbc;
265	desc.flags = 0;
266	result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
 
 
267	if (result < 0) {
268		printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
269		       result);
270		goto error_cbc_crypt;
271	}
272
273	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
274	 * The procedure is to AES crypt the A0 block and XOR the MIC
275	 * Tag against it; we only do the first 8 bytes and place it
276	 * directly in the destination buffer.
277	 *
278	 * POS Crypto API: size is assumed to be AES's block size.
279	 * Thanks for documenting it -- tip taken from airo.c
280	 */
281	ax.flags = 0x01;		/* as per WUSB 1.0 spec */
282	ax.ccm_nonce = *n;
283	ax.counter = 0;
284	crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
285	bytewise_xor(mic, &ax, iv, 8);
 
286	result = 8;
287error_cbc_crypt:
288	kfree(dst_buf);
289error_dst_buf:
290	return result;
291}
292
293/*
294 * WUSB Pseudo Random Function (WUSB1.0[6.5])
295 *
296 * @b: buffer to the source data; cannot be a global or const local
297 *     (will confuse the scatterlists)
298 */
299ssize_t wusb_prf(void *out, size_t out_size,
300		 const u8 key[16], const struct aes_ccm_nonce *_n,
301		 const struct aes_ccm_label *a,
302		 const void *b, size_t blen, size_t len)
303{
304	ssize_t result, bytes = 0, bitr;
305	struct aes_ccm_nonce n = *_n;
306	struct crypto_blkcipher *tfm_cbc;
307	struct crypto_cipher *tfm_aes;
 
308	u64 sfn = 0;
309	__le64 sfn_le;
310
311	tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
312	if (IS_ERR(tfm_cbc)) {
313		result = PTR_ERR(tfm_cbc);
314		printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
315		goto error_alloc_cbc;
316	}
317	result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
318	if (result < 0) {
319		printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
320		goto error_setkey_cbc;
321	}
322
323	tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
324	if (IS_ERR(tfm_aes)) {
325		result = PTR_ERR(tfm_aes);
326		printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
327		goto error_alloc_aes;
328	}
329	result = crypto_cipher_setkey(tfm_aes, key, 16);
330	if (result < 0) {
331		printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
332		goto error_setkey_aes;
333	}
 
 
 
 
 
334
335	for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
336		sfn_le = cpu_to_le64(sfn++);
337		memcpy(&n.sfn, &sfn_le, sizeof(n.sfn));	/* n.sfn++... */
338		result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
339				      &n, a, b, blen);
340		if (result < 0)
341			goto error_ccm_mac;
342		bytes += result;
343	}
344	result = bytes;
 
 
 
345error_ccm_mac:
346error_setkey_aes:
347	crypto_free_cipher(tfm_aes);
348error_alloc_aes:
349error_setkey_cbc:
350	crypto_free_blkcipher(tfm_cbc);
351error_alloc_cbc:
352	return result;
353}
354
355/* WUSB1.0[A.2] test vectors */
356static const u8 stv_hsmic_key[16] = {
357	0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
358	0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
359};
360
361static const struct aes_ccm_nonce stv_hsmic_n = {
362	.sfn = { 0 },
363	.tkid = { 0x76, 0x98, 0x01,  },
364	.dest_addr = { .data = { 0xbe, 0x00 } },
365		.src_addr = { .data = { 0x76, 0x98 } },
366};
367
368/*
369 * Out-of-band MIC Generation verification code
370 *
371 */
372static int wusb_oob_mic_verify(void)
373{
374	int result;
375	u8 mic[8];
376	/* WUSB1.0[A.2] test vectors
377	 *
378	 * Need to keep it in the local stack as GCC 4.1.3something
379	 * messes up and generates noise.
380	 */
381	struct usb_handshake stv_hsmic_hs = {
382		.bMessageNumber = 2,
383		.bStatus 	= 00,
384		.tTKID 		= { 0x76, 0x98, 0x01 },
385		.bReserved 	= 00,
386		.CDID 		= { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
387				    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
388				    0x3c, 0x3d, 0x3e, 0x3f },
389		.nonce	 	= { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
390				    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
391				    0x2c, 0x2d, 0x2e, 0x2f },
392		.MIC	 	= { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
393				    0x14, 0x7b } ,
394	};
395	size_t hs_size;
396
397	result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
398	if (result < 0)
399		printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
400	else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
401		printk(KERN_ERR "E: OOB MIC test: "
402		       "mismatch between MIC result and WUSB1.0[A2]\n");
403		hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
404		printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
405		wusb_key_dump(&stv_hsmic_hs, hs_size);
406		printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
407		       sizeof(stv_hsmic_n));
408		wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
409		printk(KERN_ERR "E: MIC out:\n");
410		wusb_key_dump(mic, sizeof(mic));
411		printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
412		wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
413		result = -EINVAL;
414	} else
415		result = 0;
416	return result;
417}
418
419/*
420 * Test vectors for Key derivation
421 *
422 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
423 * (errata corrected in 2005/07).
424 */
425static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
426	0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
427	0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
428};
429
430static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
431	.sfn = { 0 },
432	.tkid = { 0x76, 0x98, 0x01,  },
433	.dest_addr = { .data = { 0xbe, 0x00 } },
434	.src_addr = { .data = { 0x76, 0x98 } },
435};
436
437static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
438	.kck = {
439		0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
440		0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
441	},
442	.ptk = {
443		0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
444		0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
445	}
446};
447
448/*
449 * Performa a test to make sure we match the vectors defined in
450 * WUSB1.0[A.1](Errata2006/12)
451 */
452static int wusb_key_derive_verify(void)
453{
454	int result = 0;
455	struct wusb_keydvt_out keydvt_out;
456	/* These come from WUSB1.0[A.1] + 2006/12 errata
457	 * NOTE: can't make this const or global -- somehow it seems
458	 *       the scatterlists for crypto get confused and we get
459	 *       bad data. There is no doc on this... */
460	struct wusb_keydvt_in stv_keydvt_in_a1 = {
461		.hnonce = {
462			0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
463			0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
464		},
465		.dnonce = {
466			0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
467			0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
468		}
469	};
470
471	result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
472				 &stv_keydvt_in_a1);
473	if (result < 0)
474		printk(KERN_ERR "E: WUSB key derivation test: "
475		       "derivation failed: %d\n", result);
476	if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
477		printk(KERN_ERR "E: WUSB key derivation test: "
478		       "mismatch between key derivation result "
479		       "and WUSB1.0[A1] Errata 2006/12\n");
480		printk(KERN_ERR "E: keydvt in: key\n");
481		wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
482		printk(KERN_ERR "E: keydvt in: nonce\n");
483		wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
484		printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
485		wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
486		printk(KERN_ERR "E: keydvt out: KCK\n");
487		wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
488		printk(KERN_ERR "E: keydvt out: PTK\n");
489		wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
490		result = -EINVAL;
491	} else
492		result = 0;
493	return result;
494}
495
496/*
497 * Initialize crypto system
498 *
499 * FIXME: we do nothing now, other than verifying. Later on we'll
500 * cache the encryption stuff, so that's why we have a separate init.
501 */
502int wusb_crypto_init(void)
503{
504	int result;
505
506	if (debug_crypto_verify) {
507		result = wusb_key_derive_verify();
508		if (result < 0)
509			return result;
510		return wusb_oob_mic_verify();
511	}
512	return 0;
513}
514
515void wusb_crypto_exit(void)
516{
517	/* FIXME: free cached crypto transforms */
518}
v4.10.11
  1/*
  2 * Ultra Wide Band
  3 * AES-128 CCM Encryption
  4 *
  5 * Copyright (C) 2007 Intel Corporation
  6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License version
 10 * 2 as published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program; if not, write to the Free Software
 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 20 * 02110-1301, USA.
 21 *
 22 *
 23 * We don't do any encryption here; we use the Linux Kernel's AES-128
 24 * crypto modules to construct keys and payload blocks in a way
 25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
 26 * there.
 27 *
 28 * Thanks a zillion to John Keys for his help and clarifications over
 29 * the designed-by-a-committee text.
 30 *
 31 * So the idea is that there is this basic Pseudo-Random-Function
 32 * defined in WUSB1.0[6.5] which is the core of everything. It works
 33 * by tweaking some blocks, AES crypting them and then xoring
 34 * something else with them (this seems to be called CBC(AES) -- can
 35 * you tell I know jack about crypto?). So we just funnel it into the
 36 * Linux Crypto API.
 37 *
 38 * We leave a crypto test module so we can verify that vectors match,
 39 * every now and then.
 40 *
 41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
 42 *             am learning a lot...
 43 *
 44 *             Conveniently, some data structures that need to be
 45 *             funneled through AES are...16 bytes in size!
 46 */
 47
 48#include <crypto/skcipher.h>
 49#include <linux/crypto.h>
 50#include <linux/module.h>
 51#include <linux/err.h>
 52#include <linux/uwb.h>
 53#include <linux/slab.h>
 54#include <linux/usb/wusb.h>
 55#include <linux/scatterlist.h>
 56
 57static int debug_crypto_verify;
 58
 59module_param(debug_crypto_verify, int, 0);
 60MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
 61
 62static void wusb_key_dump(const void *buf, size_t len)
 63{
 64	print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
 65		       buf, len, 0);
 66}
 67
 68/*
 69 * Block of data, as understood by AES-CCM
 70 *
 71 * The code assumes this structure is nothing but a 16 byte array
 72 * (packed in a struct to avoid common mess ups that I usually do with
 73 * arrays and enforcing type checking).
 74 */
 75struct aes_ccm_block {
 76	u8 data[16];
 77} __attribute__((packed));
 78
 79/*
 80 * Counter-mode Blocks (WUSB1.0[6.4])
 81 *
 82 * According to CCM (or so it seems), for the purpose of calculating
 83 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
 84 * ... BN.
 85 *
 86 * B0 contains flags, the CCM nonce and l(m).
 87 *
 88 * B1 contains l(a), the MAC header, the encryption offset and padding.
 89 *
 90 * If EO is nonzero, additional blocks are built from payload bytes
 91 * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
 92 * padding is not xmitted.
 93 */
 94
 95/* WUSB1.0[T6.4] */
 96struct aes_ccm_b0 {
 97	u8 flags;	/* 0x59, per CCM spec */
 98	struct aes_ccm_nonce ccm_nonce;
 99	__be16 lm;
100} __attribute__((packed));
101
102/* WUSB1.0[T6.5] */
103struct aes_ccm_b1 {
104	__be16 la;
105	u8 mac_header[10];
106	__le16 eo;
107	u8 security_reserved;	/* This is always zero */
108	u8 padding;		/* 0 */
109} __attribute__((packed));
110
111/*
112 * Encryption Blocks (WUSB1.0[6.4.4])
113 *
114 * CCM uses Ax blocks to generate a keystream with which the MIC and
115 * the message's payload are encoded. A0 always encrypts/decrypts the
116 * MIC. Ax (x>0) are used for the successive payload blocks.
117 *
118 * The x is the counter, and is increased for each block.
119 */
120struct aes_ccm_a {
121	u8 flags;	/* 0x01, per CCM spec */
122	struct aes_ccm_nonce ccm_nonce;
123	__be16 counter;	/* Value of x */
124} __attribute__((packed));
125
126static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
127			 size_t size)
128{
129	u8 *bo = _bo;
130	const u8 *bi1 = _bi1, *bi2 = _bi2;
131	size_t itr;
132	for (itr = 0; itr < size; itr++)
133		bo[itr] = bi1[itr] ^ bi2[itr];
134}
135
136/* Scratch space for MAC calculations. */
137struct wusb_mac_scratch {
138	struct aes_ccm_b0 b0;
139	struct aes_ccm_b1 b1;
140	struct aes_ccm_a ax;
141};
142
143/*
144 * CC-MAC function WUSB1.0[6.5]
145 *
146 * Take a data string and produce the encrypted CBC Counter-mode MIC
147 *
148 * Note the names for most function arguments are made to (more or
149 * less) match those used in the pseudo-function definition given in
150 * WUSB1.0[6.5].
151 *
152 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
153 *
154 * @tfm_aes: AES cipher handle (initialized)
155 *
156 * @mic: buffer for placing the computed MIC (Message Integrity
157 *       Code). This is exactly 8 bytes, and we expect the buffer to
158 *       be at least eight bytes in length.
159 *
160 * @key: 128 bit symmetric key
161 *
162 * @n: CCM nonce
163 *
164 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
165 *     we use exactly 14 bytes).
166 *
167 * @b: data stream to be processed; cannot be a global or const local
168 *     (will confuse the scatterlists)
169 *
170 * @blen: size of b...
171 *
172 * Still not very clear how this is done, but looks like this: we
173 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
174 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
175 * take the payload and divide it in blocks (16 bytes), xor them with
176 * the previous crypto result (16 bytes) and crypt it, repeat the next
177 * block with the output of the previous one, rinse wash (I guess this
178 * is what AES CBC mode means...but I truly have no idea). So we use
179 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
180 * Vector) is 16 bytes and is set to zero, so
181 *
182 * See rfc3610. Linux crypto has a CBC implementation, but the
183 * documentation is scarce, to say the least, and the example code is
184 * so intricated that is difficult to understand how things work. Most
185 * of this is guess work -- bite me.
186 *
187 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
188 *     using the 14 bytes of @a to fill up
189 *     b1.{mac_header,e0,security_reserved,padding}.
190 *
191 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
192 *       l(m) is orthogonal, they bear no relationship, so it is not
193 *       in conflict with the parameter's relation that
194 *       WUSB1.0[6.4.2]) defines.
195 *
196 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
197 *       first errata released on 2005/07.
198 *
199 * NOTE: we need to clean IV to zero at each invocation to make sure
200 *       we start with a fresh empty Initial Vector, so that the CBC
201 *       works ok.
202 *
203 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
204 *       what sg[4] is for. Maybe there is a smarter way to do this.
205 */
206static int wusb_ccm_mac(struct crypto_skcipher *tfm_cbc,
207			struct crypto_cipher *tfm_aes,
208			struct wusb_mac_scratch *scratch,
209			void *mic,
210			const struct aes_ccm_nonce *n,
211			const struct aes_ccm_label *a, const void *b,
212			size_t blen)
213{
214	int result = 0;
215	SKCIPHER_REQUEST_ON_STACK(req, tfm_cbc);
 
 
 
216	struct scatterlist sg[4], sg_dst;
217	void *dst_buf;
218	size_t dst_size;
219	u8 iv[crypto_skcipher_ivsize(tfm_cbc)];
220	size_t zero_padding;
221
222	/*
223	 * These checks should be compile time optimized out
224	 * ensure @a fills b1's mac_header and following fields
225	 */
226	WARN_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
227	WARN_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
228	WARN_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
229	WARN_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
230
231	result = -ENOMEM;
 
 
232	zero_padding = blen % sizeof(struct aes_ccm_block);
233	if (zero_padding)
234		zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
235	dst_size = blen + sizeof(scratch->b0) + sizeof(scratch->b1) +
236		zero_padding;
237	dst_buf = kzalloc(dst_size, GFP_KERNEL);
238	if (!dst_buf)
 
239		goto error_dst_buf;
 
240
241	memset(iv, 0, sizeof(iv));
 
 
242
243	/* Setup B0 */
244	scratch->b0.flags = 0x59;	/* Format B0 */
245	scratch->b0.ccm_nonce = *n;
246	scratch->b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */
247
248	/* Setup B1
249	 *
250	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
251	 * says that to initialize B1 from A with 'l(a) = blen +
252	 * 14'--after clarification, it means to use A's contents
253	 * for MAC Header, EO, sec reserved and padding.
254	 */
255	scratch->b1.la = cpu_to_be16(blen + 14);
256	memcpy(&scratch->b1.mac_header, a, sizeof(*a));
257
258	sg_init_table(sg, ARRAY_SIZE(sg));
259	sg_set_buf(&sg[0], &scratch->b0, sizeof(scratch->b0));
260	sg_set_buf(&sg[1], &scratch->b1, sizeof(scratch->b1));
261	sg_set_buf(&sg[2], b, blen);
262	/* 0 if well behaved :) */
263	sg_set_page(&sg[3], ZERO_PAGE(0), zero_padding, 0);
264	sg_init_one(&sg_dst, dst_buf, dst_size);
265
266	skcipher_request_set_tfm(req, tfm_cbc);
267	skcipher_request_set_callback(req, 0, NULL, NULL);
268	skcipher_request_set_crypt(req, sg, &sg_dst, dst_size, iv);
269	result = crypto_skcipher_encrypt(req);
270	skcipher_request_zero(req);
271	if (result < 0) {
272		printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
273		       result);
274		goto error_cbc_crypt;
275	}
276
277	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
278	 * The procedure is to AES crypt the A0 block and XOR the MIC
279	 * Tag against it; we only do the first 8 bytes and place it
280	 * directly in the destination buffer.
281	 *
282	 * POS Crypto API: size is assumed to be AES's block size.
283	 * Thanks for documenting it -- tip taken from airo.c
284	 */
285	scratch->ax.flags = 0x01;		/* as per WUSB 1.0 spec */
286	scratch->ax.ccm_nonce = *n;
287	scratch->ax.counter = 0;
288	crypto_cipher_encrypt_one(tfm_aes, (void *)&scratch->ax,
289				  (void *)&scratch->ax);
290	bytewise_xor(mic, &scratch->ax, iv, 8);
291	result = 8;
292error_cbc_crypt:
293	kfree(dst_buf);
294error_dst_buf:
295	return result;
296}
297
298/*
299 * WUSB Pseudo Random Function (WUSB1.0[6.5])
300 *
301 * @b: buffer to the source data; cannot be a global or const local
302 *     (will confuse the scatterlists)
303 */
304ssize_t wusb_prf(void *out, size_t out_size,
305		 const u8 key[16], const struct aes_ccm_nonce *_n,
306		 const struct aes_ccm_label *a,
307		 const void *b, size_t blen, size_t len)
308{
309	ssize_t result, bytes = 0, bitr;
310	struct aes_ccm_nonce n = *_n;
311	struct crypto_skcipher *tfm_cbc;
312	struct crypto_cipher *tfm_aes;
313	struct wusb_mac_scratch *scratch;
314	u64 sfn = 0;
315	__le64 sfn_le;
316
317	tfm_cbc = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
318	if (IS_ERR(tfm_cbc)) {
319		result = PTR_ERR(tfm_cbc);
320		printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
321		goto error_alloc_cbc;
322	}
323	result = crypto_skcipher_setkey(tfm_cbc, key, 16);
324	if (result < 0) {
325		printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
326		goto error_setkey_cbc;
327	}
328
329	tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
330	if (IS_ERR(tfm_aes)) {
331		result = PTR_ERR(tfm_aes);
332		printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
333		goto error_alloc_aes;
334	}
335	result = crypto_cipher_setkey(tfm_aes, key, 16);
336	if (result < 0) {
337		printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
338		goto error_setkey_aes;
339	}
340	scratch = kmalloc(sizeof(*scratch), GFP_KERNEL);
341	if (!scratch) {
342		result = -ENOMEM;
343		goto error_alloc_scratch;
344	}
345
346	for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
347		sfn_le = cpu_to_le64(sfn++);
348		memcpy(&n.sfn, &sfn_le, sizeof(n.sfn));	/* n.sfn++... */
349		result = wusb_ccm_mac(tfm_cbc, tfm_aes, scratch, out + bytes,
350				      &n, a, b, blen);
351		if (result < 0)
352			goto error_ccm_mac;
353		bytes += result;
354	}
355	result = bytes;
356
357	kfree(scratch);
358error_alloc_scratch:
359error_ccm_mac:
360error_setkey_aes:
361	crypto_free_cipher(tfm_aes);
362error_alloc_aes:
363error_setkey_cbc:
364	crypto_free_skcipher(tfm_cbc);
365error_alloc_cbc:
366	return result;
367}
368
369/* WUSB1.0[A.2] test vectors */
370static const u8 stv_hsmic_key[16] = {
371	0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
372	0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
373};
374
375static const struct aes_ccm_nonce stv_hsmic_n = {
376	.sfn = { 0 },
377	.tkid = { 0x76, 0x98, 0x01,  },
378	.dest_addr = { .data = { 0xbe, 0x00 } },
379		.src_addr = { .data = { 0x76, 0x98 } },
380};
381
382/*
383 * Out-of-band MIC Generation verification code
384 *
385 */
386static int wusb_oob_mic_verify(void)
387{
388	int result;
389	u8 mic[8];
390	/* WUSB1.0[A.2] test vectors
391	 *
392	 * Need to keep it in the local stack as GCC 4.1.3something
393	 * messes up and generates noise.
394	 */
395	struct usb_handshake stv_hsmic_hs = {
396		.bMessageNumber = 2,
397		.bStatus 	= 00,
398		.tTKID 		= { 0x76, 0x98, 0x01 },
399		.bReserved 	= 00,
400		.CDID 		= { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
401				    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
402				    0x3c, 0x3d, 0x3e, 0x3f },
403		.nonce	 	= { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
404				    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
405				    0x2c, 0x2d, 0x2e, 0x2f },
406		.MIC	 	= { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
407				    0x14, 0x7b },
408	};
409	size_t hs_size;
410
411	result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
412	if (result < 0)
413		printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
414	else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
415		printk(KERN_ERR "E: OOB MIC test: "
416		       "mismatch between MIC result and WUSB1.0[A2]\n");
417		hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
418		printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
419		wusb_key_dump(&stv_hsmic_hs, hs_size);
420		printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
421		       sizeof(stv_hsmic_n));
422		wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
423		printk(KERN_ERR "E: MIC out:\n");
424		wusb_key_dump(mic, sizeof(mic));
425		printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
426		wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
427		result = -EINVAL;
428	} else
429		result = 0;
430	return result;
431}
432
433/*
434 * Test vectors for Key derivation
435 *
436 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
437 * (errata corrected in 2005/07).
438 */
439static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
440	0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
441	0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
442};
443
444static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
445	.sfn = { 0 },
446	.tkid = { 0x76, 0x98, 0x01,  },
447	.dest_addr = { .data = { 0xbe, 0x00 } },
448	.src_addr = { .data = { 0x76, 0x98 } },
449};
450
451static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
452	.kck = {
453		0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
454		0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
455	},
456	.ptk = {
457		0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
458		0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
459	}
460};
461
462/*
463 * Performa a test to make sure we match the vectors defined in
464 * WUSB1.0[A.1](Errata2006/12)
465 */
466static int wusb_key_derive_verify(void)
467{
468	int result = 0;
469	struct wusb_keydvt_out keydvt_out;
470	/* These come from WUSB1.0[A.1] + 2006/12 errata
471	 * NOTE: can't make this const or global -- somehow it seems
472	 *       the scatterlists for crypto get confused and we get
473	 *       bad data. There is no doc on this... */
474	struct wusb_keydvt_in stv_keydvt_in_a1 = {
475		.hnonce = {
476			0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
477			0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
478		},
479		.dnonce = {
480			0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
481			0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
482		}
483	};
484
485	result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
486				 &stv_keydvt_in_a1);
487	if (result < 0)
488		printk(KERN_ERR "E: WUSB key derivation test: "
489		       "derivation failed: %d\n", result);
490	if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
491		printk(KERN_ERR "E: WUSB key derivation test: "
492		       "mismatch between key derivation result "
493		       "and WUSB1.0[A1] Errata 2006/12\n");
494		printk(KERN_ERR "E: keydvt in: key\n");
495		wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
496		printk(KERN_ERR "E: keydvt in: nonce\n");
497		wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
498		printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
499		wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
500		printk(KERN_ERR "E: keydvt out: KCK\n");
501		wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
502		printk(KERN_ERR "E: keydvt out: PTK\n");
503		wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
504		result = -EINVAL;
505	} else
506		result = 0;
507	return result;
508}
509
510/*
511 * Initialize crypto system
512 *
513 * FIXME: we do nothing now, other than verifying. Later on we'll
514 * cache the encryption stuff, so that's why we have a separate init.
515 */
516int wusb_crypto_init(void)
517{
518	int result;
519
520	if (debug_crypto_verify) {
521		result = wusb_key_derive_verify();
522		if (result < 0)
523			return result;
524		return wusb_oob_mic_verify();
525	}
526	return 0;
527}
528
529void wusb_crypto_exit(void)
530{
531	/* FIXME: free cached crypto transforms */
532}