Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
   3 *
   4 * Copyright 2016 Broadcom
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License, version 2, as
   8 * published by the Free Software Foundation (the "GPL").
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 * General Public License version 2 (GPLv2) for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * version 2 (GPLv2) along with this source code.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/interrupt.h>
  24#include <linux/io.h>
  25#include <linux/ioport.h>
  26#include <linux/kernel.h>
  27#include <linux/module.h>
  28#include <linux/mtd/spi-nor.h>
  29#include <linux/of.h>
  30#include <linux/of_irq.h>
  31#include <linux/platform_device.h>
  32#include <linux/slab.h>
  33#include <linux/spi/spi.h>
  34#include <linux/sysfs.h>
  35#include <linux/types.h>
  36#include "spi-bcm-qspi.h"
  37
  38#define DRIVER_NAME "bcm_qspi"
  39
  40
  41/* BSPI register offsets */
  42#define BSPI_REVISION_ID			0x000
  43#define BSPI_SCRATCH				0x004
  44#define BSPI_MAST_N_BOOT_CTRL			0x008
  45#define BSPI_BUSY_STATUS			0x00c
  46#define BSPI_INTR_STATUS			0x010
  47#define BSPI_B0_STATUS				0x014
  48#define BSPI_B0_CTRL				0x018
  49#define BSPI_B1_STATUS				0x01c
  50#define BSPI_B1_CTRL				0x020
  51#define BSPI_STRAP_OVERRIDE_CTRL		0x024
  52#define BSPI_FLEX_MODE_ENABLE			0x028
  53#define BSPI_BITS_PER_CYCLE			0x02c
  54#define BSPI_BITS_PER_PHASE			0x030
  55#define BSPI_CMD_AND_MODE_BYTE			0x034
  56#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
  57#define BSPI_BSPI_XOR_VALUE			0x03c
  58#define BSPI_BSPI_XOR_ENABLE			0x040
  59#define BSPI_BSPI_PIO_MODE_ENABLE		0x044
  60#define BSPI_BSPI_PIO_IODIR			0x048
  61#define BSPI_BSPI_PIO_DATA			0x04c
  62
  63/* RAF register offsets */
  64#define BSPI_RAF_START_ADDR			0x100
  65#define BSPI_RAF_NUM_WORDS			0x104
  66#define BSPI_RAF_CTRL				0x108
  67#define BSPI_RAF_FULLNESS			0x10c
  68#define BSPI_RAF_WATERMARK			0x110
  69#define BSPI_RAF_STATUS			0x114
  70#define BSPI_RAF_READ_DATA			0x118
  71#define BSPI_RAF_WORD_CNT			0x11c
  72#define BSPI_RAF_CURR_ADDR			0x120
  73
  74/* Override mode masks */
  75#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
  76#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
  77#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
  78#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
  79#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
  80
  81#define BSPI_ADDRLEN_3BYTES			3
  82#define BSPI_ADDRLEN_4BYTES			4
  83
  84#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
  85
  86#define BSPI_RAF_CTRL_START_MASK		BIT(0)
  87#define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
  88
  89#define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
  90#define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
  91
  92#define BSPI_READ_LENGTH			256
  93
  94/* MSPI register offsets */
  95#define MSPI_SPCR0_LSB				0x000
  96#define MSPI_SPCR0_MSB				0x004
  97#define MSPI_SPCR1_LSB				0x008
  98#define MSPI_SPCR1_MSB				0x00c
  99#define MSPI_NEWQP				0x010
 100#define MSPI_ENDQP				0x014
 101#define MSPI_SPCR2				0x018
 102#define MSPI_MSPI_STATUS			0x020
 103#define MSPI_CPTQP				0x024
 104#define MSPI_SPCR3				0x028
 105#define MSPI_TXRAM				0x040
 106#define MSPI_RXRAM				0x0c0
 107#define MSPI_CDRAM				0x140
 108#define MSPI_WRITE_LOCK			0x180
 109
 110#define MSPI_MASTER_BIT			BIT(7)
 111
 112#define MSPI_NUM_CDRAM				16
 113#define MSPI_CDRAM_CONT_BIT			BIT(7)
 114#define MSPI_CDRAM_BITSE_BIT			BIT(6)
 115#define MSPI_CDRAM_PCS				0xf
 116
 117#define MSPI_SPCR2_SPE				BIT(6)
 118#define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
 119
 120#define MSPI_MSPI_STATUS_SPIF			BIT(0)
 121
 122#define INTR_BASE_BIT_SHIFT			0x02
 123#define INTR_COUNT				0x07
 124
 125#define NUM_CHIPSELECT				4
 126#define QSPI_SPBR_MIN				8U
 127#define QSPI_SPBR_MAX				255U
 128
 129#define OPCODE_DIOR				0xBB
 130#define OPCODE_QIOR				0xEB
 131#define OPCODE_DIOR_4B				0xBC
 132#define OPCODE_QIOR_4B				0xEC
 133
 134#define MAX_CMD_SIZE				6
 135
 136#define ADDR_4MB_MASK				GENMASK(22, 0)
 137
 138/* stop at end of transfer, no other reason */
 139#define TRANS_STATUS_BREAK_NONE		0
 140/* stop at end of spi_message */
 141#define TRANS_STATUS_BREAK_EOM			1
 142/* stop at end of spi_transfer if delay */
 143#define TRANS_STATUS_BREAK_DELAY		2
 144/* stop at end of spi_transfer if cs_change */
 145#define TRANS_STATUS_BREAK_CS_CHANGE		4
 146/* stop if we run out of bytes */
 147#define TRANS_STATUS_BREAK_NO_BYTES		8
 148
 149/* events that make us stop filling TX slots */
 150#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
 151			       TRANS_STATUS_BREAK_DELAY |		\
 152			       TRANS_STATUS_BREAK_CS_CHANGE)
 153
 154/* events that make us deassert CS */
 155#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
 156				     TRANS_STATUS_BREAK_CS_CHANGE)
 157
 158struct bcm_qspi_parms {
 159	u32 speed_hz;
 160	u8 mode;
 161	u8 bits_per_word;
 162};
 163
 164struct bcm_xfer_mode {
 165	bool flex_mode;
 166	unsigned int width;
 167	unsigned int addrlen;
 168	unsigned int hp;
 169};
 170
 171enum base_type {
 172	MSPI,
 173	BSPI,
 174	CHIP_SELECT,
 175	BASEMAX,
 176};
 177
 178enum irq_source {
 179	SINGLE_L2,
 180	MUXED_L1,
 181};
 182
 183struct bcm_qspi_irq {
 184	const char *irq_name;
 185	const irq_handler_t irq_handler;
 186	int irq_source;
 187	u32 mask;
 188};
 189
 190struct bcm_qspi_dev_id {
 191	const struct bcm_qspi_irq *irqp;
 192	void *dev;
 193};
 194
 195struct qspi_trans {
 196	struct spi_transfer *trans;
 197	int byte;
 198};
 199
 200struct bcm_qspi {
 201	struct platform_device *pdev;
 202	struct spi_master *master;
 203	struct clk *clk;
 204	u32 base_clk;
 205	u32 max_speed_hz;
 206	void __iomem *base[BASEMAX];
 207
 208	/* Some SoCs provide custom interrupt status register(s) */
 209	struct bcm_qspi_soc_intc	*soc_intc;
 210
 211	struct bcm_qspi_parms last_parms;
 212	struct qspi_trans  trans_pos;
 213	int curr_cs;
 214	int bspi_maj_rev;
 215	int bspi_min_rev;
 216	int bspi_enabled;
 217	struct spi_flash_read_message *bspi_rf_msg;
 218	u32 bspi_rf_msg_idx;
 219	u32 bspi_rf_msg_len;
 220	u32 bspi_rf_msg_status;
 221	struct bcm_xfer_mode xfer_mode;
 222	u32 s3_strap_override_ctrl;
 223	bool bspi_mode;
 224	bool big_endian;
 225	int num_irqs;
 226	struct bcm_qspi_dev_id *dev_ids;
 227	struct completion mspi_done;
 228	struct completion bspi_done;
 229};
 230
 231static inline bool has_bspi(struct bcm_qspi *qspi)
 232{
 233	return qspi->bspi_mode;
 234}
 235
 236/* Read qspi controller register*/
 237static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
 238				unsigned int offset)
 239{
 240	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
 241}
 242
 243/* Write qspi controller register*/
 244static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
 245				  unsigned int offset, unsigned int data)
 246{
 247	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
 248}
 249
 250/* BSPI helpers */
 251static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
 252{
 253	int i;
 254
 255	/* this should normally finish within 10us */
 256	for (i = 0; i < 1000; i++) {
 257		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
 258			return 0;
 259		udelay(1);
 260	}
 261	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
 262	return -EIO;
 263}
 264
 265static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
 266{
 267	if (qspi->bspi_maj_rev < 4)
 268		return true;
 269	return false;
 270}
 271
 272static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
 273{
 274	bcm_qspi_bspi_busy_poll(qspi);
 275	/* Force rising edge for the b0/b1 'flush' field */
 276	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
 277	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
 278	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
 279	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
 280}
 281
 282static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
 283{
 284	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
 285				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
 286}
 287
 288static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
 289{
 290	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
 291
 292	/* BSPI v3 LR is LE only, convert data to host endianness */
 293	if (bcm_qspi_bspi_ver_three(qspi))
 294		data = le32_to_cpu(data);
 295
 296	return data;
 297}
 298
 299static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
 300{
 301	bcm_qspi_bspi_busy_poll(qspi);
 302	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 303		       BSPI_RAF_CTRL_START_MASK);
 304}
 305
 306static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
 307{
 308	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 309		       BSPI_RAF_CTRL_CLEAR_MASK);
 310	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 311}
 312
 313static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
 314{
 315	u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
 316	u32 data = 0;
 317
 318	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
 319		qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
 320	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
 321		data = bcm_qspi_bspi_lr_read_fifo(qspi);
 322		if (likely(qspi->bspi_rf_msg_len >= 4) &&
 323		    IS_ALIGNED((uintptr_t)buf, 4)) {
 324			buf[qspi->bspi_rf_msg_idx++] = data;
 325			qspi->bspi_rf_msg_len -= 4;
 326		} else {
 327			/* Read out remaining bytes, make sure*/
 328			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
 329
 330			data = cpu_to_le32(data);
 331			while (qspi->bspi_rf_msg_len) {
 332				*cbuf++ = (u8)data;
 333				data >>= 8;
 334				qspi->bspi_rf_msg_len--;
 335			}
 336		}
 337	}
 338}
 339
 340static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
 341					  int bpp, int bpc, int flex_mode)
 342{
 343	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 344	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
 345	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
 346	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
 347	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
 348}
 349
 350static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi, int width,
 351				       int addrlen, int hp)
 352{
 353	int bpc = 0, bpp = 0;
 354	u8 command = SPINOR_OP_READ_FAST;
 355	int flex_mode = 1, rv = 0;
 356	bool spans_4byte = false;
 357
 358	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
 359		width, addrlen, hp);
 360
 361	if (addrlen == BSPI_ADDRLEN_4BYTES) {
 362		bpp = BSPI_BPP_ADDR_SELECT_MASK;
 363		spans_4byte = true;
 364	}
 365
 366	bpp |= 8;
 367
 368	switch (width) {
 369	case SPI_NBITS_SINGLE:
 370		if (addrlen == BSPI_ADDRLEN_3BYTES)
 371			/* default mode, does not need flex_cmd */
 372			flex_mode = 0;
 373		else
 374			command = SPINOR_OP_READ4_FAST;
 375		break;
 376	case SPI_NBITS_DUAL:
 377		bpc = 0x00000001;
 378		if (hp) {
 379			bpc |= 0x00010100; /* address and mode are 2-bit */
 380			bpp = BSPI_BPP_MODE_SELECT_MASK;
 381			command = OPCODE_DIOR;
 382			if (spans_4byte)
 383				command = OPCODE_DIOR_4B;
 384		} else {
 385			command = SPINOR_OP_READ_1_1_2;
 386			if (spans_4byte)
 387				command = SPINOR_OP_READ4_1_1_2;
 388		}
 389		break;
 390	case SPI_NBITS_QUAD:
 391		bpc = 0x00000002;
 392		if (hp) {
 393			bpc |= 0x00020200; /* address and mode are 4-bit */
 394			bpp = 4; /* dummy cycles */
 395			bpp |= BSPI_BPP_ADDR_SELECT_MASK;
 396			command = OPCODE_QIOR;
 397			if (spans_4byte)
 398				command = OPCODE_QIOR_4B;
 399		} else {
 400			command = SPINOR_OP_READ_1_1_4;
 401			if (spans_4byte)
 402				command = SPINOR_OP_READ4_1_1_4;
 403		}
 404		break;
 405	default:
 406		rv = -EINVAL;
 407		break;
 408	}
 409
 410	if (rv == 0)
 411		bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc,
 412					      flex_mode);
 413
 414	return rv;
 415}
 416
 417static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi, int width,
 418				      int addrlen, int hp)
 419{
 420	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 421
 422	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
 423		width, addrlen, hp);
 424
 425	switch (width) {
 426	case SPI_NBITS_SINGLE:
 427		/* clear quad/dual mode */
 428		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
 429			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
 430		break;
 431
 432	case SPI_NBITS_QUAD:
 433		/* clear dual mode and set quad mode */
 434		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 435		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 436		break;
 437	case SPI_NBITS_DUAL:
 438		/* clear quad mode set dual mode */
 439		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 440		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 441		break;
 442	default:
 443		return -EINVAL;
 444	}
 445
 446	if (addrlen == BSPI_ADDRLEN_4BYTES)
 447		/* set 4byte mode*/
 448		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 449	else
 450		/* clear 4 byte mode */
 451		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 452
 453	/* set the override mode */
 454	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 455	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
 456	bcm_qspi_bspi_set_xfer_params(qspi, SPINOR_OP_READ_FAST, 0, 0, 0);
 457
 458	return 0;
 459}
 460
 461static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
 462				  int width, int addrlen, int hp)
 463{
 464	int error = 0;
 465
 466	/* default mode */
 467	qspi->xfer_mode.flex_mode = true;
 468
 469	if (!bcm_qspi_bspi_ver_three(qspi)) {
 470		u32 val, mask;
 471
 472		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 473		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 474		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
 475			qspi->xfer_mode.flex_mode = false;
 476			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE,
 477				       0);
 478
 479			if ((val | qspi->s3_strap_override_ctrl) &
 480			    BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL)
 481				width = SPI_NBITS_DUAL;
 482			else if ((val |  qspi->s3_strap_override_ctrl) &
 483				 BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD)
 484				width = SPI_NBITS_QUAD;
 485
 486			error = bcm_qspi_bspi_set_override(qspi, width, addrlen,
 487							   hp);
 488		}
 489	}
 490
 491	if (qspi->xfer_mode.flex_mode)
 492		error = bcm_qspi_bspi_set_flex_mode(qspi, width, addrlen, hp);
 493
 494	if (error) {
 495		dev_warn(&qspi->pdev->dev,
 496			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
 497			 width, addrlen, hp);
 498	} else if (qspi->xfer_mode.width != width ||
 499		   qspi->xfer_mode.addrlen != addrlen ||
 500		   qspi->xfer_mode.hp != hp) {
 501		qspi->xfer_mode.width = width;
 502		qspi->xfer_mode.addrlen = addrlen;
 503		qspi->xfer_mode.hp = hp;
 504		dev_dbg(&qspi->pdev->dev,
 505			"cs:%d %d-lane output, %d-byte address%s\n",
 506			qspi->curr_cs,
 507			qspi->xfer_mode.width,
 508			qspi->xfer_mode.addrlen,
 509			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
 510	}
 511
 512	return error;
 513}
 514
 515static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
 516{
 517	if (!has_bspi(qspi) || (qspi->bspi_enabled))
 518		return;
 519
 520	qspi->bspi_enabled = 1;
 521	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
 522		return;
 523
 524	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 525	udelay(1);
 526	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
 527	udelay(1);
 528}
 529
 530static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
 531{
 532	if (!has_bspi(qspi) || (!qspi->bspi_enabled))
 533		return;
 534
 535	qspi->bspi_enabled = 0;
 536	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
 537		return;
 538
 539	bcm_qspi_bspi_busy_poll(qspi);
 540	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
 541	udelay(1);
 542}
 543
 544static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
 545{
 546	u32 data = 0;
 547
 548	if (qspi->curr_cs == cs)
 549		return;
 550	if (qspi->base[CHIP_SELECT]) {
 551		data = bcm_qspi_read(qspi, CHIP_SELECT, 0);
 552		data = (data & ~0xff) | (1 << cs);
 553		bcm_qspi_write(qspi, CHIP_SELECT, 0, data);
 554		usleep_range(10, 20);
 555	}
 556	qspi->curr_cs = cs;
 557}
 558
 559/* MSPI helpers */
 560static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
 561				  const struct bcm_qspi_parms *xp)
 562{
 563	u32 spcr, spbr = 0;
 564
 565	if (xp->speed_hz)
 566		spbr = qspi->base_clk / (2 * xp->speed_hz);
 567
 568	spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
 569	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
 570
 571	spcr = MSPI_MASTER_BIT;
 572	/* for 16 bit the data should be zero */
 573	if (xp->bits_per_word != 16)
 574		spcr |= xp->bits_per_word << 2;
 575	spcr |= xp->mode & 3;
 576	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
 577
 578	qspi->last_parms = *xp;
 579}
 580
 581static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
 582				  struct spi_device *spi,
 583				  struct spi_transfer *trans)
 584{
 585	struct bcm_qspi_parms xp;
 586
 587	xp.speed_hz = trans->speed_hz;
 588	xp.bits_per_word = trans->bits_per_word;
 589	xp.mode = spi->mode;
 590
 591	bcm_qspi_hw_set_parms(qspi, &xp);
 592}
 593
 594static int bcm_qspi_setup(struct spi_device *spi)
 595{
 596	struct bcm_qspi_parms *xp;
 597
 598	if (spi->bits_per_word > 16)
 599		return -EINVAL;
 600
 601	xp = spi_get_ctldata(spi);
 602	if (!xp) {
 603		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
 604		if (!xp)
 605			return -ENOMEM;
 606		spi_set_ctldata(spi, xp);
 607	}
 608	xp->speed_hz = spi->max_speed_hz;
 609	xp->mode = spi->mode;
 610
 611	if (spi->bits_per_word)
 612		xp->bits_per_word = spi->bits_per_word;
 613	else
 614		xp->bits_per_word = 8;
 615
 616	return 0;
 617}
 618
 619static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
 620					struct qspi_trans *qt, int flags)
 621{
 622	int ret = TRANS_STATUS_BREAK_NONE;
 623
 624	/* count the last transferred bytes */
 625	if (qt->trans->bits_per_word <= 8)
 626		qt->byte++;
 627	else
 628		qt->byte += 2;
 629
 630	if (qt->byte >= qt->trans->len) {
 631		/* we're at the end of the spi_transfer */
 632
 633		/* in TX mode, need to pause for a delay or CS change */
 634		if (qt->trans->delay_usecs &&
 635		    (flags & TRANS_STATUS_BREAK_DELAY))
 636			ret |= TRANS_STATUS_BREAK_DELAY;
 637		if (qt->trans->cs_change &&
 638		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
 639			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
 640		if (ret)
 641			goto done;
 642
 643		dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
 644		if (spi_transfer_is_last(qspi->master, qt->trans))
 645			ret = TRANS_STATUS_BREAK_EOM;
 646		else
 647			ret = TRANS_STATUS_BREAK_NO_BYTES;
 648
 649		qt->trans = NULL;
 650	}
 651
 652done:
 653	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
 654		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
 655	return ret;
 656}
 657
 658static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
 659{
 660	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
 661
 662	/* mask out reserved bits */
 663	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
 664}
 665
 666static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
 667{
 668	u32 reg_offset = MSPI_RXRAM;
 669	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 670	u32 msb_offset = reg_offset + (slot << 3);
 671
 672	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
 673		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
 674}
 675
 676static void read_from_hw(struct bcm_qspi *qspi, int slots)
 677{
 678	struct qspi_trans tp;
 679	int slot;
 680
 681	bcm_qspi_disable_bspi(qspi);
 682
 683	if (slots > MSPI_NUM_CDRAM) {
 684		/* should never happen */
 685		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
 686		return;
 687	}
 688
 689	tp = qspi->trans_pos;
 690
 691	for (slot = 0; slot < slots; slot++) {
 692		if (tp.trans->bits_per_word <= 8) {
 693			u8 *buf = tp.trans->rx_buf;
 694
 695			if (buf)
 696				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
 697			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
 698				buf ? buf[tp.byte] : 0xff);
 699		} else {
 700			u16 *buf = tp.trans->rx_buf;
 701
 702			if (buf)
 703				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
 704								      slot);
 705			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
 706				buf ? buf[tp.byte] : 0xffff);
 707		}
 708
 709		update_qspi_trans_byte_count(qspi, &tp,
 710					     TRANS_STATUS_BREAK_NONE);
 711	}
 712
 713	qspi->trans_pos = tp;
 714}
 715
 716static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
 717				       u8 val)
 718{
 719	u32 reg_offset = MSPI_TXRAM + (slot << 3);
 720
 721	/* mask out reserved bits */
 722	bcm_qspi_write(qspi, MSPI, reg_offset, val);
 723}
 724
 725static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
 726					u16 val)
 727{
 728	u32 reg_offset = MSPI_TXRAM;
 729	u32 msb_offset = reg_offset + (slot << 3);
 730	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 731
 732	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
 733	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
 734}
 735
 736static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
 737{
 738	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
 739}
 740
 741static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
 742{
 743	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
 744}
 745
 746/* Return number of slots written */
 747static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
 748{
 749	struct qspi_trans tp;
 750	int slot = 0, tstatus = 0;
 751	u32 mspi_cdram = 0;
 752
 753	bcm_qspi_disable_bspi(qspi);
 754	tp = qspi->trans_pos;
 755	bcm_qspi_update_parms(qspi, spi, tp.trans);
 756
 757	/* Run until end of transfer or reached the max data */
 758	while (!tstatus && slot < MSPI_NUM_CDRAM) {
 759		if (tp.trans->bits_per_word <= 8) {
 760			const u8 *buf = tp.trans->tx_buf;
 761			u8 val = buf ? buf[tp.byte] : 0xff;
 762
 763			write_txram_slot_u8(qspi, slot, val);
 764			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
 765		} else {
 766			const u16 *buf = tp.trans->tx_buf;
 767			u16 val = buf ? buf[tp.byte / 2] : 0xffff;
 768
 769			write_txram_slot_u16(qspi, slot, val);
 770			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
 771		}
 772		mspi_cdram = MSPI_CDRAM_CONT_BIT;
 773		mspi_cdram |= (~(1 << spi->chip_select) &
 774			       MSPI_CDRAM_PCS);
 775		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
 776				MSPI_CDRAM_BITSE_BIT);
 777
 778		write_cdram_slot(qspi, slot, mspi_cdram);
 779
 780		tstatus = update_qspi_trans_byte_count(qspi, &tp,
 781						       TRANS_STATUS_BREAK_TX);
 782		slot++;
 783	}
 784
 785	if (!slot) {
 786		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
 787		goto done;
 788	}
 789
 790	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
 791	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
 792	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
 793
 794	if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
 795		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
 796			~MSPI_CDRAM_CONT_BIT;
 797		write_cdram_slot(qspi, slot - 1, mspi_cdram);
 798	}
 799
 800	if (has_bspi(qspi))
 801		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
 802
 803	/* Must flush previous writes before starting MSPI operation */
 804	mb();
 805	/* Set cont | spe | spifie */
 806	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
 807
 808done:
 809	return slot;
 810}
 811
 812static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
 813				    struct spi_flash_read_message *msg)
 814{
 815	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 816	u32 addr = 0, len, len_words;
 817	int ret = 0;
 818	unsigned long timeo = msecs_to_jiffies(100);
 819	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
 820
 821	if (bcm_qspi_bspi_ver_three(qspi))
 822		if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
 823			return -EIO;
 824
 825	bcm_qspi_chip_select(qspi, spi->chip_select);
 826	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
 827
 828	/*
 829	 * when using flex mode mode we need to send
 830	 * the upper address byte to bspi
 831	 */
 832	if (bcm_qspi_bspi_ver_three(qspi) == false) {
 833		addr = msg->from & 0xff000000;
 834		bcm_qspi_write(qspi, BSPI,
 835			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
 836	}
 837
 838	if (!qspi->xfer_mode.flex_mode)
 839		addr = msg->from;
 840	else
 841		addr = msg->from & 0x00ffffff;
 842
 843	/* set BSPI RAF buffer max read length */
 844	len = msg->len;
 845	if (len > BSPI_READ_LENGTH)
 846		len = BSPI_READ_LENGTH;
 847
 848	if (bcm_qspi_bspi_ver_three(qspi) == true)
 849		addr = (addr + 0xc00000) & 0xffffff;
 850
 851	reinit_completion(&qspi->bspi_done);
 852	bcm_qspi_enable_bspi(qspi);
 853	len_words = (len + 3) >> 2;
 854	qspi->bspi_rf_msg = msg;
 855	qspi->bspi_rf_msg_status = 0;
 856	qspi->bspi_rf_msg_idx = 0;
 857	qspi->bspi_rf_msg_len = len;
 858	dev_dbg(&qspi->pdev->dev, "bspi xfr addr 0x%x len 0x%x", addr, len);
 859
 860	bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
 861	bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
 862	bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
 863
 864	if (qspi->soc_intc) {
 865		/*
 866		 * clear soc MSPI and BSPI interrupts and enable
 867		 * BSPI interrupts.
 868		 */
 869		soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
 870		soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
 871	}
 872
 873	/* Must flush previous writes before starting BSPI operation */
 874	mb();
 875
 876	bcm_qspi_bspi_lr_start(qspi);
 877	if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
 878		dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
 879		ret = -ETIMEDOUT;
 880	} else {
 881		/* set the return length for the caller */
 882		msg->retlen = len;
 883	}
 884
 885	return ret;
 886}
 887
 888static int bcm_qspi_flash_read(struct spi_device *spi,
 889			       struct spi_flash_read_message *msg)
 890{
 891	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 892	int ret = 0;
 893	bool mspi_read = false;
 894	u32 io_width, addrlen, addr, len;
 895	u_char *buf;
 896
 897	buf = msg->buf;
 898	addr = msg->from;
 899	len = msg->len;
 900
 901	if (bcm_qspi_bspi_ver_three(qspi) == true) {
 902		/*
 903		 * The address coming into this function is a raw flash offset.
 904		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
 905		 * address. If it crosses a 4MB boundary, just revert back to
 906		 * using MSPI.
 907		 */
 908		addr = (addr + 0xc00000) & 0xffffff;
 909
 910		if ((~ADDR_4MB_MASK & addr) ^
 911		    (~ADDR_4MB_MASK & (addr + len - 1)))
 912			mspi_read = true;
 913	}
 914
 915	/* non-aligned and very short transfers are handled by MSPI */
 916	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
 917	    len < 4)
 918		mspi_read = true;
 919
 920	if (mspi_read)
 921		/* this will make the m25p80 read to fallback to mspi read */
 922		return -EAGAIN;
 923
 924	io_width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
 925	addrlen = msg->addr_width;
 926	ret = bcm_qspi_bspi_set_mode(qspi, io_width, addrlen, -1);
 927
 928	if (!ret)
 929		ret = bcm_qspi_bspi_flash_read(spi, msg);
 930
 931	return ret;
 932}
 933
 934static int bcm_qspi_transfer_one(struct spi_master *master,
 935				 struct spi_device *spi,
 936				 struct spi_transfer *trans)
 937{
 938	struct bcm_qspi *qspi = spi_master_get_devdata(master);
 939	int slots;
 940	unsigned long timeo = msecs_to_jiffies(100);
 941
 942	bcm_qspi_chip_select(qspi, spi->chip_select);
 943	qspi->trans_pos.trans = trans;
 944	qspi->trans_pos.byte = 0;
 945
 946	while (qspi->trans_pos.byte < trans->len) {
 947		reinit_completion(&qspi->mspi_done);
 948
 949		slots = write_to_hw(qspi, spi);
 950		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
 951			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
 952			return -ETIMEDOUT;
 953		}
 954
 955		read_from_hw(qspi, slots);
 956	}
 957
 958	return 0;
 959}
 960
 961static void bcm_qspi_cleanup(struct spi_device *spi)
 962{
 963	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
 964
 965	kfree(xp);
 966}
 967
 968static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
 969{
 970	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
 971	struct bcm_qspi *qspi = qspi_dev_id->dev;
 972	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
 973
 974	if (status & MSPI_MSPI_STATUS_SPIF) {
 975		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
 976		/* clear interrupt */
 977		status &= ~MSPI_MSPI_STATUS_SPIF;
 978		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
 979		if (qspi->soc_intc)
 980			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
 981		complete(&qspi->mspi_done);
 982		return IRQ_HANDLED;
 983	}
 984
 985	return IRQ_NONE;
 986}
 987
 988static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
 989{
 990	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
 991	struct bcm_qspi *qspi = qspi_dev_id->dev;
 992	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
 993	u32 status = qspi_dev_id->irqp->mask;
 994
 995	if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
 996		bcm_qspi_bspi_lr_data_read(qspi);
 997		if (qspi->bspi_rf_msg_len == 0) {
 998			qspi->bspi_rf_msg = NULL;
 999			if (qspi->soc_intc) {
1000				/* disable soc BSPI interrupt */
1001				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1002							   false);
1003				/* indicate done */
1004				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1005			}
1006
1007			if (qspi->bspi_rf_msg_status)
1008				bcm_qspi_bspi_lr_clear(qspi);
1009			else
1010				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1011		}
1012
1013		if (qspi->soc_intc)
1014			/* clear soc BSPI interrupt */
1015			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1016	}
1017
1018	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1019	if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
1020		complete(&qspi->bspi_done);
1021
1022	return IRQ_HANDLED;
1023}
1024
1025static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1026{
1027	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1028	struct bcm_qspi *qspi = qspi_dev_id->dev;
1029	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1030
1031	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1032	qspi->bspi_rf_msg_status = -EIO;
1033	if (qspi->soc_intc)
1034		/* clear soc interrupt */
1035		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1036
1037	complete(&qspi->bspi_done);
1038	return IRQ_HANDLED;
1039}
1040
1041static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1042{
1043	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1044	struct bcm_qspi *qspi = qspi_dev_id->dev;
1045	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1046	irqreturn_t ret = IRQ_NONE;
1047
1048	if (soc_intc) {
1049		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1050
1051		if (status & MSPI_DONE)
1052			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1053		else if (status & BSPI_DONE)
1054			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1055		else if (status & BSPI_ERR)
1056			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1057	}
1058
1059	return ret;
1060}
1061
1062static const struct bcm_qspi_irq qspi_irq_tab[] = {
1063	{
1064		.irq_name = "spi_lr_fullness_reached",
1065		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1066		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1067	},
1068	{
1069		.irq_name = "spi_lr_session_aborted",
1070		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1071		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1072	},
1073	{
1074		.irq_name = "spi_lr_impatient",
1075		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1076		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1077	},
1078	{
1079		.irq_name = "spi_lr_session_done",
1080		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1081		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1082	},
1083#ifdef QSPI_INT_DEBUG
1084	/* this interrupt is for debug purposes only, dont request irq */
1085	{
1086		.irq_name = "spi_lr_overread",
1087		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1088		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1089	},
1090#endif
1091	{
1092		.irq_name = "mspi_done",
1093		.irq_handler = bcm_qspi_mspi_l2_isr,
1094		.mask = INTR_MSPI_DONE_MASK,
1095	},
1096	{
1097		.irq_name = "mspi_halted",
1098		.irq_handler = bcm_qspi_mspi_l2_isr,
1099		.mask = INTR_MSPI_HALTED_MASK,
1100	},
1101	{
1102		/* single muxed L1 interrupt source */
1103		.irq_name = "spi_l1_intr",
1104		.irq_handler = bcm_qspi_l1_isr,
1105		.irq_source = MUXED_L1,
1106		.mask = QSPI_INTERRUPTS_ALL,
1107	},
1108};
1109
1110static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1111{
1112	u32 val = 0;
1113
1114	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1115	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1116	qspi->bspi_min_rev = val & 0xff;
1117	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1118		/* Force mapping of BSPI address -> flash offset */
1119		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1120		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1121	}
1122	qspi->bspi_enabled = 1;
1123	bcm_qspi_disable_bspi(qspi);
1124	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1125	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1126}
1127
1128static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1129{
1130	struct bcm_qspi_parms parms;
1131
1132	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1133	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1134	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1135	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1136	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1137
1138	parms.mode = SPI_MODE_3;
1139	parms.bits_per_word = 8;
1140	parms.speed_hz = qspi->max_speed_hz;
1141	bcm_qspi_hw_set_parms(qspi, &parms);
1142
1143	if (has_bspi(qspi))
1144		bcm_qspi_bspi_init(qspi);
1145}
1146
1147static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1148{
1149	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1150	if (has_bspi(qspi))
1151		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1152
1153}
1154
1155static const struct of_device_id bcm_qspi_of_match[] = {
1156	{ .compatible = "brcm,spi-bcm-qspi" },
1157	{},
1158};
1159MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1160
1161int bcm_qspi_probe(struct platform_device *pdev,
1162		   struct bcm_qspi_soc_intc *soc_intc)
1163{
1164	struct device *dev = &pdev->dev;
1165	struct bcm_qspi *qspi;
1166	struct spi_master *master;
1167	struct resource *res;
1168	int irq, ret = 0, num_ints = 0;
1169	u32 val;
1170	const char *name = NULL;
1171	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1172
1173	/* We only support device-tree instantiation */
1174	if (!dev->of_node)
1175		return -ENODEV;
1176
1177	if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1178		return -ENODEV;
1179
1180	master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1181	if (!master) {
1182		dev_err(dev, "error allocating spi_master\n");
1183		return -ENOMEM;
1184	}
1185
1186	qspi = spi_master_get_devdata(master);
1187	qspi->pdev = pdev;
1188	qspi->trans_pos.trans = NULL;
1189	qspi->trans_pos.byte = 0;
1190	qspi->master = master;
1191
1192	master->bus_num = -1;
1193	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1194	master->setup = bcm_qspi_setup;
1195	master->transfer_one = bcm_qspi_transfer_one;
1196	master->spi_flash_read = bcm_qspi_flash_read;
1197	master->cleanup = bcm_qspi_cleanup;
1198	master->dev.of_node = dev->of_node;
1199	master->num_chipselect = NUM_CHIPSELECT;
1200
1201	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1202
1203	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1204		master->num_chipselect = val;
1205
1206	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1207	if (!res)
1208		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1209						   "mspi");
1210
1211	if (res) {
1212		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1213		if (IS_ERR(qspi->base[MSPI])) {
1214			ret = PTR_ERR(qspi->base[MSPI]);
1215			goto qspi_probe_err;
1216		}
1217	} else {
1218		goto qspi_probe_err;
1219	}
1220
1221	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1222	if (res) {
1223		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1224		if (IS_ERR(qspi->base[BSPI])) {
1225			ret = PTR_ERR(qspi->base[BSPI]);
1226			goto qspi_probe_err;
1227		}
1228		qspi->bspi_mode = true;
1229	} else {
1230		qspi->bspi_mode = false;
1231	}
1232
1233	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1234
1235	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1236	if (res) {
1237		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1238		if (IS_ERR(qspi->base[CHIP_SELECT])) {
1239			ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1240			goto qspi_probe_err;
1241		}
1242	}
1243
1244	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1245				GFP_KERNEL);
1246	if (!qspi->dev_ids) {
1247		ret = -ENOMEM;
1248		goto qspi_probe_err;
1249	}
1250
1251	for (val = 0; val < num_irqs; val++) {
1252		irq = -1;
1253		name = qspi_irq_tab[val].irq_name;
1254		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1255			/* get the l2 interrupts */
1256			irq = platform_get_irq_byname(pdev, name);
1257		} else if (!num_ints && soc_intc) {
1258			/* all mspi, bspi intrs muxed to one L1 intr */
1259			irq = platform_get_irq(pdev, 0);
1260		}
1261
1262		if (irq  >= 0) {
1263			ret = devm_request_irq(&pdev->dev, irq,
1264					       qspi_irq_tab[val].irq_handler, 0,
1265					       name,
1266					       &qspi->dev_ids[val]);
1267			if (ret < 0) {
1268				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1269				goto qspi_probe_err;
1270			}
1271
1272			qspi->dev_ids[val].dev = qspi;
1273			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1274			num_ints++;
1275			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1276				qspi_irq_tab[val].irq_name,
1277				irq);
1278		}
1279	}
1280
1281	if (!num_ints) {
1282		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1283		ret = -EINVAL;
1284		goto qspi_probe_err;
1285	}
1286
1287	/*
1288	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1289	 * in specific ways
1290	 */
1291	if (soc_intc) {
1292		qspi->soc_intc = soc_intc;
1293		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1294	} else {
1295		qspi->soc_intc = NULL;
1296	}
1297
1298	qspi->clk = devm_clk_get(&pdev->dev, NULL);
1299	if (IS_ERR(qspi->clk)) {
1300		dev_warn(dev, "unable to get clock\n");
1301		ret = PTR_ERR(qspi->clk);
1302		goto qspi_probe_err;
1303	}
1304
1305	ret = clk_prepare_enable(qspi->clk);
1306	if (ret) {
1307		dev_err(dev, "failed to prepare clock\n");
1308		goto qspi_probe_err;
1309	}
1310
1311	qspi->base_clk = clk_get_rate(qspi->clk);
1312	qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1313
1314	bcm_qspi_hw_init(qspi);
1315	init_completion(&qspi->mspi_done);
1316	init_completion(&qspi->bspi_done);
1317	qspi->curr_cs = -1;
1318
1319	platform_set_drvdata(pdev, qspi);
1320
1321	qspi->xfer_mode.width = -1;
1322	qspi->xfer_mode.addrlen = -1;
1323	qspi->xfer_mode.hp = -1;
1324
1325	ret = devm_spi_register_master(&pdev->dev, master);
1326	if (ret < 0) {
1327		dev_err(dev, "can't register master\n");
1328		goto qspi_reg_err;
1329	}
1330
1331	return 0;
1332
1333qspi_reg_err:
1334	bcm_qspi_hw_uninit(qspi);
1335	clk_disable_unprepare(qspi->clk);
1336qspi_probe_err:
1337	spi_master_put(master);
1338	kfree(qspi->dev_ids);
1339	return ret;
1340}
1341/* probe function to be called by SoC specific platform driver probe */
1342EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1343
1344int bcm_qspi_remove(struct platform_device *pdev)
1345{
1346	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1347
1348	platform_set_drvdata(pdev, NULL);
1349	bcm_qspi_hw_uninit(qspi);
1350	clk_disable_unprepare(qspi->clk);
1351	kfree(qspi->dev_ids);
1352	spi_unregister_master(qspi->master);
1353
1354	return 0;
1355}
1356/* function to be called by SoC specific platform driver remove() */
1357EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1358
1359static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1360{
1361	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1362
1363	spi_master_suspend(qspi->master);
1364	clk_disable(qspi->clk);
1365	bcm_qspi_hw_uninit(qspi);
1366
1367	return 0;
1368};
1369
1370static int __maybe_unused bcm_qspi_resume(struct device *dev)
1371{
1372	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1373	int ret = 0;
1374
1375	bcm_qspi_hw_init(qspi);
1376	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1377	if (qspi->soc_intc)
1378		/* enable MSPI interrupt */
1379		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1380						 true);
1381
1382	ret = clk_enable(qspi->clk);
1383	if (!ret)
1384		spi_master_resume(qspi->master);
1385
1386	return ret;
1387}
1388
1389SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1390
1391/* pm_ops to be called by SoC specific platform driver */
1392EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1393
1394MODULE_AUTHOR("Kamal Dasu");
1395MODULE_DESCRIPTION("Broadcom QSPI driver");
1396MODULE_LICENSE("GPL v2");
1397MODULE_ALIAS("platform:" DRIVER_NAME);