Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * This program is free software; you can redistribute it and/or modify
   3 * it under the terms of the GNU General Public License, version 2, as
   4 * published by the Free Software Foundation.
   5 *
   6 * This program is distributed in the hope that it will be useful,
   7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   9 * GNU General Public License for more details.
  10 *
  11 * You should have received a copy of the GNU General Public License
  12 * along with this program; if not, write to the Free Software
  13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  14 *
  15 * Copyright (C) 2013 Freescale Semiconductor, Inc.
  16 *
  17 */
  18
  19#define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
  20
  21#include "fsl_pamu.h"
  22
  23#include <linux/fsl/guts.h>
  24#include <linux/interrupt.h>
  25#include <linux/genalloc.h>
  26
  27#include <asm/mpc85xx.h>
  28
  29/* define indexes for each operation mapping scenario */
  30#define OMI_QMAN        0x00
  31#define OMI_FMAN        0x01
  32#define OMI_QMAN_PRIV   0x02
  33#define OMI_CAAM        0x03
  34
  35#define make64(high, low) (((u64)(high) << 32) | (low))
  36
  37struct pamu_isr_data {
  38	void __iomem *pamu_reg_base;	/* Base address of PAMU regs */
  39	unsigned int count;		/* The number of PAMUs */
  40};
  41
  42static struct paace *ppaact;
  43static struct paace *spaact;
  44
  45/*
  46 * Table for matching compatible strings, for device tree
  47 * guts node, for QorIQ SOCs.
  48 * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
  49 * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
  50 * string would be used.
  51 */
  52static const struct of_device_id guts_device_ids[] = {
  53	{ .compatible = "fsl,qoriq-device-config-1.0", },
  54	{ .compatible = "fsl,qoriq-device-config-2.0", },
  55	{}
  56};
  57
  58/*
  59 * Table for matching compatible strings, for device tree
  60 * L3 cache controller node.
  61 * "fsl,t4240-l3-cache-controller" corresponds to T4,
  62 * "fsl,b4860-l3-cache-controller" corresponds to B4 &
  63 * "fsl,p4080-l3-cache-controller" corresponds to other,
  64 * SOCs.
  65 */
  66static const struct of_device_id l3_device_ids[] = {
  67	{ .compatible = "fsl,t4240-l3-cache-controller", },
  68	{ .compatible = "fsl,b4860-l3-cache-controller", },
  69	{ .compatible = "fsl,p4080-l3-cache-controller", },
  70	{}
  71};
  72
  73/* maximum subwindows permitted per liodn */
  74static u32 max_subwindow_count;
  75
  76/* Pool for fspi allocation */
  77static struct gen_pool *spaace_pool;
  78
  79/**
  80 * pamu_get_max_subwin_cnt() - Return the maximum supported
  81 * subwindow count per liodn.
  82 *
  83 */
  84u32 pamu_get_max_subwin_cnt(void)
  85{
  86	return max_subwindow_count;
  87}
  88
  89/**
  90 * pamu_get_ppaace() - Return the primary PACCE
  91 * @liodn: liodn PAACT index for desired PAACE
  92 *
  93 * Returns the ppace pointer upon success else return
  94 * null.
  95 */
  96static struct paace *pamu_get_ppaace(int liodn)
  97{
  98	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
  99		pr_debug("PPAACT doesn't exist\n");
 100		return NULL;
 101	}
 102
 103	return &ppaact[liodn];
 104}
 105
 106/**
 107 * pamu_enable_liodn() - Set valid bit of PACCE
 108 * @liodn: liodn PAACT index for desired PAACE
 109 *
 110 * Returns 0 upon success else error code < 0 returned
 111 */
 112int pamu_enable_liodn(int liodn)
 113{
 114	struct paace *ppaace;
 115
 116	ppaace = pamu_get_ppaace(liodn);
 117	if (!ppaace) {
 118		pr_debug("Invalid primary paace entry\n");
 119		return -ENOENT;
 120	}
 121
 122	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
 123		pr_debug("liodn %d not configured\n", liodn);
 124		return -EINVAL;
 125	}
 126
 127	/* Ensure that all other stores to the ppaace complete first */
 128	mb();
 129
 130	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
 131	mb();
 132
 133	return 0;
 134}
 135
 136/**
 137 * pamu_disable_liodn() - Clears valid bit of PACCE
 138 * @liodn: liodn PAACT index for desired PAACE
 139 *
 140 * Returns 0 upon success else error code < 0 returned
 141 */
 142int pamu_disable_liodn(int liodn)
 143{
 144	struct paace *ppaace;
 145
 146	ppaace = pamu_get_ppaace(liodn);
 147	if (!ppaace) {
 148		pr_debug("Invalid primary paace entry\n");
 149		return -ENOENT;
 150	}
 151
 152	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
 153	mb();
 154
 155	return 0;
 156}
 157
 158/* Derive the window size encoding for a particular PAACE entry */
 159static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
 160{
 161	/* Bug if not a power of 2 */
 162	BUG_ON(addrspace_size & (addrspace_size - 1));
 163
 164	/* window size is 2^(WSE+1) bytes */
 165	return fls64(addrspace_size) - 2;
 166}
 167
 168/* Derive the PAACE window count encoding for the subwindow count */
 169static unsigned int map_subwindow_cnt_to_wce(u32 subwindow_cnt)
 170{
 171	/* window count is 2^(WCE+1) bytes */
 172	return __ffs(subwindow_cnt) - 1;
 173}
 174
 175/*
 176 * Set the PAACE type as primary and set the coherency required domain
 177 * attribute
 178 */
 179static void pamu_init_ppaace(struct paace *ppaace)
 180{
 181	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
 182
 183	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 184	       PAACE_M_COHERENCE_REQ);
 185}
 186
 187/*
 188 * Set the PAACE type as secondary and set the coherency required domain
 189 * attribute.
 190 */
 191static void pamu_init_spaace(struct paace *spaace)
 192{
 193	set_bf(spaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_SECONDARY);
 194	set_bf(spaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 195	       PAACE_M_COHERENCE_REQ);
 196}
 197
 198/*
 199 * Return the spaace (corresponding to the secondary window index)
 200 * for a particular ppaace.
 201 */
 202static struct paace *pamu_get_spaace(struct paace *paace, u32 wnum)
 203{
 204	u32 subwin_cnt;
 205	struct paace *spaace = NULL;
 206
 207	subwin_cnt = 1UL << (get_bf(paace->impl_attr, PAACE_IA_WCE) + 1);
 208
 209	if (wnum < subwin_cnt)
 210		spaace = &spaact[paace->fspi + wnum];
 211	else
 212		pr_debug("secondary paace out of bounds\n");
 213
 214	return spaace;
 215}
 216
 217/**
 218 * pamu_get_fspi_and_allocate() - Allocates fspi index and reserves subwindows
 219 *                                required for primary PAACE in the secondary
 220 *                                PAACE table.
 221 * @subwin_cnt: Number of subwindows to be reserved.
 222 *
 223 * A PPAACE entry may have a number of associated subwindows. A subwindow
 224 * corresponds to a SPAACE entry in the SPAACT table. Each PAACE entry stores
 225 * the index (fspi) of the first SPAACE entry in the SPAACT table. This
 226 * function returns the index of the first SPAACE entry. The remaining
 227 * SPAACE entries are reserved contiguously from that index.
 228 *
 229 * Returns a valid fspi index in the range of 0 - SPAACE_NUMBER_ENTRIES on success.
 230 * If no SPAACE entry is available or the allocator can not reserve the required
 231 * number of contiguous entries function returns ULONG_MAX indicating a failure.
 232 *
 233 */
 234static unsigned long pamu_get_fspi_and_allocate(u32 subwin_cnt)
 235{
 236	unsigned long spaace_addr;
 237
 238	spaace_addr = gen_pool_alloc(spaace_pool, subwin_cnt * sizeof(struct paace));
 239	if (!spaace_addr)
 240		return ULONG_MAX;
 241
 242	return (spaace_addr - (unsigned long)spaact) / (sizeof(struct paace));
 243}
 244
 245/* Release the subwindows reserved for a particular LIODN */
 246void pamu_free_subwins(int liodn)
 247{
 248	struct paace *ppaace;
 249	u32 subwin_cnt, size;
 250
 251	ppaace = pamu_get_ppaace(liodn);
 252	if (!ppaace) {
 253		pr_debug("Invalid liodn entry\n");
 254		return;
 255	}
 256
 257	if (get_bf(ppaace->addr_bitfields, PPAACE_AF_MW)) {
 258		subwin_cnt = 1UL << (get_bf(ppaace->impl_attr, PAACE_IA_WCE) + 1);
 259		size = (subwin_cnt - 1) * sizeof(struct paace);
 260		gen_pool_free(spaace_pool, (unsigned long)&spaact[ppaace->fspi], size);
 261		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
 262	}
 263}
 264
 265/*
 266 * Function used for updating stash destination for the coressponding
 267 * LIODN.
 268 */
 269int  pamu_update_paace_stash(int liodn, u32 subwin, u32 value)
 270{
 271	struct paace *paace;
 272
 273	paace = pamu_get_ppaace(liodn);
 274	if (!paace) {
 275		pr_debug("Invalid liodn entry\n");
 276		return -ENOENT;
 277	}
 278	if (subwin) {
 279		paace = pamu_get_spaace(paace, subwin - 1);
 280		if (!paace)
 281			return -ENOENT;
 282	}
 283	set_bf(paace->impl_attr, PAACE_IA_CID, value);
 284
 285	mb();
 286
 287	return 0;
 288}
 289
 290/* Disable a subwindow corresponding to the LIODN */
 291int pamu_disable_spaace(int liodn, u32 subwin)
 292{
 293	struct paace *paace;
 294
 295	paace = pamu_get_ppaace(liodn);
 296	if (!paace) {
 297		pr_debug("Invalid liodn entry\n");
 298		return -ENOENT;
 299	}
 300	if (subwin) {
 301		paace = pamu_get_spaace(paace, subwin - 1);
 302		if (!paace)
 303			return -ENOENT;
 304		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
 305	} else {
 306		set_bf(paace->addr_bitfields, PAACE_AF_AP,
 307		       PAACE_AP_PERMS_DENIED);
 308	}
 309
 310	mb();
 311
 312	return 0;
 313}
 314
 315/**
 316 * pamu_config_paace() - Sets up PPAACE entry for specified liodn
 317 *
 318 * @liodn: Logical IO device number
 319 * @win_addr: starting address of DSA window
 320 * @win-size: size of DSA window
 321 * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
 322 * @rpn: real (true physical) page number
 323 * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
 324 *	     stashid not defined
 325 * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
 326 *	     snoopid not defined
 327 * @subwin_cnt: number of sub-windows
 328 * @prot: window permissions
 329 *
 330 * Returns 0 upon success else error code < 0 returned
 331 */
 332int pamu_config_ppaace(int liodn, phys_addr_t win_addr, phys_addr_t win_size,
 333		       u32 omi, unsigned long rpn, u32 snoopid, u32 stashid,
 334		       u32 subwin_cnt, int prot)
 335{
 336	struct paace *ppaace;
 337	unsigned long fspi;
 338
 339	if ((win_size & (win_size - 1)) || win_size < PAMU_PAGE_SIZE) {
 340		pr_debug("window size too small or not a power of two %pa\n",
 341			 &win_size);
 342		return -EINVAL;
 343	}
 344
 345	if (win_addr & (win_size - 1)) {
 346		pr_debug("window address is not aligned with window size\n");
 347		return -EINVAL;
 348	}
 349
 350	ppaace = pamu_get_ppaace(liodn);
 351	if (!ppaace)
 352		return -ENOENT;
 353
 354	/* window size is 2^(WSE+1) bytes */
 355	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
 356	       map_addrspace_size_to_wse(win_size));
 357
 358	pamu_init_ppaace(ppaace);
 359
 360	ppaace->wbah = win_addr >> (PAMU_PAGE_SHIFT + 20);
 361	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL,
 362	       (win_addr >> PAMU_PAGE_SHIFT));
 363
 364	/* set up operation mapping if it's configured */
 365	if (omi < OME_NUMBER_ENTRIES) {
 366		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 367		ppaace->op_encode.index_ot.omi = omi;
 368	} else if (~omi != 0) {
 369		pr_debug("bad operation mapping index: %d\n", omi);
 370		return -EINVAL;
 371	}
 372
 373	/* configure stash id */
 374	if (~stashid != 0)
 375		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
 376
 377	/* configure snoop id */
 378	if (~snoopid != 0)
 379		ppaace->domain_attr.to_host.snpid = snoopid;
 380
 381	if (subwin_cnt) {
 382		/* The first entry is in the primary PAACE instead */
 383		fspi = pamu_get_fspi_and_allocate(subwin_cnt - 1);
 384		if (fspi == ULONG_MAX) {
 385			pr_debug("spaace indexes exhausted\n");
 386			return -EINVAL;
 387		}
 388
 389		/* window count is 2^(WCE+1) bytes */
 390		set_bf(ppaace->impl_attr, PAACE_IA_WCE,
 391		       map_subwindow_cnt_to_wce(subwin_cnt));
 392		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0x1);
 393		ppaace->fspi = fspi;
 394	} else {
 395		set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
 396		ppaace->twbah = rpn >> 20;
 397		set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, rpn);
 398		set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
 399		set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
 400		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
 401	}
 402	mb();
 403
 404	return 0;
 405}
 406
 407/**
 408 * pamu_config_spaace() - Sets up SPAACE entry for specified subwindow
 409 *
 410 * @liodn:  Logical IO device number
 411 * @subwin_cnt:  number of sub-windows associated with dma-window
 412 * @subwin: subwindow index
 413 * @subwin_size: size of subwindow
 414 * @omi: Operation mapping index
 415 * @rpn: real (true physical) page number
 416 * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
 417 *			  snoopid not defined
 418 * @stashid: cache stash id for associated cpu
 419 * @enable: enable/disable subwindow after reconfiguration
 420 * @prot: sub window permissions
 421 *
 422 * Returns 0 upon success else error code < 0 returned
 423 */
 424int pamu_config_spaace(int liodn, u32 subwin_cnt, u32 subwin,
 425		       phys_addr_t subwin_size, u32 omi, unsigned long rpn,
 426		       u32 snoopid, u32 stashid, int enable, int prot)
 427{
 428	struct paace *paace;
 429
 430	/* setup sub-windows */
 431	if (!subwin_cnt) {
 432		pr_debug("Invalid subwindow count\n");
 433		return -EINVAL;
 434	}
 435
 436	paace = pamu_get_ppaace(liodn);
 437	if (subwin > 0 && subwin < subwin_cnt && paace) {
 438		paace = pamu_get_spaace(paace, subwin - 1);
 439
 440		if (paace && !(paace->addr_bitfields & PAACE_V_VALID)) {
 441			pamu_init_spaace(paace);
 442			set_bf(paace->addr_bitfields, SPAACE_AF_LIODN, liodn);
 443		}
 444	}
 445
 446	if (!paace) {
 447		pr_debug("Invalid liodn entry\n");
 448		return -ENOENT;
 449	}
 450
 451	if ((subwin_size & (subwin_size - 1)) || subwin_size < PAMU_PAGE_SIZE) {
 452		pr_debug("subwindow size out of range, or not a power of 2\n");
 453		return -EINVAL;
 454	}
 455
 456	if (rpn == ULONG_MAX) {
 457		pr_debug("real page number out of range\n");
 458		return -EINVAL;
 459	}
 460
 461	/* window size is 2^(WSE+1) bytes */
 462	set_bf(paace->win_bitfields, PAACE_WIN_SWSE,
 463	       map_addrspace_size_to_wse(subwin_size));
 464
 465	set_bf(paace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
 466	paace->twbah = rpn >> 20;
 467	set_bf(paace->win_bitfields, PAACE_WIN_TWBAL, rpn);
 468	set_bf(paace->addr_bitfields, PAACE_AF_AP, prot);
 469
 470	/* configure snoop id */
 471	if (~snoopid != 0)
 472		paace->domain_attr.to_host.snpid = snoopid;
 473
 474	/* set up operation mapping if it's configured */
 475	if (omi < OME_NUMBER_ENTRIES) {
 476		set_bf(paace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 477		paace->op_encode.index_ot.omi = omi;
 478	} else if (~omi != 0) {
 479		pr_debug("bad operation mapping index: %d\n", omi);
 480		return -EINVAL;
 481	}
 482
 483	if (~stashid != 0)
 484		set_bf(paace->impl_attr, PAACE_IA_CID, stashid);
 485
 486	smp_wmb();
 487
 488	if (enable)
 489		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
 490
 491	mb();
 492
 493	return 0;
 494}
 495
 496/**
 497 * get_ome_index() - Returns the index in the operation mapping table
 498 *                   for device.
 499 * @*omi_index: pointer for storing the index value
 500 *
 501 */
 502void get_ome_index(u32 *omi_index, struct device *dev)
 503{
 504	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
 505		*omi_index = OMI_QMAN;
 506	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
 507		*omi_index = OMI_QMAN_PRIV;
 508}
 509
 510/**
 511 * get_stash_id - Returns stash destination id corresponding to a
 512 *                cache type and vcpu.
 513 * @stash_dest_hint: L1, L2 or L3
 514 * @vcpu: vpcu target for a particular cache type.
 515 *
 516 * Returs stash on success or ~(u32)0 on failure.
 517 *
 518 */
 519u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
 520{
 521	const u32 *prop;
 522	struct device_node *node;
 523	u32 cache_level;
 524	int len, found = 0;
 525	int i;
 526
 527	/* Fastpath, exit early if L3/CPC cache is target for stashing */
 528	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
 529		node = of_find_matching_node(NULL, l3_device_ids);
 530		if (node) {
 531			prop = of_get_property(node, "cache-stash-id", NULL);
 532			if (!prop) {
 533				pr_debug("missing cache-stash-id at %s\n",
 534					 node->full_name);
 535				of_node_put(node);
 536				return ~(u32)0;
 537			}
 538			of_node_put(node);
 539			return be32_to_cpup(prop);
 540		}
 541		return ~(u32)0;
 542	}
 543
 544	for_each_node_by_type(node, "cpu") {
 545		prop = of_get_property(node, "reg", &len);
 546		for (i = 0; i < len / sizeof(u32); i++) {
 547			if (be32_to_cpup(&prop[i]) == vcpu) {
 548				found = 1;
 549				goto found_cpu_node;
 550			}
 551		}
 552	}
 553found_cpu_node:
 554
 555	/* find the hwnode that represents the cache */
 556	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
 557		if (stash_dest_hint == cache_level) {
 558			prop = of_get_property(node, "cache-stash-id", NULL);
 559			if (!prop) {
 560				pr_debug("missing cache-stash-id at %s\n",
 561					 node->full_name);
 562				of_node_put(node);
 563				return ~(u32)0;
 564			}
 565			of_node_put(node);
 566			return be32_to_cpup(prop);
 567		}
 568
 569		prop = of_get_property(node, "next-level-cache", NULL);
 570		if (!prop) {
 571			pr_debug("can't find next-level-cache at %s\n",
 572				 node->full_name);
 573			of_node_put(node);
 574			return ~(u32)0;  /* can't traverse any further */
 575		}
 576		of_node_put(node);
 577
 578		/* advance to next node in cache hierarchy */
 579		node = of_find_node_by_phandle(*prop);
 580		if (!node) {
 581			pr_debug("Invalid node for cache hierarchy\n");
 582			return ~(u32)0;
 583		}
 584	}
 585
 586	pr_debug("stash dest not found for %d on vcpu %d\n",
 587		 stash_dest_hint, vcpu);
 588	return ~(u32)0;
 589}
 590
 591/* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
 592#define QMAN_PAACE 1
 593#define QMAN_PORTAL_PAACE 2
 594#define BMAN_PAACE 3
 595
 596/**
 597 * Setup operation mapping and stash destinations for QMAN and QMAN portal.
 598 * Memory accesses to QMAN and BMAN private memory need not be coherent, so
 599 * clear the PAACE entry coherency attribute for them.
 600 */
 601static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
 602{
 603	switch (paace_type) {
 604	case QMAN_PAACE:
 605		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 606		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
 607		/* setup QMAN Private data stashing for the L3 cache */
 608		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
 609		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 610		       0);
 611		break;
 612	case QMAN_PORTAL_PAACE:
 613		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 614		ppaace->op_encode.index_ot.omi = OMI_QMAN;
 615		/* Set DQRR and Frame stashing for the L3 cache */
 616		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
 617		break;
 618	case BMAN_PAACE:
 619		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 620		       0);
 621		break;
 622	}
 623}
 624
 625/**
 626 * Setup the operation mapping table for various devices. This is a static
 627 * table where each table index corresponds to a particular device. PAMU uses
 628 * this table to translate device transaction to appropriate corenet
 629 * transaction.
 630 */
 631static void setup_omt(struct ome *omt)
 632{
 633	struct ome *ome;
 634
 635	/* Configure OMI_QMAN */
 636	ome = &omt[OMI_QMAN];
 637
 638	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
 639	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
 640	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 641	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
 642
 643	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
 644	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
 645
 646	/* Configure OMI_FMAN */
 647	ome = &omt[OMI_FMAN];
 648	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
 649	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 650
 651	/* Configure OMI_QMAN private */
 652	ome = &omt[OMI_QMAN_PRIV];
 653	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
 654	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 655	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
 656	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
 657
 658	/* Configure OMI_CAAM */
 659	ome = &omt[OMI_CAAM];
 660	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
 661	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 662}
 663
 664/*
 665 * Get the maximum number of PAACT table entries
 666 * and subwindows supported by PAMU
 667 */
 668static void get_pamu_cap_values(unsigned long pamu_reg_base)
 669{
 670	u32 pc_val;
 671
 672	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
 673	/* Maximum number of subwindows per liodn */
 674	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
 675}
 676
 677/* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
 678static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
 679			  phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
 680			  phys_addr_t omt_phys)
 681{
 682	u32 *pc;
 683	struct pamu_mmap_regs *pamu_regs;
 684
 685	pc = (u32 *) (pamu_reg_base + PAMU_PC);
 686	pamu_regs = (struct pamu_mmap_regs *)
 687		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
 688
 689	/* set up pointers to corenet control blocks */
 690
 691	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
 692	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
 693	ppaact_phys = ppaact_phys + PAACT_SIZE;
 694	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
 695	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
 696
 697	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
 698	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
 699	spaact_phys = spaact_phys + SPAACT_SIZE;
 700	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
 701	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
 702
 703	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
 704	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
 705	omt_phys = omt_phys + OMT_SIZE;
 706	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
 707	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
 708
 709	/*
 710	 * set PAMU enable bit,
 711	 * allow ppaact & omt to be cached
 712	 * & enable PAMU access violation interrupts.
 713	 */
 714
 715	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
 716		 PAMU_ACCESS_VIOLATION_ENABLE);
 717	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
 718	return 0;
 719}
 720
 721/* Enable all device LIODNS */
 722static void setup_liodns(void)
 723{
 724	int i, len;
 725	struct paace *ppaace;
 726	struct device_node *node = NULL;
 727	const u32 *prop;
 728
 729	for_each_node_with_property(node, "fsl,liodn") {
 730		prop = of_get_property(node, "fsl,liodn", &len);
 731		for (i = 0; i < len / sizeof(u32); i++) {
 732			int liodn;
 733
 734			liodn = be32_to_cpup(&prop[i]);
 735			if (liodn >= PAACE_NUMBER_ENTRIES) {
 736				pr_debug("Invalid LIODN value %d\n", liodn);
 737				continue;
 738			}
 739			ppaace = pamu_get_ppaace(liodn);
 740			pamu_init_ppaace(ppaace);
 741			/* window size is 2^(WSE+1) bytes */
 742			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
 743			ppaace->wbah = 0;
 744			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
 745			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
 746			       PAACE_ATM_NO_XLATE);
 747			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
 748			       PAACE_AP_PERMS_ALL);
 749			if (of_device_is_compatible(node, "fsl,qman-portal"))
 750				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
 751			if (of_device_is_compatible(node, "fsl,qman"))
 752				setup_qbman_paace(ppaace, QMAN_PAACE);
 753			if (of_device_is_compatible(node, "fsl,bman"))
 754				setup_qbman_paace(ppaace, BMAN_PAACE);
 755			mb();
 756			pamu_enable_liodn(liodn);
 757		}
 758	}
 759}
 760
 761static irqreturn_t pamu_av_isr(int irq, void *arg)
 762{
 763	struct pamu_isr_data *data = arg;
 764	phys_addr_t phys;
 765	unsigned int i, j, ret;
 766
 767	pr_emerg("access violation interrupt\n");
 768
 769	for (i = 0; i < data->count; i++) {
 770		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
 771		u32 pics = in_be32(p + PAMU_PICS);
 772
 773		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
 774			u32 avs1 = in_be32(p + PAMU_AVS1);
 775			struct paace *paace;
 776
 777			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
 778			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
 779			pr_emerg("AVS1=%08x\n", avs1);
 780			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
 781			pr_emerg("AVA=%016llx\n",
 782				 make64(in_be32(p + PAMU_AVAH),
 783					in_be32(p + PAMU_AVAL)));
 784			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
 785			pr_emerg("POEA=%016llx\n",
 786				 make64(in_be32(p + PAMU_POEAH),
 787					in_be32(p + PAMU_POEAL)));
 788
 789			phys = make64(in_be32(p + PAMU_POEAH),
 790				      in_be32(p + PAMU_POEAL));
 791
 792			/* Assume that POEA points to a PAACE */
 793			if (phys) {
 794				u32 *paace = phys_to_virt(phys);
 795
 796				/* Only the first four words are relevant */
 797				for (j = 0; j < 4; j++)
 798					pr_emerg("PAACE[%u]=%08x\n",
 799						 j, in_be32(paace + j));
 800			}
 801
 802			/* clear access violation condition */
 803			out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
 804			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
 805			BUG_ON(!paace);
 806			/* check if we got a violation for a disabled LIODN */
 807			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
 808				/*
 809				 * As per hardware erratum A-003638, access
 810				 * violation can be reported for a disabled
 811				 * LIODN. If we hit that condition, disable
 812				 * access violation reporting.
 813				 */
 814				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
 815			} else {
 816				/* Disable the LIODN */
 817				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
 818				BUG_ON(ret);
 819				pr_emerg("Disabling liodn %x\n",
 820					 avs1 >> PAMU_AVS1_LIODN_SHIFT);
 821			}
 822			out_be32((p + PAMU_PICS), pics);
 823		}
 824	}
 825
 826	return IRQ_HANDLED;
 827}
 828
 829#define LAWAR_EN		0x80000000
 830#define LAWAR_TARGET_MASK	0x0FF00000
 831#define LAWAR_TARGET_SHIFT	20
 832#define LAWAR_SIZE_MASK		0x0000003F
 833#define LAWAR_CSDID_MASK	0x000FF000
 834#define LAWAR_CSDID_SHIFT	12
 835
 836#define LAW_SIZE_4K		0xb
 837
 838struct ccsr_law {
 839	u32	lawbarh;	/* LAWn base address high */
 840	u32	lawbarl;	/* LAWn base address low */
 841	u32	lawar;		/* LAWn attributes */
 842	u32	reserved;
 843};
 844
 845/*
 846 * Create a coherence subdomain for a given memory block.
 847 */
 848static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
 849{
 850	struct device_node *np;
 851	const __be32 *iprop;
 852	void __iomem *lac = NULL;	/* Local Access Control registers */
 853	struct ccsr_law __iomem *law;
 854	void __iomem *ccm = NULL;
 855	u32 __iomem *csdids;
 856	unsigned int i, num_laws, num_csds;
 857	u32 law_target = 0;
 858	u32 csd_id = 0;
 859	int ret = 0;
 860
 861	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
 862	if (!np)
 863		return -ENODEV;
 864
 865	iprop = of_get_property(np, "fsl,num-laws", NULL);
 866	if (!iprop) {
 867		ret = -ENODEV;
 868		goto error;
 869	}
 870
 871	num_laws = be32_to_cpup(iprop);
 872	if (!num_laws) {
 873		ret = -ENODEV;
 874		goto error;
 875	}
 876
 877	lac = of_iomap(np, 0);
 878	if (!lac) {
 879		ret = -ENODEV;
 880		goto error;
 881	}
 882
 883	/* LAW registers are at offset 0xC00 */
 884	law = lac + 0xC00;
 885
 886	of_node_put(np);
 887
 888	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
 889	if (!np) {
 890		ret = -ENODEV;
 891		goto error;
 892	}
 893
 894	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
 895	if (!iprop) {
 896		ret = -ENODEV;
 897		goto error;
 898	}
 899
 900	num_csds = be32_to_cpup(iprop);
 901	if (!num_csds) {
 902		ret = -ENODEV;
 903		goto error;
 904	}
 905
 906	ccm = of_iomap(np, 0);
 907	if (!ccm) {
 908		ret = -ENOMEM;
 909		goto error;
 910	}
 911
 912	/* The undocumented CSDID registers are at offset 0x600 */
 913	csdids = ccm + 0x600;
 914
 915	of_node_put(np);
 916	np = NULL;
 917
 918	/* Find an unused coherence subdomain ID */
 919	for (csd_id = 0; csd_id < num_csds; csd_id++) {
 920		if (!csdids[csd_id])
 921			break;
 922	}
 923
 924	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
 925	csdids[csd_id] = csd_port_id;
 926
 927	/* Find the DDR LAW that maps to our buffer. */
 928	for (i = 0; i < num_laws; i++) {
 929		if (law[i].lawar & LAWAR_EN) {
 930			phys_addr_t law_start, law_end;
 931
 932			law_start = make64(law[i].lawbarh, law[i].lawbarl);
 933			law_end = law_start +
 934				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
 935
 936			if (law_start <= phys && phys < law_end) {
 937				law_target = law[i].lawar & LAWAR_TARGET_MASK;
 938				break;
 939			}
 940		}
 941	}
 942
 943	if (i == 0 || i == num_laws) {
 944		/* This should never happen */
 945		ret = -ENOENT;
 946		goto error;
 947	}
 948
 949	/* Find a free LAW entry */
 950	while (law[--i].lawar & LAWAR_EN) {
 951		if (i == 0) {
 952			/* No higher priority LAW slots available */
 953			ret = -ENOENT;
 954			goto error;
 955		}
 956	}
 957
 958	law[i].lawbarh = upper_32_bits(phys);
 959	law[i].lawbarl = lower_32_bits(phys);
 960	wmb();
 961	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
 962		(LAW_SIZE_4K + get_order(size));
 963	wmb();
 964
 965error:
 966	if (ccm)
 967		iounmap(ccm);
 968
 969	if (lac)
 970		iounmap(lac);
 971
 972	if (np)
 973		of_node_put(np);
 974
 975	return ret;
 976}
 977
 978/*
 979 * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
 980 * bit map of snoopers for a given range of memory mapped by a LAW.
 981 *
 982 * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
 983 * table should never need to be updated.  SVRs are guaranteed to be unique, so
 984 * there is no worry that a future SOC will inadvertently have one of these
 985 * values.
 986 */
 987static const struct {
 988	u32 svr;
 989	u32 port_id;
 990} port_id_map[] = {
 991	{(SVR_P2040 << 8) | 0x10, 0xFF000000},	/* P2040 1.0 */
 992	{(SVR_P2040 << 8) | 0x11, 0xFF000000},	/* P2040 1.1 */
 993	{(SVR_P2041 << 8) | 0x10, 0xFF000000},	/* P2041 1.0 */
 994	{(SVR_P2041 << 8) | 0x11, 0xFF000000},	/* P2041 1.1 */
 995	{(SVR_P3041 << 8) | 0x10, 0xFF000000},	/* P3041 1.0 */
 996	{(SVR_P3041 << 8) | 0x11, 0xFF000000},	/* P3041 1.1 */
 997	{(SVR_P4040 << 8) | 0x20, 0xFFF80000},	/* P4040 2.0 */
 998	{(SVR_P4080 << 8) | 0x20, 0xFFF80000},	/* P4080 2.0 */
 999	{(SVR_P5010 << 8) | 0x10, 0xFC000000},	/* P5010 1.0 */
1000	{(SVR_P5010 << 8) | 0x20, 0xFC000000},	/* P5010 2.0 */
1001	{(SVR_P5020 << 8) | 0x10, 0xFC000000},	/* P5020 1.0 */
1002	{(SVR_P5021 << 8) | 0x10, 0xFF800000},	/* P5021 1.0 */
1003	{(SVR_P5040 << 8) | 0x10, 0xFF800000},	/* P5040 1.0 */
1004};
1005
1006#define SVR_SECURITY	0x80000	/* The Security (E) bit */
1007
1008static int fsl_pamu_probe(struct platform_device *pdev)
1009{
1010	struct device *dev = &pdev->dev;
1011	void __iomem *pamu_regs = NULL;
1012	struct ccsr_guts __iomem *guts_regs = NULL;
1013	u32 pamubypenr, pamu_counter;
1014	unsigned long pamu_reg_off;
1015	unsigned long pamu_reg_base;
1016	struct pamu_isr_data *data = NULL;
1017	struct device_node *guts_node;
1018	u64 size;
1019	struct page *p;
1020	int ret = 0;
1021	int irq;
1022	phys_addr_t ppaact_phys;
1023	phys_addr_t spaact_phys;
1024	struct ome *omt;
1025	phys_addr_t omt_phys;
1026	size_t mem_size = 0;
1027	unsigned int order = 0;
1028	u32 csd_port_id = 0;
1029	unsigned i;
1030	/*
1031	 * enumerate all PAMUs and allocate and setup PAMU tables
1032	 * for each of them,
1033	 * NOTE : All PAMUs share the same LIODN tables.
1034	 */
1035
1036	pamu_regs = of_iomap(dev->of_node, 0);
1037	if (!pamu_regs) {
1038		dev_err(dev, "ioremap of PAMU node failed\n");
1039		return -ENOMEM;
1040	}
1041	of_get_address(dev->of_node, 0, &size, NULL);
1042
1043	irq = irq_of_parse_and_map(dev->of_node, 0);
1044	if (irq == NO_IRQ) {
1045		dev_warn(dev, "no interrupts listed in PAMU node\n");
1046		goto error;
1047	}
1048
1049	data = kzalloc(sizeof(*data), GFP_KERNEL);
1050	if (!data) {
1051		ret = -ENOMEM;
1052		goto error;
1053	}
1054	data->pamu_reg_base = pamu_regs;
1055	data->count = size / PAMU_OFFSET;
1056
1057	/* The ISR needs access to the regs, so we won't iounmap them */
1058	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
1059	if (ret < 0) {
1060		dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
1061		goto error;
1062	}
1063
1064	guts_node = of_find_matching_node(NULL, guts_device_ids);
1065	if (!guts_node) {
1066		dev_err(dev, "could not find GUTS node %s\n",
1067			dev->of_node->full_name);
1068		ret = -ENODEV;
1069		goto error;
1070	}
1071
1072	guts_regs = of_iomap(guts_node, 0);
1073	of_node_put(guts_node);
1074	if (!guts_regs) {
1075		dev_err(dev, "ioremap of GUTS node failed\n");
1076		ret = -ENODEV;
1077		goto error;
1078	}
1079
1080	/* read in the PAMU capability registers */
1081	get_pamu_cap_values((unsigned long)pamu_regs);
1082	/*
1083	 * To simplify the allocation of a coherency domain, we allocate the
1084	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
1085	 * wastes more memory compared to allocating the buffers separately.
1086	 */
1087	/* Determine how much memory we need */
1088	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
1089		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
1090		(PAGE_SIZE << get_order(OMT_SIZE));
1091	order = get_order(mem_size);
1092
1093	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1094	if (!p) {
1095		dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
1096		ret = -ENOMEM;
1097		goto error;
1098	}
1099
1100	ppaact = page_address(p);
1101	ppaact_phys = page_to_phys(p);
1102
1103	/* Make sure the memory is naturally aligned */
1104	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
1105		dev_err(dev, "PAACT/OMT block is unaligned\n");
1106		ret = -ENOMEM;
1107		goto error;
1108	}
1109
1110	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
1111	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
1112
1113	dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
1114
1115	/* Check to see if we need to implement the work-around on this SOC */
1116
1117	/* Determine the Port ID for our coherence subdomain */
1118	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
1119		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
1120			csd_port_id = port_id_map[i].port_id;
1121			dev_dbg(dev, "found matching SVR %08x\n",
1122				port_id_map[i].svr);
1123			break;
1124		}
1125	}
1126
1127	if (csd_port_id) {
1128		dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
1129			&ppaact_phys, mem_size, csd_port_id);
1130
1131		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
1132		if (ret) {
1133			dev_err(dev, "could not create coherence subdomain\n");
1134			return ret;
1135		}
1136	}
1137
1138	spaact_phys = virt_to_phys(spaact);
1139	omt_phys = virt_to_phys(omt);
1140
1141	spaace_pool = gen_pool_create(ilog2(sizeof(struct paace)), -1);
1142	if (!spaace_pool) {
1143		ret = -ENOMEM;
1144		dev_err(dev, "Failed to allocate spaace gen pool\n");
1145		goto error;
1146	}
1147
1148	ret = gen_pool_add(spaace_pool, (unsigned long)spaact, SPAACT_SIZE, -1);
1149	if (ret)
1150		goto error_genpool;
1151
1152	pamubypenr = in_be32(&guts_regs->pamubypenr);
1153
1154	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
1155	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
1156
1157		pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
1158		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
1159			       spaact_phys, omt_phys);
1160		/* Disable PAMU bypass for this PAMU */
1161		pamubypenr &= ~pamu_counter;
1162	}
1163
1164	setup_omt(omt);
1165
1166	/* Enable all relevant PAMU(s) */
1167	out_be32(&guts_regs->pamubypenr, pamubypenr);
1168
1169	iounmap(guts_regs);
1170
1171	/* Enable DMA for the LIODNs in the device tree */
1172
1173	setup_liodns();
1174
1175	return 0;
1176
1177error_genpool:
1178	gen_pool_destroy(spaace_pool);
1179
1180error:
1181	if (irq != NO_IRQ)
1182		free_irq(irq, data);
1183
1184	if (data) {
1185		memset(data, 0, sizeof(struct pamu_isr_data));
1186		kfree(data);
1187	}
1188
1189	if (pamu_regs)
1190		iounmap(pamu_regs);
1191
1192	if (guts_regs)
1193		iounmap(guts_regs);
1194
1195	if (ppaact)
1196		free_pages((unsigned long)ppaact, order);
1197
1198	ppaact = NULL;
1199
1200	return ret;
1201}
1202
1203static struct platform_driver fsl_of_pamu_driver = {
1204	.driver = {
1205		.name = "fsl-of-pamu",
1206	},
1207	.probe = fsl_pamu_probe,
1208};
1209
1210static __init int fsl_pamu_init(void)
1211{
1212	struct platform_device *pdev = NULL;
1213	struct device_node *np;
1214	int ret;
1215
1216	/*
1217	 * The normal OF process calls the probe function at some
1218	 * indeterminate later time, after most drivers have loaded.  This is
1219	 * too late for us, because PAMU clients (like the Qman driver)
1220	 * depend on PAMU being initialized early.
1221	 *
1222	 * So instead, we "manually" call our probe function by creating the
1223	 * platform devices ourselves.
1224	 */
1225
1226	/*
1227	 * We assume that there is only one PAMU node in the device tree.  A
1228	 * single PAMU node represents all of the PAMU devices in the SOC
1229	 * already.   Everything else already makes that assumption, and the
1230	 * binding for the PAMU nodes doesn't allow for any parent-child
1231	 * relationships anyway.  In other words, support for more than one
1232	 * PAMU node would require significant changes to a lot of code.
1233	 */
1234
1235	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
1236	if (!np) {
1237		pr_err("could not find a PAMU node\n");
1238		return -ENODEV;
1239	}
1240
1241	ret = platform_driver_register(&fsl_of_pamu_driver);
1242	if (ret) {
1243		pr_err("could not register driver (err=%i)\n", ret);
1244		goto error_driver_register;
1245	}
1246
1247	pdev = platform_device_alloc("fsl-of-pamu", 0);
1248	if (!pdev) {
1249		pr_err("could not allocate device %s\n",
1250		       np->full_name);
1251		ret = -ENOMEM;
1252		goto error_device_alloc;
1253	}
1254	pdev->dev.of_node = of_node_get(np);
1255
1256	ret = pamu_domain_init();
1257	if (ret)
1258		goto error_device_add;
1259
1260	ret = platform_device_add(pdev);
1261	if (ret) {
1262		pr_err("could not add device %s (err=%i)\n",
1263		       np->full_name, ret);
1264		goto error_device_add;
1265	}
1266
1267	return 0;
1268
1269error_device_add:
1270	of_node_put(pdev->dev.of_node);
1271	pdev->dev.of_node = NULL;
1272
1273	platform_device_put(pdev);
1274
1275error_device_alloc:
1276	platform_driver_unregister(&fsl_of_pamu_driver);
1277
1278error_driver_register:
1279	of_node_put(np);
1280
1281	return ret;
1282}
1283arch_initcall(fsl_pamu_init);