Loading...
1/*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7/*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15#include <linux/init.h>
16#include <linux/types.h>
17#include <linux/input/mt.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/random.h>
21#include <linux/major.h>
22#include <linux/proc_fs.h>
23#include <linux/sched.h>
24#include <linux/seq_file.h>
25#include <linux/poll.h>
26#include <linux/device.h>
27#include <linux/mutex.h>
28#include <linux/rcupdate.h>
29#include "input-compat.h"
30
31MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32MODULE_DESCRIPTION("Input core");
33MODULE_LICENSE("GPL");
34
35#define INPUT_DEVICES 256
36
37static LIST_HEAD(input_dev_list);
38static LIST_HEAD(input_handler_list);
39
40/*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46static DEFINE_MUTEX(input_mutex);
47
48static struct input_handler *input_table[8];
49
50static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
52{
53 return code <= max && test_bit(code, bm);
54}
55
56static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57{
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
61
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
64
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
67 }
68
69 return value;
70}
71
72/*
73 * Pass event first through all filters and then, if event has not been
74 * filtered out, through all open handles. This function is called with
75 * dev->event_lock held and interrupts disabled.
76 */
77static void input_pass_event(struct input_dev *dev,
78 unsigned int type, unsigned int code, int value)
79{
80 struct input_handler *handler;
81 struct input_handle *handle;
82
83 rcu_read_lock();
84
85 handle = rcu_dereference(dev->grab);
86 if (handle)
87 handle->handler->event(handle, type, code, value);
88 else {
89 bool filtered = false;
90
91 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
92 if (!handle->open)
93 continue;
94
95 handler = handle->handler;
96 if (!handler->filter) {
97 if (filtered)
98 break;
99
100 handler->event(handle, type, code, value);
101
102 } else if (handler->filter(handle, type, code, value))
103 filtered = true;
104 }
105 }
106
107 rcu_read_unlock();
108}
109
110/*
111 * Generate software autorepeat event. Note that we take
112 * dev->event_lock here to avoid racing with input_event
113 * which may cause keys get "stuck".
114 */
115static void input_repeat_key(unsigned long data)
116{
117 struct input_dev *dev = (void *) data;
118 unsigned long flags;
119
120 spin_lock_irqsave(&dev->event_lock, flags);
121
122 if (test_bit(dev->repeat_key, dev->key) &&
123 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
124
125 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
126
127 if (dev->sync) {
128 /*
129 * Only send SYN_REPORT if we are not in a middle
130 * of driver parsing a new hardware packet.
131 * Otherwise assume that the driver will send
132 * SYN_REPORT once it's done.
133 */
134 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
135 }
136
137 if (dev->rep[REP_PERIOD])
138 mod_timer(&dev->timer, jiffies +
139 msecs_to_jiffies(dev->rep[REP_PERIOD]));
140 }
141
142 spin_unlock_irqrestore(&dev->event_lock, flags);
143}
144
145static void input_start_autorepeat(struct input_dev *dev, int code)
146{
147 if (test_bit(EV_REP, dev->evbit) &&
148 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
149 dev->timer.data) {
150 dev->repeat_key = code;
151 mod_timer(&dev->timer,
152 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
153 }
154}
155
156static void input_stop_autorepeat(struct input_dev *dev)
157{
158 del_timer(&dev->timer);
159}
160
161#define INPUT_IGNORE_EVENT 0
162#define INPUT_PASS_TO_HANDLERS 1
163#define INPUT_PASS_TO_DEVICE 2
164#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
165
166static int input_handle_abs_event(struct input_dev *dev,
167 unsigned int code, int *pval)
168{
169 bool is_mt_event;
170 int *pold;
171
172 if (code == ABS_MT_SLOT) {
173 /*
174 * "Stage" the event; we'll flush it later, when we
175 * get actual touch data.
176 */
177 if (*pval >= 0 && *pval < dev->mtsize)
178 dev->slot = *pval;
179
180 return INPUT_IGNORE_EVENT;
181 }
182
183 is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
184
185 if (!is_mt_event) {
186 pold = &dev->absinfo[code].value;
187 } else if (dev->mt) {
188 struct input_mt_slot *mtslot = &dev->mt[dev->slot];
189 pold = &mtslot->abs[code - ABS_MT_FIRST];
190 } else {
191 /*
192 * Bypass filtering for multi-touch events when
193 * not employing slots.
194 */
195 pold = NULL;
196 }
197
198 if (pold) {
199 *pval = input_defuzz_abs_event(*pval, *pold,
200 dev->absinfo[code].fuzz);
201 if (*pold == *pval)
202 return INPUT_IGNORE_EVENT;
203
204 *pold = *pval;
205 }
206
207 /* Flush pending "slot" event */
208 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
209 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
210 input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
211 }
212
213 return INPUT_PASS_TO_HANDLERS;
214}
215
216static void input_handle_event(struct input_dev *dev,
217 unsigned int type, unsigned int code, int value)
218{
219 int disposition = INPUT_IGNORE_EVENT;
220
221 switch (type) {
222
223 case EV_SYN:
224 switch (code) {
225 case SYN_CONFIG:
226 disposition = INPUT_PASS_TO_ALL;
227 break;
228
229 case SYN_REPORT:
230 if (!dev->sync) {
231 dev->sync = true;
232 disposition = INPUT_PASS_TO_HANDLERS;
233 }
234 break;
235 case SYN_MT_REPORT:
236 dev->sync = false;
237 disposition = INPUT_PASS_TO_HANDLERS;
238 break;
239 }
240 break;
241
242 case EV_KEY:
243 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
244 !!test_bit(code, dev->key) != value) {
245
246 if (value != 2) {
247 __change_bit(code, dev->key);
248 if (value)
249 input_start_autorepeat(dev, code);
250 else
251 input_stop_autorepeat(dev);
252 }
253
254 disposition = INPUT_PASS_TO_HANDLERS;
255 }
256 break;
257
258 case EV_SW:
259 if (is_event_supported(code, dev->swbit, SW_MAX) &&
260 !!test_bit(code, dev->sw) != value) {
261
262 __change_bit(code, dev->sw);
263 disposition = INPUT_PASS_TO_HANDLERS;
264 }
265 break;
266
267 case EV_ABS:
268 if (is_event_supported(code, dev->absbit, ABS_MAX))
269 disposition = input_handle_abs_event(dev, code, &value);
270
271 break;
272
273 case EV_REL:
274 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
275 disposition = INPUT_PASS_TO_HANDLERS;
276
277 break;
278
279 case EV_MSC:
280 if (is_event_supported(code, dev->mscbit, MSC_MAX))
281 disposition = INPUT_PASS_TO_ALL;
282
283 break;
284
285 case EV_LED:
286 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
287 !!test_bit(code, dev->led) != value) {
288
289 __change_bit(code, dev->led);
290 disposition = INPUT_PASS_TO_ALL;
291 }
292 break;
293
294 case EV_SND:
295 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
296
297 if (!!test_bit(code, dev->snd) != !!value)
298 __change_bit(code, dev->snd);
299 disposition = INPUT_PASS_TO_ALL;
300 }
301 break;
302
303 case EV_REP:
304 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
305 dev->rep[code] = value;
306 disposition = INPUT_PASS_TO_ALL;
307 }
308 break;
309
310 case EV_FF:
311 if (value >= 0)
312 disposition = INPUT_PASS_TO_ALL;
313 break;
314
315 case EV_PWR:
316 disposition = INPUT_PASS_TO_ALL;
317 break;
318 }
319
320 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
321 dev->sync = false;
322
323 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
324 dev->event(dev, type, code, value);
325
326 if (disposition & INPUT_PASS_TO_HANDLERS)
327 input_pass_event(dev, type, code, value);
328}
329
330/**
331 * input_event() - report new input event
332 * @dev: device that generated the event
333 * @type: type of the event
334 * @code: event code
335 * @value: value of the event
336 *
337 * This function should be used by drivers implementing various input
338 * devices to report input events. See also input_inject_event().
339 *
340 * NOTE: input_event() may be safely used right after input device was
341 * allocated with input_allocate_device(), even before it is registered
342 * with input_register_device(), but the event will not reach any of the
343 * input handlers. Such early invocation of input_event() may be used
344 * to 'seed' initial state of a switch or initial position of absolute
345 * axis, etc.
346 */
347void input_event(struct input_dev *dev,
348 unsigned int type, unsigned int code, int value)
349{
350 unsigned long flags;
351
352 if (is_event_supported(type, dev->evbit, EV_MAX)) {
353
354 spin_lock_irqsave(&dev->event_lock, flags);
355 add_input_randomness(type, code, value);
356 input_handle_event(dev, type, code, value);
357 spin_unlock_irqrestore(&dev->event_lock, flags);
358 }
359}
360EXPORT_SYMBOL(input_event);
361
362/**
363 * input_inject_event() - send input event from input handler
364 * @handle: input handle to send event through
365 * @type: type of the event
366 * @code: event code
367 * @value: value of the event
368 *
369 * Similar to input_event() but will ignore event if device is
370 * "grabbed" and handle injecting event is not the one that owns
371 * the device.
372 */
373void input_inject_event(struct input_handle *handle,
374 unsigned int type, unsigned int code, int value)
375{
376 struct input_dev *dev = handle->dev;
377 struct input_handle *grab;
378 unsigned long flags;
379
380 if (is_event_supported(type, dev->evbit, EV_MAX)) {
381 spin_lock_irqsave(&dev->event_lock, flags);
382
383 rcu_read_lock();
384 grab = rcu_dereference(dev->grab);
385 if (!grab || grab == handle)
386 input_handle_event(dev, type, code, value);
387 rcu_read_unlock();
388
389 spin_unlock_irqrestore(&dev->event_lock, flags);
390 }
391}
392EXPORT_SYMBOL(input_inject_event);
393
394/**
395 * input_alloc_absinfo - allocates array of input_absinfo structs
396 * @dev: the input device emitting absolute events
397 *
398 * If the absinfo struct the caller asked for is already allocated, this
399 * functions will not do anything.
400 */
401void input_alloc_absinfo(struct input_dev *dev)
402{
403 if (!dev->absinfo)
404 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
405 GFP_KERNEL);
406
407 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
408}
409EXPORT_SYMBOL(input_alloc_absinfo);
410
411void input_set_abs_params(struct input_dev *dev, unsigned int axis,
412 int min, int max, int fuzz, int flat)
413{
414 struct input_absinfo *absinfo;
415
416 input_alloc_absinfo(dev);
417 if (!dev->absinfo)
418 return;
419
420 absinfo = &dev->absinfo[axis];
421 absinfo->minimum = min;
422 absinfo->maximum = max;
423 absinfo->fuzz = fuzz;
424 absinfo->flat = flat;
425
426 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
427}
428EXPORT_SYMBOL(input_set_abs_params);
429
430
431/**
432 * input_grab_device - grabs device for exclusive use
433 * @handle: input handle that wants to own the device
434 *
435 * When a device is grabbed by an input handle all events generated by
436 * the device are delivered only to this handle. Also events injected
437 * by other input handles are ignored while device is grabbed.
438 */
439int input_grab_device(struct input_handle *handle)
440{
441 struct input_dev *dev = handle->dev;
442 int retval;
443
444 retval = mutex_lock_interruptible(&dev->mutex);
445 if (retval)
446 return retval;
447
448 if (dev->grab) {
449 retval = -EBUSY;
450 goto out;
451 }
452
453 rcu_assign_pointer(dev->grab, handle);
454
455 out:
456 mutex_unlock(&dev->mutex);
457 return retval;
458}
459EXPORT_SYMBOL(input_grab_device);
460
461static void __input_release_device(struct input_handle *handle)
462{
463 struct input_dev *dev = handle->dev;
464
465 if (dev->grab == handle) {
466 rcu_assign_pointer(dev->grab, NULL);
467 /* Make sure input_pass_event() notices that grab is gone */
468 synchronize_rcu();
469
470 list_for_each_entry(handle, &dev->h_list, d_node)
471 if (handle->open && handle->handler->start)
472 handle->handler->start(handle);
473 }
474}
475
476/**
477 * input_release_device - release previously grabbed device
478 * @handle: input handle that owns the device
479 *
480 * Releases previously grabbed device so that other input handles can
481 * start receiving input events. Upon release all handlers attached
482 * to the device have their start() method called so they have a change
483 * to synchronize device state with the rest of the system.
484 */
485void input_release_device(struct input_handle *handle)
486{
487 struct input_dev *dev = handle->dev;
488
489 mutex_lock(&dev->mutex);
490 __input_release_device(handle);
491 mutex_unlock(&dev->mutex);
492}
493EXPORT_SYMBOL(input_release_device);
494
495/**
496 * input_open_device - open input device
497 * @handle: handle through which device is being accessed
498 *
499 * This function should be called by input handlers when they
500 * want to start receive events from given input device.
501 */
502int input_open_device(struct input_handle *handle)
503{
504 struct input_dev *dev = handle->dev;
505 int retval;
506
507 retval = mutex_lock_interruptible(&dev->mutex);
508 if (retval)
509 return retval;
510
511 if (dev->going_away) {
512 retval = -ENODEV;
513 goto out;
514 }
515
516 handle->open++;
517
518 if (!dev->users++ && dev->open)
519 retval = dev->open(dev);
520
521 if (retval) {
522 dev->users--;
523 if (!--handle->open) {
524 /*
525 * Make sure we are not delivering any more events
526 * through this handle
527 */
528 synchronize_rcu();
529 }
530 }
531
532 out:
533 mutex_unlock(&dev->mutex);
534 return retval;
535}
536EXPORT_SYMBOL(input_open_device);
537
538int input_flush_device(struct input_handle *handle, struct file *file)
539{
540 struct input_dev *dev = handle->dev;
541 int retval;
542
543 retval = mutex_lock_interruptible(&dev->mutex);
544 if (retval)
545 return retval;
546
547 if (dev->flush)
548 retval = dev->flush(dev, file);
549
550 mutex_unlock(&dev->mutex);
551 return retval;
552}
553EXPORT_SYMBOL(input_flush_device);
554
555/**
556 * input_close_device - close input device
557 * @handle: handle through which device is being accessed
558 *
559 * This function should be called by input handlers when they
560 * want to stop receive events from given input device.
561 */
562void input_close_device(struct input_handle *handle)
563{
564 struct input_dev *dev = handle->dev;
565
566 mutex_lock(&dev->mutex);
567
568 __input_release_device(handle);
569
570 if (!--dev->users && dev->close)
571 dev->close(dev);
572
573 if (!--handle->open) {
574 /*
575 * synchronize_rcu() makes sure that input_pass_event()
576 * completed and that no more input events are delivered
577 * through this handle
578 */
579 synchronize_rcu();
580 }
581
582 mutex_unlock(&dev->mutex);
583}
584EXPORT_SYMBOL(input_close_device);
585
586/*
587 * Simulate keyup events for all keys that are marked as pressed.
588 * The function must be called with dev->event_lock held.
589 */
590static void input_dev_release_keys(struct input_dev *dev)
591{
592 int code;
593
594 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
595 for (code = 0; code <= KEY_MAX; code++) {
596 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
597 __test_and_clear_bit(code, dev->key)) {
598 input_pass_event(dev, EV_KEY, code, 0);
599 }
600 }
601 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
602 }
603}
604
605/*
606 * Prepare device for unregistering
607 */
608static void input_disconnect_device(struct input_dev *dev)
609{
610 struct input_handle *handle;
611
612 /*
613 * Mark device as going away. Note that we take dev->mutex here
614 * not to protect access to dev->going_away but rather to ensure
615 * that there are no threads in the middle of input_open_device()
616 */
617 mutex_lock(&dev->mutex);
618 dev->going_away = true;
619 mutex_unlock(&dev->mutex);
620
621 spin_lock_irq(&dev->event_lock);
622
623 /*
624 * Simulate keyup events for all pressed keys so that handlers
625 * are not left with "stuck" keys. The driver may continue
626 * generate events even after we done here but they will not
627 * reach any handlers.
628 */
629 input_dev_release_keys(dev);
630
631 list_for_each_entry(handle, &dev->h_list, d_node)
632 handle->open = 0;
633
634 spin_unlock_irq(&dev->event_lock);
635}
636
637/**
638 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
639 * @ke: keymap entry containing scancode to be converted.
640 * @scancode: pointer to the location where converted scancode should
641 * be stored.
642 *
643 * This function is used to convert scancode stored in &struct keymap_entry
644 * into scalar form understood by legacy keymap handling methods. These
645 * methods expect scancodes to be represented as 'unsigned int'.
646 */
647int input_scancode_to_scalar(const struct input_keymap_entry *ke,
648 unsigned int *scancode)
649{
650 switch (ke->len) {
651 case 1:
652 *scancode = *((u8 *)ke->scancode);
653 break;
654
655 case 2:
656 *scancode = *((u16 *)ke->scancode);
657 break;
658
659 case 4:
660 *scancode = *((u32 *)ke->scancode);
661 break;
662
663 default:
664 return -EINVAL;
665 }
666
667 return 0;
668}
669EXPORT_SYMBOL(input_scancode_to_scalar);
670
671/*
672 * Those routines handle the default case where no [gs]etkeycode() is
673 * defined. In this case, an array indexed by the scancode is used.
674 */
675
676static unsigned int input_fetch_keycode(struct input_dev *dev,
677 unsigned int index)
678{
679 switch (dev->keycodesize) {
680 case 1:
681 return ((u8 *)dev->keycode)[index];
682
683 case 2:
684 return ((u16 *)dev->keycode)[index];
685
686 default:
687 return ((u32 *)dev->keycode)[index];
688 }
689}
690
691static int input_default_getkeycode(struct input_dev *dev,
692 struct input_keymap_entry *ke)
693{
694 unsigned int index;
695 int error;
696
697 if (!dev->keycodesize)
698 return -EINVAL;
699
700 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
701 index = ke->index;
702 else {
703 error = input_scancode_to_scalar(ke, &index);
704 if (error)
705 return error;
706 }
707
708 if (index >= dev->keycodemax)
709 return -EINVAL;
710
711 ke->keycode = input_fetch_keycode(dev, index);
712 ke->index = index;
713 ke->len = sizeof(index);
714 memcpy(ke->scancode, &index, sizeof(index));
715
716 return 0;
717}
718
719static int input_default_setkeycode(struct input_dev *dev,
720 const struct input_keymap_entry *ke,
721 unsigned int *old_keycode)
722{
723 unsigned int index;
724 int error;
725 int i;
726
727 if (!dev->keycodesize)
728 return -EINVAL;
729
730 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
731 index = ke->index;
732 } else {
733 error = input_scancode_to_scalar(ke, &index);
734 if (error)
735 return error;
736 }
737
738 if (index >= dev->keycodemax)
739 return -EINVAL;
740
741 if (dev->keycodesize < sizeof(ke->keycode) &&
742 (ke->keycode >> (dev->keycodesize * 8)))
743 return -EINVAL;
744
745 switch (dev->keycodesize) {
746 case 1: {
747 u8 *k = (u8 *)dev->keycode;
748 *old_keycode = k[index];
749 k[index] = ke->keycode;
750 break;
751 }
752 case 2: {
753 u16 *k = (u16 *)dev->keycode;
754 *old_keycode = k[index];
755 k[index] = ke->keycode;
756 break;
757 }
758 default: {
759 u32 *k = (u32 *)dev->keycode;
760 *old_keycode = k[index];
761 k[index] = ke->keycode;
762 break;
763 }
764 }
765
766 __clear_bit(*old_keycode, dev->keybit);
767 __set_bit(ke->keycode, dev->keybit);
768
769 for (i = 0; i < dev->keycodemax; i++) {
770 if (input_fetch_keycode(dev, i) == *old_keycode) {
771 __set_bit(*old_keycode, dev->keybit);
772 break; /* Setting the bit twice is useless, so break */
773 }
774 }
775
776 return 0;
777}
778
779/**
780 * input_get_keycode - retrieve keycode currently mapped to a given scancode
781 * @dev: input device which keymap is being queried
782 * @ke: keymap entry
783 *
784 * This function should be called by anyone interested in retrieving current
785 * keymap. Presently evdev handlers use it.
786 */
787int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
788{
789 unsigned long flags;
790 int retval;
791
792 spin_lock_irqsave(&dev->event_lock, flags);
793 retval = dev->getkeycode(dev, ke);
794 spin_unlock_irqrestore(&dev->event_lock, flags);
795
796 return retval;
797}
798EXPORT_SYMBOL(input_get_keycode);
799
800/**
801 * input_set_keycode - attribute a keycode to a given scancode
802 * @dev: input device which keymap is being updated
803 * @ke: new keymap entry
804 *
805 * This function should be called by anyone needing to update current
806 * keymap. Presently keyboard and evdev handlers use it.
807 */
808int input_set_keycode(struct input_dev *dev,
809 const struct input_keymap_entry *ke)
810{
811 unsigned long flags;
812 unsigned int old_keycode;
813 int retval;
814
815 if (ke->keycode > KEY_MAX)
816 return -EINVAL;
817
818 spin_lock_irqsave(&dev->event_lock, flags);
819
820 retval = dev->setkeycode(dev, ke, &old_keycode);
821 if (retval)
822 goto out;
823
824 /* Make sure KEY_RESERVED did not get enabled. */
825 __clear_bit(KEY_RESERVED, dev->keybit);
826
827 /*
828 * Simulate keyup event if keycode is not present
829 * in the keymap anymore
830 */
831 if (test_bit(EV_KEY, dev->evbit) &&
832 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
833 __test_and_clear_bit(old_keycode, dev->key)) {
834
835 input_pass_event(dev, EV_KEY, old_keycode, 0);
836 if (dev->sync)
837 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
838 }
839
840 out:
841 spin_unlock_irqrestore(&dev->event_lock, flags);
842
843 return retval;
844}
845EXPORT_SYMBOL(input_set_keycode);
846
847#define MATCH_BIT(bit, max) \
848 for (i = 0; i < BITS_TO_LONGS(max); i++) \
849 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
850 break; \
851 if (i != BITS_TO_LONGS(max)) \
852 continue;
853
854static const struct input_device_id *input_match_device(struct input_handler *handler,
855 struct input_dev *dev)
856{
857 const struct input_device_id *id;
858 int i;
859
860 for (id = handler->id_table; id->flags || id->driver_info; id++) {
861
862 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
863 if (id->bustype != dev->id.bustype)
864 continue;
865
866 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
867 if (id->vendor != dev->id.vendor)
868 continue;
869
870 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
871 if (id->product != dev->id.product)
872 continue;
873
874 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
875 if (id->version != dev->id.version)
876 continue;
877
878 MATCH_BIT(evbit, EV_MAX);
879 MATCH_BIT(keybit, KEY_MAX);
880 MATCH_BIT(relbit, REL_MAX);
881 MATCH_BIT(absbit, ABS_MAX);
882 MATCH_BIT(mscbit, MSC_MAX);
883 MATCH_BIT(ledbit, LED_MAX);
884 MATCH_BIT(sndbit, SND_MAX);
885 MATCH_BIT(ffbit, FF_MAX);
886 MATCH_BIT(swbit, SW_MAX);
887
888 if (!handler->match || handler->match(handler, dev))
889 return id;
890 }
891
892 return NULL;
893}
894
895static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
896{
897 const struct input_device_id *id;
898 int error;
899
900 id = input_match_device(handler, dev);
901 if (!id)
902 return -ENODEV;
903
904 error = handler->connect(handler, dev, id);
905 if (error && error != -ENODEV)
906 pr_err("failed to attach handler %s to device %s, error: %d\n",
907 handler->name, kobject_name(&dev->dev.kobj), error);
908
909 return error;
910}
911
912#ifdef CONFIG_COMPAT
913
914static int input_bits_to_string(char *buf, int buf_size,
915 unsigned long bits, bool skip_empty)
916{
917 int len = 0;
918
919 if (INPUT_COMPAT_TEST) {
920 u32 dword = bits >> 32;
921 if (dword || !skip_empty)
922 len += snprintf(buf, buf_size, "%x ", dword);
923
924 dword = bits & 0xffffffffUL;
925 if (dword || !skip_empty || len)
926 len += snprintf(buf + len, max(buf_size - len, 0),
927 "%x", dword);
928 } else {
929 if (bits || !skip_empty)
930 len += snprintf(buf, buf_size, "%lx", bits);
931 }
932
933 return len;
934}
935
936#else /* !CONFIG_COMPAT */
937
938static int input_bits_to_string(char *buf, int buf_size,
939 unsigned long bits, bool skip_empty)
940{
941 return bits || !skip_empty ?
942 snprintf(buf, buf_size, "%lx", bits) : 0;
943}
944
945#endif
946
947#ifdef CONFIG_PROC_FS
948
949static struct proc_dir_entry *proc_bus_input_dir;
950static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
951static int input_devices_state;
952
953static inline void input_wakeup_procfs_readers(void)
954{
955 input_devices_state++;
956 wake_up(&input_devices_poll_wait);
957}
958
959static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
960{
961 poll_wait(file, &input_devices_poll_wait, wait);
962 if (file->f_version != input_devices_state) {
963 file->f_version = input_devices_state;
964 return POLLIN | POLLRDNORM;
965 }
966
967 return 0;
968}
969
970union input_seq_state {
971 struct {
972 unsigned short pos;
973 bool mutex_acquired;
974 };
975 void *p;
976};
977
978static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
979{
980 union input_seq_state *state = (union input_seq_state *)&seq->private;
981 int error;
982
983 /* We need to fit into seq->private pointer */
984 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
985
986 error = mutex_lock_interruptible(&input_mutex);
987 if (error) {
988 state->mutex_acquired = false;
989 return ERR_PTR(error);
990 }
991
992 state->mutex_acquired = true;
993
994 return seq_list_start(&input_dev_list, *pos);
995}
996
997static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
998{
999 return seq_list_next(v, &input_dev_list, pos);
1000}
1001
1002static void input_seq_stop(struct seq_file *seq, void *v)
1003{
1004 union input_seq_state *state = (union input_seq_state *)&seq->private;
1005
1006 if (state->mutex_acquired)
1007 mutex_unlock(&input_mutex);
1008}
1009
1010static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1011 unsigned long *bitmap, int max)
1012{
1013 int i;
1014 bool skip_empty = true;
1015 char buf[18];
1016
1017 seq_printf(seq, "B: %s=", name);
1018
1019 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1020 if (input_bits_to_string(buf, sizeof(buf),
1021 bitmap[i], skip_empty)) {
1022 skip_empty = false;
1023 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1024 }
1025 }
1026
1027 /*
1028 * If no output was produced print a single 0.
1029 */
1030 if (skip_empty)
1031 seq_puts(seq, "0");
1032
1033 seq_putc(seq, '\n');
1034}
1035
1036static int input_devices_seq_show(struct seq_file *seq, void *v)
1037{
1038 struct input_dev *dev = container_of(v, struct input_dev, node);
1039 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1040 struct input_handle *handle;
1041
1042 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1043 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1044
1045 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1046 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1047 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1048 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1049 seq_printf(seq, "H: Handlers=");
1050
1051 list_for_each_entry(handle, &dev->h_list, d_node)
1052 seq_printf(seq, "%s ", handle->name);
1053 seq_putc(seq, '\n');
1054
1055 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1056
1057 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1058 if (test_bit(EV_KEY, dev->evbit))
1059 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1060 if (test_bit(EV_REL, dev->evbit))
1061 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1062 if (test_bit(EV_ABS, dev->evbit))
1063 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1064 if (test_bit(EV_MSC, dev->evbit))
1065 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1066 if (test_bit(EV_LED, dev->evbit))
1067 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1068 if (test_bit(EV_SND, dev->evbit))
1069 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1070 if (test_bit(EV_FF, dev->evbit))
1071 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1072 if (test_bit(EV_SW, dev->evbit))
1073 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1074
1075 seq_putc(seq, '\n');
1076
1077 kfree(path);
1078 return 0;
1079}
1080
1081static const struct seq_operations input_devices_seq_ops = {
1082 .start = input_devices_seq_start,
1083 .next = input_devices_seq_next,
1084 .stop = input_seq_stop,
1085 .show = input_devices_seq_show,
1086};
1087
1088static int input_proc_devices_open(struct inode *inode, struct file *file)
1089{
1090 return seq_open(file, &input_devices_seq_ops);
1091}
1092
1093static const struct file_operations input_devices_fileops = {
1094 .owner = THIS_MODULE,
1095 .open = input_proc_devices_open,
1096 .poll = input_proc_devices_poll,
1097 .read = seq_read,
1098 .llseek = seq_lseek,
1099 .release = seq_release,
1100};
1101
1102static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1103{
1104 union input_seq_state *state = (union input_seq_state *)&seq->private;
1105 int error;
1106
1107 /* We need to fit into seq->private pointer */
1108 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1109
1110 error = mutex_lock_interruptible(&input_mutex);
1111 if (error) {
1112 state->mutex_acquired = false;
1113 return ERR_PTR(error);
1114 }
1115
1116 state->mutex_acquired = true;
1117 state->pos = *pos;
1118
1119 return seq_list_start(&input_handler_list, *pos);
1120}
1121
1122static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1123{
1124 union input_seq_state *state = (union input_seq_state *)&seq->private;
1125
1126 state->pos = *pos + 1;
1127 return seq_list_next(v, &input_handler_list, pos);
1128}
1129
1130static int input_handlers_seq_show(struct seq_file *seq, void *v)
1131{
1132 struct input_handler *handler = container_of(v, struct input_handler, node);
1133 union input_seq_state *state = (union input_seq_state *)&seq->private;
1134
1135 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1136 if (handler->filter)
1137 seq_puts(seq, " (filter)");
1138 if (handler->fops)
1139 seq_printf(seq, " Minor=%d", handler->minor);
1140 seq_putc(seq, '\n');
1141
1142 return 0;
1143}
1144
1145static const struct seq_operations input_handlers_seq_ops = {
1146 .start = input_handlers_seq_start,
1147 .next = input_handlers_seq_next,
1148 .stop = input_seq_stop,
1149 .show = input_handlers_seq_show,
1150};
1151
1152static int input_proc_handlers_open(struct inode *inode, struct file *file)
1153{
1154 return seq_open(file, &input_handlers_seq_ops);
1155}
1156
1157static const struct file_operations input_handlers_fileops = {
1158 .owner = THIS_MODULE,
1159 .open = input_proc_handlers_open,
1160 .read = seq_read,
1161 .llseek = seq_lseek,
1162 .release = seq_release,
1163};
1164
1165static int __init input_proc_init(void)
1166{
1167 struct proc_dir_entry *entry;
1168
1169 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1170 if (!proc_bus_input_dir)
1171 return -ENOMEM;
1172
1173 entry = proc_create("devices", 0, proc_bus_input_dir,
1174 &input_devices_fileops);
1175 if (!entry)
1176 goto fail1;
1177
1178 entry = proc_create("handlers", 0, proc_bus_input_dir,
1179 &input_handlers_fileops);
1180 if (!entry)
1181 goto fail2;
1182
1183 return 0;
1184
1185 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1186 fail1: remove_proc_entry("bus/input", NULL);
1187 return -ENOMEM;
1188}
1189
1190static void input_proc_exit(void)
1191{
1192 remove_proc_entry("devices", proc_bus_input_dir);
1193 remove_proc_entry("handlers", proc_bus_input_dir);
1194 remove_proc_entry("bus/input", NULL);
1195}
1196
1197#else /* !CONFIG_PROC_FS */
1198static inline void input_wakeup_procfs_readers(void) { }
1199static inline int input_proc_init(void) { return 0; }
1200static inline void input_proc_exit(void) { }
1201#endif
1202
1203#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1204static ssize_t input_dev_show_##name(struct device *dev, \
1205 struct device_attribute *attr, \
1206 char *buf) \
1207{ \
1208 struct input_dev *input_dev = to_input_dev(dev); \
1209 \
1210 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1211 input_dev->name ? input_dev->name : ""); \
1212} \
1213static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1214
1215INPUT_DEV_STRING_ATTR_SHOW(name);
1216INPUT_DEV_STRING_ATTR_SHOW(phys);
1217INPUT_DEV_STRING_ATTR_SHOW(uniq);
1218
1219static int input_print_modalias_bits(char *buf, int size,
1220 char name, unsigned long *bm,
1221 unsigned int min_bit, unsigned int max_bit)
1222{
1223 int len = 0, i;
1224
1225 len += snprintf(buf, max(size, 0), "%c", name);
1226 for (i = min_bit; i < max_bit; i++)
1227 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1228 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1229 return len;
1230}
1231
1232static int input_print_modalias(char *buf, int size, struct input_dev *id,
1233 int add_cr)
1234{
1235 int len;
1236
1237 len = snprintf(buf, max(size, 0),
1238 "input:b%04Xv%04Xp%04Xe%04X-",
1239 id->id.bustype, id->id.vendor,
1240 id->id.product, id->id.version);
1241
1242 len += input_print_modalias_bits(buf + len, size - len,
1243 'e', id->evbit, 0, EV_MAX);
1244 len += input_print_modalias_bits(buf + len, size - len,
1245 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1246 len += input_print_modalias_bits(buf + len, size - len,
1247 'r', id->relbit, 0, REL_MAX);
1248 len += input_print_modalias_bits(buf + len, size - len,
1249 'a', id->absbit, 0, ABS_MAX);
1250 len += input_print_modalias_bits(buf + len, size - len,
1251 'm', id->mscbit, 0, MSC_MAX);
1252 len += input_print_modalias_bits(buf + len, size - len,
1253 'l', id->ledbit, 0, LED_MAX);
1254 len += input_print_modalias_bits(buf + len, size - len,
1255 's', id->sndbit, 0, SND_MAX);
1256 len += input_print_modalias_bits(buf + len, size - len,
1257 'f', id->ffbit, 0, FF_MAX);
1258 len += input_print_modalias_bits(buf + len, size - len,
1259 'w', id->swbit, 0, SW_MAX);
1260
1261 if (add_cr)
1262 len += snprintf(buf + len, max(size - len, 0), "\n");
1263
1264 return len;
1265}
1266
1267static ssize_t input_dev_show_modalias(struct device *dev,
1268 struct device_attribute *attr,
1269 char *buf)
1270{
1271 struct input_dev *id = to_input_dev(dev);
1272 ssize_t len;
1273
1274 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1275
1276 return min_t(int, len, PAGE_SIZE);
1277}
1278static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1279
1280static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1281 int max, int add_cr);
1282
1283static ssize_t input_dev_show_properties(struct device *dev,
1284 struct device_attribute *attr,
1285 char *buf)
1286{
1287 struct input_dev *input_dev = to_input_dev(dev);
1288 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1289 INPUT_PROP_MAX, true);
1290 return min_t(int, len, PAGE_SIZE);
1291}
1292static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1293
1294static struct attribute *input_dev_attrs[] = {
1295 &dev_attr_name.attr,
1296 &dev_attr_phys.attr,
1297 &dev_attr_uniq.attr,
1298 &dev_attr_modalias.attr,
1299 &dev_attr_properties.attr,
1300 NULL
1301};
1302
1303static struct attribute_group input_dev_attr_group = {
1304 .attrs = input_dev_attrs,
1305};
1306
1307#define INPUT_DEV_ID_ATTR(name) \
1308static ssize_t input_dev_show_id_##name(struct device *dev, \
1309 struct device_attribute *attr, \
1310 char *buf) \
1311{ \
1312 struct input_dev *input_dev = to_input_dev(dev); \
1313 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1314} \
1315static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1316
1317INPUT_DEV_ID_ATTR(bustype);
1318INPUT_DEV_ID_ATTR(vendor);
1319INPUT_DEV_ID_ATTR(product);
1320INPUT_DEV_ID_ATTR(version);
1321
1322static struct attribute *input_dev_id_attrs[] = {
1323 &dev_attr_bustype.attr,
1324 &dev_attr_vendor.attr,
1325 &dev_attr_product.attr,
1326 &dev_attr_version.attr,
1327 NULL
1328};
1329
1330static struct attribute_group input_dev_id_attr_group = {
1331 .name = "id",
1332 .attrs = input_dev_id_attrs,
1333};
1334
1335static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1336 int max, int add_cr)
1337{
1338 int i;
1339 int len = 0;
1340 bool skip_empty = true;
1341
1342 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1343 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1344 bitmap[i], skip_empty);
1345 if (len) {
1346 skip_empty = false;
1347 if (i > 0)
1348 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1349 }
1350 }
1351
1352 /*
1353 * If no output was produced print a single 0.
1354 */
1355 if (len == 0)
1356 len = snprintf(buf, buf_size, "%d", 0);
1357
1358 if (add_cr)
1359 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1360
1361 return len;
1362}
1363
1364#define INPUT_DEV_CAP_ATTR(ev, bm) \
1365static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1366 struct device_attribute *attr, \
1367 char *buf) \
1368{ \
1369 struct input_dev *input_dev = to_input_dev(dev); \
1370 int len = input_print_bitmap(buf, PAGE_SIZE, \
1371 input_dev->bm##bit, ev##_MAX, \
1372 true); \
1373 return min_t(int, len, PAGE_SIZE); \
1374} \
1375static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1376
1377INPUT_DEV_CAP_ATTR(EV, ev);
1378INPUT_DEV_CAP_ATTR(KEY, key);
1379INPUT_DEV_CAP_ATTR(REL, rel);
1380INPUT_DEV_CAP_ATTR(ABS, abs);
1381INPUT_DEV_CAP_ATTR(MSC, msc);
1382INPUT_DEV_CAP_ATTR(LED, led);
1383INPUT_DEV_CAP_ATTR(SND, snd);
1384INPUT_DEV_CAP_ATTR(FF, ff);
1385INPUT_DEV_CAP_ATTR(SW, sw);
1386
1387static struct attribute *input_dev_caps_attrs[] = {
1388 &dev_attr_ev.attr,
1389 &dev_attr_key.attr,
1390 &dev_attr_rel.attr,
1391 &dev_attr_abs.attr,
1392 &dev_attr_msc.attr,
1393 &dev_attr_led.attr,
1394 &dev_attr_snd.attr,
1395 &dev_attr_ff.attr,
1396 &dev_attr_sw.attr,
1397 NULL
1398};
1399
1400static struct attribute_group input_dev_caps_attr_group = {
1401 .name = "capabilities",
1402 .attrs = input_dev_caps_attrs,
1403};
1404
1405static const struct attribute_group *input_dev_attr_groups[] = {
1406 &input_dev_attr_group,
1407 &input_dev_id_attr_group,
1408 &input_dev_caps_attr_group,
1409 NULL
1410};
1411
1412static void input_dev_release(struct device *device)
1413{
1414 struct input_dev *dev = to_input_dev(device);
1415
1416 input_ff_destroy(dev);
1417 input_mt_destroy_slots(dev);
1418 kfree(dev->absinfo);
1419 kfree(dev);
1420
1421 module_put(THIS_MODULE);
1422}
1423
1424/*
1425 * Input uevent interface - loading event handlers based on
1426 * device bitfields.
1427 */
1428static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1429 const char *name, unsigned long *bitmap, int max)
1430{
1431 int len;
1432
1433 if (add_uevent_var(env, "%s", name))
1434 return -ENOMEM;
1435
1436 len = input_print_bitmap(&env->buf[env->buflen - 1],
1437 sizeof(env->buf) - env->buflen,
1438 bitmap, max, false);
1439 if (len >= (sizeof(env->buf) - env->buflen))
1440 return -ENOMEM;
1441
1442 env->buflen += len;
1443 return 0;
1444}
1445
1446static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1447 struct input_dev *dev)
1448{
1449 int len;
1450
1451 if (add_uevent_var(env, "MODALIAS="))
1452 return -ENOMEM;
1453
1454 len = input_print_modalias(&env->buf[env->buflen - 1],
1455 sizeof(env->buf) - env->buflen,
1456 dev, 0);
1457 if (len >= (sizeof(env->buf) - env->buflen))
1458 return -ENOMEM;
1459
1460 env->buflen += len;
1461 return 0;
1462}
1463
1464#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1465 do { \
1466 int err = add_uevent_var(env, fmt, val); \
1467 if (err) \
1468 return err; \
1469 } while (0)
1470
1471#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1472 do { \
1473 int err = input_add_uevent_bm_var(env, name, bm, max); \
1474 if (err) \
1475 return err; \
1476 } while (0)
1477
1478#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1479 do { \
1480 int err = input_add_uevent_modalias_var(env, dev); \
1481 if (err) \
1482 return err; \
1483 } while (0)
1484
1485static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1486{
1487 struct input_dev *dev = to_input_dev(device);
1488
1489 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1490 dev->id.bustype, dev->id.vendor,
1491 dev->id.product, dev->id.version);
1492 if (dev->name)
1493 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1494 if (dev->phys)
1495 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1496 if (dev->uniq)
1497 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1498
1499 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1500
1501 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1502 if (test_bit(EV_KEY, dev->evbit))
1503 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1504 if (test_bit(EV_REL, dev->evbit))
1505 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1506 if (test_bit(EV_ABS, dev->evbit))
1507 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1508 if (test_bit(EV_MSC, dev->evbit))
1509 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1510 if (test_bit(EV_LED, dev->evbit))
1511 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1512 if (test_bit(EV_SND, dev->evbit))
1513 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1514 if (test_bit(EV_FF, dev->evbit))
1515 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1516 if (test_bit(EV_SW, dev->evbit))
1517 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1518
1519 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1520
1521 return 0;
1522}
1523
1524#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1525 do { \
1526 int i; \
1527 bool active; \
1528 \
1529 if (!test_bit(EV_##type, dev->evbit)) \
1530 break; \
1531 \
1532 for (i = 0; i < type##_MAX; i++) { \
1533 if (!test_bit(i, dev->bits##bit)) \
1534 continue; \
1535 \
1536 active = test_bit(i, dev->bits); \
1537 if (!active && !on) \
1538 continue; \
1539 \
1540 dev->event(dev, EV_##type, i, on ? active : 0); \
1541 } \
1542 } while (0)
1543
1544static void input_dev_toggle(struct input_dev *dev, bool activate)
1545{
1546 if (!dev->event)
1547 return;
1548
1549 INPUT_DO_TOGGLE(dev, LED, led, activate);
1550 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1551
1552 if (activate && test_bit(EV_REP, dev->evbit)) {
1553 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1554 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1555 }
1556}
1557
1558/**
1559 * input_reset_device() - reset/restore the state of input device
1560 * @dev: input device whose state needs to be reset
1561 *
1562 * This function tries to reset the state of an opened input device and
1563 * bring internal state and state if the hardware in sync with each other.
1564 * We mark all keys as released, restore LED state, repeat rate, etc.
1565 */
1566void input_reset_device(struct input_dev *dev)
1567{
1568 mutex_lock(&dev->mutex);
1569
1570 if (dev->users) {
1571 input_dev_toggle(dev, true);
1572
1573 /*
1574 * Keys that have been pressed at suspend time are unlikely
1575 * to be still pressed when we resume.
1576 */
1577 spin_lock_irq(&dev->event_lock);
1578 input_dev_release_keys(dev);
1579 spin_unlock_irq(&dev->event_lock);
1580 }
1581
1582 mutex_unlock(&dev->mutex);
1583}
1584EXPORT_SYMBOL(input_reset_device);
1585
1586#ifdef CONFIG_PM
1587static int input_dev_suspend(struct device *dev)
1588{
1589 struct input_dev *input_dev = to_input_dev(dev);
1590
1591 mutex_lock(&input_dev->mutex);
1592
1593 if (input_dev->users)
1594 input_dev_toggle(input_dev, false);
1595
1596 mutex_unlock(&input_dev->mutex);
1597
1598 return 0;
1599}
1600
1601static int input_dev_resume(struct device *dev)
1602{
1603 struct input_dev *input_dev = to_input_dev(dev);
1604
1605 input_reset_device(input_dev);
1606
1607 return 0;
1608}
1609
1610static const struct dev_pm_ops input_dev_pm_ops = {
1611 .suspend = input_dev_suspend,
1612 .resume = input_dev_resume,
1613 .poweroff = input_dev_suspend,
1614 .restore = input_dev_resume,
1615};
1616#endif /* CONFIG_PM */
1617
1618static struct device_type input_dev_type = {
1619 .groups = input_dev_attr_groups,
1620 .release = input_dev_release,
1621 .uevent = input_dev_uevent,
1622#ifdef CONFIG_PM
1623 .pm = &input_dev_pm_ops,
1624#endif
1625};
1626
1627static char *input_devnode(struct device *dev, mode_t *mode)
1628{
1629 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1630}
1631
1632struct class input_class = {
1633 .name = "input",
1634 .devnode = input_devnode,
1635};
1636EXPORT_SYMBOL_GPL(input_class);
1637
1638/**
1639 * input_allocate_device - allocate memory for new input device
1640 *
1641 * Returns prepared struct input_dev or NULL.
1642 *
1643 * NOTE: Use input_free_device() to free devices that have not been
1644 * registered; input_unregister_device() should be used for already
1645 * registered devices.
1646 */
1647struct input_dev *input_allocate_device(void)
1648{
1649 struct input_dev *dev;
1650
1651 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1652 if (dev) {
1653 dev->dev.type = &input_dev_type;
1654 dev->dev.class = &input_class;
1655 device_initialize(&dev->dev);
1656 mutex_init(&dev->mutex);
1657 spin_lock_init(&dev->event_lock);
1658 INIT_LIST_HEAD(&dev->h_list);
1659 INIT_LIST_HEAD(&dev->node);
1660
1661 __module_get(THIS_MODULE);
1662 }
1663
1664 return dev;
1665}
1666EXPORT_SYMBOL(input_allocate_device);
1667
1668/**
1669 * input_free_device - free memory occupied by input_dev structure
1670 * @dev: input device to free
1671 *
1672 * This function should only be used if input_register_device()
1673 * was not called yet or if it failed. Once device was registered
1674 * use input_unregister_device() and memory will be freed once last
1675 * reference to the device is dropped.
1676 *
1677 * Device should be allocated by input_allocate_device().
1678 *
1679 * NOTE: If there are references to the input device then memory
1680 * will not be freed until last reference is dropped.
1681 */
1682void input_free_device(struct input_dev *dev)
1683{
1684 if (dev)
1685 input_put_device(dev);
1686}
1687EXPORT_SYMBOL(input_free_device);
1688
1689/**
1690 * input_set_capability - mark device as capable of a certain event
1691 * @dev: device that is capable of emitting or accepting event
1692 * @type: type of the event (EV_KEY, EV_REL, etc...)
1693 * @code: event code
1694 *
1695 * In addition to setting up corresponding bit in appropriate capability
1696 * bitmap the function also adjusts dev->evbit.
1697 */
1698void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1699{
1700 switch (type) {
1701 case EV_KEY:
1702 __set_bit(code, dev->keybit);
1703 break;
1704
1705 case EV_REL:
1706 __set_bit(code, dev->relbit);
1707 break;
1708
1709 case EV_ABS:
1710 __set_bit(code, dev->absbit);
1711 break;
1712
1713 case EV_MSC:
1714 __set_bit(code, dev->mscbit);
1715 break;
1716
1717 case EV_SW:
1718 __set_bit(code, dev->swbit);
1719 break;
1720
1721 case EV_LED:
1722 __set_bit(code, dev->ledbit);
1723 break;
1724
1725 case EV_SND:
1726 __set_bit(code, dev->sndbit);
1727 break;
1728
1729 case EV_FF:
1730 __set_bit(code, dev->ffbit);
1731 break;
1732
1733 case EV_PWR:
1734 /* do nothing */
1735 break;
1736
1737 default:
1738 pr_err("input_set_capability: unknown type %u (code %u)\n",
1739 type, code);
1740 dump_stack();
1741 return;
1742 }
1743
1744 __set_bit(type, dev->evbit);
1745}
1746EXPORT_SYMBOL(input_set_capability);
1747
1748static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1749{
1750 int mt_slots;
1751 int i;
1752 unsigned int events;
1753
1754 if (dev->mtsize) {
1755 mt_slots = dev->mtsize;
1756 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1757 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1758 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1759 mt_slots = clamp(mt_slots, 2, 32);
1760 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1761 mt_slots = 2;
1762 } else {
1763 mt_slots = 0;
1764 }
1765
1766 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1767
1768 for (i = 0; i < ABS_CNT; i++) {
1769 if (test_bit(i, dev->absbit)) {
1770 if (input_is_mt_axis(i))
1771 events += mt_slots;
1772 else
1773 events++;
1774 }
1775 }
1776
1777 for (i = 0; i < REL_CNT; i++)
1778 if (test_bit(i, dev->relbit))
1779 events++;
1780
1781 return events;
1782}
1783
1784#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1785 do { \
1786 if (!test_bit(EV_##type, dev->evbit)) \
1787 memset(dev->bits##bit, 0, \
1788 sizeof(dev->bits##bit)); \
1789 } while (0)
1790
1791static void input_cleanse_bitmasks(struct input_dev *dev)
1792{
1793 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1794 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1795 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1796 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1797 INPUT_CLEANSE_BITMASK(dev, LED, led);
1798 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1799 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1800 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1801}
1802
1803/**
1804 * input_register_device - register device with input core
1805 * @dev: device to be registered
1806 *
1807 * This function registers device with input core. The device must be
1808 * allocated with input_allocate_device() and all it's capabilities
1809 * set up before registering.
1810 * If function fails the device must be freed with input_free_device().
1811 * Once device has been successfully registered it can be unregistered
1812 * with input_unregister_device(); input_free_device() should not be
1813 * called in this case.
1814 */
1815int input_register_device(struct input_dev *dev)
1816{
1817 static atomic_t input_no = ATOMIC_INIT(0);
1818 struct input_handler *handler;
1819 const char *path;
1820 int error;
1821
1822 /* Every input device generates EV_SYN/SYN_REPORT events. */
1823 __set_bit(EV_SYN, dev->evbit);
1824
1825 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1826 __clear_bit(KEY_RESERVED, dev->keybit);
1827
1828 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1829 input_cleanse_bitmasks(dev);
1830
1831 if (!dev->hint_events_per_packet)
1832 dev->hint_events_per_packet =
1833 input_estimate_events_per_packet(dev);
1834
1835 /*
1836 * If delay and period are pre-set by the driver, then autorepeating
1837 * is handled by the driver itself and we don't do it in input.c.
1838 */
1839 init_timer(&dev->timer);
1840 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1841 dev->timer.data = (long) dev;
1842 dev->timer.function = input_repeat_key;
1843 dev->rep[REP_DELAY] = 250;
1844 dev->rep[REP_PERIOD] = 33;
1845 }
1846
1847 if (!dev->getkeycode)
1848 dev->getkeycode = input_default_getkeycode;
1849
1850 if (!dev->setkeycode)
1851 dev->setkeycode = input_default_setkeycode;
1852
1853 dev_set_name(&dev->dev, "input%ld",
1854 (unsigned long) atomic_inc_return(&input_no) - 1);
1855
1856 error = device_add(&dev->dev);
1857 if (error)
1858 return error;
1859
1860 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1861 pr_info("%s as %s\n",
1862 dev->name ? dev->name : "Unspecified device",
1863 path ? path : "N/A");
1864 kfree(path);
1865
1866 error = mutex_lock_interruptible(&input_mutex);
1867 if (error) {
1868 device_del(&dev->dev);
1869 return error;
1870 }
1871
1872 list_add_tail(&dev->node, &input_dev_list);
1873
1874 list_for_each_entry(handler, &input_handler_list, node)
1875 input_attach_handler(dev, handler);
1876
1877 input_wakeup_procfs_readers();
1878
1879 mutex_unlock(&input_mutex);
1880
1881 return 0;
1882}
1883EXPORT_SYMBOL(input_register_device);
1884
1885/**
1886 * input_unregister_device - unregister previously registered device
1887 * @dev: device to be unregistered
1888 *
1889 * This function unregisters an input device. Once device is unregistered
1890 * the caller should not try to access it as it may get freed at any moment.
1891 */
1892void input_unregister_device(struct input_dev *dev)
1893{
1894 struct input_handle *handle, *next;
1895
1896 input_disconnect_device(dev);
1897
1898 mutex_lock(&input_mutex);
1899
1900 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1901 handle->handler->disconnect(handle);
1902 WARN_ON(!list_empty(&dev->h_list));
1903
1904 del_timer_sync(&dev->timer);
1905 list_del_init(&dev->node);
1906
1907 input_wakeup_procfs_readers();
1908
1909 mutex_unlock(&input_mutex);
1910
1911 device_unregister(&dev->dev);
1912}
1913EXPORT_SYMBOL(input_unregister_device);
1914
1915/**
1916 * input_register_handler - register a new input handler
1917 * @handler: handler to be registered
1918 *
1919 * This function registers a new input handler (interface) for input
1920 * devices in the system and attaches it to all input devices that
1921 * are compatible with the handler.
1922 */
1923int input_register_handler(struct input_handler *handler)
1924{
1925 struct input_dev *dev;
1926 int retval;
1927
1928 retval = mutex_lock_interruptible(&input_mutex);
1929 if (retval)
1930 return retval;
1931
1932 INIT_LIST_HEAD(&handler->h_list);
1933
1934 if (handler->fops != NULL) {
1935 if (input_table[handler->minor >> 5]) {
1936 retval = -EBUSY;
1937 goto out;
1938 }
1939 input_table[handler->minor >> 5] = handler;
1940 }
1941
1942 list_add_tail(&handler->node, &input_handler_list);
1943
1944 list_for_each_entry(dev, &input_dev_list, node)
1945 input_attach_handler(dev, handler);
1946
1947 input_wakeup_procfs_readers();
1948
1949 out:
1950 mutex_unlock(&input_mutex);
1951 return retval;
1952}
1953EXPORT_SYMBOL(input_register_handler);
1954
1955/**
1956 * input_unregister_handler - unregisters an input handler
1957 * @handler: handler to be unregistered
1958 *
1959 * This function disconnects a handler from its input devices and
1960 * removes it from lists of known handlers.
1961 */
1962void input_unregister_handler(struct input_handler *handler)
1963{
1964 struct input_handle *handle, *next;
1965
1966 mutex_lock(&input_mutex);
1967
1968 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1969 handler->disconnect(handle);
1970 WARN_ON(!list_empty(&handler->h_list));
1971
1972 list_del_init(&handler->node);
1973
1974 if (handler->fops != NULL)
1975 input_table[handler->minor >> 5] = NULL;
1976
1977 input_wakeup_procfs_readers();
1978
1979 mutex_unlock(&input_mutex);
1980}
1981EXPORT_SYMBOL(input_unregister_handler);
1982
1983/**
1984 * input_handler_for_each_handle - handle iterator
1985 * @handler: input handler to iterate
1986 * @data: data for the callback
1987 * @fn: function to be called for each handle
1988 *
1989 * Iterate over @bus's list of devices, and call @fn for each, passing
1990 * it @data and stop when @fn returns a non-zero value. The function is
1991 * using RCU to traverse the list and therefore may be usind in atonic
1992 * contexts. The @fn callback is invoked from RCU critical section and
1993 * thus must not sleep.
1994 */
1995int input_handler_for_each_handle(struct input_handler *handler, void *data,
1996 int (*fn)(struct input_handle *, void *))
1997{
1998 struct input_handle *handle;
1999 int retval = 0;
2000
2001 rcu_read_lock();
2002
2003 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2004 retval = fn(handle, data);
2005 if (retval)
2006 break;
2007 }
2008
2009 rcu_read_unlock();
2010
2011 return retval;
2012}
2013EXPORT_SYMBOL(input_handler_for_each_handle);
2014
2015/**
2016 * input_register_handle - register a new input handle
2017 * @handle: handle to register
2018 *
2019 * This function puts a new input handle onto device's
2020 * and handler's lists so that events can flow through
2021 * it once it is opened using input_open_device().
2022 *
2023 * This function is supposed to be called from handler's
2024 * connect() method.
2025 */
2026int input_register_handle(struct input_handle *handle)
2027{
2028 struct input_handler *handler = handle->handler;
2029 struct input_dev *dev = handle->dev;
2030 int error;
2031
2032 /*
2033 * We take dev->mutex here to prevent race with
2034 * input_release_device().
2035 */
2036 error = mutex_lock_interruptible(&dev->mutex);
2037 if (error)
2038 return error;
2039
2040 /*
2041 * Filters go to the head of the list, normal handlers
2042 * to the tail.
2043 */
2044 if (handler->filter)
2045 list_add_rcu(&handle->d_node, &dev->h_list);
2046 else
2047 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2048
2049 mutex_unlock(&dev->mutex);
2050
2051 /*
2052 * Since we are supposed to be called from ->connect()
2053 * which is mutually exclusive with ->disconnect()
2054 * we can't be racing with input_unregister_handle()
2055 * and so separate lock is not needed here.
2056 */
2057 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2058
2059 if (handler->start)
2060 handler->start(handle);
2061
2062 return 0;
2063}
2064EXPORT_SYMBOL(input_register_handle);
2065
2066/**
2067 * input_unregister_handle - unregister an input handle
2068 * @handle: handle to unregister
2069 *
2070 * This function removes input handle from device's
2071 * and handler's lists.
2072 *
2073 * This function is supposed to be called from handler's
2074 * disconnect() method.
2075 */
2076void input_unregister_handle(struct input_handle *handle)
2077{
2078 struct input_dev *dev = handle->dev;
2079
2080 list_del_rcu(&handle->h_node);
2081
2082 /*
2083 * Take dev->mutex to prevent race with input_release_device().
2084 */
2085 mutex_lock(&dev->mutex);
2086 list_del_rcu(&handle->d_node);
2087 mutex_unlock(&dev->mutex);
2088
2089 synchronize_rcu();
2090}
2091EXPORT_SYMBOL(input_unregister_handle);
2092
2093static int input_open_file(struct inode *inode, struct file *file)
2094{
2095 struct input_handler *handler;
2096 const struct file_operations *old_fops, *new_fops = NULL;
2097 int err;
2098
2099 err = mutex_lock_interruptible(&input_mutex);
2100 if (err)
2101 return err;
2102
2103 /* No load-on-demand here? */
2104 handler = input_table[iminor(inode) >> 5];
2105 if (handler)
2106 new_fops = fops_get(handler->fops);
2107
2108 mutex_unlock(&input_mutex);
2109
2110 /*
2111 * That's _really_ odd. Usually NULL ->open means "nothing special",
2112 * not "no device". Oh, well...
2113 */
2114 if (!new_fops || !new_fops->open) {
2115 fops_put(new_fops);
2116 err = -ENODEV;
2117 goto out;
2118 }
2119
2120 old_fops = file->f_op;
2121 file->f_op = new_fops;
2122
2123 err = new_fops->open(inode, file);
2124 if (err) {
2125 fops_put(file->f_op);
2126 file->f_op = fops_get(old_fops);
2127 }
2128 fops_put(old_fops);
2129out:
2130 return err;
2131}
2132
2133static const struct file_operations input_fops = {
2134 .owner = THIS_MODULE,
2135 .open = input_open_file,
2136 .llseek = noop_llseek,
2137};
2138
2139static int __init input_init(void)
2140{
2141 int err;
2142
2143 err = class_register(&input_class);
2144 if (err) {
2145 pr_err("unable to register input_dev class\n");
2146 return err;
2147 }
2148
2149 err = input_proc_init();
2150 if (err)
2151 goto fail1;
2152
2153 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2154 if (err) {
2155 pr_err("unable to register char major %d", INPUT_MAJOR);
2156 goto fail2;
2157 }
2158
2159 return 0;
2160
2161 fail2: input_proc_exit();
2162 fail1: class_unregister(&input_class);
2163 return err;
2164}
2165
2166static void __exit input_exit(void)
2167{
2168 input_proc_exit();
2169 unregister_chrdev(INPUT_MAJOR, "input");
2170 class_unregister(&input_class);
2171}
2172
2173subsys_initcall(input_init);
2174module_exit(input_exit);
1/*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7/*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15#include <linux/init.h>
16#include <linux/types.h>
17#include <linux/idr.h>
18#include <linux/input/mt.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/random.h>
22#include <linux/major.h>
23#include <linux/proc_fs.h>
24#include <linux/sched.h>
25#include <linux/seq_file.h>
26#include <linux/poll.h>
27#include <linux/device.h>
28#include <linux/mutex.h>
29#include <linux/rcupdate.h>
30#include "input-compat.h"
31
32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33MODULE_DESCRIPTION("Input core");
34MODULE_LICENSE("GPL");
35
36#define INPUT_MAX_CHAR_DEVICES 1024
37#define INPUT_FIRST_DYNAMIC_DEV 256
38static DEFINE_IDA(input_ida);
39
40static LIST_HEAD(input_dev_list);
41static LIST_HEAD(input_handler_list);
42
43/*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49static DEFINE_MUTEX(input_mutex);
50
51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
53static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
55{
56 return code <= max && test_bit(code, bm);
57}
58
59static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60{
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
64
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
67
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
70 }
71
72 return value;
73}
74
75static void input_start_autorepeat(struct input_dev *dev, int code)
76{
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84}
85
86static void input_stop_autorepeat(struct input_dev *dev)
87{
88 del_timer(&dev->timer);
89}
90
91/*
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
95 */
96static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
98{
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
102
103 if (handler->filter) {
104 for (v = vals; v != vals + count; v++) {
105 if (handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
111 count = end - vals;
112 }
113
114 if (!count)
115 return 0;
116
117 if (handler->events)
118 handler->events(handle, vals, count);
119 else if (handler->event)
120 for (v = vals; v != vals + count; v++)
121 handler->event(handle, v->type, v->code, v->value);
122
123 return count;
124}
125
126/*
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
130 */
131static void input_pass_values(struct input_dev *dev,
132 struct input_value *vals, unsigned int count)
133{
134 struct input_handle *handle;
135 struct input_value *v;
136
137 if (!count)
138 return;
139
140 rcu_read_lock();
141
142 handle = rcu_dereference(dev->grab);
143 if (handle) {
144 count = input_to_handler(handle, vals, count);
145 } else {
146 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 if (handle->open) {
148 count = input_to_handler(handle, vals, count);
149 if (!count)
150 break;
151 }
152 }
153
154 rcu_read_unlock();
155
156 /* trigger auto repeat for key events */
157 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
158 for (v = vals; v != vals + count; v++) {
159 if (v->type == EV_KEY && v->value != 2) {
160 if (v->value)
161 input_start_autorepeat(dev, v->code);
162 else
163 input_stop_autorepeat(dev);
164 }
165 }
166 }
167}
168
169static void input_pass_event(struct input_dev *dev,
170 unsigned int type, unsigned int code, int value)
171{
172 struct input_value vals[] = { { type, code, value } };
173
174 input_pass_values(dev, vals, ARRAY_SIZE(vals));
175}
176
177/*
178 * Generate software autorepeat event. Note that we take
179 * dev->event_lock here to avoid racing with input_event
180 * which may cause keys get "stuck".
181 */
182static void input_repeat_key(unsigned long data)
183{
184 struct input_dev *dev = (void *) data;
185 unsigned long flags;
186
187 spin_lock_irqsave(&dev->event_lock, flags);
188
189 if (test_bit(dev->repeat_key, dev->key) &&
190 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
191 struct input_value vals[] = {
192 { EV_KEY, dev->repeat_key, 2 },
193 input_value_sync
194 };
195
196 input_pass_values(dev, vals, ARRAY_SIZE(vals));
197
198 if (dev->rep[REP_PERIOD])
199 mod_timer(&dev->timer, jiffies +
200 msecs_to_jiffies(dev->rep[REP_PERIOD]));
201 }
202
203 spin_unlock_irqrestore(&dev->event_lock, flags);
204}
205
206#define INPUT_IGNORE_EVENT 0
207#define INPUT_PASS_TO_HANDLERS 1
208#define INPUT_PASS_TO_DEVICE 2
209#define INPUT_SLOT 4
210#define INPUT_FLUSH 8
211#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
212
213static int input_handle_abs_event(struct input_dev *dev,
214 unsigned int code, int *pval)
215{
216 struct input_mt *mt = dev->mt;
217 bool is_mt_event;
218 int *pold;
219
220 if (code == ABS_MT_SLOT) {
221 /*
222 * "Stage" the event; we'll flush it later, when we
223 * get actual touch data.
224 */
225 if (mt && *pval >= 0 && *pval < mt->num_slots)
226 mt->slot = *pval;
227
228 return INPUT_IGNORE_EVENT;
229 }
230
231 is_mt_event = input_is_mt_value(code);
232
233 if (!is_mt_event) {
234 pold = &dev->absinfo[code].value;
235 } else if (mt) {
236 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
237 } else {
238 /*
239 * Bypass filtering for multi-touch events when
240 * not employing slots.
241 */
242 pold = NULL;
243 }
244
245 if (pold) {
246 *pval = input_defuzz_abs_event(*pval, *pold,
247 dev->absinfo[code].fuzz);
248 if (*pold == *pval)
249 return INPUT_IGNORE_EVENT;
250
251 *pold = *pval;
252 }
253
254 /* Flush pending "slot" event */
255 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
256 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
257 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
258 }
259
260 return INPUT_PASS_TO_HANDLERS;
261}
262
263static int input_get_disposition(struct input_dev *dev,
264 unsigned int type, unsigned int code, int *pval)
265{
266 int disposition = INPUT_IGNORE_EVENT;
267 int value = *pval;
268
269 switch (type) {
270
271 case EV_SYN:
272 switch (code) {
273 case SYN_CONFIG:
274 disposition = INPUT_PASS_TO_ALL;
275 break;
276
277 case SYN_REPORT:
278 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
279 break;
280 case SYN_MT_REPORT:
281 disposition = INPUT_PASS_TO_HANDLERS;
282 break;
283 }
284 break;
285
286 case EV_KEY:
287 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
288
289 /* auto-repeat bypasses state updates */
290 if (value == 2) {
291 disposition = INPUT_PASS_TO_HANDLERS;
292 break;
293 }
294
295 if (!!test_bit(code, dev->key) != !!value) {
296
297 __change_bit(code, dev->key);
298 disposition = INPUT_PASS_TO_HANDLERS;
299 }
300 }
301 break;
302
303 case EV_SW:
304 if (is_event_supported(code, dev->swbit, SW_MAX) &&
305 !!test_bit(code, dev->sw) != !!value) {
306
307 __change_bit(code, dev->sw);
308 disposition = INPUT_PASS_TO_HANDLERS;
309 }
310 break;
311
312 case EV_ABS:
313 if (is_event_supported(code, dev->absbit, ABS_MAX))
314 disposition = input_handle_abs_event(dev, code, &value);
315
316 break;
317
318 case EV_REL:
319 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
320 disposition = INPUT_PASS_TO_HANDLERS;
321
322 break;
323
324 case EV_MSC:
325 if (is_event_supported(code, dev->mscbit, MSC_MAX))
326 disposition = INPUT_PASS_TO_ALL;
327
328 break;
329
330 case EV_LED:
331 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
332 !!test_bit(code, dev->led) != !!value) {
333
334 __change_bit(code, dev->led);
335 disposition = INPUT_PASS_TO_ALL;
336 }
337 break;
338
339 case EV_SND:
340 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
341
342 if (!!test_bit(code, dev->snd) != !!value)
343 __change_bit(code, dev->snd);
344 disposition = INPUT_PASS_TO_ALL;
345 }
346 break;
347
348 case EV_REP:
349 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
350 dev->rep[code] = value;
351 disposition = INPUT_PASS_TO_ALL;
352 }
353 break;
354
355 case EV_FF:
356 if (value >= 0)
357 disposition = INPUT_PASS_TO_ALL;
358 break;
359
360 case EV_PWR:
361 disposition = INPUT_PASS_TO_ALL;
362 break;
363 }
364
365 *pval = value;
366 return disposition;
367}
368
369static void input_handle_event(struct input_dev *dev,
370 unsigned int type, unsigned int code, int value)
371{
372 int disposition = input_get_disposition(dev, type, code, &value);
373
374 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
375 add_input_randomness(type, code, value);
376
377 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
378 dev->event(dev, type, code, value);
379
380 if (!dev->vals)
381 return;
382
383 if (disposition & INPUT_PASS_TO_HANDLERS) {
384 struct input_value *v;
385
386 if (disposition & INPUT_SLOT) {
387 v = &dev->vals[dev->num_vals++];
388 v->type = EV_ABS;
389 v->code = ABS_MT_SLOT;
390 v->value = dev->mt->slot;
391 }
392
393 v = &dev->vals[dev->num_vals++];
394 v->type = type;
395 v->code = code;
396 v->value = value;
397 }
398
399 if (disposition & INPUT_FLUSH) {
400 if (dev->num_vals >= 2)
401 input_pass_values(dev, dev->vals, dev->num_vals);
402 dev->num_vals = 0;
403 } else if (dev->num_vals >= dev->max_vals - 2) {
404 dev->vals[dev->num_vals++] = input_value_sync;
405 input_pass_values(dev, dev->vals, dev->num_vals);
406 dev->num_vals = 0;
407 }
408
409}
410
411/**
412 * input_event() - report new input event
413 * @dev: device that generated the event
414 * @type: type of the event
415 * @code: event code
416 * @value: value of the event
417 *
418 * This function should be used by drivers implementing various input
419 * devices to report input events. See also input_inject_event().
420 *
421 * NOTE: input_event() may be safely used right after input device was
422 * allocated with input_allocate_device(), even before it is registered
423 * with input_register_device(), but the event will not reach any of the
424 * input handlers. Such early invocation of input_event() may be used
425 * to 'seed' initial state of a switch or initial position of absolute
426 * axis, etc.
427 */
428void input_event(struct input_dev *dev,
429 unsigned int type, unsigned int code, int value)
430{
431 unsigned long flags;
432
433 if (is_event_supported(type, dev->evbit, EV_MAX)) {
434
435 spin_lock_irqsave(&dev->event_lock, flags);
436 input_handle_event(dev, type, code, value);
437 spin_unlock_irqrestore(&dev->event_lock, flags);
438 }
439}
440EXPORT_SYMBOL(input_event);
441
442/**
443 * input_inject_event() - send input event from input handler
444 * @handle: input handle to send event through
445 * @type: type of the event
446 * @code: event code
447 * @value: value of the event
448 *
449 * Similar to input_event() but will ignore event if device is
450 * "grabbed" and handle injecting event is not the one that owns
451 * the device.
452 */
453void input_inject_event(struct input_handle *handle,
454 unsigned int type, unsigned int code, int value)
455{
456 struct input_dev *dev = handle->dev;
457 struct input_handle *grab;
458 unsigned long flags;
459
460 if (is_event_supported(type, dev->evbit, EV_MAX)) {
461 spin_lock_irqsave(&dev->event_lock, flags);
462
463 rcu_read_lock();
464 grab = rcu_dereference(dev->grab);
465 if (!grab || grab == handle)
466 input_handle_event(dev, type, code, value);
467 rcu_read_unlock();
468
469 spin_unlock_irqrestore(&dev->event_lock, flags);
470 }
471}
472EXPORT_SYMBOL(input_inject_event);
473
474/**
475 * input_alloc_absinfo - allocates array of input_absinfo structs
476 * @dev: the input device emitting absolute events
477 *
478 * If the absinfo struct the caller asked for is already allocated, this
479 * functions will not do anything.
480 */
481void input_alloc_absinfo(struct input_dev *dev)
482{
483 if (!dev->absinfo)
484 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
485 GFP_KERNEL);
486
487 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
488}
489EXPORT_SYMBOL(input_alloc_absinfo);
490
491void input_set_abs_params(struct input_dev *dev, unsigned int axis,
492 int min, int max, int fuzz, int flat)
493{
494 struct input_absinfo *absinfo;
495
496 input_alloc_absinfo(dev);
497 if (!dev->absinfo)
498 return;
499
500 absinfo = &dev->absinfo[axis];
501 absinfo->minimum = min;
502 absinfo->maximum = max;
503 absinfo->fuzz = fuzz;
504 absinfo->flat = flat;
505
506 __set_bit(EV_ABS, dev->evbit);
507 __set_bit(axis, dev->absbit);
508}
509EXPORT_SYMBOL(input_set_abs_params);
510
511
512/**
513 * input_grab_device - grabs device for exclusive use
514 * @handle: input handle that wants to own the device
515 *
516 * When a device is grabbed by an input handle all events generated by
517 * the device are delivered only to this handle. Also events injected
518 * by other input handles are ignored while device is grabbed.
519 */
520int input_grab_device(struct input_handle *handle)
521{
522 struct input_dev *dev = handle->dev;
523 int retval;
524
525 retval = mutex_lock_interruptible(&dev->mutex);
526 if (retval)
527 return retval;
528
529 if (dev->grab) {
530 retval = -EBUSY;
531 goto out;
532 }
533
534 rcu_assign_pointer(dev->grab, handle);
535
536 out:
537 mutex_unlock(&dev->mutex);
538 return retval;
539}
540EXPORT_SYMBOL(input_grab_device);
541
542static void __input_release_device(struct input_handle *handle)
543{
544 struct input_dev *dev = handle->dev;
545 struct input_handle *grabber;
546
547 grabber = rcu_dereference_protected(dev->grab,
548 lockdep_is_held(&dev->mutex));
549 if (grabber == handle) {
550 rcu_assign_pointer(dev->grab, NULL);
551 /* Make sure input_pass_event() notices that grab is gone */
552 synchronize_rcu();
553
554 list_for_each_entry(handle, &dev->h_list, d_node)
555 if (handle->open && handle->handler->start)
556 handle->handler->start(handle);
557 }
558}
559
560/**
561 * input_release_device - release previously grabbed device
562 * @handle: input handle that owns the device
563 *
564 * Releases previously grabbed device so that other input handles can
565 * start receiving input events. Upon release all handlers attached
566 * to the device have their start() method called so they have a change
567 * to synchronize device state with the rest of the system.
568 */
569void input_release_device(struct input_handle *handle)
570{
571 struct input_dev *dev = handle->dev;
572
573 mutex_lock(&dev->mutex);
574 __input_release_device(handle);
575 mutex_unlock(&dev->mutex);
576}
577EXPORT_SYMBOL(input_release_device);
578
579/**
580 * input_open_device - open input device
581 * @handle: handle through which device is being accessed
582 *
583 * This function should be called by input handlers when they
584 * want to start receive events from given input device.
585 */
586int input_open_device(struct input_handle *handle)
587{
588 struct input_dev *dev = handle->dev;
589 int retval;
590
591 retval = mutex_lock_interruptible(&dev->mutex);
592 if (retval)
593 return retval;
594
595 if (dev->going_away) {
596 retval = -ENODEV;
597 goto out;
598 }
599
600 handle->open++;
601
602 if (!dev->users++ && dev->open)
603 retval = dev->open(dev);
604
605 if (retval) {
606 dev->users--;
607 if (!--handle->open) {
608 /*
609 * Make sure we are not delivering any more events
610 * through this handle
611 */
612 synchronize_rcu();
613 }
614 }
615
616 out:
617 mutex_unlock(&dev->mutex);
618 return retval;
619}
620EXPORT_SYMBOL(input_open_device);
621
622int input_flush_device(struct input_handle *handle, struct file *file)
623{
624 struct input_dev *dev = handle->dev;
625 int retval;
626
627 retval = mutex_lock_interruptible(&dev->mutex);
628 if (retval)
629 return retval;
630
631 if (dev->flush)
632 retval = dev->flush(dev, file);
633
634 mutex_unlock(&dev->mutex);
635 return retval;
636}
637EXPORT_SYMBOL(input_flush_device);
638
639/**
640 * input_close_device - close input device
641 * @handle: handle through which device is being accessed
642 *
643 * This function should be called by input handlers when they
644 * want to stop receive events from given input device.
645 */
646void input_close_device(struct input_handle *handle)
647{
648 struct input_dev *dev = handle->dev;
649
650 mutex_lock(&dev->mutex);
651
652 __input_release_device(handle);
653
654 if (!--dev->users && dev->close)
655 dev->close(dev);
656
657 if (!--handle->open) {
658 /*
659 * synchronize_rcu() makes sure that input_pass_event()
660 * completed and that no more input events are delivered
661 * through this handle
662 */
663 synchronize_rcu();
664 }
665
666 mutex_unlock(&dev->mutex);
667}
668EXPORT_SYMBOL(input_close_device);
669
670/*
671 * Simulate keyup events for all keys that are marked as pressed.
672 * The function must be called with dev->event_lock held.
673 */
674static void input_dev_release_keys(struct input_dev *dev)
675{
676 bool need_sync = false;
677 int code;
678
679 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
680 for_each_set_bit(code, dev->key, KEY_CNT) {
681 input_pass_event(dev, EV_KEY, code, 0);
682 need_sync = true;
683 }
684
685 if (need_sync)
686 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
687
688 memset(dev->key, 0, sizeof(dev->key));
689 }
690}
691
692/*
693 * Prepare device for unregistering
694 */
695static void input_disconnect_device(struct input_dev *dev)
696{
697 struct input_handle *handle;
698
699 /*
700 * Mark device as going away. Note that we take dev->mutex here
701 * not to protect access to dev->going_away but rather to ensure
702 * that there are no threads in the middle of input_open_device()
703 */
704 mutex_lock(&dev->mutex);
705 dev->going_away = true;
706 mutex_unlock(&dev->mutex);
707
708 spin_lock_irq(&dev->event_lock);
709
710 /*
711 * Simulate keyup events for all pressed keys so that handlers
712 * are not left with "stuck" keys. The driver may continue
713 * generate events even after we done here but they will not
714 * reach any handlers.
715 */
716 input_dev_release_keys(dev);
717
718 list_for_each_entry(handle, &dev->h_list, d_node)
719 handle->open = 0;
720
721 spin_unlock_irq(&dev->event_lock);
722}
723
724/**
725 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
726 * @ke: keymap entry containing scancode to be converted.
727 * @scancode: pointer to the location where converted scancode should
728 * be stored.
729 *
730 * This function is used to convert scancode stored in &struct keymap_entry
731 * into scalar form understood by legacy keymap handling methods. These
732 * methods expect scancodes to be represented as 'unsigned int'.
733 */
734int input_scancode_to_scalar(const struct input_keymap_entry *ke,
735 unsigned int *scancode)
736{
737 switch (ke->len) {
738 case 1:
739 *scancode = *((u8 *)ke->scancode);
740 break;
741
742 case 2:
743 *scancode = *((u16 *)ke->scancode);
744 break;
745
746 case 4:
747 *scancode = *((u32 *)ke->scancode);
748 break;
749
750 default:
751 return -EINVAL;
752 }
753
754 return 0;
755}
756EXPORT_SYMBOL(input_scancode_to_scalar);
757
758/*
759 * Those routines handle the default case where no [gs]etkeycode() is
760 * defined. In this case, an array indexed by the scancode is used.
761 */
762
763static unsigned int input_fetch_keycode(struct input_dev *dev,
764 unsigned int index)
765{
766 switch (dev->keycodesize) {
767 case 1:
768 return ((u8 *)dev->keycode)[index];
769
770 case 2:
771 return ((u16 *)dev->keycode)[index];
772
773 default:
774 return ((u32 *)dev->keycode)[index];
775 }
776}
777
778static int input_default_getkeycode(struct input_dev *dev,
779 struct input_keymap_entry *ke)
780{
781 unsigned int index;
782 int error;
783
784 if (!dev->keycodesize)
785 return -EINVAL;
786
787 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
788 index = ke->index;
789 else {
790 error = input_scancode_to_scalar(ke, &index);
791 if (error)
792 return error;
793 }
794
795 if (index >= dev->keycodemax)
796 return -EINVAL;
797
798 ke->keycode = input_fetch_keycode(dev, index);
799 ke->index = index;
800 ke->len = sizeof(index);
801 memcpy(ke->scancode, &index, sizeof(index));
802
803 return 0;
804}
805
806static int input_default_setkeycode(struct input_dev *dev,
807 const struct input_keymap_entry *ke,
808 unsigned int *old_keycode)
809{
810 unsigned int index;
811 int error;
812 int i;
813
814 if (!dev->keycodesize)
815 return -EINVAL;
816
817 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
818 index = ke->index;
819 } else {
820 error = input_scancode_to_scalar(ke, &index);
821 if (error)
822 return error;
823 }
824
825 if (index >= dev->keycodemax)
826 return -EINVAL;
827
828 if (dev->keycodesize < sizeof(ke->keycode) &&
829 (ke->keycode >> (dev->keycodesize * 8)))
830 return -EINVAL;
831
832 switch (dev->keycodesize) {
833 case 1: {
834 u8 *k = (u8 *)dev->keycode;
835 *old_keycode = k[index];
836 k[index] = ke->keycode;
837 break;
838 }
839 case 2: {
840 u16 *k = (u16 *)dev->keycode;
841 *old_keycode = k[index];
842 k[index] = ke->keycode;
843 break;
844 }
845 default: {
846 u32 *k = (u32 *)dev->keycode;
847 *old_keycode = k[index];
848 k[index] = ke->keycode;
849 break;
850 }
851 }
852
853 __clear_bit(*old_keycode, dev->keybit);
854 __set_bit(ke->keycode, dev->keybit);
855
856 for (i = 0; i < dev->keycodemax; i++) {
857 if (input_fetch_keycode(dev, i) == *old_keycode) {
858 __set_bit(*old_keycode, dev->keybit);
859 break; /* Setting the bit twice is useless, so break */
860 }
861 }
862
863 return 0;
864}
865
866/**
867 * input_get_keycode - retrieve keycode currently mapped to a given scancode
868 * @dev: input device which keymap is being queried
869 * @ke: keymap entry
870 *
871 * This function should be called by anyone interested in retrieving current
872 * keymap. Presently evdev handlers use it.
873 */
874int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
875{
876 unsigned long flags;
877 int retval;
878
879 spin_lock_irqsave(&dev->event_lock, flags);
880 retval = dev->getkeycode(dev, ke);
881 spin_unlock_irqrestore(&dev->event_lock, flags);
882
883 return retval;
884}
885EXPORT_SYMBOL(input_get_keycode);
886
887/**
888 * input_set_keycode - attribute a keycode to a given scancode
889 * @dev: input device which keymap is being updated
890 * @ke: new keymap entry
891 *
892 * This function should be called by anyone needing to update current
893 * keymap. Presently keyboard and evdev handlers use it.
894 */
895int input_set_keycode(struct input_dev *dev,
896 const struct input_keymap_entry *ke)
897{
898 unsigned long flags;
899 unsigned int old_keycode;
900 int retval;
901
902 if (ke->keycode > KEY_MAX)
903 return -EINVAL;
904
905 spin_lock_irqsave(&dev->event_lock, flags);
906
907 retval = dev->setkeycode(dev, ke, &old_keycode);
908 if (retval)
909 goto out;
910
911 /* Make sure KEY_RESERVED did not get enabled. */
912 __clear_bit(KEY_RESERVED, dev->keybit);
913
914 /*
915 * Simulate keyup event if keycode is not present
916 * in the keymap anymore
917 */
918 if (test_bit(EV_KEY, dev->evbit) &&
919 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
920 __test_and_clear_bit(old_keycode, dev->key)) {
921 struct input_value vals[] = {
922 { EV_KEY, old_keycode, 0 },
923 input_value_sync
924 };
925
926 input_pass_values(dev, vals, ARRAY_SIZE(vals));
927 }
928
929 out:
930 spin_unlock_irqrestore(&dev->event_lock, flags);
931
932 return retval;
933}
934EXPORT_SYMBOL(input_set_keycode);
935
936static const struct input_device_id *input_match_device(struct input_handler *handler,
937 struct input_dev *dev)
938{
939 const struct input_device_id *id;
940
941 for (id = handler->id_table; id->flags || id->driver_info; id++) {
942
943 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
944 if (id->bustype != dev->id.bustype)
945 continue;
946
947 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
948 if (id->vendor != dev->id.vendor)
949 continue;
950
951 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
952 if (id->product != dev->id.product)
953 continue;
954
955 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
956 if (id->version != dev->id.version)
957 continue;
958
959 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
960 continue;
961
962 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
963 continue;
964
965 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
966 continue;
967
968 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
969 continue;
970
971 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
972 continue;
973
974 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
975 continue;
976
977 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
978 continue;
979
980 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
981 continue;
982
983 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
984 continue;
985
986 if (!handler->match || handler->match(handler, dev))
987 return id;
988 }
989
990 return NULL;
991}
992
993static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
994{
995 const struct input_device_id *id;
996 int error;
997
998 id = input_match_device(handler, dev);
999 if (!id)
1000 return -ENODEV;
1001
1002 error = handler->connect(handler, dev, id);
1003 if (error && error != -ENODEV)
1004 pr_err("failed to attach handler %s to device %s, error: %d\n",
1005 handler->name, kobject_name(&dev->dev.kobj), error);
1006
1007 return error;
1008}
1009
1010#ifdef CONFIG_COMPAT
1011
1012static int input_bits_to_string(char *buf, int buf_size,
1013 unsigned long bits, bool skip_empty)
1014{
1015 int len = 0;
1016
1017 if (in_compat_syscall()) {
1018 u32 dword = bits >> 32;
1019 if (dword || !skip_empty)
1020 len += snprintf(buf, buf_size, "%x ", dword);
1021
1022 dword = bits & 0xffffffffUL;
1023 if (dword || !skip_empty || len)
1024 len += snprintf(buf + len, max(buf_size - len, 0),
1025 "%x", dword);
1026 } else {
1027 if (bits || !skip_empty)
1028 len += snprintf(buf, buf_size, "%lx", bits);
1029 }
1030
1031 return len;
1032}
1033
1034#else /* !CONFIG_COMPAT */
1035
1036static int input_bits_to_string(char *buf, int buf_size,
1037 unsigned long bits, bool skip_empty)
1038{
1039 return bits || !skip_empty ?
1040 snprintf(buf, buf_size, "%lx", bits) : 0;
1041}
1042
1043#endif
1044
1045#ifdef CONFIG_PROC_FS
1046
1047static struct proc_dir_entry *proc_bus_input_dir;
1048static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1049static int input_devices_state;
1050
1051static inline void input_wakeup_procfs_readers(void)
1052{
1053 input_devices_state++;
1054 wake_up(&input_devices_poll_wait);
1055}
1056
1057static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1058{
1059 poll_wait(file, &input_devices_poll_wait, wait);
1060 if (file->f_version != input_devices_state) {
1061 file->f_version = input_devices_state;
1062 return POLLIN | POLLRDNORM;
1063 }
1064
1065 return 0;
1066}
1067
1068union input_seq_state {
1069 struct {
1070 unsigned short pos;
1071 bool mutex_acquired;
1072 };
1073 void *p;
1074};
1075
1076static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1077{
1078 union input_seq_state *state = (union input_seq_state *)&seq->private;
1079 int error;
1080
1081 /* We need to fit into seq->private pointer */
1082 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1083
1084 error = mutex_lock_interruptible(&input_mutex);
1085 if (error) {
1086 state->mutex_acquired = false;
1087 return ERR_PTR(error);
1088 }
1089
1090 state->mutex_acquired = true;
1091
1092 return seq_list_start(&input_dev_list, *pos);
1093}
1094
1095static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1096{
1097 return seq_list_next(v, &input_dev_list, pos);
1098}
1099
1100static void input_seq_stop(struct seq_file *seq, void *v)
1101{
1102 union input_seq_state *state = (union input_seq_state *)&seq->private;
1103
1104 if (state->mutex_acquired)
1105 mutex_unlock(&input_mutex);
1106}
1107
1108static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1109 unsigned long *bitmap, int max)
1110{
1111 int i;
1112 bool skip_empty = true;
1113 char buf[18];
1114
1115 seq_printf(seq, "B: %s=", name);
1116
1117 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1118 if (input_bits_to_string(buf, sizeof(buf),
1119 bitmap[i], skip_empty)) {
1120 skip_empty = false;
1121 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1122 }
1123 }
1124
1125 /*
1126 * If no output was produced print a single 0.
1127 */
1128 if (skip_empty)
1129 seq_puts(seq, "0");
1130
1131 seq_putc(seq, '\n');
1132}
1133
1134static int input_devices_seq_show(struct seq_file *seq, void *v)
1135{
1136 struct input_dev *dev = container_of(v, struct input_dev, node);
1137 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1138 struct input_handle *handle;
1139
1140 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1141 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1142
1143 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1144 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1145 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1146 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1147 seq_printf(seq, "H: Handlers=");
1148
1149 list_for_each_entry(handle, &dev->h_list, d_node)
1150 seq_printf(seq, "%s ", handle->name);
1151 seq_putc(seq, '\n');
1152
1153 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1154
1155 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1156 if (test_bit(EV_KEY, dev->evbit))
1157 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1158 if (test_bit(EV_REL, dev->evbit))
1159 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1160 if (test_bit(EV_ABS, dev->evbit))
1161 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1162 if (test_bit(EV_MSC, dev->evbit))
1163 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1164 if (test_bit(EV_LED, dev->evbit))
1165 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1166 if (test_bit(EV_SND, dev->evbit))
1167 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1168 if (test_bit(EV_FF, dev->evbit))
1169 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1170 if (test_bit(EV_SW, dev->evbit))
1171 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1172
1173 seq_putc(seq, '\n');
1174
1175 kfree(path);
1176 return 0;
1177}
1178
1179static const struct seq_operations input_devices_seq_ops = {
1180 .start = input_devices_seq_start,
1181 .next = input_devices_seq_next,
1182 .stop = input_seq_stop,
1183 .show = input_devices_seq_show,
1184};
1185
1186static int input_proc_devices_open(struct inode *inode, struct file *file)
1187{
1188 return seq_open(file, &input_devices_seq_ops);
1189}
1190
1191static const struct file_operations input_devices_fileops = {
1192 .owner = THIS_MODULE,
1193 .open = input_proc_devices_open,
1194 .poll = input_proc_devices_poll,
1195 .read = seq_read,
1196 .llseek = seq_lseek,
1197 .release = seq_release,
1198};
1199
1200static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1201{
1202 union input_seq_state *state = (union input_seq_state *)&seq->private;
1203 int error;
1204
1205 /* We need to fit into seq->private pointer */
1206 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1207
1208 error = mutex_lock_interruptible(&input_mutex);
1209 if (error) {
1210 state->mutex_acquired = false;
1211 return ERR_PTR(error);
1212 }
1213
1214 state->mutex_acquired = true;
1215 state->pos = *pos;
1216
1217 return seq_list_start(&input_handler_list, *pos);
1218}
1219
1220static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1221{
1222 union input_seq_state *state = (union input_seq_state *)&seq->private;
1223
1224 state->pos = *pos + 1;
1225 return seq_list_next(v, &input_handler_list, pos);
1226}
1227
1228static int input_handlers_seq_show(struct seq_file *seq, void *v)
1229{
1230 struct input_handler *handler = container_of(v, struct input_handler, node);
1231 union input_seq_state *state = (union input_seq_state *)&seq->private;
1232
1233 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1234 if (handler->filter)
1235 seq_puts(seq, " (filter)");
1236 if (handler->legacy_minors)
1237 seq_printf(seq, " Minor=%d", handler->minor);
1238 seq_putc(seq, '\n');
1239
1240 return 0;
1241}
1242
1243static const struct seq_operations input_handlers_seq_ops = {
1244 .start = input_handlers_seq_start,
1245 .next = input_handlers_seq_next,
1246 .stop = input_seq_stop,
1247 .show = input_handlers_seq_show,
1248};
1249
1250static int input_proc_handlers_open(struct inode *inode, struct file *file)
1251{
1252 return seq_open(file, &input_handlers_seq_ops);
1253}
1254
1255static const struct file_operations input_handlers_fileops = {
1256 .owner = THIS_MODULE,
1257 .open = input_proc_handlers_open,
1258 .read = seq_read,
1259 .llseek = seq_lseek,
1260 .release = seq_release,
1261};
1262
1263static int __init input_proc_init(void)
1264{
1265 struct proc_dir_entry *entry;
1266
1267 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1268 if (!proc_bus_input_dir)
1269 return -ENOMEM;
1270
1271 entry = proc_create("devices", 0, proc_bus_input_dir,
1272 &input_devices_fileops);
1273 if (!entry)
1274 goto fail1;
1275
1276 entry = proc_create("handlers", 0, proc_bus_input_dir,
1277 &input_handlers_fileops);
1278 if (!entry)
1279 goto fail2;
1280
1281 return 0;
1282
1283 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1284 fail1: remove_proc_entry("bus/input", NULL);
1285 return -ENOMEM;
1286}
1287
1288static void input_proc_exit(void)
1289{
1290 remove_proc_entry("devices", proc_bus_input_dir);
1291 remove_proc_entry("handlers", proc_bus_input_dir);
1292 remove_proc_entry("bus/input", NULL);
1293}
1294
1295#else /* !CONFIG_PROC_FS */
1296static inline void input_wakeup_procfs_readers(void) { }
1297static inline int input_proc_init(void) { return 0; }
1298static inline void input_proc_exit(void) { }
1299#endif
1300
1301#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1302static ssize_t input_dev_show_##name(struct device *dev, \
1303 struct device_attribute *attr, \
1304 char *buf) \
1305{ \
1306 struct input_dev *input_dev = to_input_dev(dev); \
1307 \
1308 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1309 input_dev->name ? input_dev->name : ""); \
1310} \
1311static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1312
1313INPUT_DEV_STRING_ATTR_SHOW(name);
1314INPUT_DEV_STRING_ATTR_SHOW(phys);
1315INPUT_DEV_STRING_ATTR_SHOW(uniq);
1316
1317static int input_print_modalias_bits(char *buf, int size,
1318 char name, unsigned long *bm,
1319 unsigned int min_bit, unsigned int max_bit)
1320{
1321 int len = 0, i;
1322
1323 len += snprintf(buf, max(size, 0), "%c", name);
1324 for (i = min_bit; i < max_bit; i++)
1325 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1326 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1327 return len;
1328}
1329
1330static int input_print_modalias(char *buf, int size, struct input_dev *id,
1331 int add_cr)
1332{
1333 int len;
1334
1335 len = snprintf(buf, max(size, 0),
1336 "input:b%04Xv%04Xp%04Xe%04X-",
1337 id->id.bustype, id->id.vendor,
1338 id->id.product, id->id.version);
1339
1340 len += input_print_modalias_bits(buf + len, size - len,
1341 'e', id->evbit, 0, EV_MAX);
1342 len += input_print_modalias_bits(buf + len, size - len,
1343 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1344 len += input_print_modalias_bits(buf + len, size - len,
1345 'r', id->relbit, 0, REL_MAX);
1346 len += input_print_modalias_bits(buf + len, size - len,
1347 'a', id->absbit, 0, ABS_MAX);
1348 len += input_print_modalias_bits(buf + len, size - len,
1349 'm', id->mscbit, 0, MSC_MAX);
1350 len += input_print_modalias_bits(buf + len, size - len,
1351 'l', id->ledbit, 0, LED_MAX);
1352 len += input_print_modalias_bits(buf + len, size - len,
1353 's', id->sndbit, 0, SND_MAX);
1354 len += input_print_modalias_bits(buf + len, size - len,
1355 'f', id->ffbit, 0, FF_MAX);
1356 len += input_print_modalias_bits(buf + len, size - len,
1357 'w', id->swbit, 0, SW_MAX);
1358
1359 if (add_cr)
1360 len += snprintf(buf + len, max(size - len, 0), "\n");
1361
1362 return len;
1363}
1364
1365static ssize_t input_dev_show_modalias(struct device *dev,
1366 struct device_attribute *attr,
1367 char *buf)
1368{
1369 struct input_dev *id = to_input_dev(dev);
1370 ssize_t len;
1371
1372 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1373
1374 return min_t(int, len, PAGE_SIZE);
1375}
1376static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1377
1378static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1379 int max, int add_cr);
1380
1381static ssize_t input_dev_show_properties(struct device *dev,
1382 struct device_attribute *attr,
1383 char *buf)
1384{
1385 struct input_dev *input_dev = to_input_dev(dev);
1386 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1387 INPUT_PROP_MAX, true);
1388 return min_t(int, len, PAGE_SIZE);
1389}
1390static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1391
1392static struct attribute *input_dev_attrs[] = {
1393 &dev_attr_name.attr,
1394 &dev_attr_phys.attr,
1395 &dev_attr_uniq.attr,
1396 &dev_attr_modalias.attr,
1397 &dev_attr_properties.attr,
1398 NULL
1399};
1400
1401static struct attribute_group input_dev_attr_group = {
1402 .attrs = input_dev_attrs,
1403};
1404
1405#define INPUT_DEV_ID_ATTR(name) \
1406static ssize_t input_dev_show_id_##name(struct device *dev, \
1407 struct device_attribute *attr, \
1408 char *buf) \
1409{ \
1410 struct input_dev *input_dev = to_input_dev(dev); \
1411 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1412} \
1413static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1414
1415INPUT_DEV_ID_ATTR(bustype);
1416INPUT_DEV_ID_ATTR(vendor);
1417INPUT_DEV_ID_ATTR(product);
1418INPUT_DEV_ID_ATTR(version);
1419
1420static struct attribute *input_dev_id_attrs[] = {
1421 &dev_attr_bustype.attr,
1422 &dev_attr_vendor.attr,
1423 &dev_attr_product.attr,
1424 &dev_attr_version.attr,
1425 NULL
1426};
1427
1428static struct attribute_group input_dev_id_attr_group = {
1429 .name = "id",
1430 .attrs = input_dev_id_attrs,
1431};
1432
1433static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1434 int max, int add_cr)
1435{
1436 int i;
1437 int len = 0;
1438 bool skip_empty = true;
1439
1440 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1441 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1442 bitmap[i], skip_empty);
1443 if (len) {
1444 skip_empty = false;
1445 if (i > 0)
1446 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1447 }
1448 }
1449
1450 /*
1451 * If no output was produced print a single 0.
1452 */
1453 if (len == 0)
1454 len = snprintf(buf, buf_size, "%d", 0);
1455
1456 if (add_cr)
1457 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1458
1459 return len;
1460}
1461
1462#define INPUT_DEV_CAP_ATTR(ev, bm) \
1463static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1464 struct device_attribute *attr, \
1465 char *buf) \
1466{ \
1467 struct input_dev *input_dev = to_input_dev(dev); \
1468 int len = input_print_bitmap(buf, PAGE_SIZE, \
1469 input_dev->bm##bit, ev##_MAX, \
1470 true); \
1471 return min_t(int, len, PAGE_SIZE); \
1472} \
1473static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1474
1475INPUT_DEV_CAP_ATTR(EV, ev);
1476INPUT_DEV_CAP_ATTR(KEY, key);
1477INPUT_DEV_CAP_ATTR(REL, rel);
1478INPUT_DEV_CAP_ATTR(ABS, abs);
1479INPUT_DEV_CAP_ATTR(MSC, msc);
1480INPUT_DEV_CAP_ATTR(LED, led);
1481INPUT_DEV_CAP_ATTR(SND, snd);
1482INPUT_DEV_CAP_ATTR(FF, ff);
1483INPUT_DEV_CAP_ATTR(SW, sw);
1484
1485static struct attribute *input_dev_caps_attrs[] = {
1486 &dev_attr_ev.attr,
1487 &dev_attr_key.attr,
1488 &dev_attr_rel.attr,
1489 &dev_attr_abs.attr,
1490 &dev_attr_msc.attr,
1491 &dev_attr_led.attr,
1492 &dev_attr_snd.attr,
1493 &dev_attr_ff.attr,
1494 &dev_attr_sw.attr,
1495 NULL
1496};
1497
1498static struct attribute_group input_dev_caps_attr_group = {
1499 .name = "capabilities",
1500 .attrs = input_dev_caps_attrs,
1501};
1502
1503static const struct attribute_group *input_dev_attr_groups[] = {
1504 &input_dev_attr_group,
1505 &input_dev_id_attr_group,
1506 &input_dev_caps_attr_group,
1507 NULL
1508};
1509
1510static void input_dev_release(struct device *device)
1511{
1512 struct input_dev *dev = to_input_dev(device);
1513
1514 input_ff_destroy(dev);
1515 input_mt_destroy_slots(dev);
1516 kfree(dev->absinfo);
1517 kfree(dev->vals);
1518 kfree(dev);
1519
1520 module_put(THIS_MODULE);
1521}
1522
1523/*
1524 * Input uevent interface - loading event handlers based on
1525 * device bitfields.
1526 */
1527static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1528 const char *name, unsigned long *bitmap, int max)
1529{
1530 int len;
1531
1532 if (add_uevent_var(env, "%s", name))
1533 return -ENOMEM;
1534
1535 len = input_print_bitmap(&env->buf[env->buflen - 1],
1536 sizeof(env->buf) - env->buflen,
1537 bitmap, max, false);
1538 if (len >= (sizeof(env->buf) - env->buflen))
1539 return -ENOMEM;
1540
1541 env->buflen += len;
1542 return 0;
1543}
1544
1545static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1546 struct input_dev *dev)
1547{
1548 int len;
1549
1550 if (add_uevent_var(env, "MODALIAS="))
1551 return -ENOMEM;
1552
1553 len = input_print_modalias(&env->buf[env->buflen - 1],
1554 sizeof(env->buf) - env->buflen,
1555 dev, 0);
1556 if (len >= (sizeof(env->buf) - env->buflen))
1557 return -ENOMEM;
1558
1559 env->buflen += len;
1560 return 0;
1561}
1562
1563#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1564 do { \
1565 int err = add_uevent_var(env, fmt, val); \
1566 if (err) \
1567 return err; \
1568 } while (0)
1569
1570#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1571 do { \
1572 int err = input_add_uevent_bm_var(env, name, bm, max); \
1573 if (err) \
1574 return err; \
1575 } while (0)
1576
1577#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1578 do { \
1579 int err = input_add_uevent_modalias_var(env, dev); \
1580 if (err) \
1581 return err; \
1582 } while (0)
1583
1584static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1585{
1586 struct input_dev *dev = to_input_dev(device);
1587
1588 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1589 dev->id.bustype, dev->id.vendor,
1590 dev->id.product, dev->id.version);
1591 if (dev->name)
1592 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1593 if (dev->phys)
1594 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1595 if (dev->uniq)
1596 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1597
1598 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1599
1600 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1601 if (test_bit(EV_KEY, dev->evbit))
1602 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1603 if (test_bit(EV_REL, dev->evbit))
1604 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1605 if (test_bit(EV_ABS, dev->evbit))
1606 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1607 if (test_bit(EV_MSC, dev->evbit))
1608 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1609 if (test_bit(EV_LED, dev->evbit))
1610 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1611 if (test_bit(EV_SND, dev->evbit))
1612 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1613 if (test_bit(EV_FF, dev->evbit))
1614 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1615 if (test_bit(EV_SW, dev->evbit))
1616 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1617
1618 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1619
1620 return 0;
1621}
1622
1623#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1624 do { \
1625 int i; \
1626 bool active; \
1627 \
1628 if (!test_bit(EV_##type, dev->evbit)) \
1629 break; \
1630 \
1631 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1632 active = test_bit(i, dev->bits); \
1633 if (!active && !on) \
1634 continue; \
1635 \
1636 dev->event(dev, EV_##type, i, on ? active : 0); \
1637 } \
1638 } while (0)
1639
1640static void input_dev_toggle(struct input_dev *dev, bool activate)
1641{
1642 if (!dev->event)
1643 return;
1644
1645 INPUT_DO_TOGGLE(dev, LED, led, activate);
1646 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1647
1648 if (activate && test_bit(EV_REP, dev->evbit)) {
1649 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1650 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1651 }
1652}
1653
1654/**
1655 * input_reset_device() - reset/restore the state of input device
1656 * @dev: input device whose state needs to be reset
1657 *
1658 * This function tries to reset the state of an opened input device and
1659 * bring internal state and state if the hardware in sync with each other.
1660 * We mark all keys as released, restore LED state, repeat rate, etc.
1661 */
1662void input_reset_device(struct input_dev *dev)
1663{
1664 unsigned long flags;
1665
1666 mutex_lock(&dev->mutex);
1667 spin_lock_irqsave(&dev->event_lock, flags);
1668
1669 input_dev_toggle(dev, true);
1670 input_dev_release_keys(dev);
1671
1672 spin_unlock_irqrestore(&dev->event_lock, flags);
1673 mutex_unlock(&dev->mutex);
1674}
1675EXPORT_SYMBOL(input_reset_device);
1676
1677#ifdef CONFIG_PM_SLEEP
1678static int input_dev_suspend(struct device *dev)
1679{
1680 struct input_dev *input_dev = to_input_dev(dev);
1681
1682 spin_lock_irq(&input_dev->event_lock);
1683
1684 /*
1685 * Keys that are pressed now are unlikely to be
1686 * still pressed when we resume.
1687 */
1688 input_dev_release_keys(input_dev);
1689
1690 /* Turn off LEDs and sounds, if any are active. */
1691 input_dev_toggle(input_dev, false);
1692
1693 spin_unlock_irq(&input_dev->event_lock);
1694
1695 return 0;
1696}
1697
1698static int input_dev_resume(struct device *dev)
1699{
1700 struct input_dev *input_dev = to_input_dev(dev);
1701
1702 spin_lock_irq(&input_dev->event_lock);
1703
1704 /* Restore state of LEDs and sounds, if any were active. */
1705 input_dev_toggle(input_dev, true);
1706
1707 spin_unlock_irq(&input_dev->event_lock);
1708
1709 return 0;
1710}
1711
1712static int input_dev_freeze(struct device *dev)
1713{
1714 struct input_dev *input_dev = to_input_dev(dev);
1715
1716 spin_lock_irq(&input_dev->event_lock);
1717
1718 /*
1719 * Keys that are pressed now are unlikely to be
1720 * still pressed when we resume.
1721 */
1722 input_dev_release_keys(input_dev);
1723
1724 spin_unlock_irq(&input_dev->event_lock);
1725
1726 return 0;
1727}
1728
1729static int input_dev_poweroff(struct device *dev)
1730{
1731 struct input_dev *input_dev = to_input_dev(dev);
1732
1733 spin_lock_irq(&input_dev->event_lock);
1734
1735 /* Turn off LEDs and sounds, if any are active. */
1736 input_dev_toggle(input_dev, false);
1737
1738 spin_unlock_irq(&input_dev->event_lock);
1739
1740 return 0;
1741}
1742
1743static const struct dev_pm_ops input_dev_pm_ops = {
1744 .suspend = input_dev_suspend,
1745 .resume = input_dev_resume,
1746 .freeze = input_dev_freeze,
1747 .poweroff = input_dev_poweroff,
1748 .restore = input_dev_resume,
1749};
1750#endif /* CONFIG_PM */
1751
1752static struct device_type input_dev_type = {
1753 .groups = input_dev_attr_groups,
1754 .release = input_dev_release,
1755 .uevent = input_dev_uevent,
1756#ifdef CONFIG_PM_SLEEP
1757 .pm = &input_dev_pm_ops,
1758#endif
1759};
1760
1761static char *input_devnode(struct device *dev, umode_t *mode)
1762{
1763 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1764}
1765
1766struct class input_class = {
1767 .name = "input",
1768 .devnode = input_devnode,
1769};
1770EXPORT_SYMBOL_GPL(input_class);
1771
1772/**
1773 * input_allocate_device - allocate memory for new input device
1774 *
1775 * Returns prepared struct input_dev or %NULL.
1776 *
1777 * NOTE: Use input_free_device() to free devices that have not been
1778 * registered; input_unregister_device() should be used for already
1779 * registered devices.
1780 */
1781struct input_dev *input_allocate_device(void)
1782{
1783 static atomic_t input_no = ATOMIC_INIT(-1);
1784 struct input_dev *dev;
1785
1786 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1787 if (dev) {
1788 dev->dev.type = &input_dev_type;
1789 dev->dev.class = &input_class;
1790 device_initialize(&dev->dev);
1791 mutex_init(&dev->mutex);
1792 spin_lock_init(&dev->event_lock);
1793 init_timer(&dev->timer);
1794 INIT_LIST_HEAD(&dev->h_list);
1795 INIT_LIST_HEAD(&dev->node);
1796
1797 dev_set_name(&dev->dev, "input%lu",
1798 (unsigned long)atomic_inc_return(&input_no));
1799
1800 __module_get(THIS_MODULE);
1801 }
1802
1803 return dev;
1804}
1805EXPORT_SYMBOL(input_allocate_device);
1806
1807struct input_devres {
1808 struct input_dev *input;
1809};
1810
1811static int devm_input_device_match(struct device *dev, void *res, void *data)
1812{
1813 struct input_devres *devres = res;
1814
1815 return devres->input == data;
1816}
1817
1818static void devm_input_device_release(struct device *dev, void *res)
1819{
1820 struct input_devres *devres = res;
1821 struct input_dev *input = devres->input;
1822
1823 dev_dbg(dev, "%s: dropping reference to %s\n",
1824 __func__, dev_name(&input->dev));
1825 input_put_device(input);
1826}
1827
1828/**
1829 * devm_input_allocate_device - allocate managed input device
1830 * @dev: device owning the input device being created
1831 *
1832 * Returns prepared struct input_dev or %NULL.
1833 *
1834 * Managed input devices do not need to be explicitly unregistered or
1835 * freed as it will be done automatically when owner device unbinds from
1836 * its driver (or binding fails). Once managed input device is allocated,
1837 * it is ready to be set up and registered in the same fashion as regular
1838 * input device. There are no special devm_input_device_[un]register()
1839 * variants, regular ones work with both managed and unmanaged devices,
1840 * should you need them. In most cases however, managed input device need
1841 * not be explicitly unregistered or freed.
1842 *
1843 * NOTE: the owner device is set up as parent of input device and users
1844 * should not override it.
1845 */
1846struct input_dev *devm_input_allocate_device(struct device *dev)
1847{
1848 struct input_dev *input;
1849 struct input_devres *devres;
1850
1851 devres = devres_alloc(devm_input_device_release,
1852 sizeof(struct input_devres), GFP_KERNEL);
1853 if (!devres)
1854 return NULL;
1855
1856 input = input_allocate_device();
1857 if (!input) {
1858 devres_free(devres);
1859 return NULL;
1860 }
1861
1862 input->dev.parent = dev;
1863 input->devres_managed = true;
1864
1865 devres->input = input;
1866 devres_add(dev, devres);
1867
1868 return input;
1869}
1870EXPORT_SYMBOL(devm_input_allocate_device);
1871
1872/**
1873 * input_free_device - free memory occupied by input_dev structure
1874 * @dev: input device to free
1875 *
1876 * This function should only be used if input_register_device()
1877 * was not called yet or if it failed. Once device was registered
1878 * use input_unregister_device() and memory will be freed once last
1879 * reference to the device is dropped.
1880 *
1881 * Device should be allocated by input_allocate_device().
1882 *
1883 * NOTE: If there are references to the input device then memory
1884 * will not be freed until last reference is dropped.
1885 */
1886void input_free_device(struct input_dev *dev)
1887{
1888 if (dev) {
1889 if (dev->devres_managed)
1890 WARN_ON(devres_destroy(dev->dev.parent,
1891 devm_input_device_release,
1892 devm_input_device_match,
1893 dev));
1894 input_put_device(dev);
1895 }
1896}
1897EXPORT_SYMBOL(input_free_device);
1898
1899/**
1900 * input_set_capability - mark device as capable of a certain event
1901 * @dev: device that is capable of emitting or accepting event
1902 * @type: type of the event (EV_KEY, EV_REL, etc...)
1903 * @code: event code
1904 *
1905 * In addition to setting up corresponding bit in appropriate capability
1906 * bitmap the function also adjusts dev->evbit.
1907 */
1908void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1909{
1910 switch (type) {
1911 case EV_KEY:
1912 __set_bit(code, dev->keybit);
1913 break;
1914
1915 case EV_REL:
1916 __set_bit(code, dev->relbit);
1917 break;
1918
1919 case EV_ABS:
1920 input_alloc_absinfo(dev);
1921 if (!dev->absinfo)
1922 return;
1923
1924 __set_bit(code, dev->absbit);
1925 break;
1926
1927 case EV_MSC:
1928 __set_bit(code, dev->mscbit);
1929 break;
1930
1931 case EV_SW:
1932 __set_bit(code, dev->swbit);
1933 break;
1934
1935 case EV_LED:
1936 __set_bit(code, dev->ledbit);
1937 break;
1938
1939 case EV_SND:
1940 __set_bit(code, dev->sndbit);
1941 break;
1942
1943 case EV_FF:
1944 __set_bit(code, dev->ffbit);
1945 break;
1946
1947 case EV_PWR:
1948 /* do nothing */
1949 break;
1950
1951 default:
1952 pr_err("input_set_capability: unknown type %u (code %u)\n",
1953 type, code);
1954 dump_stack();
1955 return;
1956 }
1957
1958 __set_bit(type, dev->evbit);
1959}
1960EXPORT_SYMBOL(input_set_capability);
1961
1962static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1963{
1964 int mt_slots;
1965 int i;
1966 unsigned int events;
1967
1968 if (dev->mt) {
1969 mt_slots = dev->mt->num_slots;
1970 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1971 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1972 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1973 mt_slots = clamp(mt_slots, 2, 32);
1974 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1975 mt_slots = 2;
1976 } else {
1977 mt_slots = 0;
1978 }
1979
1980 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1981
1982 if (test_bit(EV_ABS, dev->evbit))
1983 for_each_set_bit(i, dev->absbit, ABS_CNT)
1984 events += input_is_mt_axis(i) ? mt_slots : 1;
1985
1986 if (test_bit(EV_REL, dev->evbit))
1987 events += bitmap_weight(dev->relbit, REL_CNT);
1988
1989 /* Make room for KEY and MSC events */
1990 events += 7;
1991
1992 return events;
1993}
1994
1995#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1996 do { \
1997 if (!test_bit(EV_##type, dev->evbit)) \
1998 memset(dev->bits##bit, 0, \
1999 sizeof(dev->bits##bit)); \
2000 } while (0)
2001
2002static void input_cleanse_bitmasks(struct input_dev *dev)
2003{
2004 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2005 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2006 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2007 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2008 INPUT_CLEANSE_BITMASK(dev, LED, led);
2009 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2010 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2011 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2012}
2013
2014static void __input_unregister_device(struct input_dev *dev)
2015{
2016 struct input_handle *handle, *next;
2017
2018 input_disconnect_device(dev);
2019
2020 mutex_lock(&input_mutex);
2021
2022 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2023 handle->handler->disconnect(handle);
2024 WARN_ON(!list_empty(&dev->h_list));
2025
2026 del_timer_sync(&dev->timer);
2027 list_del_init(&dev->node);
2028
2029 input_wakeup_procfs_readers();
2030
2031 mutex_unlock(&input_mutex);
2032
2033 device_del(&dev->dev);
2034}
2035
2036static void devm_input_device_unregister(struct device *dev, void *res)
2037{
2038 struct input_devres *devres = res;
2039 struct input_dev *input = devres->input;
2040
2041 dev_dbg(dev, "%s: unregistering device %s\n",
2042 __func__, dev_name(&input->dev));
2043 __input_unregister_device(input);
2044}
2045
2046/**
2047 * input_enable_softrepeat - enable software autorepeat
2048 * @dev: input device
2049 * @delay: repeat delay
2050 * @period: repeat period
2051 *
2052 * Enable software autorepeat on the input device.
2053 */
2054void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2055{
2056 dev->timer.data = (unsigned long) dev;
2057 dev->timer.function = input_repeat_key;
2058 dev->rep[REP_DELAY] = delay;
2059 dev->rep[REP_PERIOD] = period;
2060}
2061EXPORT_SYMBOL(input_enable_softrepeat);
2062
2063/**
2064 * input_register_device - register device with input core
2065 * @dev: device to be registered
2066 *
2067 * This function registers device with input core. The device must be
2068 * allocated with input_allocate_device() and all it's capabilities
2069 * set up before registering.
2070 * If function fails the device must be freed with input_free_device().
2071 * Once device has been successfully registered it can be unregistered
2072 * with input_unregister_device(); input_free_device() should not be
2073 * called in this case.
2074 *
2075 * Note that this function is also used to register managed input devices
2076 * (ones allocated with devm_input_allocate_device()). Such managed input
2077 * devices need not be explicitly unregistered or freed, their tear down
2078 * is controlled by the devres infrastructure. It is also worth noting
2079 * that tear down of managed input devices is internally a 2-step process:
2080 * registered managed input device is first unregistered, but stays in
2081 * memory and can still handle input_event() calls (although events will
2082 * not be delivered anywhere). The freeing of managed input device will
2083 * happen later, when devres stack is unwound to the point where device
2084 * allocation was made.
2085 */
2086int input_register_device(struct input_dev *dev)
2087{
2088 struct input_devres *devres = NULL;
2089 struct input_handler *handler;
2090 unsigned int packet_size;
2091 const char *path;
2092 int error;
2093
2094 if (dev->devres_managed) {
2095 devres = devres_alloc(devm_input_device_unregister,
2096 sizeof(struct input_devres), GFP_KERNEL);
2097 if (!devres)
2098 return -ENOMEM;
2099
2100 devres->input = dev;
2101 }
2102
2103 /* Every input device generates EV_SYN/SYN_REPORT events. */
2104 __set_bit(EV_SYN, dev->evbit);
2105
2106 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2107 __clear_bit(KEY_RESERVED, dev->keybit);
2108
2109 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2110 input_cleanse_bitmasks(dev);
2111
2112 packet_size = input_estimate_events_per_packet(dev);
2113 if (dev->hint_events_per_packet < packet_size)
2114 dev->hint_events_per_packet = packet_size;
2115
2116 dev->max_vals = dev->hint_events_per_packet + 2;
2117 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2118 if (!dev->vals) {
2119 error = -ENOMEM;
2120 goto err_devres_free;
2121 }
2122
2123 /*
2124 * If delay and period are pre-set by the driver, then autorepeating
2125 * is handled by the driver itself and we don't do it in input.c.
2126 */
2127 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2128 input_enable_softrepeat(dev, 250, 33);
2129
2130 if (!dev->getkeycode)
2131 dev->getkeycode = input_default_getkeycode;
2132
2133 if (!dev->setkeycode)
2134 dev->setkeycode = input_default_setkeycode;
2135
2136 error = device_add(&dev->dev);
2137 if (error)
2138 goto err_free_vals;
2139
2140 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2141 pr_info("%s as %s\n",
2142 dev->name ? dev->name : "Unspecified device",
2143 path ? path : "N/A");
2144 kfree(path);
2145
2146 error = mutex_lock_interruptible(&input_mutex);
2147 if (error)
2148 goto err_device_del;
2149
2150 list_add_tail(&dev->node, &input_dev_list);
2151
2152 list_for_each_entry(handler, &input_handler_list, node)
2153 input_attach_handler(dev, handler);
2154
2155 input_wakeup_procfs_readers();
2156
2157 mutex_unlock(&input_mutex);
2158
2159 if (dev->devres_managed) {
2160 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2161 __func__, dev_name(&dev->dev));
2162 devres_add(dev->dev.parent, devres);
2163 }
2164 return 0;
2165
2166err_device_del:
2167 device_del(&dev->dev);
2168err_free_vals:
2169 kfree(dev->vals);
2170 dev->vals = NULL;
2171err_devres_free:
2172 devres_free(devres);
2173 return error;
2174}
2175EXPORT_SYMBOL(input_register_device);
2176
2177/**
2178 * input_unregister_device - unregister previously registered device
2179 * @dev: device to be unregistered
2180 *
2181 * This function unregisters an input device. Once device is unregistered
2182 * the caller should not try to access it as it may get freed at any moment.
2183 */
2184void input_unregister_device(struct input_dev *dev)
2185{
2186 if (dev->devres_managed) {
2187 WARN_ON(devres_destroy(dev->dev.parent,
2188 devm_input_device_unregister,
2189 devm_input_device_match,
2190 dev));
2191 __input_unregister_device(dev);
2192 /*
2193 * We do not do input_put_device() here because it will be done
2194 * when 2nd devres fires up.
2195 */
2196 } else {
2197 __input_unregister_device(dev);
2198 input_put_device(dev);
2199 }
2200}
2201EXPORT_SYMBOL(input_unregister_device);
2202
2203/**
2204 * input_register_handler - register a new input handler
2205 * @handler: handler to be registered
2206 *
2207 * This function registers a new input handler (interface) for input
2208 * devices in the system and attaches it to all input devices that
2209 * are compatible with the handler.
2210 */
2211int input_register_handler(struct input_handler *handler)
2212{
2213 struct input_dev *dev;
2214 int error;
2215
2216 error = mutex_lock_interruptible(&input_mutex);
2217 if (error)
2218 return error;
2219
2220 INIT_LIST_HEAD(&handler->h_list);
2221
2222 list_add_tail(&handler->node, &input_handler_list);
2223
2224 list_for_each_entry(dev, &input_dev_list, node)
2225 input_attach_handler(dev, handler);
2226
2227 input_wakeup_procfs_readers();
2228
2229 mutex_unlock(&input_mutex);
2230 return 0;
2231}
2232EXPORT_SYMBOL(input_register_handler);
2233
2234/**
2235 * input_unregister_handler - unregisters an input handler
2236 * @handler: handler to be unregistered
2237 *
2238 * This function disconnects a handler from its input devices and
2239 * removes it from lists of known handlers.
2240 */
2241void input_unregister_handler(struct input_handler *handler)
2242{
2243 struct input_handle *handle, *next;
2244
2245 mutex_lock(&input_mutex);
2246
2247 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2248 handler->disconnect(handle);
2249 WARN_ON(!list_empty(&handler->h_list));
2250
2251 list_del_init(&handler->node);
2252
2253 input_wakeup_procfs_readers();
2254
2255 mutex_unlock(&input_mutex);
2256}
2257EXPORT_SYMBOL(input_unregister_handler);
2258
2259/**
2260 * input_handler_for_each_handle - handle iterator
2261 * @handler: input handler to iterate
2262 * @data: data for the callback
2263 * @fn: function to be called for each handle
2264 *
2265 * Iterate over @bus's list of devices, and call @fn for each, passing
2266 * it @data and stop when @fn returns a non-zero value. The function is
2267 * using RCU to traverse the list and therefore may be using in atomic
2268 * contexts. The @fn callback is invoked from RCU critical section and
2269 * thus must not sleep.
2270 */
2271int input_handler_for_each_handle(struct input_handler *handler, void *data,
2272 int (*fn)(struct input_handle *, void *))
2273{
2274 struct input_handle *handle;
2275 int retval = 0;
2276
2277 rcu_read_lock();
2278
2279 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2280 retval = fn(handle, data);
2281 if (retval)
2282 break;
2283 }
2284
2285 rcu_read_unlock();
2286
2287 return retval;
2288}
2289EXPORT_SYMBOL(input_handler_for_each_handle);
2290
2291/**
2292 * input_register_handle - register a new input handle
2293 * @handle: handle to register
2294 *
2295 * This function puts a new input handle onto device's
2296 * and handler's lists so that events can flow through
2297 * it once it is opened using input_open_device().
2298 *
2299 * This function is supposed to be called from handler's
2300 * connect() method.
2301 */
2302int input_register_handle(struct input_handle *handle)
2303{
2304 struct input_handler *handler = handle->handler;
2305 struct input_dev *dev = handle->dev;
2306 int error;
2307
2308 /*
2309 * We take dev->mutex here to prevent race with
2310 * input_release_device().
2311 */
2312 error = mutex_lock_interruptible(&dev->mutex);
2313 if (error)
2314 return error;
2315
2316 /*
2317 * Filters go to the head of the list, normal handlers
2318 * to the tail.
2319 */
2320 if (handler->filter)
2321 list_add_rcu(&handle->d_node, &dev->h_list);
2322 else
2323 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2324
2325 mutex_unlock(&dev->mutex);
2326
2327 /*
2328 * Since we are supposed to be called from ->connect()
2329 * which is mutually exclusive with ->disconnect()
2330 * we can't be racing with input_unregister_handle()
2331 * and so separate lock is not needed here.
2332 */
2333 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2334
2335 if (handler->start)
2336 handler->start(handle);
2337
2338 return 0;
2339}
2340EXPORT_SYMBOL(input_register_handle);
2341
2342/**
2343 * input_unregister_handle - unregister an input handle
2344 * @handle: handle to unregister
2345 *
2346 * This function removes input handle from device's
2347 * and handler's lists.
2348 *
2349 * This function is supposed to be called from handler's
2350 * disconnect() method.
2351 */
2352void input_unregister_handle(struct input_handle *handle)
2353{
2354 struct input_dev *dev = handle->dev;
2355
2356 list_del_rcu(&handle->h_node);
2357
2358 /*
2359 * Take dev->mutex to prevent race with input_release_device().
2360 */
2361 mutex_lock(&dev->mutex);
2362 list_del_rcu(&handle->d_node);
2363 mutex_unlock(&dev->mutex);
2364
2365 synchronize_rcu();
2366}
2367EXPORT_SYMBOL(input_unregister_handle);
2368
2369/**
2370 * input_get_new_minor - allocates a new input minor number
2371 * @legacy_base: beginning or the legacy range to be searched
2372 * @legacy_num: size of legacy range
2373 * @allow_dynamic: whether we can also take ID from the dynamic range
2374 *
2375 * This function allocates a new device minor for from input major namespace.
2376 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2377 * parameters and whether ID can be allocated from dynamic range if there are
2378 * no free IDs in legacy range.
2379 */
2380int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2381 bool allow_dynamic)
2382{
2383 /*
2384 * This function should be called from input handler's ->connect()
2385 * methods, which are serialized with input_mutex, so no additional
2386 * locking is needed here.
2387 */
2388 if (legacy_base >= 0) {
2389 int minor = ida_simple_get(&input_ida,
2390 legacy_base,
2391 legacy_base + legacy_num,
2392 GFP_KERNEL);
2393 if (minor >= 0 || !allow_dynamic)
2394 return minor;
2395 }
2396
2397 return ida_simple_get(&input_ida,
2398 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2399 GFP_KERNEL);
2400}
2401EXPORT_SYMBOL(input_get_new_minor);
2402
2403/**
2404 * input_free_minor - release previously allocated minor
2405 * @minor: minor to be released
2406 *
2407 * This function releases previously allocated input minor so that it can be
2408 * reused later.
2409 */
2410void input_free_minor(unsigned int minor)
2411{
2412 ida_simple_remove(&input_ida, minor);
2413}
2414EXPORT_SYMBOL(input_free_minor);
2415
2416static int __init input_init(void)
2417{
2418 int err;
2419
2420 err = class_register(&input_class);
2421 if (err) {
2422 pr_err("unable to register input_dev class\n");
2423 return err;
2424 }
2425
2426 err = input_proc_init();
2427 if (err)
2428 goto fail1;
2429
2430 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2431 INPUT_MAX_CHAR_DEVICES, "input");
2432 if (err) {
2433 pr_err("unable to register char major %d", INPUT_MAJOR);
2434 goto fail2;
2435 }
2436
2437 return 0;
2438
2439 fail2: input_proc_exit();
2440 fail1: class_unregister(&input_class);
2441 return err;
2442}
2443
2444static void __exit input_exit(void)
2445{
2446 input_proc_exit();
2447 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2448 INPUT_MAX_CHAR_DEVICES);
2449 class_unregister(&input_class);
2450}
2451
2452subsys_initcall(input_init);
2453module_exit(input_exit);