Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  drivers/cpufreq/cpufreq_ondemand.c
  3 *
  4 *  Copyright (C)  2001 Russell King
  5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6 *                      Jun Nakajima <jun.nakajima@intel.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/kernel.h>
 14#include <linux/module.h>
 15#include <linux/init.h>
 16#include <linux/cpufreq.h>
 17#include <linux/cpu.h>
 18#include <linux/jiffies.h>
 19#include <linux/kernel_stat.h>
 20#include <linux/mutex.h>
 21#include <linux/hrtimer.h>
 22#include <linux/tick.h>
 23#include <linux/ktime.h>
 24#include <linux/sched.h>
 25
 26/*
 27 * dbs is used in this file as a shortform for demandbased switching
 28 * It helps to keep variable names smaller, simpler
 29 */
 30
 31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
 32#define DEF_FREQUENCY_UP_THRESHOLD		(80)
 33#define DEF_SAMPLING_DOWN_FACTOR		(1)
 34#define MAX_SAMPLING_DOWN_FACTOR		(100000)
 35#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
 36#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
 37#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
 38#define MIN_FREQUENCY_UP_THRESHOLD		(11)
 39#define MAX_FREQUENCY_UP_THRESHOLD		(100)
 40
 41/*
 42 * The polling frequency of this governor depends on the capability of
 43 * the processor. Default polling frequency is 1000 times the transition
 44 * latency of the processor. The governor will work on any processor with
 45 * transition latency <= 10mS, using appropriate sampling
 46 * rate.
 47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 48 * this governor will not work.
 49 * All times here are in uS.
 50 */
 51#define MIN_SAMPLING_RATE_RATIO			(2)
 52
 53static unsigned int min_sampling_rate;
 54
 55#define LATENCY_MULTIPLIER			(1000)
 56#define MIN_LATENCY_MULTIPLIER			(100)
 57#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
 58
 59static void do_dbs_timer(struct work_struct *work);
 60static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
 61				unsigned int event);
 62
 63#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
 64static
 65#endif
 66struct cpufreq_governor cpufreq_gov_ondemand = {
 67       .name                   = "ondemand",
 68       .governor               = cpufreq_governor_dbs,
 69       .max_transition_latency = TRANSITION_LATENCY_LIMIT,
 70       .owner                  = THIS_MODULE,
 71};
 72
 73/* Sampling types */
 74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
 75
 76struct cpu_dbs_info_s {
 77	cputime64_t prev_cpu_idle;
 78	cputime64_t prev_cpu_iowait;
 79	cputime64_t prev_cpu_wall;
 80	cputime64_t prev_cpu_nice;
 81	struct cpufreq_policy *cur_policy;
 82	struct delayed_work work;
 83	struct cpufreq_frequency_table *freq_table;
 84	unsigned int freq_lo;
 85	unsigned int freq_lo_jiffies;
 86	unsigned int freq_hi_jiffies;
 87	unsigned int rate_mult;
 88	int cpu;
 89	unsigned int sample_type:1;
 90	/*
 91	 * percpu mutex that serializes governor limit change with
 92	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
 93	 * when user is changing the governor or limits.
 94	 */
 95	struct mutex timer_mutex;
 96};
 97static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
 98
 99static unsigned int dbs_enable;	/* number of CPUs using this policy */
100
101/*
102 * dbs_mutex protects dbs_enable in governor start/stop.
 
 
 
 
 
 
103 */
104static DEFINE_MUTEX(dbs_mutex);
105
106static struct dbs_tuners {
107	unsigned int sampling_rate;
108	unsigned int up_threshold;
109	unsigned int down_differential;
110	unsigned int ignore_nice;
111	unsigned int sampling_down_factor;
112	unsigned int powersave_bias;
113	unsigned int io_is_busy;
114} dbs_tuners_ins = {
115	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118	.ignore_nice = 0,
119	.powersave_bias = 0,
120};
121
122static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
123							cputime64_t *wall)
124{
125	cputime64_t idle_time;
126	cputime64_t cur_wall_time;
127	cputime64_t busy_time;
128
129	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
131			kstat_cpu(cpu).cpustat.system);
132
133	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
134	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
135	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
136	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
137
138	idle_time = cputime64_sub(cur_wall_time, busy_time);
139	if (wall)
140		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
141
142	return (cputime64_t)jiffies_to_usecs(idle_time);
143}
144
145static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
146{
147	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
148
149	if (idle_time == -1ULL)
150		return get_cpu_idle_time_jiffy(cpu, wall);
151
152	return idle_time;
153}
154
155static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
156{
157	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
158
159	if (iowait_time == -1ULL)
160		return 0;
161
162	return iowait_time;
 
 
 
 
163}
164
165/*
166 * Find right freq to be set now with powersave_bias on.
167 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
168 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
169 */
170static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
171					  unsigned int freq_next,
172					  unsigned int relation)
173{
174	unsigned int freq_req, freq_reduc, freq_avg;
175	unsigned int freq_hi, freq_lo;
176	unsigned int index = 0;
177	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
178	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
179						   policy->cpu);
 
 
 
180
181	if (!dbs_info->freq_table) {
182		dbs_info->freq_lo = 0;
183		dbs_info->freq_lo_jiffies = 0;
184		return freq_next;
185	}
186
187	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
188			relation, &index);
189	freq_req = dbs_info->freq_table[index].frequency;
190	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
191	freq_avg = freq_req - freq_reduc;
192
193	/* Find freq bounds for freq_avg in freq_table */
194	index = 0;
195	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
196			CPUFREQ_RELATION_H, &index);
197	freq_lo = dbs_info->freq_table[index].frequency;
198	index = 0;
199	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
200			CPUFREQ_RELATION_L, &index);
201	freq_hi = dbs_info->freq_table[index].frequency;
202
203	/* Find out how long we have to be in hi and lo freqs */
204	if (freq_hi == freq_lo) {
205		dbs_info->freq_lo = 0;
206		dbs_info->freq_lo_jiffies = 0;
207		return freq_lo;
208	}
209	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
210	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
211	jiffies_hi += ((freq_hi - freq_lo) / 2);
212	jiffies_hi /= (freq_hi - freq_lo);
213	jiffies_lo = jiffies_total - jiffies_hi;
214	dbs_info->freq_lo = freq_lo;
215	dbs_info->freq_lo_jiffies = jiffies_lo;
216	dbs_info->freq_hi_jiffies = jiffies_hi;
217	return freq_hi;
218}
219
220static void ondemand_powersave_bias_init_cpu(int cpu)
221{
222	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
223	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
224	dbs_info->freq_lo = 0;
225}
226
227static void ondemand_powersave_bias_init(void)
228{
229	int i;
230	for_each_online_cpu(i) {
231		ondemand_powersave_bias_init_cpu(i);
232	}
233}
 
 
 
 
234
235/************************** sysfs interface ************************/
 
 
236
237static ssize_t show_sampling_rate_min(struct kobject *kobj,
238				      struct attribute *attr, char *buf)
 
 
 
 
239{
240	return sprintf(buf, "%u\n", min_sampling_rate);
241}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
243define_one_global_ro(sampling_rate_min);
 
 
 
 
 
 
244
245/* cpufreq_ondemand Governor Tunables */
246#define show_one(file_name, object)					\
247static ssize_t show_##file_name						\
248(struct kobject *kobj, struct attribute *attr, char *buf)              \
249{									\
250	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
251}
252show_one(sampling_rate, sampling_rate);
253show_one(io_is_busy, io_is_busy);
254show_one(up_threshold, up_threshold);
255show_one(sampling_down_factor, sampling_down_factor);
256show_one(ignore_nice_load, ignore_nice);
257show_one(powersave_bias, powersave_bias);
258
259static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
260				   const char *buf, size_t count)
261{
262	unsigned int input;
263	int ret;
264	ret = sscanf(buf, "%u", &input);
265	if (ret != 1)
266		return -EINVAL;
267	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
268	return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269}
270
271static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
272				   const char *buf, size_t count)
 
 
 
273{
 
274	unsigned int input;
275	int ret;
276
277	ret = sscanf(buf, "%u", &input);
278	if (ret != 1)
279		return -EINVAL;
280	dbs_tuners_ins.io_is_busy = !!input;
 
 
 
 
281	return count;
282}
283
284static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
285				  const char *buf, size_t count)
286{
 
287	unsigned int input;
288	int ret;
289	ret = sscanf(buf, "%u", &input);
290
291	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
292			input < MIN_FREQUENCY_UP_THRESHOLD) {
293		return -EINVAL;
294	}
295	dbs_tuners_ins.up_threshold = input;
 
296	return count;
297}
298
299static ssize_t store_sampling_down_factor(struct kobject *a,
300			struct attribute *b, const char *buf, size_t count)
301{
302	unsigned int input, j;
 
 
303	int ret;
304	ret = sscanf(buf, "%u", &input);
305
306	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
307		return -EINVAL;
308	dbs_tuners_ins.sampling_down_factor = input;
 
309
310	/* Reset down sampling multiplier in case it was active */
311	for_each_online_cpu(j) {
312		struct cpu_dbs_info_s *dbs_info;
313		dbs_info = &per_cpu(od_cpu_dbs_info, j);
314		dbs_info->rate_mult = 1;
 
 
 
 
315	}
 
316	return count;
317}
318
319static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
320				      const char *buf, size_t count)
321{
 
322	unsigned int input;
323	int ret;
324
325	unsigned int j;
326
327	ret = sscanf(buf, "%u", &input);
328	if (ret != 1)
329		return -EINVAL;
330
331	if (input > 1)
332		input = 1;
333
334	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
335		return count;
336	}
337	dbs_tuners_ins.ignore_nice = input;
338
339	/* we need to re-evaluate prev_cpu_idle */
340	for_each_online_cpu(j) {
341		struct cpu_dbs_info_s *dbs_info;
342		dbs_info = &per_cpu(od_cpu_dbs_info, j);
343		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
344						&dbs_info->prev_cpu_wall);
345		if (dbs_tuners_ins.ignore_nice)
346			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
347
348	}
349	return count;
350}
351
352static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
353				    const char *buf, size_t count)
354{
 
 
 
355	unsigned int input;
356	int ret;
357	ret = sscanf(buf, "%u", &input);
358
359	if (ret != 1)
360		return -EINVAL;
361
362	if (input > 1000)
363		input = 1000;
364
365	dbs_tuners_ins.powersave_bias = input;
366	ondemand_powersave_bias_init();
 
 
 
367	return count;
368}
369
370define_one_global_rw(sampling_rate);
371define_one_global_rw(io_is_busy);
372define_one_global_rw(up_threshold);
373define_one_global_rw(sampling_down_factor);
374define_one_global_rw(ignore_nice_load);
375define_one_global_rw(powersave_bias);
 
 
 
 
 
 
 
 
 
376
377static struct attribute *dbs_attributes[] = {
378	&sampling_rate_min.attr,
379	&sampling_rate.attr,
380	&up_threshold.attr,
381	&sampling_down_factor.attr,
382	&ignore_nice_load.attr,
383	&powersave_bias.attr,
384	&io_is_busy.attr,
385	NULL
386};
387
388static struct attribute_group dbs_attr_group = {
389	.attrs = dbs_attributes,
390	.name = "ondemand",
391};
392
393/************************** sysfs end ************************/
394
395static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
396{
397	if (dbs_tuners_ins.powersave_bias)
398		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
399	else if (p->cur == p->max)
400		return;
401
402	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
403			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
404}
405
406static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
407{
408	unsigned int max_load_freq;
409
410	struct cpufreq_policy *policy;
411	unsigned int j;
412
413	this_dbs_info->freq_lo = 0;
414	policy = this_dbs_info->cur_policy;
415
416	/*
417	 * Every sampling_rate, we check, if current idle time is less
418	 * than 20% (default), then we try to increase frequency
419	 * Every sampling_rate, we look for a the lowest
420	 * frequency which can sustain the load while keeping idle time over
421	 * 30%. If such a frequency exist, we try to decrease to this frequency.
422	 *
423	 * Any frequency increase takes it to the maximum frequency.
424	 * Frequency reduction happens at minimum steps of
425	 * 5% (default) of current frequency
426	 */
427
428	/* Get Absolute Load - in terms of freq */
429	max_load_freq = 0;
 
 
 
430
431	for_each_cpu(j, policy->cpus) {
432		struct cpu_dbs_info_s *j_dbs_info;
433		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
434		unsigned int idle_time, wall_time, iowait_time;
435		unsigned int load, load_freq;
436		int freq_avg;
437
438		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
439
440		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
441		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
442
443		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
444				j_dbs_info->prev_cpu_wall);
445		j_dbs_info->prev_cpu_wall = cur_wall_time;
446
447		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
448				j_dbs_info->prev_cpu_idle);
449		j_dbs_info->prev_cpu_idle = cur_idle_time;
450
451		iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
452				j_dbs_info->prev_cpu_iowait);
453		j_dbs_info->prev_cpu_iowait = cur_iowait_time;
454
455		if (dbs_tuners_ins.ignore_nice) {
456			cputime64_t cur_nice;
457			unsigned long cur_nice_jiffies;
458
459			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
460					 j_dbs_info->prev_cpu_nice);
461			/*
462			 * Assumption: nice time between sampling periods will
463			 * be less than 2^32 jiffies for 32 bit sys
464			 */
465			cur_nice_jiffies = (unsigned long)
466					cputime64_to_jiffies64(cur_nice);
467
468			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
469			idle_time += jiffies_to_usecs(cur_nice_jiffies);
470		}
471
 
 
 
 
 
 
472		/*
473		 * For the purpose of ondemand, waiting for disk IO is an
474		 * indication that you're performance critical, and not that
475		 * the system is actually idle. So subtract the iowait time
476		 * from the cpu idle time.
477		 */
478
479		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
480			idle_time -= iowait_time;
481
482		if (unlikely(!wall_time || wall_time < idle_time))
483			continue;
 
 
484
485		load = 100 * (wall_time - idle_time) / wall_time;
 
 
 
486
487		freq_avg = __cpufreq_driver_getavg(policy, j);
488		if (freq_avg <= 0)
489			freq_avg = policy->cur;
490
491		load_freq = load * freq_avg;
492		if (load_freq > max_load_freq)
493			max_load_freq = load_freq;
494	}
495
496	/* Check for frequency increase */
497	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
498		/* If switching to max speed, apply sampling_down_factor */
499		if (policy->cur < policy->max)
500			this_dbs_info->rate_mult =
501				dbs_tuners_ins.sampling_down_factor;
502		dbs_freq_increase(policy, policy->max);
503		return;
504	}
505
506	/* Check for frequency decrease */
507	/* if we cannot reduce the frequency anymore, break out early */
508	if (policy->cur == policy->min)
509		return;
510
511	/*
512	 * The optimal frequency is the frequency that is the lowest that
513	 * can support the current CPU usage without triggering the up
514	 * policy. To be safe, we focus 10 points under the threshold.
515	 */
516	if (max_load_freq <
517	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
518	     policy->cur) {
519		unsigned int freq_next;
520		freq_next = max_load_freq /
521				(dbs_tuners_ins.up_threshold -
522				 dbs_tuners_ins.down_differential);
523
524		/* No longer fully busy, reset rate_mult */
525		this_dbs_info->rate_mult = 1;
 
526
527		if (freq_next < policy->min)
528			freq_next = policy->min;
 
 
 
 
 
 
 
 
529
530		if (!dbs_tuners_ins.powersave_bias) {
531			__cpufreq_driver_target(policy, freq_next,
532					CPUFREQ_RELATION_L);
533		} else {
534			int freq = powersave_bias_target(policy, freq_next,
535					CPUFREQ_RELATION_L);
536			__cpufreq_driver_target(policy, freq,
537				CPUFREQ_RELATION_L);
538		}
539	}
540}
541
542static void do_dbs_timer(struct work_struct *work)
543{
544	struct cpu_dbs_info_s *dbs_info =
545		container_of(work, struct cpu_dbs_info_s, work.work);
546	unsigned int cpu = dbs_info->cpu;
547	int sample_type = dbs_info->sample_type;
548
549	int delay;
 
550
551	mutex_lock(&dbs_info->timer_mutex);
 
 
 
 
 
552
553	/* Common NORMAL_SAMPLE setup */
554	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
555	if (!dbs_tuners_ins.powersave_bias ||
556	    sample_type == DBS_NORMAL_SAMPLE) {
557		dbs_check_cpu(dbs_info);
558		if (dbs_info->freq_lo) {
559			/* Setup timer for SUB_SAMPLE */
560			dbs_info->sample_type = DBS_SUB_SAMPLE;
561			delay = dbs_info->freq_hi_jiffies;
562		} else {
563			/* We want all CPUs to do sampling nearly on
564			 * same jiffy
565			 */
566			delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
567				* dbs_info->rate_mult);
568
569			if (num_online_cpus() > 1)
570				delay -= jiffies % delay;
571		}
572	} else {
573		__cpufreq_driver_target(dbs_info->cur_policy,
574			dbs_info->freq_lo, CPUFREQ_RELATION_H);
575		delay = dbs_info->freq_lo_jiffies;
576	}
577	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
578	mutex_unlock(&dbs_info->timer_mutex);
579}
580
581static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
582{
583	/* We want all CPUs to do sampling nearly on same jiffy */
584	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
585
586	if (num_online_cpus() > 1)
587		delay -= jiffies % delay;
 
588
589	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
590	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
591	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
592}
593
594static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
595{
596	cancel_delayed_work_sync(&dbs_info->work);
 
 
597}
598
599/*
600 * Not all CPUs want IO time to be accounted as busy; this dependson how
601 * efficient idling at a higher frequency/voltage is.
602 * Pavel Machek says this is not so for various generations of AMD and old
603 * Intel systems.
604 * Mike Chan (androidlcom) calis this is also not true for ARM.
605 * Because of this, whitelist specific known (series) of CPUs by default, and
606 * leave all others up to the user.
607 */
608static int should_io_be_busy(void)
609{
610#if defined(CONFIG_X86)
611	/*
612	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
613	 */
614	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
615	    boot_cpu_data.x86 == 6 &&
616	    boot_cpu_data.x86_model >= 15)
617		return 1;
618#endif
619	return 0;
620}
 
621
622static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
623				   unsigned int event)
624{
625	unsigned int cpu = policy->cpu;
626	struct cpu_dbs_info_s *this_dbs_info;
627	unsigned int j;
628	int rc;
629
630	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
631
632	switch (event) {
633	case CPUFREQ_GOV_START:
634		if ((!cpu_online(cpu)) || (!policy->cur))
635			return -EINVAL;
636
637		mutex_lock(&dbs_mutex);
638
639		dbs_enable++;
640		for_each_cpu(j, policy->cpus) {
641			struct cpu_dbs_info_s *j_dbs_info;
642			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
643			j_dbs_info->cur_policy = policy;
644
645			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
646						&j_dbs_info->prev_cpu_wall);
647			if (dbs_tuners_ins.ignore_nice) {
648				j_dbs_info->prev_cpu_nice =
649						kstat_cpu(j).cpustat.nice;
650			}
651		}
652		this_dbs_info->cpu = cpu;
653		this_dbs_info->rate_mult = 1;
654		ondemand_powersave_bias_init_cpu(cpu);
655		/*
656		 * Start the timerschedule work, when this governor
657		 * is used for first time
658		 */
659		if (dbs_enable == 1) {
660			unsigned int latency;
661
662			rc = sysfs_create_group(cpufreq_global_kobject,
663						&dbs_attr_group);
664			if (rc) {
665				mutex_unlock(&dbs_mutex);
666				return rc;
667			}
668
669			/* policy latency is in nS. Convert it to uS first */
670			latency = policy->cpuinfo.transition_latency / 1000;
671			if (latency == 0)
672				latency = 1;
673			/* Bring kernel and HW constraints together */
674			min_sampling_rate = max(min_sampling_rate,
675					MIN_LATENCY_MULTIPLIER * latency);
676			dbs_tuners_ins.sampling_rate =
677				max(min_sampling_rate,
678				    latency * LATENCY_MULTIPLIER);
679			dbs_tuners_ins.io_is_busy = should_io_be_busy();
680		}
681		mutex_unlock(&dbs_mutex);
682
683		mutex_init(&this_dbs_info->timer_mutex);
684		dbs_timer_init(this_dbs_info);
685		break;
686
687	case CPUFREQ_GOV_STOP:
688		dbs_timer_exit(this_dbs_info);
689
690		mutex_lock(&dbs_mutex);
691		mutex_destroy(&this_dbs_info->timer_mutex);
692		dbs_enable--;
693		mutex_unlock(&dbs_mutex);
694		if (!dbs_enable)
695			sysfs_remove_group(cpufreq_global_kobject,
696					   &dbs_attr_group);
697
698		break;
699
700	case CPUFREQ_GOV_LIMITS:
701		mutex_lock(&this_dbs_info->timer_mutex);
702		if (policy->max < this_dbs_info->cur_policy->cur)
703			__cpufreq_driver_target(this_dbs_info->cur_policy,
704				policy->max, CPUFREQ_RELATION_H);
705		else if (policy->min > this_dbs_info->cur_policy->cur)
706			__cpufreq_driver_target(this_dbs_info->cur_policy,
707				policy->min, CPUFREQ_RELATION_L);
708		mutex_unlock(&this_dbs_info->timer_mutex);
709		break;
710	}
711	return 0;
712}
 
713
714static int __init cpufreq_gov_dbs_init(void)
715{
716	cputime64_t wall;
717	u64 idle_time;
718	int cpu = get_cpu();
719
720	idle_time = get_cpu_idle_time_us(cpu, &wall);
721	put_cpu();
722	if (idle_time != -1ULL) {
723		/* Idle micro accounting is supported. Use finer thresholds */
724		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
725		dbs_tuners_ins.down_differential =
726					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
727		/*
728		 * In no_hz/micro accounting case we set the minimum frequency
729		 * not depending on HZ, but fixed (very low). The deferred
730		 * timer might skip some samples if idle/sleeping as needed.
731		*/
732		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
733	} else {
734		/* For correct statistics, we need 10 ticks for each measure */
735		min_sampling_rate =
736			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
737	}
738
739	return cpufreq_register_governor(&cpufreq_gov_ondemand);
740}
741
742static void __exit cpufreq_gov_dbs_exit(void)
743{
744	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
745}
746
747
748MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
749MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
750MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
751	"Low Latency Frequency Transition capable processors");
752MODULE_LICENSE("GPL");
753
754#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
 
 
 
 
 
755fs_initcall(cpufreq_gov_dbs_init);
756#else
757module_init(cpufreq_gov_dbs_init);
758#endif
759module_exit(cpufreq_gov_dbs_exit);
v4.10.11
  1/*
  2 *  drivers/cpufreq/cpufreq_ondemand.c
  3 *
  4 *  Copyright (C)  2001 Russell King
  5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6 *                      Jun Nakajima <jun.nakajima@intel.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 
 
 15#include <linux/cpu.h>
 16#include <linux/percpu-defs.h>
 17#include <linux/slab.h>
 
 
 18#include <linux/tick.h>
 
 
 19
 20#include "cpufreq_ondemand.h"
 
 
 
 21
 22/* On-demand governor macros */
 23#define DEF_FREQUENCY_UP_THRESHOLD		(80)
 24#define DEF_SAMPLING_DOWN_FACTOR		(1)
 25#define MAX_SAMPLING_DOWN_FACTOR		(100000)
 
 26#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
 27#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
 28#define MIN_FREQUENCY_UP_THRESHOLD		(1)
 29#define MAX_FREQUENCY_UP_THRESHOLD		(100)
 30
 31static struct od_ops od_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32
 33static unsigned int default_powersave_bias;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34
 35/*
 36 * Not all CPUs want IO time to be accounted as busy; this depends on how
 37 * efficient idling at a higher frequency/voltage is.
 38 * Pavel Machek says this is not so for various generations of AMD and old
 39 * Intel systems.
 40 * Mike Chan (android.com) claims this is also not true for ARM.
 41 * Because of this, whitelist specific known (series) of CPUs by default, and
 42 * leave all others up to the user.
 43 */
 44static int should_io_be_busy(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45{
 46#if defined(CONFIG_X86)
 47	/*
 48	 * For Intel, Core 2 (model 15) and later have an efficient idle.
 49	 */
 50	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
 51			boot_cpu_data.x86 == 6 &&
 52			boot_cpu_data.x86_model >= 15)
 53		return 1;
 54#endif
 55	return 0;
 56}
 57
 58/*
 59 * Find right freq to be set now with powersave_bias on.
 60 * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
 61 * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
 62 */
 63static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
 64		unsigned int freq_next, unsigned int relation)
 
 65{
 66	unsigned int freq_req, freq_reduc, freq_avg;
 67	unsigned int freq_hi, freq_lo;
 68	unsigned int index;
 69	unsigned int delay_hi_us;
 70	struct policy_dbs_info *policy_dbs = policy->governor_data;
 71	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
 72	struct dbs_data *dbs_data = policy_dbs->dbs_data;
 73	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
 74	struct cpufreq_frequency_table *freq_table = policy->freq_table;
 75
 76	if (!freq_table) {
 77		dbs_info->freq_lo = 0;
 78		dbs_info->freq_lo_delay_us = 0;
 79		return freq_next;
 80	}
 81
 82	index = cpufreq_frequency_table_target(policy, freq_next, relation);
 83	freq_req = freq_table[index].frequency;
 84	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
 
 85	freq_avg = freq_req - freq_reduc;
 86
 87	/* Find freq bounds for freq_avg in freq_table */
 88	index = cpufreq_table_find_index_h(policy, freq_avg);
 89	freq_lo = freq_table[index].frequency;
 90	index = cpufreq_table_find_index_l(policy, freq_avg);
 91	freq_hi = freq_table[index].frequency;
 
 
 
 
 92
 93	/* Find out how long we have to be in hi and lo freqs */
 94	if (freq_hi == freq_lo) {
 95		dbs_info->freq_lo = 0;
 96		dbs_info->freq_lo_delay_us = 0;
 97		return freq_lo;
 98	}
 99	delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
100	delay_hi_us += (freq_hi - freq_lo) / 2;
101	delay_hi_us /= freq_hi - freq_lo;
102	dbs_info->freq_hi_delay_us = delay_hi_us;
 
103	dbs_info->freq_lo = freq_lo;
104	dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
 
105	return freq_hi;
106}
107
108static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
109{
110	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
111
112	dbs_info->freq_lo = 0;
113}
114
115static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
116{
117	struct policy_dbs_info *policy_dbs = policy->governor_data;
118	struct dbs_data *dbs_data = policy_dbs->dbs_data;
119	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
120
121	if (od_tuners->powersave_bias)
122		freq = od_ops.powersave_bias_target(policy, freq,
123				CPUFREQ_RELATION_H);
124	else if (policy->cur == policy->max)
125		return;
126
127	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
128			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
129}
130
131/*
132 * Every sampling_rate, we check, if current idle time is less than 20%
133 * (default), then we try to increase frequency. Else, we adjust the frequency
134 * proportional to load.
135 */
136static void od_update(struct cpufreq_policy *policy)
137{
138	struct policy_dbs_info *policy_dbs = policy->governor_data;
139	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
140	struct dbs_data *dbs_data = policy_dbs->dbs_data;
141	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
142	unsigned int load = dbs_update(policy);
143
144	dbs_info->freq_lo = 0;
145
146	/* Check for frequency increase */
147	if (load > dbs_data->up_threshold) {
148		/* If switching to max speed, apply sampling_down_factor */
149		if (policy->cur < policy->max)
150			policy_dbs->rate_mult = dbs_data->sampling_down_factor;
151		dbs_freq_increase(policy, policy->max);
152	} else {
153		/* Calculate the next frequency proportional to load */
154		unsigned int freq_next, min_f, max_f;
155
156		min_f = policy->cpuinfo.min_freq;
157		max_f = policy->cpuinfo.max_freq;
158		freq_next = min_f + load * (max_f - min_f) / 100;
159
160		/* No longer fully busy, reset rate_mult */
161		policy_dbs->rate_mult = 1;
162
163		if (od_tuners->powersave_bias)
164			freq_next = od_ops.powersave_bias_target(policy,
165								 freq_next,
166								 CPUFREQ_RELATION_L);
167
168		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
169	}
170}
 
 
 
 
 
 
 
 
 
 
171
172static unsigned int od_dbs_update(struct cpufreq_policy *policy)
 
173{
174	struct policy_dbs_info *policy_dbs = policy->governor_data;
175	struct dbs_data *dbs_data = policy_dbs->dbs_data;
176	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
177	int sample_type = dbs_info->sample_type;
178
179	/* Common NORMAL_SAMPLE setup */
180	dbs_info->sample_type = OD_NORMAL_SAMPLE;
181	/*
182	 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
183	 * it then.
184	 */
185	if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
186		__cpufreq_driver_target(policy, dbs_info->freq_lo,
187					CPUFREQ_RELATION_H);
188		return dbs_info->freq_lo_delay_us;
189	}
190
191	od_update(policy);
192
193	if (dbs_info->freq_lo) {
194		/* Setup SUB_SAMPLE */
195		dbs_info->sample_type = OD_SUB_SAMPLE;
196		return dbs_info->freq_hi_delay_us;
197	}
198
199	return dbs_data->sampling_rate * policy_dbs->rate_mult;
200}
201
202/************************** sysfs interface ************************/
203static struct dbs_governor od_dbs_gov;
204
205static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
206				size_t count)
207{
208	struct dbs_data *dbs_data = to_dbs_data(attr_set);
209	unsigned int input;
210	int ret;
211
212	ret = sscanf(buf, "%u", &input);
213	if (ret != 1)
214		return -EINVAL;
215	dbs_data->io_is_busy = !!input;
216
217	/* we need to re-evaluate prev_cpu_idle */
218	gov_update_cpu_data(dbs_data);
219
220	return count;
221}
222
223static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
224				  const char *buf, size_t count)
225{
226	struct dbs_data *dbs_data = to_dbs_data(attr_set);
227	unsigned int input;
228	int ret;
229	ret = sscanf(buf, "%u", &input);
230
231	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
232			input < MIN_FREQUENCY_UP_THRESHOLD) {
233		return -EINVAL;
234	}
235
236	dbs_data->up_threshold = input;
237	return count;
238}
239
240static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
241					  const char *buf, size_t count)
242{
243	struct dbs_data *dbs_data = to_dbs_data(attr_set);
244	struct policy_dbs_info *policy_dbs;
245	unsigned int input;
246	int ret;
247	ret = sscanf(buf, "%u", &input);
248
249	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
250		return -EINVAL;
251
252	dbs_data->sampling_down_factor = input;
253
254	/* Reset down sampling multiplier in case it was active */
255	list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
256		/*
257		 * Doing this without locking might lead to using different
258		 * rate_mult values in od_update() and od_dbs_update().
259		 */
260		mutex_lock(&policy_dbs->update_mutex);
261		policy_dbs->rate_mult = 1;
262		mutex_unlock(&policy_dbs->update_mutex);
263	}
264
265	return count;
266}
267
268static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
269				      const char *buf, size_t count)
270{
271	struct dbs_data *dbs_data = to_dbs_data(attr_set);
272	unsigned int input;
273	int ret;
274
 
 
275	ret = sscanf(buf, "%u", &input);
276	if (ret != 1)
277		return -EINVAL;
278
279	if (input > 1)
280		input = 1;
281
282	if (input == dbs_data->ignore_nice_load) { /* nothing to do */
283		return count;
284	}
285	dbs_data->ignore_nice_load = input;
286
287	/* we need to re-evaluate prev_cpu_idle */
288	gov_update_cpu_data(dbs_data);
 
 
 
 
 
 
289
 
290	return count;
291}
292
293static ssize_t store_powersave_bias(struct gov_attr_set *attr_set,
294				    const char *buf, size_t count)
295{
296	struct dbs_data *dbs_data = to_dbs_data(attr_set);
297	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
298	struct policy_dbs_info *policy_dbs;
299	unsigned int input;
300	int ret;
301	ret = sscanf(buf, "%u", &input);
302
303	if (ret != 1)
304		return -EINVAL;
305
306	if (input > 1000)
307		input = 1000;
308
309	od_tuners->powersave_bias = input;
310
311	list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
312		ondemand_powersave_bias_init(policy_dbs->policy);
313
314	return count;
315}
316
317gov_show_one_common(sampling_rate);
318gov_show_one_common(up_threshold);
319gov_show_one_common(sampling_down_factor);
320gov_show_one_common(ignore_nice_load);
321gov_show_one_common(min_sampling_rate);
322gov_show_one_common(io_is_busy);
323gov_show_one(od, powersave_bias);
324
325gov_attr_rw(sampling_rate);
326gov_attr_rw(io_is_busy);
327gov_attr_rw(up_threshold);
328gov_attr_rw(sampling_down_factor);
329gov_attr_rw(ignore_nice_load);
330gov_attr_rw(powersave_bias);
331gov_attr_ro(min_sampling_rate);
332
333static struct attribute *od_attributes[] = {
334	&min_sampling_rate.attr,
335	&sampling_rate.attr,
336	&up_threshold.attr,
337	&sampling_down_factor.attr,
338	&ignore_nice_load.attr,
339	&powersave_bias.attr,
340	&io_is_busy.attr,
341	NULL
342};
343
 
 
 
 
 
344/************************** sysfs end ************************/
345
346static struct policy_dbs_info *od_alloc(void)
347{
348	struct od_policy_dbs_info *dbs_info;
 
 
 
349
350	dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
351	return dbs_info ? &dbs_info->policy_dbs : NULL;
352}
353
354static void od_free(struct policy_dbs_info *policy_dbs)
355{
356	kfree(to_dbs_info(policy_dbs));
357}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358
359static int od_init(struct dbs_data *dbs_data)
360{
361	struct od_dbs_tuners *tuners;
362	u64 idle_time;
363	int cpu;
364
365	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
366	if (!tuners)
367		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368
369	cpu = get_cpu();
370	idle_time = get_cpu_idle_time_us(cpu, NULL);
371	put_cpu();
372	if (idle_time != -1ULL) {
373		/* Idle micro accounting is supported. Use finer thresholds */
374		dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
375		/*
376		 * In nohz/micro accounting case we set the minimum frequency
377		 * not depending on HZ, but fixed (very low).
378		*/
379		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
380	} else {
381		dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
 
 
382
383		/* For correct statistics, we need 10 ticks for each measure */
384		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
385			jiffies_to_usecs(10);
386	}
387
388	dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
389	dbs_data->ignore_nice_load = 0;
390	tuners->powersave_bias = default_powersave_bias;
391	dbs_data->io_is_busy = should_io_be_busy();
392
393	dbs_data->tuners = tuners;
394	return 0;
395}
 
 
 
 
 
396
397static void od_exit(struct dbs_data *dbs_data)
398{
399	kfree(dbs_data->tuners);
400}
 
 
 
 
 
401
402static void od_start(struct cpufreq_policy *policy)
403{
404	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
 
405
406	dbs_info->sample_type = OD_NORMAL_SAMPLE;
407	ondemand_powersave_bias_init(policy);
408}
 
 
 
 
 
 
 
 
 
409
410static struct od_ops od_ops = {
411	.powersave_bias_target = generic_powersave_bias_target,
412};
413
414static struct dbs_governor od_dbs_gov = {
415	.gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
416	.kobj_type = { .default_attrs = od_attributes },
417	.gov_dbs_update = od_dbs_update,
418	.alloc = od_alloc,
419	.free = od_free,
420	.init = od_init,
421	.exit = od_exit,
422	.start = od_start,
423};
424
425#define CPU_FREQ_GOV_ONDEMAND	(&od_dbs_gov.gov)
 
 
 
 
 
 
 
 
 
 
426
427static void od_set_powersave_bias(unsigned int powersave_bias)
428{
429	unsigned int cpu;
430	cpumask_t done;
 
 
431
432	default_powersave_bias = powersave_bias;
433	cpumask_clear(&done);
434
435	get_online_cpus();
436	for_each_online_cpu(cpu) {
437		struct cpufreq_policy *policy;
438		struct policy_dbs_info *policy_dbs;
439		struct dbs_data *dbs_data;
440		struct od_dbs_tuners *od_tuners;
441
442		if (cpumask_test_cpu(cpu, &done))
443			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444
445		policy = cpufreq_cpu_get_raw(cpu);
446		if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
447			continue;
 
448
449		policy_dbs = policy->governor_data;
450		if (!policy_dbs)
451			continue;
452
453		cpumask_or(&done, &done, policy->cpus);
 
 
 
454
455		dbs_data = policy_dbs->dbs_data;
456		od_tuners = dbs_data->tuners;
457		od_tuners->powersave_bias = default_powersave_bias;
458	}
459	put_online_cpus();
460}
461
462void od_register_powersave_bias_handler(unsigned int (*f)
463		(struct cpufreq_policy *, unsigned int, unsigned int),
464		unsigned int powersave_bias)
 
 
 
 
 
 
 
465{
466	od_ops.powersave_bias_target = f;
467	od_set_powersave_bias(powersave_bias);
 
 
 
 
 
 
 
 
468}
469EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
470
471void od_unregister_powersave_bias_handler(void)
 
472{
473	od_ops.powersave_bias_target = generic_powersave_bias_target;
474	od_set_powersave_bias(0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475}
476EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
477
478static int __init cpufreq_gov_dbs_init(void)
479{
480	return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481}
482
483static void __exit cpufreq_gov_dbs_exit(void)
484{
485	cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
486}
487
 
488MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
489MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
490MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
491	"Low Latency Frequency Transition capable processors");
492MODULE_LICENSE("GPL");
493
494#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
495struct cpufreq_governor *cpufreq_default_governor(void)
496{
497	return CPU_FREQ_GOV_ONDEMAND;
498}
499
500fs_initcall(cpufreq_gov_dbs_init);
501#else
502module_init(cpufreq_gov_dbs_init);
503#endif
504module_exit(cpufreq_gov_dbs_exit);