Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.1
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 */
 14
 15#include <linux/sched.h>
 16#include <linux/preempt.h>
 17#include <linux/module.h>
 18#include <linux/fs.h>
 19#include <linux/kprobes.h>
 20#include <linux/elfcore.h>
 21#include <linux/tick.h>
 22#include <linux/init.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/hardirq.h>
 26#include <linux/syscalls.h>
 27#include <linux/kernel.h>
 28#include <linux/tracehook.h>
 29#include <linux/signal.h>
 30#include <asm/system.h>
 
 31#include <asm/stack.h>
 
 32#include <asm/homecache.h>
 33#include <asm/syscalls.h>
 34#include <asm/traps.h>
 
 
 35#ifdef CONFIG_HARDWALL
 36#include <asm/hardwall.h>
 37#endif
 38#include <arch/chip.h>
 39#include <arch/abi.h>
 40
 41
 42/*
 43 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
 44 * idle loop over low power while in the idle loop, e.g. if we have
 45 * one thread per core and we want to get threads out of futex waits fast.
 46 */
 47static int no_idle_nap;
 48static int __init idle_setup(char *str)
 49{
 50	if (!str)
 51		return -EINVAL;
 52
 53	if (!strcmp(str, "poll")) {
 54		pr_info("using polling idle threads.\n");
 55		no_idle_nap = 1;
 56	} else if (!strcmp(str, "halt"))
 57		no_idle_nap = 0;
 58	else
 59		return -1;
 60
 61	return 0;
 62}
 63early_param("idle", idle_setup);
 64
 65/*
 66 * The idle thread. There's no useful work to be
 67 * done, so just try to conserve power and have a
 68 * low exit latency (ie sit in a loop waiting for
 69 * somebody to say that they'd like to reschedule)
 70 */
 71void cpu_idle(void)
 72{
 73	int cpu = smp_processor_id();
 74
 75
 76	current_thread_info()->status |= TS_POLLING;
 77
 78	if (no_idle_nap) {
 79		while (1) {
 80			while (!need_resched())
 81				cpu_relax();
 82			schedule();
 83		}
 84	}
 85
 86	/* endless idle loop with no priority at all */
 87	while (1) {
 88		tick_nohz_stop_sched_tick(1);
 89		while (!need_resched()) {
 90			if (cpu_is_offline(cpu))
 91				BUG();  /* no HOTPLUG_CPU */
 92
 93			local_irq_disable();
 94			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
 95			current_thread_info()->status &= ~TS_POLLING;
 96			/*
 97			 * TS_POLLING-cleared state must be visible before we
 98			 * test NEED_RESCHED:
 99			 */
100			smp_mb();
101
102			if (!need_resched())
103				_cpu_idle();
104			else
105				local_irq_enable();
106			current_thread_info()->status |= TS_POLLING;
107		}
108		tick_nohz_restart_sched_tick();
109		preempt_enable_no_resched();
110		schedule();
111		preempt_disable();
112	}
113}
114
115struct thread_info *alloc_thread_info_node(struct task_struct *task, int node)
116{
117	struct page *page;
118	gfp_t flags = GFP_KERNEL;
119
120#ifdef CONFIG_DEBUG_STACK_USAGE
121	flags |= __GFP_ZERO;
122#endif
123
124	page = alloc_pages_node(node, flags, THREAD_SIZE_ORDER);
125	if (!page)
126		return NULL;
127
128	return (struct thread_info *)page_address(page);
129}
130
131/*
132 * Free a thread_info node, and all of its derivative
133 * data structures.
134 */
135void free_thread_info(struct thread_info *info)
136{
 
137	struct single_step_state *step_state = info->step_state;
138
139#ifdef CONFIG_HARDWALL
140	/*
141	 * We free a thread_info from the context of the task that has
142	 * been scheduled next, so the original task is already dead.
143	 * Calling deactivate here just frees up the data structures.
144	 * If the task we're freeing held the last reference to a
145	 * hardwall fd, it would have been released prior to this point
146	 * anyway via exit_files(), and "hardwall" would be NULL by now.
147	 */
148	if (info->task->thread.hardwall)
149		hardwall_deactivate(info->task);
150#endif
151
152	if (step_state) {
153
154		/*
155		 * FIXME: we don't munmap step_state->buffer
156		 * because the mm_struct for this process (info->task->mm)
157		 * has already been zeroed in exit_mm().  Keeping a
158		 * reference to it here seems like a bad move, so this
159		 * means we can't munmap() the buffer, and therefore if we
160		 * ptrace multiple threads in a process, we will slowly
161		 * leak user memory.  (Note that as soon as the last
162		 * thread in a process dies, we will reclaim all user
163		 * memory including single-step buffers in the usual way.)
164		 * We should either assign a kernel VA to this buffer
165		 * somehow, or we should associate the buffer(s) with the
166		 * mm itself so we can clean them up that way.
167		 */
168		kfree(step_state);
169	}
170
171	free_pages((unsigned long)info, THREAD_SIZE_ORDER);
172}
173
174static void save_arch_state(struct thread_struct *t);
175
176int copy_thread(unsigned long clone_flags, unsigned long sp,
177		unsigned long stack_size,
178		struct task_struct *p, struct pt_regs *regs)
179{
180	struct pt_regs *childregs;
181	unsigned long ksp;
 
182
183	/*
184	 * When creating a new kernel thread we pass sp as zero.
185	 * Assign it to a reasonable value now that we have the stack.
 
 
 
 
186	 */
187	if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
188		sp = KSTK_TOP(p);
 
 
 
 
 
 
189
190	/*
191	 * Do not clone step state from the parent; each thread
192	 * must make its own lazily.
193	 */
194	task_thread_info(p)->step_state = NULL;
 
 
 
 
 
 
 
 
195
196	/*
197	 * Start new thread in ret_from_fork so it schedules properly
198	 * and then return from interrupt like the parent.
199	 */
200	p->thread.pc = (unsigned long) ret_from_fork;
201
202	/* Save user stack top pointer so we can ID the stack vm area later. */
203	p->thread.usp0 = sp;
 
 
 
204
205	/* Record the pid of the process that created this one. */
206	p->thread.creator_pid = current->pid;
 
 
 
 
 
207
208	/*
209	 * Copy the registers onto the kernel stack so the
210	 * return-from-interrupt code will reload it into registers.
211	 */
212	childregs = task_pt_regs(p);
213	*childregs = *regs;
214	childregs->regs[0] = 0;         /* return value is zero */
215	childregs->sp = sp;  /* override with new user stack pointer */
 
 
 
 
 
 
216
217	/*
218	 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
219	 * which is passed in as arg #5 to sys_clone().
220	 */
221	if (clone_flags & CLONE_SETTLS)
222		childregs->tp = regs->regs[4];
223
224	/*
225	 * Copy the callee-saved registers from the passed pt_regs struct
226	 * into the context-switch callee-saved registers area.
227	 * This way when we start the interrupt-return sequence, the
228	 * callee-save registers will be correctly in registers, which
229	 * is how we assume the compiler leaves them as we start doing
230	 * the normal return-from-interrupt path after calling C code.
231	 * Zero out the C ABI save area to mark the top of the stack.
232	 */
233	ksp = (unsigned long) childregs;
234	ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */
235	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
236	ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
237	memcpy((void *)ksp, &regs->regs[CALLEE_SAVED_FIRST_REG],
238	       CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
239	ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */
240	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
241	p->thread.ksp = ksp;
242
243#if CHIP_HAS_TILE_DMA()
244	/*
245	 * No DMA in the new thread.  We model this on the fact that
246	 * fork() clears the pending signals, alarms, and aio for the child.
247	 */
248	memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
249	memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
250#endif
251
252#if CHIP_HAS_SN_PROC()
253	/* Likewise, the new thread is not running static processor code. */
254	p->thread.sn_proc_running = 0;
255	memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
256#endif
257
258#if CHIP_HAS_PROC_STATUS_SPR()
259	/* New thread has its miscellaneous processor state bits clear. */
260	p->thread.proc_status = 0;
261#endif
262
263#ifdef CONFIG_HARDWALL
264	/* New thread does not own any networks. */
265	p->thread.hardwall = NULL;
 
266#endif
267
268
269	/*
270	 * Start the new thread with the current architecture state
271	 * (user interrupt masks, etc.).
272	 */
273	save_arch_state(&p->thread);
274
275	return 0;
276}
277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278/*
279 * Return "current" if it looks plausible, or else a pointer to a dummy.
280 * This can be helpful if we are just trying to emit a clean panic.
281 */
282struct task_struct *validate_current(void)
283{
284	static struct task_struct corrupt = { .comm = "<corrupt>" };
285	struct task_struct *tsk = current;
286	if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
287		     (void *)tsk > high_memory ||
288		     ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
289		pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
290		tsk = &corrupt;
291	}
292	return tsk;
293}
294
295/* Take and return the pointer to the previous task, for schedule_tail(). */
296struct task_struct *sim_notify_fork(struct task_struct *prev)
297{
298	struct task_struct *tsk = current;
299	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
300		     (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
301	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
302		     (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
303	return prev;
304}
305
306int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
307{
308	struct pt_regs *ptregs = task_pt_regs(tsk);
309	elf_core_copy_regs(regs, ptregs);
310	return 1;
311}
312
313#if CHIP_HAS_TILE_DMA()
314
315/* Allow user processes to access the DMA SPRs */
316void grant_dma_mpls(void)
317{
318#if CONFIG_KERNEL_PL == 2
319	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
320	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
321#else
322	__insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
323	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
324#endif
325}
326
327/* Forbid user processes from accessing the DMA SPRs */
328void restrict_dma_mpls(void)
329{
330#if CONFIG_KERNEL_PL == 2
331	__insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
332	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
333#else
334	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
335	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
336#endif
337}
338
339/* Pause the DMA engine, then save off its state registers. */
340static void save_tile_dma_state(struct tile_dma_state *dma)
341{
342	unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
343	unsigned long post_suspend_state;
344
345	/* If we're running, suspend the engine. */
346	if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
347		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
348
349	/*
350	 * Wait for the engine to idle, then save regs.  Note that we
351	 * want to record the "running" bit from before suspension,
352	 * and the "done" bit from after, so that we can properly
353	 * distinguish a case where the user suspended the engine from
354	 * the case where the kernel suspended as part of the context
355	 * swap.
356	 */
357	do {
358		post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
359	} while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
360
361	dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
362	dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
363	dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
364	dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
365	dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
366	dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
367	dma->byte = __insn_mfspr(SPR_DMA_BYTE);
368	dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
369		(post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
370}
371
372/* Restart a DMA that was running before we were context-switched out. */
373static void restore_tile_dma_state(struct thread_struct *t)
374{
375	const struct tile_dma_state *dma = &t->tile_dma_state;
376
377	/*
378	 * The only way to restore the done bit is to run a zero
379	 * length transaction.
380	 */
381	if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
382	    !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
383		__insn_mtspr(SPR_DMA_BYTE, 0);
384		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
385		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
386		       SPR_DMA_STATUS__BUSY_MASK)
387			;
388	}
389
390	__insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
391	__insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
392	__insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
393	__insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
394	__insn_mtspr(SPR_DMA_STRIDE, dma->strides);
395	__insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
396	__insn_mtspr(SPR_DMA_BYTE, dma->byte);
397
398	/*
399	 * Restart the engine if we were running and not done.
400	 * Clear a pending async DMA fault that we were waiting on return
401	 * to user space to execute, since we expect the DMA engine
402	 * to regenerate those faults for us now.  Note that we don't
403	 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
404	 * harmless if set, and it covers both DMA and the SN processor.
405	 */
406	if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
407		t->dma_async_tlb.fault_num = 0;
408		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
409	}
410}
411
412#endif
413
414static void save_arch_state(struct thread_struct *t)
415{
416#if CHIP_HAS_SPLIT_INTR_MASK()
417	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
418		((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
419#else
420	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
421#endif
422	t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
423	t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
424	t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
425	t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
426	t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
427	t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
428	t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
429#if CHIP_HAS_PROC_STATUS_SPR()
430	t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
431#endif
432#if !CHIP_HAS_FIXED_INTVEC_BASE()
433	t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
434#endif
435#if CHIP_HAS_TILE_RTF_HWM()
436	t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
437#endif
438#if CHIP_HAS_DSTREAM_PF()
439	t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
440#endif
441}
442
443static void restore_arch_state(const struct thread_struct *t)
444{
445#if CHIP_HAS_SPLIT_INTR_MASK()
446	__insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
447	__insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
448#else
449	__insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
450#endif
451	__insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
452	__insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
453	__insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
454	__insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
455	__insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
456	__insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
457	__insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
458#if CHIP_HAS_PROC_STATUS_SPR()
459	__insn_mtspr(SPR_PROC_STATUS, t->proc_status);
460#endif
461#if !CHIP_HAS_FIXED_INTVEC_BASE()
462	__insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
463#endif
464#if CHIP_HAS_TILE_RTF_HWM()
465	__insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
466#endif
467#if CHIP_HAS_DSTREAM_PF()
468	__insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
469#endif
470}
471
472
473void _prepare_arch_switch(struct task_struct *next)
474{
475#if CHIP_HAS_SN_PROC()
476	int snctl;
477#endif
478#if CHIP_HAS_TILE_DMA()
479	struct tile_dma_state *dma = &current->thread.tile_dma_state;
480	if (dma->enabled)
481		save_tile_dma_state(dma);
482#endif
483#if CHIP_HAS_SN_PROC()
484	/*
485	 * Suspend the static network processor if it was running.
486	 * We do not suspend the fabric itself, just like we don't
487	 * try to suspend the UDN.
488	 */
489	snctl = __insn_mfspr(SPR_SNCTL);
490	current->thread.sn_proc_running =
491		(snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
492	if (current->thread.sn_proc_running)
493		__insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
494#endif
495}
496
497
498struct task_struct *__sched _switch_to(struct task_struct *prev,
499				       struct task_struct *next)
500{
501	/* DMA state is already saved; save off other arch state. */
502	save_arch_state(&prev->thread);
503
504#if CHIP_HAS_TILE_DMA()
505	/*
506	 * Restore DMA in new task if desired.
507	 * Note that it is only safe to restart here since interrupts
508	 * are disabled, so we can't take any DMATLB miss or access
509	 * interrupts before we have finished switching stacks.
510	 */
511	if (next->thread.tile_dma_state.enabled) {
512		restore_tile_dma_state(&next->thread);
513		grant_dma_mpls();
514	} else {
515		restrict_dma_mpls();
516	}
517#endif
518
519	/* Restore other arch state. */
520	restore_arch_state(&next->thread);
521
522#if CHIP_HAS_SN_PROC()
523	/*
524	 * Restart static network processor in the new process
525	 * if it was running before.
526	 */
527	if (next->thread.sn_proc_running) {
528		int snctl = __insn_mfspr(SPR_SNCTL);
529		__insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
530	}
531#endif
532
533#ifdef CONFIG_HARDWALL
534	/* Enable or disable access to the network registers appropriately. */
535	if (prev->thread.hardwall != NULL) {
536		if (next->thread.hardwall == NULL)
537			restrict_network_mpls();
538	} else if (next->thread.hardwall != NULL) {
539		grant_network_mpls();
540	}
541#endif
542
 
 
 
 
 
543	/*
544	 * Switch kernel SP, PC, and callee-saved registers.
545	 * In the context of the new task, return the old task pointer
546	 * (i.e. the task that actually called __switch_to).
547	 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
548	 */
549	return __switch_to(prev, next, next_current_ksp0(next));
550}
551
552/*
553 * This routine is called on return from interrupt if any of the
554 * TIF_WORK_MASK flags are set in thread_info->flags.  It is
555 * entered with interrupts disabled so we don't miss an event
556 * that modified the thread_info flags.  If any flag is set, we
557 * handle it and return, and the calling assembly code will
558 * re-disable interrupts, reload the thread flags, and call back
559 * if more flags need to be handled.
560 *
561 * We return whether we need to check the thread_info flags again
562 * or not.  Note that we don't clear TIF_SINGLESTEP here, so it's
563 * important that it be tested last, and then claim that we don't
564 * need to recheck the flags.
565 */
566int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
567{
568	if (thread_info_flags & _TIF_NEED_RESCHED) {
569		schedule();
570		return 1;
571	}
572#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
573	if (thread_info_flags & _TIF_ASYNC_TLB) {
574		do_async_page_fault(regs);
575		return 1;
576	}
577#endif
578	if (thread_info_flags & _TIF_SIGPENDING) {
579		do_signal(regs);
580		return 1;
581	}
582	if (thread_info_flags & _TIF_NOTIFY_RESUME) {
583		clear_thread_flag(TIF_NOTIFY_RESUME);
584		tracehook_notify_resume(regs);
585		if (current->replacement_session_keyring)
586			key_replace_session_keyring();
587		return 1;
588	}
 
 
 
 
 
 
589	if (thread_info_flags & _TIF_SINGLESTEP) {
590		if ((regs->ex1 & SPR_EX_CONTEXT_1_1__PL_MASK) == 0)
591			single_step_once(regs);
592		return 0;
 
 
 
 
 
 
593	}
594	panic("work_pending: bad flags %#x\n", thread_info_flags);
595}
596
597/* Note there is an implicit fifth argument if (clone_flags & CLONE_SETTLS). */
598SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
599		void __user *, parent_tidptr, void __user *, child_tidptr,
600		struct pt_regs *, regs)
601{
602	if (!newsp)
603		newsp = regs->sp;
604	return do_fork(clone_flags, newsp, regs, 0,
605		       parent_tidptr, child_tidptr);
606}
607
608/*
609 * sys_execve() executes a new program.
610 */
611SYSCALL_DEFINE4(execve, const char __user *, path,
612		const char __user *const __user *, argv,
613		const char __user *const __user *, envp,
614		struct pt_regs *, regs)
615{
616	long error;
617	char *filename;
618
619	filename = getname(path);
620	error = PTR_ERR(filename);
621	if (IS_ERR(filename))
622		goto out;
623	error = do_execve(filename, argv, envp, regs);
624	putname(filename);
625	if (error == 0)
626		single_step_execve();
627out:
628	return error;
629}
630
631#ifdef CONFIG_COMPAT
632long compat_sys_execve(const char __user *path,
633		       compat_uptr_t __user *argv,
634		       compat_uptr_t __user *envp,
635		       struct pt_regs *regs)
636{
637	long error;
638	char *filename;
639
640	filename = getname(path);
641	error = PTR_ERR(filename);
642	if (IS_ERR(filename))
643		goto out;
644	error = compat_do_execve(filename, argv, envp, regs);
645	putname(filename);
646	if (error == 0)
647		single_step_execve();
648out:
649	return error;
650}
651#endif
652
653unsigned long get_wchan(struct task_struct *p)
654{
655	struct KBacktraceIterator kbt;
656
657	if (!p || p == current || p->state == TASK_RUNNING)
658		return 0;
659
660	for (KBacktraceIterator_init(&kbt, p, NULL);
661	     !KBacktraceIterator_end(&kbt);
662	     KBacktraceIterator_next(&kbt)) {
663		if (!in_sched_functions(kbt.it.pc))
664			return kbt.it.pc;
665	}
666
667	return 0;
668}
669
670/*
671 * We pass in lr as zero (cleared in kernel_thread) and the caller
672 * part of the backtrace ABI on the stack also zeroed (in copy_thread)
673 * so that backtraces will stop with this function.
674 * Note that we don't use r0, since copy_thread() clears it.
675 */
676static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
677{
678	do_exit(fn(arg));
679}
680
681/*
682 * Create a kernel thread
683 */
684int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
685{
686	struct pt_regs regs;
687
688	memset(&regs, 0, sizeof(regs));
689	regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0);  /* run at kernel PL, no ICS */
690	regs.pc = (long) start_kernel_thread;
691	regs.flags = PT_FLAGS_CALLER_SAVES;   /* need to restore r1 and r2 */
692	regs.regs[1] = (long) fn;             /* function pointer */
693	regs.regs[2] = (long) arg;            /* parameter register */
694
695	/* Ok, create the new process.. */
696	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs,
697		       0, NULL, NULL);
698}
699EXPORT_SYMBOL(kernel_thread);
700
701/* Flush thread state. */
702void flush_thread(void)
703{
704	/* Nothing */
705}
706
707/*
708 * Free current thread data structures etc..
709 */
710void exit_thread(void)
711{
712	/* Nothing */
 
 
 
 
 
 
 
 
713}
714
715void show_regs(struct pt_regs *regs)
716{
717	struct task_struct *tsk = validate_current();
718	int i;
719
720	pr_err("\n");
721	pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
722	       tsk->pid, tsk->comm, smp_processor_id());
723#ifdef __tilegx__
724	for (i = 0; i < 51; i += 3)
725		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
726		       i, regs->regs[i], i+1, regs->regs[i+1],
727		       i+2, regs->regs[i+2]);
728	pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
729	       regs->regs[51], regs->regs[52], regs->tp);
730	pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
731#else
732	for (i = 0; i < 52; i += 4)
733		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
734		       " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
735		       i, regs->regs[i], i+1, regs->regs[i+1],
736		       i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
737	pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
738	       regs->regs[52], regs->tp, regs->sp, regs->lr);
739#endif
740	pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld\n",
741	       regs->pc, regs->ex1, regs->faultnum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742
743	dump_stack_regs(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
744}
v4.10.11
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 */
 14
 15#include <linux/sched.h>
 16#include <linux/preempt.h>
 17#include <linux/module.h>
 18#include <linux/fs.h>
 19#include <linux/kprobes.h>
 20#include <linux/elfcore.h>
 21#include <linux/tick.h>
 22#include <linux/init.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/nmi.h>
 26#include <linux/syscalls.h>
 27#include <linux/kernel.h>
 28#include <linux/tracehook.h>
 29#include <linux/signal.h>
 30#include <linux/delay.h>
 31#include <linux/context_tracking.h>
 32#include <asm/stack.h>
 33#include <asm/switch_to.h>
 34#include <asm/homecache.h>
 35#include <asm/syscalls.h>
 36#include <asm/traps.h>
 37#include <asm/setup.h>
 38#include <linux/uaccess.h>
 39#ifdef CONFIG_HARDWALL
 40#include <asm/hardwall.h>
 41#endif
 42#include <arch/chip.h>
 43#include <arch/abi.h>
 44#include <arch/sim_def.h>
 45
 46/*
 47 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
 48 * idle loop over low power while in the idle loop, e.g. if we have
 49 * one thread per core and we want to get threads out of futex waits fast.
 50 */
 
 51static int __init idle_setup(char *str)
 52{
 53	if (!str)
 54		return -EINVAL;
 55
 56	if (!strcmp(str, "poll")) {
 57		pr_info("using polling idle threads\n");
 58		cpu_idle_poll_ctrl(true);
 59		return 0;
 60	} else if (!strcmp(str, "halt")) {
 61		return 0;
 62	}
 63	return -1;
 
 64}
 65early_param("idle", idle_setup);
 66
 67void arch_cpu_idle(void)
 
 
 
 
 
 
 68{
 69	__this_cpu_write(irq_stat.idle_timestamp, jiffies);
 70	_cpu_idle();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 71}
 72
 73/*
 74 * Release a thread_info structure
 
 75 */
 76void arch_release_thread_stack(unsigned long *stack)
 77{
 78	struct thread_info *info = (void *)stack;
 79	struct single_step_state *step_state = info->step_state;
 80
 
 
 
 
 
 
 
 
 
 
 
 
 
 81	if (step_state) {
 82
 83		/*
 84		 * FIXME: we don't munmap step_state->buffer
 85		 * because the mm_struct for this process (info->task->mm)
 86		 * has already been zeroed in exit_mm().  Keeping a
 87		 * reference to it here seems like a bad move, so this
 88		 * means we can't munmap() the buffer, and therefore if we
 89		 * ptrace multiple threads in a process, we will slowly
 90		 * leak user memory.  (Note that as soon as the last
 91		 * thread in a process dies, we will reclaim all user
 92		 * memory including single-step buffers in the usual way.)
 93		 * We should either assign a kernel VA to this buffer
 94		 * somehow, or we should associate the buffer(s) with the
 95		 * mm itself so we can clean them up that way.
 96		 */
 97		kfree(step_state);
 98	}
 
 
 99}
100
101static void save_arch_state(struct thread_struct *t);
102
103int copy_thread(unsigned long clone_flags, unsigned long sp,
104		unsigned long arg, struct task_struct *p)
 
105{
106	struct pt_regs *childregs = task_pt_regs(p);
107	unsigned long ksp;
108	unsigned long *callee_regs;
109
110	/*
111	 * Set up the stack and stack pointer appropriately for the
112	 * new child to find itself woken up in __switch_to().
113	 * The callee-saved registers must be on the stack to be read;
114	 * the new task will then jump to assembly support to handle
115	 * calling schedule_tail(), etc., and (for userspace tasks)
116	 * returning to the context set up in the pt_regs.
117	 */
118	ksp = (unsigned long) childregs;
119	ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */
120	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
121	ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
122	callee_regs = (unsigned long *)ksp;
123	ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */
124	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
125	p->thread.ksp = ksp;
126
127	/* Record the pid of the task that created this one. */
128	p->thread.creator_pid = current->pid;
129
130	if (unlikely(p->flags & PF_KTHREAD)) {
131		/* kernel thread */
132		memset(childregs, 0, sizeof(struct pt_regs));
133		memset(&callee_regs[2], 0,
134		       (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
135		callee_regs[0] = sp;   /* r30 = function */
136		callee_regs[1] = arg;  /* r31 = arg */
137		p->thread.pc = (unsigned long) ret_from_kernel_thread;
138		return 0;
139	}
140
141	/*
142	 * Start new thread in ret_from_fork so it schedules properly
143	 * and then return from interrupt like the parent.
144	 */
145	p->thread.pc = (unsigned long) ret_from_fork;
146
147	/*
148	 * Do not clone step state from the parent; each thread
149	 * must make its own lazily.
150	 */
151	task_thread_info(p)->step_state = NULL;
152
153#ifdef __tilegx__
154	/*
155	 * Do not clone unalign jit fixup from the parent; each thread
156	 * must allocate its own on demand.
157	 */
158	task_thread_info(p)->unalign_jit_base = NULL;
159#endif
160
161	/*
162	 * Copy the registers onto the kernel stack so the
163	 * return-from-interrupt code will reload it into registers.
164	 */
165	*childregs = *current_pt_regs();
 
166	childregs->regs[0] = 0;         /* return value is zero */
167	if (sp)
168		childregs->sp = sp;  /* override with new user stack pointer */
169	memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
170	       CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
171
172	/* Save user stack top pointer so we can ID the stack vm area later. */
173	p->thread.usp0 = childregs->sp;
174
175	/*
176	 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
177	 * which is passed in as arg #5 to sys_clone().
178	 */
179	if (clone_flags & CLONE_SETTLS)
180		childregs->tp = childregs->regs[4];
181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
183#if CHIP_HAS_TILE_DMA()
184	/*
185	 * No DMA in the new thread.  We model this on the fact that
186	 * fork() clears the pending signals, alarms, and aio for the child.
187	 */
188	memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
189	memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
190#endif
191
 
 
 
 
 
 
 
192	/* New thread has its miscellaneous processor state bits clear. */
193	p->thread.proc_status = 0;
 
194
195#ifdef CONFIG_HARDWALL
196	/* New thread does not own any networks. */
197	memset(&p->thread.hardwall[0], 0,
198	       sizeof(struct hardwall_task) * HARDWALL_TYPES);
199#endif
200
201
202	/*
203	 * Start the new thread with the current architecture state
204	 * (user interrupt masks, etc.).
205	 */
206	save_arch_state(&p->thread);
207
208	return 0;
209}
210
211int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
212{
213	task_thread_info(tsk)->align_ctl = val;
214	return 0;
215}
216
217int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
218{
219	return put_user(task_thread_info(tsk)->align_ctl,
220			(unsigned int __user *)adr);
221}
222
223static struct task_struct corrupt_current = { .comm = "<corrupt>" };
224
225/*
226 * Return "current" if it looks plausible, or else a pointer to a dummy.
227 * This can be helpful if we are just trying to emit a clean panic.
228 */
229struct task_struct *validate_current(void)
230{
 
231	struct task_struct *tsk = current;
232	if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
233		     (high_memory && (void *)tsk > high_memory) ||
234		     ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
235		pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
236		tsk = &corrupt_current;
237	}
238	return tsk;
239}
240
241/* Take and return the pointer to the previous task, for schedule_tail(). */
242struct task_struct *sim_notify_fork(struct task_struct *prev)
243{
244	struct task_struct *tsk = current;
245	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
246		     (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
247	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
248		     (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
249	return prev;
250}
251
252int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
253{
254	struct pt_regs *ptregs = task_pt_regs(tsk);
255	elf_core_copy_regs(regs, ptregs);
256	return 1;
257}
258
259#if CHIP_HAS_TILE_DMA()
260
261/* Allow user processes to access the DMA SPRs */
262void grant_dma_mpls(void)
263{
264#if CONFIG_KERNEL_PL == 2
265	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
266	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
267#else
268	__insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
269	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
270#endif
271}
272
273/* Forbid user processes from accessing the DMA SPRs */
274void restrict_dma_mpls(void)
275{
276#if CONFIG_KERNEL_PL == 2
277	__insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
278	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
279#else
280	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
281	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
282#endif
283}
284
285/* Pause the DMA engine, then save off its state registers. */
286static void save_tile_dma_state(struct tile_dma_state *dma)
287{
288	unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
289	unsigned long post_suspend_state;
290
291	/* If we're running, suspend the engine. */
292	if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
293		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
294
295	/*
296	 * Wait for the engine to idle, then save regs.  Note that we
297	 * want to record the "running" bit from before suspension,
298	 * and the "done" bit from after, so that we can properly
299	 * distinguish a case where the user suspended the engine from
300	 * the case where the kernel suspended as part of the context
301	 * swap.
302	 */
303	do {
304		post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
305	} while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
306
307	dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
308	dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
309	dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
310	dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
311	dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
312	dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
313	dma->byte = __insn_mfspr(SPR_DMA_BYTE);
314	dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
315		(post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
316}
317
318/* Restart a DMA that was running before we were context-switched out. */
319static void restore_tile_dma_state(struct thread_struct *t)
320{
321	const struct tile_dma_state *dma = &t->tile_dma_state;
322
323	/*
324	 * The only way to restore the done bit is to run a zero
325	 * length transaction.
326	 */
327	if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
328	    !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
329		__insn_mtspr(SPR_DMA_BYTE, 0);
330		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
331		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
332		       SPR_DMA_STATUS__BUSY_MASK)
333			;
334	}
335
336	__insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
337	__insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
338	__insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
339	__insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
340	__insn_mtspr(SPR_DMA_STRIDE, dma->strides);
341	__insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
342	__insn_mtspr(SPR_DMA_BYTE, dma->byte);
343
344	/*
345	 * Restart the engine if we were running and not done.
346	 * Clear a pending async DMA fault that we were waiting on return
347	 * to user space to execute, since we expect the DMA engine
348	 * to regenerate those faults for us now.  Note that we don't
349	 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
350	 * harmless if set, and it covers both DMA and the SN processor.
351	 */
352	if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
353		t->dma_async_tlb.fault_num = 0;
354		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
355	}
356}
357
358#endif
359
360static void save_arch_state(struct thread_struct *t)
361{
362#if CHIP_HAS_SPLIT_INTR_MASK()
363	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
364		((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
365#else
366	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
367#endif
368	t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
369	t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
370	t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
371	t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
372	t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
373	t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
374	t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
 
375	t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
 
376#if !CHIP_HAS_FIXED_INTVEC_BASE()
377	t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
378#endif
 
379	t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
 
380#if CHIP_HAS_DSTREAM_PF()
381	t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
382#endif
383}
384
385static void restore_arch_state(const struct thread_struct *t)
386{
387#if CHIP_HAS_SPLIT_INTR_MASK()
388	__insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
389	__insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
390#else
391	__insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
392#endif
393	__insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
394	__insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
395	__insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
396	__insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
397	__insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
398	__insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
399	__insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
 
400	__insn_mtspr(SPR_PROC_STATUS, t->proc_status);
 
401#if !CHIP_HAS_FIXED_INTVEC_BASE()
402	__insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
403#endif
 
404	__insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
 
405#if CHIP_HAS_DSTREAM_PF()
406	__insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
407#endif
408}
409
410
411void _prepare_arch_switch(struct task_struct *next)
412{
 
 
 
413#if CHIP_HAS_TILE_DMA()
414	struct tile_dma_state *dma = &current->thread.tile_dma_state;
415	if (dma->enabled)
416		save_tile_dma_state(dma);
417#endif
 
 
 
 
 
 
 
 
 
 
 
 
418}
419
420
421struct task_struct *__sched _switch_to(struct task_struct *prev,
422				       struct task_struct *next)
423{
424	/* DMA state is already saved; save off other arch state. */
425	save_arch_state(&prev->thread);
426
427#if CHIP_HAS_TILE_DMA()
428	/*
429	 * Restore DMA in new task if desired.
430	 * Note that it is only safe to restart here since interrupts
431	 * are disabled, so we can't take any DMATLB miss or access
432	 * interrupts before we have finished switching stacks.
433	 */
434	if (next->thread.tile_dma_state.enabled) {
435		restore_tile_dma_state(&next->thread);
436		grant_dma_mpls();
437	} else {
438		restrict_dma_mpls();
439	}
440#endif
441
442	/* Restore other arch state. */
443	restore_arch_state(&next->thread);
444
 
 
 
 
 
 
 
 
 
 
 
445#ifdef CONFIG_HARDWALL
446	/* Enable or disable access to the network registers appropriately. */
447	hardwall_switch_tasks(prev, next);
 
 
 
 
 
448#endif
449
450	/* Notify the simulator of task exit. */
451	if (unlikely(prev->state == TASK_DEAD))
452		__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT |
453			     (prev->pid << _SIM_CONTROL_OPERATOR_BITS));
454
455	/*
456	 * Switch kernel SP, PC, and callee-saved registers.
457	 * In the context of the new task, return the old task pointer
458	 * (i.e. the task that actually called __switch_to).
459	 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
460	 */
461	return __switch_to(prev, next, next_current_ksp0(next));
462}
463
464/*
465 * This routine is called on return from interrupt if any of the
466 * TIF_ALLWORK_MASK flags are set in thread_info->flags.  It is
467 * entered with interrupts disabled so we don't miss an event that
468 * modified the thread_info flags.  We loop until all the tested flags
469 * are clear.  Note that the function is called on certain conditions
470 * that are not listed in the loop condition here (e.g. SINGLESTEP)
471 * which guarantees we will do those things once, and redo them if any
472 * of the other work items is re-done, but won't continue looping if
473 * all the other work is done.
 
 
 
474 */
475void prepare_exit_to_usermode(struct pt_regs *regs, u32 thread_info_flags)
476{
477	if (WARN_ON(!user_mode(regs)))
478		return;
479
480	do {
481		local_irq_enable();
482
483		if (thread_info_flags & _TIF_NEED_RESCHED)
484			schedule();
485
486#if CHIP_HAS_TILE_DMA()
487		if (thread_info_flags & _TIF_ASYNC_TLB)
488			do_async_page_fault(regs);
489#endif
490
491		if (thread_info_flags & _TIF_SIGPENDING)
492			do_signal(regs);
493
494		if (thread_info_flags & _TIF_NOTIFY_RESUME) {
495			clear_thread_flag(TIF_NOTIFY_RESUME);
496			tracehook_notify_resume(regs);
497		}
498
499		local_irq_disable();
500		thread_info_flags = READ_ONCE(current_thread_info()->flags);
501
502	} while (thread_info_flags & _TIF_WORK_MASK);
503
504	if (thread_info_flags & _TIF_SINGLESTEP) {
505		single_step_once(regs);
506#ifndef __tilegx__
507		/*
508		 * FIXME: on tilepro, since we enable interrupts in
509		 * this routine, it's possible that we miss a signal
510		 * or other asynchronous event.
511		 */
512		local_irq_disable();
513#endif
514	}
 
 
515
516	user_enter();
 
 
 
 
 
 
 
 
517}
518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519unsigned long get_wchan(struct task_struct *p)
520{
521	struct KBacktraceIterator kbt;
522
523	if (!p || p == current || p->state == TASK_RUNNING)
524		return 0;
525
526	for (KBacktraceIterator_init(&kbt, p, NULL);
527	     !KBacktraceIterator_end(&kbt);
528	     KBacktraceIterator_next(&kbt)) {
529		if (!in_sched_functions(kbt.it.pc))
530			return kbt.it.pc;
531	}
532
533	return 0;
534}
535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536/* Flush thread state. */
537void flush_thread(void)
538{
539	/* Nothing */
540}
541
542/*
543 * Free current thread data structures etc..
544 */
545void exit_thread(struct task_struct *tsk)
546{
547#ifdef CONFIG_HARDWALL
548	/*
549	 * Remove the task from the list of tasks that are associated
550	 * with any live hardwalls.  (If the task that is exiting held
551	 * the last reference to a hardwall fd, it would already have
552	 * been released and deactivated at this point.)
553	 */
554	hardwall_deactivate_all(tsk);
555#endif
556}
557
558void tile_show_regs(struct pt_regs *regs)
559{
 
560	int i;
 
 
 
 
561#ifdef __tilegx__
562	for (i = 0; i < 17; i++)
563		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
564		       i, regs->regs[i], i+18, regs->regs[i+18],
565		       i+36, regs->regs[i+36]);
566	pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n",
567	       regs->regs[17], regs->regs[35], regs->tp);
568	pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
569#else
570	for (i = 0; i < 13; i++)
571		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
572		       " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
573		       i, regs->regs[i], i+14, regs->regs[i+14],
574		       i+27, regs->regs[i+27], i+40, regs->regs[i+40]);
575	pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
576	       regs->regs[13], regs->tp, regs->sp, regs->lr);
577#endif
578	pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld flags:%s%s%s%s\n",
579	       regs->pc, regs->ex1, regs->faultnum,
580	       is_compat_task() ? " compat" : "",
581	       (regs->flags & PT_FLAGS_DISABLE_IRQ) ? " noirq" : "",
582	       !(regs->flags & PT_FLAGS_CALLER_SAVES) ? " nocallersave" : "",
583	       (regs->flags & PT_FLAGS_RESTORE_REGS) ? " restoreregs" : "");
584}
585
586void show_regs(struct pt_regs *regs)
587{
588	struct KBacktraceIterator kbt;
589
590	show_regs_print_info(KERN_DEFAULT);
591	tile_show_regs(regs);
592
593	KBacktraceIterator_init(&kbt, NULL, regs);
594	tile_show_stack(&kbt);
595}
596
597#ifdef __tilegx__
598void nmi_raise_cpu_backtrace(struct cpumask *in_mask)
599{
600	struct cpumask mask;
601	HV_Coord tile;
602	unsigned int timeout;
603	int cpu;
604	HV_NMI_Info info[NR_CPUS];
605
606	/* Tentatively dump stack on remote tiles via NMI. */
607	timeout = 100;
608	cpumask_copy(&mask, in_mask);
609	while (!cpumask_empty(&mask) && timeout) {
610		for_each_cpu(cpu, &mask) {
611			tile.x = cpu_x(cpu);
612			tile.y = cpu_y(cpu);
613			info[cpu] = hv_send_nmi(tile, TILE_NMI_DUMP_STACK, 0);
614			if (info[cpu].result == HV_NMI_RESULT_OK)
615				cpumask_clear_cpu(cpu, &mask);
616		}
617
618		mdelay(10);
619		touch_softlockup_watchdog();
620		timeout--;
621	}
622
623	/* Warn about cpus stuck in ICS. */
624	if (!cpumask_empty(&mask)) {
625		for_each_cpu(cpu, &mask) {
626
627			/* Clear the bit as if nmi_cpu_backtrace() ran. */
628			cpumask_clear_cpu(cpu, in_mask);
629
630			switch (info[cpu].result) {
631			case HV_NMI_RESULT_FAIL_ICS:
632				pr_warn("Skipping stack dump of cpu %d in ICS at pc %#llx\n",
633					cpu, info[cpu].pc);
634				break;
635			case HV_NMI_RESULT_FAIL_HV:
636				pr_warn("Skipping stack dump of cpu %d in hypervisor\n",
637					cpu);
638				break;
639			case HV_ENOSYS:
640				WARN_ONCE(1, "Hypervisor too old to allow remote stack dumps.\n");
641				break;
642			default:  /* should not happen */
643				pr_warn("Skipping stack dump of cpu %d [%d,%#llx]\n",
644					cpu, info[cpu].result, info[cpu].pc);
645				break;
646			}
647		}
648	}
649}
650
651void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
652{
653	nmi_trigger_cpumask_backtrace(mask, exclude_self,
654				      nmi_raise_cpu_backtrace);
655}
656#endif /* __tilegx_ */