Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/module.h>
16#include <linux/screen_info.h>
17#include <linux/bootmem.h>
18#include <linux/initrd.h>
19#include <linux/root_dev.h>
20#include <linux/highmem.h>
21#include <linux/console.h>
22#include <linux/pfn.h>
23#include <linux/debugfs.h>
24
25#include <asm/addrspace.h>
26#include <asm/bootinfo.h>
27#include <asm/bugs.h>
28#include <asm/cache.h>
29#include <asm/cpu.h>
30#include <asm/sections.h>
31#include <asm/setup.h>
32#include <asm/smp-ops.h>
33#include <asm/system.h>
34#include <asm/prom.h>
35
36struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
37
38EXPORT_SYMBOL(cpu_data);
39
40#ifdef CONFIG_VT
41struct screen_info screen_info;
42#endif
43
44/*
45 * Despite it's name this variable is even if we don't have PCI
46 */
47unsigned int PCI_DMA_BUS_IS_PHYS;
48
49EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
50
51/*
52 * Setup information
53 *
54 * These are initialized so they are in the .data section
55 */
56unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
57
58EXPORT_SYMBOL(mips_machtype);
59
60struct boot_mem_map boot_mem_map;
61
62static char __initdata command_line[COMMAND_LINE_SIZE];
63char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
64
65#ifdef CONFIG_CMDLINE_BOOL
66static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
67#endif
68
69/*
70 * mips_io_port_base is the begin of the address space to which x86 style
71 * I/O ports are mapped.
72 */
73const unsigned long mips_io_port_base = -1;
74EXPORT_SYMBOL(mips_io_port_base);
75
76static struct resource code_resource = { .name = "Kernel code", };
77static struct resource data_resource = { .name = "Kernel data", };
78
79void __init add_memory_region(phys_t start, phys_t size, long type)
80{
81 int x = boot_mem_map.nr_map;
82 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
83
84 /* Sanity check */
85 if (start + size < start) {
86 pr_warning("Trying to add an invalid memory region, skipped\n");
87 return;
88 }
89
90 /*
91 * Try to merge with previous entry if any. This is far less than
92 * perfect but is sufficient for most real world cases.
93 */
94 if (x && prev->addr + prev->size == start && prev->type == type) {
95 prev->size += size;
96 return;
97 }
98
99 if (x == BOOT_MEM_MAP_MAX) {
100 pr_err("Ooops! Too many entries in the memory map!\n");
101 return;
102 }
103
104 boot_mem_map.map[x].addr = start;
105 boot_mem_map.map[x].size = size;
106 boot_mem_map.map[x].type = type;
107 boot_mem_map.nr_map++;
108}
109
110static void __init print_memory_map(void)
111{
112 int i;
113 const int field = 2 * sizeof(unsigned long);
114
115 for (i = 0; i < boot_mem_map.nr_map; i++) {
116 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
117 field, (unsigned long long) boot_mem_map.map[i].size,
118 field, (unsigned long long) boot_mem_map.map[i].addr);
119
120 switch (boot_mem_map.map[i].type) {
121 case BOOT_MEM_RAM:
122 printk(KERN_CONT "(usable)\n");
123 break;
124 case BOOT_MEM_ROM_DATA:
125 printk(KERN_CONT "(ROM data)\n");
126 break;
127 case BOOT_MEM_RESERVED:
128 printk(KERN_CONT "(reserved)\n");
129 break;
130 default:
131 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
132 break;
133 }
134 }
135}
136
137/*
138 * Manage initrd
139 */
140#ifdef CONFIG_BLK_DEV_INITRD
141
142static int __init rd_start_early(char *p)
143{
144 unsigned long start = memparse(p, &p);
145
146#ifdef CONFIG_64BIT
147 /* Guess if the sign extension was forgotten by bootloader */
148 if (start < XKPHYS)
149 start = (int)start;
150#endif
151 initrd_start = start;
152 initrd_end += start;
153 return 0;
154}
155early_param("rd_start", rd_start_early);
156
157static int __init rd_size_early(char *p)
158{
159 initrd_end += memparse(p, &p);
160 return 0;
161}
162early_param("rd_size", rd_size_early);
163
164/* it returns the next free pfn after initrd */
165static unsigned long __init init_initrd(void)
166{
167 unsigned long end;
168
169 /*
170 * Board specific code or command line parser should have
171 * already set up initrd_start and initrd_end. In these cases
172 * perfom sanity checks and use them if all looks good.
173 */
174 if (!initrd_start || initrd_end <= initrd_start)
175 goto disable;
176
177 if (initrd_start & ~PAGE_MASK) {
178 pr_err("initrd start must be page aligned\n");
179 goto disable;
180 }
181 if (initrd_start < PAGE_OFFSET) {
182 pr_err("initrd start < PAGE_OFFSET\n");
183 goto disable;
184 }
185
186 /*
187 * Sanitize initrd addresses. For example firmware
188 * can't guess if they need to pass them through
189 * 64-bits values if the kernel has been built in pure
190 * 32-bit. We need also to switch from KSEG0 to XKPHYS
191 * addresses now, so the code can now safely use __pa().
192 */
193 end = __pa(initrd_end);
194 initrd_end = (unsigned long)__va(end);
195 initrd_start = (unsigned long)__va(__pa(initrd_start));
196
197 ROOT_DEV = Root_RAM0;
198 return PFN_UP(end);
199disable:
200 initrd_start = 0;
201 initrd_end = 0;
202 return 0;
203}
204
205static void __init finalize_initrd(void)
206{
207 unsigned long size = initrd_end - initrd_start;
208
209 if (size == 0) {
210 printk(KERN_INFO "Initrd not found or empty");
211 goto disable;
212 }
213 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
214 printk(KERN_ERR "Initrd extends beyond end of memory");
215 goto disable;
216 }
217
218 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
219 initrd_below_start_ok = 1;
220
221 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
222 initrd_start, size);
223 return;
224disable:
225 printk(KERN_CONT " - disabling initrd\n");
226 initrd_start = 0;
227 initrd_end = 0;
228}
229
230#else /* !CONFIG_BLK_DEV_INITRD */
231
232static unsigned long __init init_initrd(void)
233{
234 return 0;
235}
236
237#define finalize_initrd() do {} while (0)
238
239#endif
240
241/*
242 * Initialize the bootmem allocator. It also setup initrd related data
243 * if needed.
244 */
245#ifdef CONFIG_SGI_IP27
246
247static void __init bootmem_init(void)
248{
249 init_initrd();
250 finalize_initrd();
251}
252
253#else /* !CONFIG_SGI_IP27 */
254
255static void __init bootmem_init(void)
256{
257 unsigned long reserved_end;
258 unsigned long mapstart = ~0UL;
259 unsigned long bootmap_size;
260 int i;
261
262 /*
263 * Init any data related to initrd. It's a nop if INITRD is
264 * not selected. Once that done we can determine the low bound
265 * of usable memory.
266 */
267 reserved_end = max(init_initrd(),
268 (unsigned long) PFN_UP(__pa_symbol(&_end)));
269
270 /*
271 * max_low_pfn is not a number of pages. The number of pages
272 * of the system is given by 'max_low_pfn - min_low_pfn'.
273 */
274 min_low_pfn = ~0UL;
275 max_low_pfn = 0;
276
277 /*
278 * Find the highest page frame number we have available.
279 */
280 for (i = 0; i < boot_mem_map.nr_map; i++) {
281 unsigned long start, end;
282
283 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
284 continue;
285
286 start = PFN_UP(boot_mem_map.map[i].addr);
287 end = PFN_DOWN(boot_mem_map.map[i].addr
288 + boot_mem_map.map[i].size);
289
290 if (end > max_low_pfn)
291 max_low_pfn = end;
292 if (start < min_low_pfn)
293 min_low_pfn = start;
294 if (end <= reserved_end)
295 continue;
296 if (start >= mapstart)
297 continue;
298 mapstart = max(reserved_end, start);
299 }
300
301 if (min_low_pfn >= max_low_pfn)
302 panic("Incorrect memory mapping !!!");
303 if (min_low_pfn > ARCH_PFN_OFFSET) {
304 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
305 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
306 min_low_pfn - ARCH_PFN_OFFSET);
307 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
308 pr_info("%lu free pages won't be used\n",
309 ARCH_PFN_OFFSET - min_low_pfn);
310 }
311 min_low_pfn = ARCH_PFN_OFFSET;
312
313 /*
314 * Determine low and high memory ranges
315 */
316 max_pfn = max_low_pfn;
317 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
318#ifdef CONFIG_HIGHMEM
319 highstart_pfn = PFN_DOWN(HIGHMEM_START);
320 highend_pfn = max_low_pfn;
321#endif
322 max_low_pfn = PFN_DOWN(HIGHMEM_START);
323 }
324
325 /*
326 * Initialize the boot-time allocator with low memory only.
327 */
328 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
329 min_low_pfn, max_low_pfn);
330
331
332 for (i = 0; i < boot_mem_map.nr_map; i++) {
333 unsigned long start, end;
334
335 start = PFN_UP(boot_mem_map.map[i].addr);
336 end = PFN_DOWN(boot_mem_map.map[i].addr
337 + boot_mem_map.map[i].size);
338
339 if (start <= min_low_pfn)
340 start = min_low_pfn;
341 if (start >= end)
342 continue;
343
344#ifndef CONFIG_HIGHMEM
345 if (end > max_low_pfn)
346 end = max_low_pfn;
347
348 /*
349 * ... finally, is the area going away?
350 */
351 if (end <= start)
352 continue;
353#endif
354
355 add_active_range(0, start, end);
356 }
357
358 /*
359 * Register fully available low RAM pages with the bootmem allocator.
360 */
361 for (i = 0; i < boot_mem_map.nr_map; i++) {
362 unsigned long start, end, size;
363
364 /*
365 * Reserve usable memory.
366 */
367 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
368 continue;
369
370 start = PFN_UP(boot_mem_map.map[i].addr);
371 end = PFN_DOWN(boot_mem_map.map[i].addr
372 + boot_mem_map.map[i].size);
373 /*
374 * We are rounding up the start address of usable memory
375 * and at the end of the usable range downwards.
376 */
377 if (start >= max_low_pfn)
378 continue;
379 if (start < reserved_end)
380 start = reserved_end;
381 if (end > max_low_pfn)
382 end = max_low_pfn;
383
384 /*
385 * ... finally, is the area going away?
386 */
387 if (end <= start)
388 continue;
389 size = end - start;
390
391 /* Register lowmem ranges */
392 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
393 memory_present(0, start, end);
394 }
395
396 /*
397 * Reserve the bootmap memory.
398 */
399 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
400
401 /*
402 * Reserve initrd memory if needed.
403 */
404 finalize_initrd();
405}
406
407#endif /* CONFIG_SGI_IP27 */
408
409/*
410 * arch_mem_init - initialize memory management subsystem
411 *
412 * o plat_mem_setup() detects the memory configuration and will record detected
413 * memory areas using add_memory_region.
414 *
415 * At this stage the memory configuration of the system is known to the
416 * kernel but generic memory management system is still entirely uninitialized.
417 *
418 * o bootmem_init()
419 * o sparse_init()
420 * o paging_init()
421 *
422 * At this stage the bootmem allocator is ready to use.
423 *
424 * NOTE: historically plat_mem_setup did the entire platform initialization.
425 * This was rather impractical because it meant plat_mem_setup had to
426 * get away without any kind of memory allocator. To keep old code from
427 * breaking plat_setup was just renamed to plat_setup and a second platform
428 * initialization hook for anything else was introduced.
429 */
430
431static int usermem __initdata;
432
433static int __init early_parse_mem(char *p)
434{
435 unsigned long start, size;
436
437 /*
438 * If a user specifies memory size, we
439 * blow away any automatically generated
440 * size.
441 */
442 if (usermem == 0) {
443 boot_mem_map.nr_map = 0;
444 usermem = 1;
445 }
446 start = 0;
447 size = memparse(p, &p);
448 if (*p == '@')
449 start = memparse(p + 1, &p);
450
451 add_memory_region(start, size, BOOT_MEM_RAM);
452 return 0;
453}
454early_param("mem", early_parse_mem);
455
456static void __init arch_mem_init(char **cmdline_p)
457{
458 extern void plat_mem_setup(void);
459
460 /* call board setup routine */
461 plat_mem_setup();
462
463 pr_info("Determined physical RAM map:\n");
464 print_memory_map();
465
466#ifdef CONFIG_CMDLINE_BOOL
467#ifdef CONFIG_CMDLINE_OVERRIDE
468 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
469#else
470 if (builtin_cmdline[0]) {
471 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
472 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
473 }
474 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
475#endif
476#else
477 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
478#endif
479 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
480
481 *cmdline_p = command_line;
482
483 parse_early_param();
484
485 if (usermem) {
486 pr_info("User-defined physical RAM map:\n");
487 print_memory_map();
488 }
489
490 bootmem_init();
491 device_tree_init();
492 sparse_init();
493 plat_swiotlb_setup();
494 paging_init();
495}
496
497static void __init resource_init(void)
498{
499 int i;
500
501 if (UNCAC_BASE != IO_BASE)
502 return;
503
504 code_resource.start = __pa_symbol(&_text);
505 code_resource.end = __pa_symbol(&_etext) - 1;
506 data_resource.start = __pa_symbol(&_etext);
507 data_resource.end = __pa_symbol(&_edata) - 1;
508
509 /*
510 * Request address space for all standard RAM.
511 */
512 for (i = 0; i < boot_mem_map.nr_map; i++) {
513 struct resource *res;
514 unsigned long start, end;
515
516 start = boot_mem_map.map[i].addr;
517 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
518 if (start >= HIGHMEM_START)
519 continue;
520 if (end >= HIGHMEM_START)
521 end = HIGHMEM_START - 1;
522
523 res = alloc_bootmem(sizeof(struct resource));
524 switch (boot_mem_map.map[i].type) {
525 case BOOT_MEM_RAM:
526 case BOOT_MEM_ROM_DATA:
527 res->name = "System RAM";
528 break;
529 case BOOT_MEM_RESERVED:
530 default:
531 res->name = "reserved";
532 }
533
534 res->start = start;
535 res->end = end;
536
537 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
538 request_resource(&iomem_resource, res);
539
540 /*
541 * We don't know which RAM region contains kernel data,
542 * so we try it repeatedly and let the resource manager
543 * test it.
544 */
545 request_resource(res, &code_resource);
546 request_resource(res, &data_resource);
547 }
548}
549
550void __init setup_arch(char **cmdline_p)
551{
552 cpu_probe();
553 prom_init();
554
555#ifdef CONFIG_EARLY_PRINTK
556 setup_early_printk();
557#endif
558 cpu_report();
559 check_bugs_early();
560
561#if defined(CONFIG_VT)
562#if defined(CONFIG_VGA_CONSOLE)
563 conswitchp = &vga_con;
564#elif defined(CONFIG_DUMMY_CONSOLE)
565 conswitchp = &dummy_con;
566#endif
567#endif
568
569 arch_mem_init(cmdline_p);
570
571 resource_init();
572 plat_smp_setup();
573}
574
575unsigned long kernelsp[NR_CPUS];
576unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
577
578#ifdef CONFIG_DEBUG_FS
579struct dentry *mips_debugfs_dir;
580static int __init debugfs_mips(void)
581{
582 struct dentry *d;
583
584 d = debugfs_create_dir("mips", NULL);
585 if (!d)
586 return -ENOMEM;
587 mips_debugfs_dir = d;
588 return 0;
589}
590arch_initcall(debugfs_mips);
591#endif
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/export.h>
16#include <linux/screen_info.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
19#include <linux/initrd.h>
20#include <linux/root_dev.h>
21#include <linux/highmem.h>
22#include <linux/console.h>
23#include <linux/pfn.h>
24#include <linux/debugfs.h>
25#include <linux/kexec.h>
26#include <linux/sizes.h>
27#include <linux/device.h>
28#include <linux/dma-contiguous.h>
29#include <linux/decompress/generic.h>
30
31#include <asm/addrspace.h>
32#include <asm/bootinfo.h>
33#include <asm/bugs.h>
34#include <asm/cache.h>
35#include <asm/cdmm.h>
36#include <asm/cpu.h>
37#include <asm/debug.h>
38#include <asm/sections.h>
39#include <asm/setup.h>
40#include <asm/smp-ops.h>
41#include <asm/prom.h>
42
43#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
44const char __section(.appended_dtb) __appended_dtb[0x100000];
45#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
46
47struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
48
49EXPORT_SYMBOL(cpu_data);
50
51#ifdef CONFIG_VT
52struct screen_info screen_info;
53#endif
54
55/*
56 * Setup information
57 *
58 * These are initialized so they are in the .data section
59 */
60unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
61
62EXPORT_SYMBOL(mips_machtype);
63
64struct boot_mem_map boot_mem_map;
65
66static char __initdata command_line[COMMAND_LINE_SIZE];
67char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
68
69#ifdef CONFIG_CMDLINE_BOOL
70static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
71#endif
72
73/*
74 * mips_io_port_base is the begin of the address space to which x86 style
75 * I/O ports are mapped.
76 */
77const unsigned long mips_io_port_base = -1;
78EXPORT_SYMBOL(mips_io_port_base);
79
80static struct resource code_resource = { .name = "Kernel code", };
81static struct resource data_resource = { .name = "Kernel data", };
82
83static void *detect_magic __initdata = detect_memory_region;
84
85void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
86{
87 int x = boot_mem_map.nr_map;
88 int i;
89
90 /*
91 * If the region reaches the top of the physical address space, adjust
92 * the size slightly so that (start + size) doesn't overflow
93 */
94 if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
95 --size;
96
97 /* Sanity check */
98 if (start + size < start) {
99 pr_warn("Trying to add an invalid memory region, skipped\n");
100 return;
101 }
102
103 /*
104 * Try to merge with existing entry, if any.
105 */
106 for (i = 0; i < boot_mem_map.nr_map; i++) {
107 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
108 unsigned long top;
109
110 if (entry->type != type)
111 continue;
112
113 if (start + size < entry->addr)
114 continue; /* no overlap */
115
116 if (entry->addr + entry->size < start)
117 continue; /* no overlap */
118
119 top = max(entry->addr + entry->size, start + size);
120 entry->addr = min(entry->addr, start);
121 entry->size = top - entry->addr;
122
123 return;
124 }
125
126 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
127 pr_err("Ooops! Too many entries in the memory map!\n");
128 return;
129 }
130
131 boot_mem_map.map[x].addr = start;
132 boot_mem_map.map[x].size = size;
133 boot_mem_map.map[x].type = type;
134 boot_mem_map.nr_map++;
135}
136
137void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
138{
139 void *dm = &detect_magic;
140 phys_addr_t size;
141
142 for (size = sz_min; size < sz_max; size <<= 1) {
143 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
144 break;
145 }
146
147 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
148 ((unsigned long long) size) / SZ_1M,
149 (unsigned long long) start,
150 ((unsigned long long) sz_min) / SZ_1M,
151 ((unsigned long long) sz_max) / SZ_1M);
152
153 add_memory_region(start, size, BOOT_MEM_RAM);
154}
155
156static void __init print_memory_map(void)
157{
158 int i;
159 const int field = 2 * sizeof(unsigned long);
160
161 for (i = 0; i < boot_mem_map.nr_map; i++) {
162 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
163 field, (unsigned long long) boot_mem_map.map[i].size,
164 field, (unsigned long long) boot_mem_map.map[i].addr);
165
166 switch (boot_mem_map.map[i].type) {
167 case BOOT_MEM_RAM:
168 printk(KERN_CONT "(usable)\n");
169 break;
170 case BOOT_MEM_INIT_RAM:
171 printk(KERN_CONT "(usable after init)\n");
172 break;
173 case BOOT_MEM_ROM_DATA:
174 printk(KERN_CONT "(ROM data)\n");
175 break;
176 case BOOT_MEM_RESERVED:
177 printk(KERN_CONT "(reserved)\n");
178 break;
179 default:
180 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
181 break;
182 }
183 }
184}
185
186/*
187 * Manage initrd
188 */
189#ifdef CONFIG_BLK_DEV_INITRD
190
191static int __init rd_start_early(char *p)
192{
193 unsigned long start = memparse(p, &p);
194
195#ifdef CONFIG_64BIT
196 /* Guess if the sign extension was forgotten by bootloader */
197 if (start < XKPHYS)
198 start = (int)start;
199#endif
200 initrd_start = start;
201 initrd_end += start;
202 return 0;
203}
204early_param("rd_start", rd_start_early);
205
206static int __init rd_size_early(char *p)
207{
208 initrd_end += memparse(p, &p);
209 return 0;
210}
211early_param("rd_size", rd_size_early);
212
213/* it returns the next free pfn after initrd */
214static unsigned long __init init_initrd(void)
215{
216 unsigned long end;
217
218 /*
219 * Board specific code or command line parser should have
220 * already set up initrd_start and initrd_end. In these cases
221 * perfom sanity checks and use them if all looks good.
222 */
223 if (!initrd_start || initrd_end <= initrd_start)
224 goto disable;
225
226 if (initrd_start & ~PAGE_MASK) {
227 pr_err("initrd start must be page aligned\n");
228 goto disable;
229 }
230 if (initrd_start < PAGE_OFFSET) {
231 pr_err("initrd start < PAGE_OFFSET\n");
232 goto disable;
233 }
234
235 /*
236 * Sanitize initrd addresses. For example firmware
237 * can't guess if they need to pass them through
238 * 64-bits values if the kernel has been built in pure
239 * 32-bit. We need also to switch from KSEG0 to XKPHYS
240 * addresses now, so the code can now safely use __pa().
241 */
242 end = __pa(initrd_end);
243 initrd_end = (unsigned long)__va(end);
244 initrd_start = (unsigned long)__va(__pa(initrd_start));
245
246 ROOT_DEV = Root_RAM0;
247 return PFN_UP(end);
248disable:
249 initrd_start = 0;
250 initrd_end = 0;
251 return 0;
252}
253
254/* In some conditions (e.g. big endian bootloader with a little endian
255 kernel), the initrd might appear byte swapped. Try to detect this and
256 byte swap it if needed. */
257static void __init maybe_bswap_initrd(void)
258{
259#if defined(CONFIG_CPU_CAVIUM_OCTEON)
260 u64 buf;
261
262 /* Check for CPIO signature */
263 if (!memcmp((void *)initrd_start, "070701", 6))
264 return;
265
266 /* Check for compressed initrd */
267 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
268 return;
269
270 /* Try again with a byte swapped header */
271 buf = swab64p((u64 *)initrd_start);
272 if (!memcmp(&buf, "070701", 6) ||
273 decompress_method((unsigned char *)(&buf), 8, NULL)) {
274 unsigned long i;
275
276 pr_info("Byteswapped initrd detected\n");
277 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
278 swab64s((u64 *)i);
279 }
280#endif
281}
282
283static void __init finalize_initrd(void)
284{
285 unsigned long size = initrd_end - initrd_start;
286
287 if (size == 0) {
288 printk(KERN_INFO "Initrd not found or empty");
289 goto disable;
290 }
291 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
292 printk(KERN_ERR "Initrd extends beyond end of memory");
293 goto disable;
294 }
295
296 maybe_bswap_initrd();
297
298 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
299 initrd_below_start_ok = 1;
300
301 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
302 initrd_start, size);
303 return;
304disable:
305 printk(KERN_CONT " - disabling initrd\n");
306 initrd_start = 0;
307 initrd_end = 0;
308}
309
310#else /* !CONFIG_BLK_DEV_INITRD */
311
312static unsigned long __init init_initrd(void)
313{
314 return 0;
315}
316
317#define finalize_initrd() do {} while (0)
318
319#endif
320
321/*
322 * Initialize the bootmem allocator. It also setup initrd related data
323 * if needed.
324 */
325#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
326
327static void __init bootmem_init(void)
328{
329 init_initrd();
330 finalize_initrd();
331}
332
333#else /* !CONFIG_SGI_IP27 */
334
335static void __init bootmem_init(void)
336{
337 unsigned long reserved_end;
338 unsigned long mapstart = ~0UL;
339 unsigned long bootmap_size;
340 int i;
341
342 /*
343 * Sanity check any INITRD first. We don't take it into account
344 * for bootmem setup initially, rely on the end-of-kernel-code
345 * as our memory range starting point. Once bootmem is inited we
346 * will reserve the area used for the initrd.
347 */
348 init_initrd();
349 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
350
351 /*
352 * max_low_pfn is not a number of pages. The number of pages
353 * of the system is given by 'max_low_pfn - min_low_pfn'.
354 */
355 min_low_pfn = ~0UL;
356 max_low_pfn = 0;
357
358 /*
359 * Find the highest page frame number we have available.
360 */
361 for (i = 0; i < boot_mem_map.nr_map; i++) {
362 unsigned long start, end;
363
364 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
365 continue;
366
367 start = PFN_UP(boot_mem_map.map[i].addr);
368 end = PFN_DOWN(boot_mem_map.map[i].addr
369 + boot_mem_map.map[i].size);
370
371#ifndef CONFIG_HIGHMEM
372 /*
373 * Skip highmem here so we get an accurate max_low_pfn if low
374 * memory stops short of high memory.
375 * If the region overlaps HIGHMEM_START, end is clipped so
376 * max_pfn excludes the highmem portion.
377 */
378 if (start >= PFN_DOWN(HIGHMEM_START))
379 continue;
380 if (end > PFN_DOWN(HIGHMEM_START))
381 end = PFN_DOWN(HIGHMEM_START);
382#endif
383
384 if (end > max_low_pfn)
385 max_low_pfn = end;
386 if (start < min_low_pfn)
387 min_low_pfn = start;
388 if (end <= reserved_end)
389 continue;
390#ifdef CONFIG_BLK_DEV_INITRD
391 /* Skip zones before initrd and initrd itself */
392 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
393 continue;
394#endif
395 if (start >= mapstart)
396 continue;
397 mapstart = max(reserved_end, start);
398 }
399
400 if (min_low_pfn >= max_low_pfn)
401 panic("Incorrect memory mapping !!!");
402 if (min_low_pfn > ARCH_PFN_OFFSET) {
403 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
404 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
405 min_low_pfn - ARCH_PFN_OFFSET);
406 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
407 pr_info("%lu free pages won't be used\n",
408 ARCH_PFN_OFFSET - min_low_pfn);
409 }
410 min_low_pfn = ARCH_PFN_OFFSET;
411
412 /*
413 * Determine low and high memory ranges
414 */
415 max_pfn = max_low_pfn;
416 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
417#ifdef CONFIG_HIGHMEM
418 highstart_pfn = PFN_DOWN(HIGHMEM_START);
419 highend_pfn = max_low_pfn;
420#endif
421 max_low_pfn = PFN_DOWN(HIGHMEM_START);
422 }
423
424#ifdef CONFIG_BLK_DEV_INITRD
425 /*
426 * mapstart should be after initrd_end
427 */
428 if (initrd_end)
429 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
430#endif
431
432 /*
433 * Initialize the boot-time allocator with low memory only.
434 */
435 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
436 min_low_pfn, max_low_pfn);
437
438
439 for (i = 0; i < boot_mem_map.nr_map; i++) {
440 unsigned long start, end;
441
442 start = PFN_UP(boot_mem_map.map[i].addr);
443 end = PFN_DOWN(boot_mem_map.map[i].addr
444 + boot_mem_map.map[i].size);
445
446 if (start <= min_low_pfn)
447 start = min_low_pfn;
448 if (start >= end)
449 continue;
450
451#ifndef CONFIG_HIGHMEM
452 if (end > max_low_pfn)
453 end = max_low_pfn;
454
455 /*
456 * ... finally, is the area going away?
457 */
458 if (end <= start)
459 continue;
460#endif
461
462 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
463 }
464
465 /*
466 * Register fully available low RAM pages with the bootmem allocator.
467 */
468 for (i = 0; i < boot_mem_map.nr_map; i++) {
469 unsigned long start, end, size;
470
471 start = PFN_UP(boot_mem_map.map[i].addr);
472 end = PFN_DOWN(boot_mem_map.map[i].addr
473 + boot_mem_map.map[i].size);
474
475 /*
476 * Reserve usable memory.
477 */
478 switch (boot_mem_map.map[i].type) {
479 case BOOT_MEM_RAM:
480 break;
481 case BOOT_MEM_INIT_RAM:
482 memory_present(0, start, end);
483 continue;
484 default:
485 /* Not usable memory */
486 continue;
487 }
488
489 /*
490 * We are rounding up the start address of usable memory
491 * and at the end of the usable range downwards.
492 */
493 if (start >= max_low_pfn)
494 continue;
495 if (start < reserved_end)
496 start = reserved_end;
497 if (end > max_low_pfn)
498 end = max_low_pfn;
499
500 /*
501 * ... finally, is the area going away?
502 */
503 if (end <= start)
504 continue;
505 size = end - start;
506
507 /* Register lowmem ranges */
508 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
509 memory_present(0, start, end);
510 }
511
512 /*
513 * Reserve the bootmap memory.
514 */
515 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
516
517#ifdef CONFIG_RELOCATABLE
518 /*
519 * The kernel reserves all memory below its _end symbol as bootmem,
520 * but the kernel may now be at a much higher address. The memory
521 * between the original and new locations may be returned to the system.
522 */
523 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
524 unsigned long offset;
525 extern void show_kernel_relocation(const char *level);
526
527 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
528 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
529
530#if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
531 /*
532 * This information is necessary when debugging the kernel
533 * But is a security vulnerability otherwise!
534 */
535 show_kernel_relocation(KERN_INFO);
536#endif
537 }
538#endif
539
540 /*
541 * Reserve initrd memory if needed.
542 */
543 finalize_initrd();
544}
545
546#endif /* CONFIG_SGI_IP27 */
547
548/*
549 * arch_mem_init - initialize memory management subsystem
550 *
551 * o plat_mem_setup() detects the memory configuration and will record detected
552 * memory areas using add_memory_region.
553 *
554 * At this stage the memory configuration of the system is known to the
555 * kernel but generic memory management system is still entirely uninitialized.
556 *
557 * o bootmem_init()
558 * o sparse_init()
559 * o paging_init()
560 * o dma_contiguous_reserve()
561 *
562 * At this stage the bootmem allocator is ready to use.
563 *
564 * NOTE: historically plat_mem_setup did the entire platform initialization.
565 * This was rather impractical because it meant plat_mem_setup had to
566 * get away without any kind of memory allocator. To keep old code from
567 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
568 * initialization hook for anything else was introduced.
569 */
570
571static int usermem __initdata;
572
573static int __init early_parse_mem(char *p)
574{
575 phys_addr_t start, size;
576
577 /*
578 * If a user specifies memory size, we
579 * blow away any automatically generated
580 * size.
581 */
582 if (usermem == 0) {
583 boot_mem_map.nr_map = 0;
584 usermem = 1;
585 }
586 start = 0;
587 size = memparse(p, &p);
588 if (*p == '@')
589 start = memparse(p + 1, &p);
590
591 add_memory_region(start, size, BOOT_MEM_RAM);
592 return 0;
593}
594early_param("mem", early_parse_mem);
595
596#ifdef CONFIG_PROC_VMCORE
597unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
598static int __init early_parse_elfcorehdr(char *p)
599{
600 int i;
601
602 setup_elfcorehdr = memparse(p, &p);
603
604 for (i = 0; i < boot_mem_map.nr_map; i++) {
605 unsigned long start = boot_mem_map.map[i].addr;
606 unsigned long end = (boot_mem_map.map[i].addr +
607 boot_mem_map.map[i].size);
608 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
609 /*
610 * Reserve from the elf core header to the end of
611 * the memory segment, that should all be kdump
612 * reserved memory.
613 */
614 setup_elfcorehdr_size = end - setup_elfcorehdr;
615 break;
616 }
617 }
618 /*
619 * If we don't find it in the memory map, then we shouldn't
620 * have to worry about it, as the new kernel won't use it.
621 */
622 return 0;
623}
624early_param("elfcorehdr", early_parse_elfcorehdr);
625#endif
626
627static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
628{
629 phys_addr_t size;
630 int i;
631
632 size = end - mem;
633 if (!size)
634 return;
635
636 /* Make sure it is in the boot_mem_map */
637 for (i = 0; i < boot_mem_map.nr_map; i++) {
638 if (mem >= boot_mem_map.map[i].addr &&
639 mem < (boot_mem_map.map[i].addr +
640 boot_mem_map.map[i].size))
641 return;
642 }
643 add_memory_region(mem, size, type);
644}
645
646#ifdef CONFIG_KEXEC
647static inline unsigned long long get_total_mem(void)
648{
649 unsigned long long total;
650
651 total = max_pfn - min_low_pfn;
652 return total << PAGE_SHIFT;
653}
654
655static void __init mips_parse_crashkernel(void)
656{
657 unsigned long long total_mem;
658 unsigned long long crash_size, crash_base;
659 int ret;
660
661 total_mem = get_total_mem();
662 ret = parse_crashkernel(boot_command_line, total_mem,
663 &crash_size, &crash_base);
664 if (ret != 0 || crash_size <= 0)
665 return;
666
667 crashk_res.start = crash_base;
668 crashk_res.end = crash_base + crash_size - 1;
669}
670
671static void __init request_crashkernel(struct resource *res)
672{
673 int ret;
674
675 ret = request_resource(res, &crashk_res);
676 if (!ret)
677 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
678 (unsigned long)((crashk_res.end -
679 crashk_res.start + 1) >> 20),
680 (unsigned long)(crashk_res.start >> 20));
681}
682#else /* !defined(CONFIG_KEXEC) */
683static void __init mips_parse_crashkernel(void)
684{
685}
686
687static void __init request_crashkernel(struct resource *res)
688{
689}
690#endif /* !defined(CONFIG_KEXEC) */
691
692#define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
693#define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
694#define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
695#define BUILTIN_EXTEND_WITH_PROM \
696 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
697
698static void __init arch_mem_init(char **cmdline_p)
699{
700 struct memblock_region *reg;
701 extern void plat_mem_setup(void);
702
703 /* call board setup routine */
704 plat_mem_setup();
705
706 /*
707 * Make sure all kernel memory is in the maps. The "UP" and
708 * "DOWN" are opposite for initdata since if it crosses over
709 * into another memory section you don't want that to be
710 * freed when the initdata is freed.
711 */
712 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
713 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
714 BOOT_MEM_RAM);
715 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
716 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
717 BOOT_MEM_INIT_RAM);
718
719 pr_info("Determined physical RAM map:\n");
720 print_memory_map();
721
722#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
723 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
724#else
725 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
726 (USE_DTB_CMDLINE && !boot_command_line[0]))
727 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
728
729 if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
730 if (boot_command_line[0])
731 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
732 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
733 }
734
735#if defined(CONFIG_CMDLINE_BOOL)
736 if (builtin_cmdline[0]) {
737 if (boot_command_line[0])
738 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
739 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
740 }
741
742 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
743 if (boot_command_line[0])
744 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
745 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
746 }
747#endif
748#endif
749 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
750
751 *cmdline_p = command_line;
752
753 parse_early_param();
754
755 if (usermem) {
756 pr_info("User-defined physical RAM map:\n");
757 print_memory_map();
758 }
759
760 bootmem_init();
761#ifdef CONFIG_PROC_VMCORE
762 if (setup_elfcorehdr && setup_elfcorehdr_size) {
763 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
764 setup_elfcorehdr, setup_elfcorehdr_size);
765 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
766 BOOTMEM_DEFAULT);
767 }
768#endif
769
770 mips_parse_crashkernel();
771#ifdef CONFIG_KEXEC
772 if (crashk_res.start != crashk_res.end)
773 reserve_bootmem(crashk_res.start,
774 crashk_res.end - crashk_res.start + 1,
775 BOOTMEM_DEFAULT);
776#endif
777 device_tree_init();
778 sparse_init();
779 plat_swiotlb_setup();
780
781 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
782 /* Tell bootmem about cma reserved memblock section */
783 for_each_memblock(reserved, reg)
784 if (reg->size != 0)
785 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
786
787 reserve_bootmem_region(__pa_symbol(&__nosave_begin),
788 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
789}
790
791static void __init resource_init(void)
792{
793 int i;
794
795 if (UNCAC_BASE != IO_BASE)
796 return;
797
798 code_resource.start = __pa_symbol(&_text);
799 code_resource.end = __pa_symbol(&_etext) - 1;
800 data_resource.start = __pa_symbol(&_etext);
801 data_resource.end = __pa_symbol(&_edata) - 1;
802
803 for (i = 0; i < boot_mem_map.nr_map; i++) {
804 struct resource *res;
805 unsigned long start, end;
806
807 start = boot_mem_map.map[i].addr;
808 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
809 if (start >= HIGHMEM_START)
810 continue;
811 if (end >= HIGHMEM_START)
812 end = HIGHMEM_START - 1;
813
814 res = alloc_bootmem(sizeof(struct resource));
815
816 res->start = start;
817 res->end = end;
818 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
819
820 switch (boot_mem_map.map[i].type) {
821 case BOOT_MEM_RAM:
822 case BOOT_MEM_INIT_RAM:
823 case BOOT_MEM_ROM_DATA:
824 res->name = "System RAM";
825 res->flags |= IORESOURCE_SYSRAM;
826 break;
827 case BOOT_MEM_RESERVED:
828 default:
829 res->name = "reserved";
830 }
831
832 request_resource(&iomem_resource, res);
833
834 /*
835 * We don't know which RAM region contains kernel data,
836 * so we try it repeatedly and let the resource manager
837 * test it.
838 */
839 request_resource(res, &code_resource);
840 request_resource(res, &data_resource);
841 request_crashkernel(res);
842 }
843}
844
845#ifdef CONFIG_SMP
846static void __init prefill_possible_map(void)
847{
848 int i, possible = num_possible_cpus();
849
850 if (possible > nr_cpu_ids)
851 possible = nr_cpu_ids;
852
853 for (i = 0; i < possible; i++)
854 set_cpu_possible(i, true);
855 for (; i < NR_CPUS; i++)
856 set_cpu_possible(i, false);
857
858 nr_cpu_ids = possible;
859}
860#else
861static inline void prefill_possible_map(void) {}
862#endif
863
864void __init setup_arch(char **cmdline_p)
865{
866 cpu_probe();
867 mips_cm_probe();
868 prom_init();
869
870 setup_early_fdc_console();
871#ifdef CONFIG_EARLY_PRINTK
872 setup_early_printk();
873#endif
874 cpu_report();
875 check_bugs_early();
876
877#if defined(CONFIG_VT)
878#if defined(CONFIG_VGA_CONSOLE)
879 conswitchp = &vga_con;
880#elif defined(CONFIG_DUMMY_CONSOLE)
881 conswitchp = &dummy_con;
882#endif
883#endif
884
885 arch_mem_init(cmdline_p);
886
887 resource_init();
888 plat_smp_setup();
889 prefill_possible_map();
890
891 cpu_cache_init();
892 paging_init();
893}
894
895unsigned long kernelsp[NR_CPUS];
896unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
897
898#ifdef CONFIG_USE_OF
899unsigned long fw_passed_dtb;
900#endif
901
902#ifdef CONFIG_DEBUG_FS
903struct dentry *mips_debugfs_dir;
904static int __init debugfs_mips(void)
905{
906 struct dentry *d;
907
908 d = debugfs_create_dir("mips", NULL);
909 if (!d)
910 return -ENOMEM;
911 mips_debugfs_dir = d;
912 return 0;
913}
914arch_initcall(debugfs_mips);
915#endif