Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/arch/arm/mm/proc-xscale.S
  3 *
  4 *  Author:	Nicolas Pitre
  5 *  Created:	November 2000
  6 *  Copyright:	(C) 2000, 2001 MontaVista Software Inc.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * MMU functions for the Intel XScale CPUs
 13 *
 14 * 2001 Aug 21:
 15 *	some contributions by Brett Gaines <brett.w.gaines@intel.com>
 16 *	Copyright 2001 by Intel Corp.
 17 *
 18 * 2001 Sep 08:
 19 *	Completely revisited, many important fixes
 20 *	Nicolas Pitre <nico@fluxnic.net>
 21 */
 22
 23#include <linux/linkage.h>
 24#include <linux/init.h>
 25#include <asm/assembler.h>
 26#include <asm/hwcap.h>
 27#include <asm/pgtable.h>
 28#include <asm/pgtable-hwdef.h>
 29#include <asm/page.h>
 30#include <asm/ptrace.h>
 31#include "proc-macros.S"
 32
 33/*
 34 * This is the maximum size of an area which will be flushed.  If the area
 35 * is larger than this, then we flush the whole cache
 36 */
 37#define MAX_AREA_SIZE	32768
 38
 39/*
 40 * the cache line size of the I and D cache
 41 */
 42#define CACHELINESIZE	32
 43
 44/*
 45 * the size of the data cache
 46 */
 47#define CACHESIZE	32768
 48
 49/*
 50 * Virtual address used to allocate the cache when flushed
 51 *
 52 * This must be an address range which is _never_ used.  It should
 53 * apparently have a mapping in the corresponding page table for
 54 * compatibility with future CPUs that _could_ require it.  For instance we
 55 * don't care.
 56 *
 57 * This must be aligned on a 2*CACHESIZE boundary.  The code selects one of
 58 * the 2 areas in alternance each time the clean_d_cache macro is used.
 59 * Without this the XScale core exhibits cache eviction problems and no one
 60 * knows why.
 61 *
 62 * Reminder: the vector table is located at 0xffff0000-0xffff0fff.
 63 */
 64#define CLEAN_ADDR	0xfffe0000
 65
 66/*
 67 * This macro is used to wait for a CP15 write and is needed
 68 * when we have to ensure that the last operation to the co-pro
 69 * was completed before continuing with operation.
 70 */
 71	.macro	cpwait, rd
 72	mrc	p15, 0, \rd, c2, c0, 0		@ arbitrary read of cp15
 73	mov	\rd, \rd			@ wait for completion
 74	sub 	pc, pc, #4			@ flush instruction pipeline
 75	.endm
 76
 77	.macro	cpwait_ret, lr, rd
 78	mrc	p15, 0, \rd, c2, c0, 0		@ arbitrary read of cp15
 79	sub	pc, \lr, \rd, LSR #32		@ wait for completion and
 80						@ flush instruction pipeline
 81	.endm
 82
 83/*
 84 * This macro cleans the entire dcache using line allocate.
 85 * The main loop has been unrolled to reduce loop overhead.
 86 * rd and rs are two scratch registers.
 87 */
 88	.macro  clean_d_cache, rd, rs
 89	ldr	\rs, =clean_addr
 90	ldr	\rd, [\rs]
 91	eor	\rd, \rd, #CACHESIZE
 92	str	\rd, [\rs]
 93	add	\rs, \rd, #CACHESIZE
 941:	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
 95	add	\rd, \rd, #CACHELINESIZE
 96	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
 97	add	\rd, \rd, #CACHELINESIZE
 98	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
 99	add	\rd, \rd, #CACHELINESIZE
100	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
101	add	\rd, \rd, #CACHELINESIZE
102	teq	\rd, \rs
103	bne	1b
104	.endm
105
106	.data
107clean_addr:	.word	CLEAN_ADDR
108
109	.text
110
111/*
112 * cpu_xscale_proc_init()
113 *
114 * Nothing too exciting at the moment
115 */
116ENTRY(cpu_xscale_proc_init)
117	@ enable write buffer coalescing. Some bootloader disable it
118	mrc	p15, 0, r1, c1, c0, 1
119	bic	r1, r1, #1
120	mcr	p15, 0, r1, c1, c0, 1
121	mov	pc, lr
122
123/*
124 * cpu_xscale_proc_fin()
125 */
126ENTRY(cpu_xscale_proc_fin)
127	mrc	p15, 0, r0, c1, c0, 0		@ ctrl register
128	bic	r0, r0, #0x1800			@ ...IZ...........
129	bic	r0, r0, #0x0006			@ .............CA.
130	mcr	p15, 0, r0, c1, c0, 0		@ disable caches
131	mov	pc, lr
132
133/*
134 * cpu_xscale_reset(loc)
135 *
136 * Perform a soft reset of the system.  Put the CPU into the
137 * same state as it would be if it had been reset, and branch
138 * to what would be the reset vector.
139 *
140 * loc: location to jump to for soft reset
141 *
142 * Beware PXA270 erratum E7.
143 */
144	.align	5
 
145ENTRY(cpu_xscale_reset)
146	mov	r1, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
147	msr	cpsr_c, r1			@ reset CPSR
148	mcr	p15, 0, r1, c10, c4, 1		@ unlock I-TLB
149	mcr	p15, 0, r1, c8, c5, 0		@ invalidate I-TLB
150	mrc	p15, 0, r1, c1, c0, 0		@ ctrl register
151	bic	r1, r1, #0x0086			@ ........B....CA.
152	bic	r1, r1, #0x3900			@ ..VIZ..S........
153	sub	pc, pc, #4			@ flush pipeline
154	@ *** cache line aligned ***
155	mcr	p15, 0, r1, c1, c0, 0		@ ctrl register
156	bic	r1, r1, #0x0001			@ ...............M
157	mcr	p15, 0, ip, c7, c7, 0		@ invalidate I,D caches & BTB
158	mcr	p15, 0, r1, c1, c0, 0		@ ctrl register
159	@ CAUTION: MMU turned off from this point. We count on the pipeline
160	@ already containing those two last instructions to survive.
161	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I & D TLBs
162	mov	pc, r0
 
 
163
164/*
165 * cpu_xscale_do_idle()
166 *
167 * Cause the processor to idle
168 *
169 * For now we do nothing but go to idle mode for every case
170 *
171 * XScale supports clock switching, but using idle mode support
172 * allows external hardware to react to system state changes.
173 */
174	.align	5
175
176ENTRY(cpu_xscale_do_idle)
177	mov	r0, #1
178	mcr	p14, 0, r0, c7, c0, 0		@ Go to IDLE
179	mov	pc, lr
180
181/* ================================= CACHE ================================ */
182
183/*
184 *	flush_icache_all()
185 *
186 *	Unconditionally clean and invalidate the entire icache.
187 */
188ENTRY(xscale_flush_icache_all)
189	mov	r0, #0
190	mcr	p15, 0, r0, c7, c5, 0		@ invalidate I cache
191	mov	pc, lr
192ENDPROC(xscale_flush_icache_all)
193
194/*
195 *	flush_user_cache_all()
196 *
197 *	Invalidate all cache entries in a particular address
198 *	space.
199 */
200ENTRY(xscale_flush_user_cache_all)
201	/* FALLTHROUGH */
202
203/*
204 *	flush_kern_cache_all()
205 *
206 *	Clean and invalidate the entire cache.
207 */
208ENTRY(xscale_flush_kern_cache_all)
209	mov	r2, #VM_EXEC
210	mov	ip, #0
211__flush_whole_cache:
212	clean_d_cache r0, r1
213	tst	r2, #VM_EXEC
214	mcrne	p15, 0, ip, c7, c5, 0		@ Invalidate I cache & BTB
215	mcrne	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
216	mov	pc, lr
217
218/*
219 *	flush_user_cache_range(start, end, vm_flags)
220 *
221 *	Invalidate a range of cache entries in the specified
222 *	address space.
223 *
224 *	- start - start address (may not be aligned)
225 *	- end	- end address (exclusive, may not be aligned)
226 *	- vma	- vma_area_struct describing address space
227 */
228	.align	5
229ENTRY(xscale_flush_user_cache_range)
230	mov	ip, #0
231	sub	r3, r1, r0			@ calculate total size
232	cmp	r3, #MAX_AREA_SIZE
233	bhs	__flush_whole_cache
234
2351:	tst	r2, #VM_EXEC
236	mcrne	p15, 0, r0, c7, c5, 1		@ Invalidate I cache line
237	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
238	mcr	p15, 0, r0, c7, c6, 1		@ Invalidate D cache line
239	add	r0, r0, #CACHELINESIZE
240	cmp	r0, r1
241	blo	1b
242	tst	r2, #VM_EXEC
243	mcrne	p15, 0, ip, c7, c5, 6		@ Invalidate BTB
244	mcrne	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
245	mov	pc, lr
246
247/*
248 *	coherent_kern_range(start, end)
249 *
250 *	Ensure coherency between the Icache and the Dcache in the
251 *	region described by start.  If you have non-snooping
252 *	Harvard caches, you need to implement this function.
253 *
254 *	- start  - virtual start address
255 *	- end	 - virtual end address
256 *
257 *	Note: single I-cache line invalidation isn't used here since
258 *	it also trashes the mini I-cache used by JTAG debuggers.
259 */
260ENTRY(xscale_coherent_kern_range)
261	bic	r0, r0, #CACHELINESIZE - 1
2621:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
263	add	r0, r0, #CACHELINESIZE
264	cmp	r0, r1
265	blo	1b
266	mov	r0, #0
267	mcr	p15, 0, r0, c7, c5, 0		@ Invalidate I cache & BTB
268	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
269	mov	pc, lr
270
271/*
272 *	coherent_user_range(start, end)
273 *
274 *	Ensure coherency between the Icache and the Dcache in the
275 *	region described by start.  If you have non-snooping
276 *	Harvard caches, you need to implement this function.
277 *
278 *	- start  - virtual start address
279 *	- end	 - virtual end address
280 */
281ENTRY(xscale_coherent_user_range)
282	bic	r0, r0, #CACHELINESIZE - 1
2831:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
284	mcr	p15, 0, r0, c7, c5, 1		@ Invalidate I cache entry
285	add	r0, r0, #CACHELINESIZE
286	cmp	r0, r1
287	blo	1b
288	mov	r0, #0
289	mcr	p15, 0, r0, c7, c5, 6		@ Invalidate BTB
290	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
291	mov	pc, lr
292
293/*
294 *	flush_kern_dcache_area(void *addr, size_t size)
295 *
296 *	Ensure no D cache aliasing occurs, either with itself or
297 *	the I cache
298 *
299 *	- addr	- kernel address
300 *	- size	- region size
301 */
302ENTRY(xscale_flush_kern_dcache_area)
303	add	r1, r0, r1
3041:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
305	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
306	add	r0, r0, #CACHELINESIZE
307	cmp	r0, r1
308	blo	1b
309	mov	r0, #0
310	mcr	p15, 0, r0, c7, c5, 0		@ Invalidate I cache & BTB
311	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
312	mov	pc, lr
313
314/*
315 *	dma_inv_range(start, end)
316 *
317 *	Invalidate (discard) the specified virtual address range.
318 *	May not write back any entries.  If 'start' or 'end'
319 *	are not cache line aligned, those lines must be written
320 *	back.
321 *
322 *	- start  - virtual start address
323 *	- end	 - virtual end address
324 */
325xscale_dma_inv_range:
326	tst	r0, #CACHELINESIZE - 1
327	bic	r0, r0, #CACHELINESIZE - 1
328	mcrne	p15, 0, r0, c7, c10, 1		@ clean D entry
329	tst	r1, #CACHELINESIZE - 1
330	mcrne	p15, 0, r1, c7, c10, 1		@ clean D entry
3311:	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
332	add	r0, r0, #CACHELINESIZE
333	cmp	r0, r1
334	blo	1b
335	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
336	mov	pc, lr
337
338/*
339 *	dma_clean_range(start, end)
340 *
341 *	Clean the specified virtual address range.
342 *
343 *	- start  - virtual start address
344 *	- end	 - virtual end address
345 */
346xscale_dma_clean_range:
347	bic	r0, r0, #CACHELINESIZE - 1
3481:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
349	add	r0, r0, #CACHELINESIZE
350	cmp	r0, r1
351	blo	1b
352	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
353	mov	pc, lr
354
355/*
356 *	dma_flush_range(start, end)
357 *
358 *	Clean and invalidate the specified virtual address range.
359 *
360 *	- start  - virtual start address
361 *	- end	 - virtual end address
362 */
363ENTRY(xscale_dma_flush_range)
364	bic	r0, r0, #CACHELINESIZE - 1
3651:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
366	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
367	add	r0, r0, #CACHELINESIZE
368	cmp	r0, r1
369	blo	1b
370	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
371	mov	pc, lr
372
373/*
374 *	dma_map_area(start, size, dir)
375 *	- start	- kernel virtual start address
376 *	- size	- size of region
377 *	- dir	- DMA direction
378 */
379ENTRY(xscale_dma_map_area)
380	add	r1, r1, r0
381	cmp	r2, #DMA_TO_DEVICE
382	beq	xscale_dma_clean_range
383	bcs	xscale_dma_inv_range
384	b	xscale_dma_flush_range
385ENDPROC(xscale_dma_map_area)
386
387/*
388 *	dma_map_area(start, size, dir)
389 *	- start	- kernel virtual start address
390 *	- size	- size of region
391 *	- dir	- DMA direction
392 */
393ENTRY(xscale_80200_A0_A1_dma_map_area)
394	add	r1, r1, r0
395	teq	r2, #DMA_TO_DEVICE
396	beq	xscale_dma_clean_range
397	b	xscale_dma_flush_range
398ENDPROC(xscale_80200_A0_A1_dma_map_area)
399
400/*
401 *	dma_unmap_area(start, size, dir)
402 *	- start	- kernel virtual start address
403 *	- size	- size of region
404 *	- dir	- DMA direction
405 */
406ENTRY(xscale_dma_unmap_area)
407	mov	pc, lr
408ENDPROC(xscale_dma_unmap_area)
409
 
 
 
410	@ define struct cpu_cache_fns (see <asm/cacheflush.h> and proc-macros.S)
411	define_cache_functions xscale
412
413/*
414 * On stepping A0/A1 of the 80200, invalidating D-cache by line doesn't
415 * clear the dirty bits, which means that if we invalidate a dirty line,
416 * the dirty data can still be written back to external memory later on.
417 *
418 * The recommended workaround is to always do a clean D-cache line before
419 * doing an invalidate D-cache line, so on the affected processors,
420 * dma_inv_range() is implemented as dma_flush_range().
421 *
422 * See erratum #25 of "Intel 80200 Processor Specification Update",
423 * revision January 22, 2003, available at:
424 *     http://www.intel.com/design/iio/specupdt/273415.htm
425 */
426.macro a0_alias basename
427	.globl xscale_80200_A0_A1_\basename
428	.type xscale_80200_A0_A1_\basename , %function
429	.equ xscale_80200_A0_A1_\basename , xscale_\basename
430.endm
431
432/*
433 * Most of the cache functions are unchanged for these processor revisions.
434 * Export suitable alias symbols for the unchanged functions:
435 */
436	a0_alias flush_icache_all
437	a0_alias flush_user_cache_all
438	a0_alias flush_kern_cache_all
 
439	a0_alias flush_user_cache_range
440	a0_alias coherent_kern_range
441	a0_alias coherent_user_range
442	a0_alias flush_kern_dcache_area
443	a0_alias dma_flush_range
444	a0_alias dma_unmap_area
445
446	@ define struct cpu_cache_fns (see <asm/cacheflush.h> and proc-macros.S)
447	define_cache_functions xscale_80200_A0_A1
448
449ENTRY(cpu_xscale_dcache_clean_area)
4501:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
451	add	r0, r0, #CACHELINESIZE
452	subs	r1, r1, #CACHELINESIZE
453	bhi	1b
454	mov	pc, lr
455
456/* =============================== PageTable ============================== */
457
458/*
459 * cpu_xscale_switch_mm(pgd)
460 *
461 * Set the translation base pointer to be as described by pgd.
462 *
463 * pgd: new page tables
464 */
465	.align	5
466ENTRY(cpu_xscale_switch_mm)
467	clean_d_cache r1, r2
468	mcr	p15, 0, ip, c7, c5, 0		@ Invalidate I cache & BTB
469	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
470	mcr	p15, 0, r0, c2, c0, 0		@ load page table pointer
471	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I & D TLBs
472	cpwait_ret lr, ip
473
474/*
475 * cpu_xscale_set_pte_ext(ptep, pte, ext)
476 *
477 * Set a PTE and flush it out
478 *
479 * Errata 40: must set memory to write-through for user read-only pages.
480 */
481cpu_xscale_mt_table:
482	.long	0x00						@ L_PTE_MT_UNCACHED
483	.long	PTE_BUFFERABLE					@ L_PTE_MT_BUFFERABLE
484	.long	PTE_CACHEABLE					@ L_PTE_MT_WRITETHROUGH
485	.long	PTE_CACHEABLE | PTE_BUFFERABLE			@ L_PTE_MT_WRITEBACK
486	.long	PTE_EXT_TEX(1) | PTE_BUFFERABLE			@ L_PTE_MT_DEV_SHARED
487	.long	0x00						@ unused
488	.long	PTE_EXT_TEX(1) | PTE_CACHEABLE			@ L_PTE_MT_MINICACHE
489	.long	PTE_EXT_TEX(1) | PTE_CACHEABLE | PTE_BUFFERABLE	@ L_PTE_MT_WRITEALLOC
490	.long	0x00						@ unused
491	.long	PTE_BUFFERABLE					@ L_PTE_MT_DEV_WC
492	.long	0x00						@ unused
493	.long	PTE_CACHEABLE | PTE_BUFFERABLE			@ L_PTE_MT_DEV_CACHED
494	.long	0x00						@ L_PTE_MT_DEV_NONSHARED
495	.long	0x00						@ unused
496	.long	0x00						@ unused
497	.long	0x00						@ unused
498
499	.align	5
500ENTRY(cpu_xscale_set_pte_ext)
501	xscale_set_pte_ext_prologue
502
503	@
504	@ Erratum 40: must set memory to write-through for user read-only pages
505	@
506	and	ip, r1, #(L_PTE_MT_MASK | L_PTE_USER | L_PTE_RDONLY) & ~(4 << 2)
507	teq	ip, #L_PTE_MT_WRITEBACK | L_PTE_USER | L_PTE_RDONLY
508
509	moveq	r1, #L_PTE_MT_WRITETHROUGH
510	and	r1, r1, #L_PTE_MT_MASK
511	adr	ip, cpu_xscale_mt_table
512	ldr	ip, [ip, r1]
513	bic	r2, r2, #0x0c
514	orr	r2, r2, ip
515
516	xscale_set_pte_ext_epilogue
517	mov	pc, lr
518
519	.ltorg
520	.align
521
522.globl	cpu_xscale_suspend_size
523.equ	cpu_xscale_suspend_size, 4 * 7
524#ifdef CONFIG_PM_SLEEP
525ENTRY(cpu_xscale_do_suspend)
526	stmfd	sp!, {r4 - r10, lr}
527	mrc	p14, 0, r4, c6, c0, 0	@ clock configuration, for turbo mode
528	mrc	p15, 0, r5, c15, c1, 0	@ CP access reg
529	mrc	p15, 0, r6, c13, c0, 0	@ PID
530	mrc	p15, 0, r7, c3, c0, 0	@ domain ID
531	mrc	p15, 0, r8, c2, c0, 0	@ translation table base addr
532	mrc	p15, 0, r9, c1, c1, 0	@ auxiliary control reg
533	mrc	p15, 0, r10, c1, c0, 0	@ control reg
534	bic	r4, r4, #2		@ clear frequency change bit
535	stmia	r0, {r4 - r10}		@ store cp regs
536	ldmfd	sp!, {r4 - r10, pc}
537ENDPROC(cpu_xscale_do_suspend)
538
539ENTRY(cpu_xscale_do_resume)
540	ldmia	r0, {r4 - r10}		@ load cp regs
541	mov	ip, #0
542	mcr	p15, 0, ip, c8, c7, 0	@ invalidate I & D TLBs
543	mcr	p15, 0, ip, c7, c7, 0	@ invalidate I & D caches, BTB
544	mcr	p14, 0, r4, c6, c0, 0	@ clock configuration, turbo mode.
545	mcr	p15, 0, r5, c15, c1, 0	@ CP access reg
546	mcr	p15, 0, r6, c13, c0, 0	@ PID
547	mcr	p15, 0, r7, c3, c0, 0	@ domain ID
548	mcr	p15, 0, r8, c2, c0, 0	@ translation table base addr
549	mcr	p15, 0, r9, c1, c1, 0	@ auxiliary control reg
550	mov	r0, r10			@ control register
551	mov	r2, r8, lsr #14		@ get TTB0 base
552	mov	r2, r2, lsl #14
553	ldr	r3, =PMD_TYPE_SECT | PMD_SECT_BUFFERABLE | \
554		     PMD_SECT_CACHEABLE | PMD_SECT_AP_WRITE
555	b	cpu_resume_mmu
556ENDPROC(cpu_xscale_do_resume)
557#endif
558
559	__CPUINIT
560
561	.type	__xscale_setup, #function
562__xscale_setup:
563	mcr	p15, 0, ip, c7, c7, 0		@ invalidate I, D caches & BTB
564	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
565	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I, D TLBs
566	mov	r0, #1 << 6			@ cp6 for IOP3xx and Bulverde
567	orr	r0, r0, #1 << 13		@ Its undefined whether this
568	mcr	p15, 0, r0, c15, c1, 0		@ affects USR or SVC modes
569
570	adr	r5, xscale_crval
571	ldmia	r5, {r5, r6}
572	mrc	p15, 0, r0, c1, c0, 0		@ get control register
573	bic	r0, r0, r5
574	orr	r0, r0, r6
575	mov	pc, lr
576	.size	__xscale_setup, . - __xscale_setup
577
578	/*
579	 *  R
580	 * .RVI ZFRS BLDP WCAM
581	 * ..11 1.01 .... .101
582	 * 
583	 */
584	.type	xscale_crval, #object
585xscale_crval:
586	crval	clear=0x00003b07, mmuset=0x00003905, ucset=0x00001900
587
588	__INITDATA
589
590	@ define struct processor (see <asm/proc-fns.h> and proc-macros.S)
591	define_processor_functions xscale, dabort=v5t_early_abort, pabort=legacy_pabort, suspend=1
592
593	.section ".rodata"
594
595	string	cpu_arch_name, "armv5te"
596	string	cpu_elf_name, "v5"
597
598	string	cpu_80200_A0_A1_name, "XScale-80200 A0/A1"
599	string	cpu_80200_name, "XScale-80200"
600	string	cpu_80219_name, "XScale-80219"
601	string	cpu_8032x_name, "XScale-IOP8032x Family"
602	string	cpu_8033x_name, "XScale-IOP8033x Family"
603	string	cpu_pxa250_name, "XScale-PXA250"
604	string	cpu_pxa210_name, "XScale-PXA210"
605	string	cpu_ixp42x_name, "XScale-IXP42x Family"
606	string	cpu_ixp43x_name, "XScale-IXP43x Family"
607	string	cpu_ixp46x_name, "XScale-IXP46x Family"
608	string	cpu_ixp2400_name, "XScale-IXP2400"
609	string	cpu_ixp2800_name, "XScale-IXP2800"
610	string	cpu_pxa255_name, "XScale-PXA255"
611	string	cpu_pxa270_name, "XScale-PXA270"
612
613	.align
614
615	.section ".proc.info.init", #alloc, #execinstr
616
617.macro xscale_proc_info name:req, cpu_val:req, cpu_mask:req, cpu_name:req, cache
618	.type	__\name\()_proc_info,#object
619__\name\()_proc_info:
620	.long	\cpu_val
621	.long	\cpu_mask
622	.long	PMD_TYPE_SECT | \
623		PMD_SECT_BUFFERABLE | \
624		PMD_SECT_CACHEABLE | \
625		PMD_SECT_AP_WRITE | \
626		PMD_SECT_AP_READ
627	.long	PMD_TYPE_SECT | \
628		PMD_SECT_AP_WRITE | \
629		PMD_SECT_AP_READ
630	b	__xscale_setup
631	.long	cpu_arch_name
632	.long	cpu_elf_name
633	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
634	.long	\cpu_name
635	.long	xscale_processor_functions
636	.long	v4wbi_tlb_fns
637	.long	xscale_mc_user_fns
638	.ifb \cache
639		.long	xscale_cache_fns
640	.else
641		.long	\cache
642	.endif
643	.size	__\name\()_proc_info, . - __\name\()_proc_info
644.endm
645
646	xscale_proc_info 80200_A0_A1, 0x69052000, 0xfffffffe, cpu_80200_name, \
647		cache=xscale_80200_A0_A1_cache_fns
648	xscale_proc_info 80200, 0x69052000, 0xfffffff0, cpu_80200_name
649	xscale_proc_info 80219, 0x69052e20, 0xffffffe0, cpu_80219_name
650	xscale_proc_info 8032x, 0x69052420, 0xfffff7e0, cpu_8032x_name
651	xscale_proc_info 8033x, 0x69054010, 0xfffffd30, cpu_8033x_name
652	xscale_proc_info pxa250, 0x69052100, 0xfffff7f0, cpu_pxa250_name
653	xscale_proc_info pxa210, 0x69052120, 0xfffff3f0, cpu_pxa210_name
654	xscale_proc_info ixp2400, 0x69054190, 0xfffffff0, cpu_ixp2400_name
655	xscale_proc_info ixp2800, 0x690541a0, 0xfffffff0, cpu_ixp2800_name
656	xscale_proc_info ixp42x, 0x690541c0, 0xffffffc0, cpu_ixp42x_name
657	xscale_proc_info ixp43x, 0x69054040, 0xfffffff0, cpu_ixp43x_name
658	xscale_proc_info ixp46x, 0x69054200, 0xffffff00, cpu_ixp46x_name
659	xscale_proc_info pxa255, 0x69052d00, 0xfffffff0, cpu_pxa255_name
660	xscale_proc_info pxa270, 0x69054110, 0xfffffff0, cpu_pxa270_name
v4.10.11
  1/*
  2 *  linux/arch/arm/mm/proc-xscale.S
  3 *
  4 *  Author:	Nicolas Pitre
  5 *  Created:	November 2000
  6 *  Copyright:	(C) 2000, 2001 MontaVista Software Inc.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * MMU functions for the Intel XScale CPUs
 13 *
 14 * 2001 Aug 21:
 15 *	some contributions by Brett Gaines <brett.w.gaines@intel.com>
 16 *	Copyright 2001 by Intel Corp.
 17 *
 18 * 2001 Sep 08:
 19 *	Completely revisited, many important fixes
 20 *	Nicolas Pitre <nico@fluxnic.net>
 21 */
 22
 23#include <linux/linkage.h>
 24#include <linux/init.h>
 25#include <asm/assembler.h>
 26#include <asm/hwcap.h>
 27#include <asm/pgtable.h>
 28#include <asm/pgtable-hwdef.h>
 29#include <asm/page.h>
 30#include <asm/ptrace.h>
 31#include "proc-macros.S"
 32
 33/*
 34 * This is the maximum size of an area which will be flushed.  If the area
 35 * is larger than this, then we flush the whole cache
 36 */
 37#define MAX_AREA_SIZE	32768
 38
 39/*
 40 * the cache line size of the I and D cache
 41 */
 42#define CACHELINESIZE	32
 43
 44/*
 45 * the size of the data cache
 46 */
 47#define CACHESIZE	32768
 48
 49/*
 50 * Virtual address used to allocate the cache when flushed
 51 *
 52 * This must be an address range which is _never_ used.  It should
 53 * apparently have a mapping in the corresponding page table for
 54 * compatibility with future CPUs that _could_ require it.  For instance we
 55 * don't care.
 56 *
 57 * This must be aligned on a 2*CACHESIZE boundary.  The code selects one of
 58 * the 2 areas in alternance each time the clean_d_cache macro is used.
 59 * Without this the XScale core exhibits cache eviction problems and no one
 60 * knows why.
 61 *
 62 * Reminder: the vector table is located at 0xffff0000-0xffff0fff.
 63 */
 64#define CLEAN_ADDR	0xfffe0000
 65
 66/*
 67 * This macro is used to wait for a CP15 write and is needed
 68 * when we have to ensure that the last operation to the co-pro
 69 * was completed before continuing with operation.
 70 */
 71	.macro	cpwait, rd
 72	mrc	p15, 0, \rd, c2, c0, 0		@ arbitrary read of cp15
 73	mov	\rd, \rd			@ wait for completion
 74	sub 	pc, pc, #4			@ flush instruction pipeline
 75	.endm
 76
 77	.macro	cpwait_ret, lr, rd
 78	mrc	p15, 0, \rd, c2, c0, 0		@ arbitrary read of cp15
 79	sub	pc, \lr, \rd, LSR #32		@ wait for completion and
 80						@ flush instruction pipeline
 81	.endm
 82
 83/*
 84 * This macro cleans the entire dcache using line allocate.
 85 * The main loop has been unrolled to reduce loop overhead.
 86 * rd and rs are two scratch registers.
 87 */
 88	.macro  clean_d_cache, rd, rs
 89	ldr	\rs, =clean_addr
 90	ldr	\rd, [\rs]
 91	eor	\rd, \rd, #CACHESIZE
 92	str	\rd, [\rs]
 93	add	\rs, \rd, #CACHESIZE
 941:	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
 95	add	\rd, \rd, #CACHELINESIZE
 96	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
 97	add	\rd, \rd, #CACHELINESIZE
 98	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
 99	add	\rd, \rd, #CACHELINESIZE
100	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
101	add	\rd, \rd, #CACHELINESIZE
102	teq	\rd, \rs
103	bne	1b
104	.endm
105
106	.data
107clean_addr:	.word	CLEAN_ADDR
108
109	.text
110
111/*
112 * cpu_xscale_proc_init()
113 *
114 * Nothing too exciting at the moment
115 */
116ENTRY(cpu_xscale_proc_init)
117	@ enable write buffer coalescing. Some bootloader disable it
118	mrc	p15, 0, r1, c1, c0, 1
119	bic	r1, r1, #1
120	mcr	p15, 0, r1, c1, c0, 1
121	ret	lr
122
123/*
124 * cpu_xscale_proc_fin()
125 */
126ENTRY(cpu_xscale_proc_fin)
127	mrc	p15, 0, r0, c1, c0, 0		@ ctrl register
128	bic	r0, r0, #0x1800			@ ...IZ...........
129	bic	r0, r0, #0x0006			@ .............CA.
130	mcr	p15, 0, r0, c1, c0, 0		@ disable caches
131	ret	lr
132
133/*
134 * cpu_xscale_reset(loc)
135 *
136 * Perform a soft reset of the system.  Put the CPU into the
137 * same state as it would be if it had been reset, and branch
138 * to what would be the reset vector.
139 *
140 * loc: location to jump to for soft reset
141 *
142 * Beware PXA270 erratum E7.
143 */
144	.align	5
145	.pushsection	.idmap.text, "ax"
146ENTRY(cpu_xscale_reset)
147	mov	r1, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
148	msr	cpsr_c, r1			@ reset CPSR
149	mcr	p15, 0, r1, c10, c4, 1		@ unlock I-TLB
150	mcr	p15, 0, r1, c8, c5, 0		@ invalidate I-TLB
151	mrc	p15, 0, r1, c1, c0, 0		@ ctrl register
152	bic	r1, r1, #0x0086			@ ........B....CA.
153	bic	r1, r1, #0x3900			@ ..VIZ..S........
154	sub	pc, pc, #4			@ flush pipeline
155	@ *** cache line aligned ***
156	mcr	p15, 0, r1, c1, c0, 0		@ ctrl register
157	bic	r1, r1, #0x0001			@ ...............M
158	mcr	p15, 0, ip, c7, c7, 0		@ invalidate I,D caches & BTB
159	mcr	p15, 0, r1, c1, c0, 0		@ ctrl register
160	@ CAUTION: MMU turned off from this point. We count on the pipeline
161	@ already containing those two last instructions to survive.
162	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I & D TLBs
163	ret	r0
164ENDPROC(cpu_xscale_reset)
165	.popsection
166
167/*
168 * cpu_xscale_do_idle()
169 *
170 * Cause the processor to idle
171 *
172 * For now we do nothing but go to idle mode for every case
173 *
174 * XScale supports clock switching, but using idle mode support
175 * allows external hardware to react to system state changes.
176 */
177	.align	5
178
179ENTRY(cpu_xscale_do_idle)
180	mov	r0, #1
181	mcr	p14, 0, r0, c7, c0, 0		@ Go to IDLE
182	ret	lr
183
184/* ================================= CACHE ================================ */
185
186/*
187 *	flush_icache_all()
188 *
189 *	Unconditionally clean and invalidate the entire icache.
190 */
191ENTRY(xscale_flush_icache_all)
192	mov	r0, #0
193	mcr	p15, 0, r0, c7, c5, 0		@ invalidate I cache
194	ret	lr
195ENDPROC(xscale_flush_icache_all)
196
197/*
198 *	flush_user_cache_all()
199 *
200 *	Invalidate all cache entries in a particular address
201 *	space.
202 */
203ENTRY(xscale_flush_user_cache_all)
204	/* FALLTHROUGH */
205
206/*
207 *	flush_kern_cache_all()
208 *
209 *	Clean and invalidate the entire cache.
210 */
211ENTRY(xscale_flush_kern_cache_all)
212	mov	r2, #VM_EXEC
213	mov	ip, #0
214__flush_whole_cache:
215	clean_d_cache r0, r1
216	tst	r2, #VM_EXEC
217	mcrne	p15, 0, ip, c7, c5, 0		@ Invalidate I cache & BTB
218	mcrne	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
219	ret	lr
220
221/*
222 *	flush_user_cache_range(start, end, vm_flags)
223 *
224 *	Invalidate a range of cache entries in the specified
225 *	address space.
226 *
227 *	- start - start address (may not be aligned)
228 *	- end	- end address (exclusive, may not be aligned)
229 *	- vma	- vma_area_struct describing address space
230 */
231	.align	5
232ENTRY(xscale_flush_user_cache_range)
233	mov	ip, #0
234	sub	r3, r1, r0			@ calculate total size
235	cmp	r3, #MAX_AREA_SIZE
236	bhs	__flush_whole_cache
237
2381:	tst	r2, #VM_EXEC
239	mcrne	p15, 0, r0, c7, c5, 1		@ Invalidate I cache line
240	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
241	mcr	p15, 0, r0, c7, c6, 1		@ Invalidate D cache line
242	add	r0, r0, #CACHELINESIZE
243	cmp	r0, r1
244	blo	1b
245	tst	r2, #VM_EXEC
246	mcrne	p15, 0, ip, c7, c5, 6		@ Invalidate BTB
247	mcrne	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
248	ret	lr
249
250/*
251 *	coherent_kern_range(start, end)
252 *
253 *	Ensure coherency between the Icache and the Dcache in the
254 *	region described by start.  If you have non-snooping
255 *	Harvard caches, you need to implement this function.
256 *
257 *	- start  - virtual start address
258 *	- end	 - virtual end address
259 *
260 *	Note: single I-cache line invalidation isn't used here since
261 *	it also trashes the mini I-cache used by JTAG debuggers.
262 */
263ENTRY(xscale_coherent_kern_range)
264	bic	r0, r0, #CACHELINESIZE - 1
2651:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
266	add	r0, r0, #CACHELINESIZE
267	cmp	r0, r1
268	blo	1b
269	mov	r0, #0
270	mcr	p15, 0, r0, c7, c5, 0		@ Invalidate I cache & BTB
271	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
272	ret	lr
273
274/*
275 *	coherent_user_range(start, end)
276 *
277 *	Ensure coherency between the Icache and the Dcache in the
278 *	region described by start.  If you have non-snooping
279 *	Harvard caches, you need to implement this function.
280 *
281 *	- start  - virtual start address
282 *	- end	 - virtual end address
283 */
284ENTRY(xscale_coherent_user_range)
285	bic	r0, r0, #CACHELINESIZE - 1
2861:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
287	mcr	p15, 0, r0, c7, c5, 1		@ Invalidate I cache entry
288	add	r0, r0, #CACHELINESIZE
289	cmp	r0, r1
290	blo	1b
291	mov	r0, #0
292	mcr	p15, 0, r0, c7, c5, 6		@ Invalidate BTB
293	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
294	ret	lr
295
296/*
297 *	flush_kern_dcache_area(void *addr, size_t size)
298 *
299 *	Ensure no D cache aliasing occurs, either with itself or
300 *	the I cache
301 *
302 *	- addr	- kernel address
303 *	- size	- region size
304 */
305ENTRY(xscale_flush_kern_dcache_area)
306	add	r1, r0, r1
3071:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
308	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
309	add	r0, r0, #CACHELINESIZE
310	cmp	r0, r1
311	blo	1b
312	mov	r0, #0
313	mcr	p15, 0, r0, c7, c5, 0		@ Invalidate I cache & BTB
314	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
315	ret	lr
316
317/*
318 *	dma_inv_range(start, end)
319 *
320 *	Invalidate (discard) the specified virtual address range.
321 *	May not write back any entries.  If 'start' or 'end'
322 *	are not cache line aligned, those lines must be written
323 *	back.
324 *
325 *	- start  - virtual start address
326 *	- end	 - virtual end address
327 */
328xscale_dma_inv_range:
329	tst	r0, #CACHELINESIZE - 1
330	bic	r0, r0, #CACHELINESIZE - 1
331	mcrne	p15, 0, r0, c7, c10, 1		@ clean D entry
332	tst	r1, #CACHELINESIZE - 1
333	mcrne	p15, 0, r1, c7, c10, 1		@ clean D entry
3341:	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
335	add	r0, r0, #CACHELINESIZE
336	cmp	r0, r1
337	blo	1b
338	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
339	ret	lr
340
341/*
342 *	dma_clean_range(start, end)
343 *
344 *	Clean the specified virtual address range.
345 *
346 *	- start  - virtual start address
347 *	- end	 - virtual end address
348 */
349xscale_dma_clean_range:
350	bic	r0, r0, #CACHELINESIZE - 1
3511:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
352	add	r0, r0, #CACHELINESIZE
353	cmp	r0, r1
354	blo	1b
355	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
356	ret	lr
357
358/*
359 *	dma_flush_range(start, end)
360 *
361 *	Clean and invalidate the specified virtual address range.
362 *
363 *	- start  - virtual start address
364 *	- end	 - virtual end address
365 */
366ENTRY(xscale_dma_flush_range)
367	bic	r0, r0, #CACHELINESIZE - 1
3681:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
369	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
370	add	r0, r0, #CACHELINESIZE
371	cmp	r0, r1
372	blo	1b
373	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
374	ret	lr
375
376/*
377 *	dma_map_area(start, size, dir)
378 *	- start	- kernel virtual start address
379 *	- size	- size of region
380 *	- dir	- DMA direction
381 */
382ENTRY(xscale_dma_map_area)
383	add	r1, r1, r0
384	cmp	r2, #DMA_TO_DEVICE
385	beq	xscale_dma_clean_range
386	bcs	xscale_dma_inv_range
387	b	xscale_dma_flush_range
388ENDPROC(xscale_dma_map_area)
389
390/*
391 *	dma_map_area(start, size, dir)
392 *	- start	- kernel virtual start address
393 *	- size	- size of region
394 *	- dir	- DMA direction
395 */
396ENTRY(xscale_80200_A0_A1_dma_map_area)
397	add	r1, r1, r0
398	teq	r2, #DMA_TO_DEVICE
399	beq	xscale_dma_clean_range
400	b	xscale_dma_flush_range
401ENDPROC(xscale_80200_A0_A1_dma_map_area)
402
403/*
404 *	dma_unmap_area(start, size, dir)
405 *	- start	- kernel virtual start address
406 *	- size	- size of region
407 *	- dir	- DMA direction
408 */
409ENTRY(xscale_dma_unmap_area)
410	ret	lr
411ENDPROC(xscale_dma_unmap_area)
412
413	.globl	xscale_flush_kern_cache_louis
414	.equ	xscale_flush_kern_cache_louis, xscale_flush_kern_cache_all
415
416	@ define struct cpu_cache_fns (see <asm/cacheflush.h> and proc-macros.S)
417	define_cache_functions xscale
418
419/*
420 * On stepping A0/A1 of the 80200, invalidating D-cache by line doesn't
421 * clear the dirty bits, which means that if we invalidate a dirty line,
422 * the dirty data can still be written back to external memory later on.
423 *
424 * The recommended workaround is to always do a clean D-cache line before
425 * doing an invalidate D-cache line, so on the affected processors,
426 * dma_inv_range() is implemented as dma_flush_range().
427 *
428 * See erratum #25 of "Intel 80200 Processor Specification Update",
429 * revision January 22, 2003, available at:
430 *     http://www.intel.com/design/iio/specupdt/273415.htm
431 */
432.macro a0_alias basename
433	.globl xscale_80200_A0_A1_\basename
434	.type xscale_80200_A0_A1_\basename , %function
435	.equ xscale_80200_A0_A1_\basename , xscale_\basename
436.endm
437
438/*
439 * Most of the cache functions are unchanged for these processor revisions.
440 * Export suitable alias symbols for the unchanged functions:
441 */
442	a0_alias flush_icache_all
443	a0_alias flush_user_cache_all
444	a0_alias flush_kern_cache_all
445	a0_alias flush_kern_cache_louis
446	a0_alias flush_user_cache_range
447	a0_alias coherent_kern_range
448	a0_alias coherent_user_range
449	a0_alias flush_kern_dcache_area
450	a0_alias dma_flush_range
451	a0_alias dma_unmap_area
452
453	@ define struct cpu_cache_fns (see <asm/cacheflush.h> and proc-macros.S)
454	define_cache_functions xscale_80200_A0_A1
455
456ENTRY(cpu_xscale_dcache_clean_area)
4571:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
458	add	r0, r0, #CACHELINESIZE
459	subs	r1, r1, #CACHELINESIZE
460	bhi	1b
461	ret	lr
462
463/* =============================== PageTable ============================== */
464
465/*
466 * cpu_xscale_switch_mm(pgd)
467 *
468 * Set the translation base pointer to be as described by pgd.
469 *
470 * pgd: new page tables
471 */
472	.align	5
473ENTRY(cpu_xscale_switch_mm)
474	clean_d_cache r1, r2
475	mcr	p15, 0, ip, c7, c5, 0		@ Invalidate I cache & BTB
476	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
477	mcr	p15, 0, r0, c2, c0, 0		@ load page table pointer
478	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I & D TLBs
479	cpwait_ret lr, ip
480
481/*
482 * cpu_xscale_set_pte_ext(ptep, pte, ext)
483 *
484 * Set a PTE and flush it out
485 *
486 * Errata 40: must set memory to write-through for user read-only pages.
487 */
488cpu_xscale_mt_table:
489	.long	0x00						@ L_PTE_MT_UNCACHED
490	.long	PTE_BUFFERABLE					@ L_PTE_MT_BUFFERABLE
491	.long	PTE_CACHEABLE					@ L_PTE_MT_WRITETHROUGH
492	.long	PTE_CACHEABLE | PTE_BUFFERABLE			@ L_PTE_MT_WRITEBACK
493	.long	PTE_EXT_TEX(1) | PTE_BUFFERABLE			@ L_PTE_MT_DEV_SHARED
494	.long	0x00						@ unused
495	.long	PTE_EXT_TEX(1) | PTE_CACHEABLE			@ L_PTE_MT_MINICACHE
496	.long	PTE_EXT_TEX(1) | PTE_CACHEABLE | PTE_BUFFERABLE	@ L_PTE_MT_WRITEALLOC
497	.long	0x00						@ unused
498	.long	PTE_BUFFERABLE					@ L_PTE_MT_DEV_WC
499	.long	0x00						@ unused
500	.long	PTE_CACHEABLE | PTE_BUFFERABLE			@ L_PTE_MT_DEV_CACHED
501	.long	0x00						@ L_PTE_MT_DEV_NONSHARED
502	.long	0x00						@ unused
503	.long	0x00						@ unused
504	.long	0x00						@ unused
505
506	.align	5
507ENTRY(cpu_xscale_set_pte_ext)
508	xscale_set_pte_ext_prologue
509
510	@
511	@ Erratum 40: must set memory to write-through for user read-only pages
512	@
513	and	ip, r1, #(L_PTE_MT_MASK | L_PTE_USER | L_PTE_RDONLY) & ~(4 << 2)
514	teq	ip, #L_PTE_MT_WRITEBACK | L_PTE_USER | L_PTE_RDONLY
515
516	moveq	r1, #L_PTE_MT_WRITETHROUGH
517	and	r1, r1, #L_PTE_MT_MASK
518	adr	ip, cpu_xscale_mt_table
519	ldr	ip, [ip, r1]
520	bic	r2, r2, #0x0c
521	orr	r2, r2, ip
522
523	xscale_set_pte_ext_epilogue
524	ret	lr
525
526	.ltorg
527	.align
528
529.globl	cpu_xscale_suspend_size
530.equ	cpu_xscale_suspend_size, 4 * 6
531#ifdef CONFIG_ARM_CPU_SUSPEND
532ENTRY(cpu_xscale_do_suspend)
533	stmfd	sp!, {r4 - r9, lr}
534	mrc	p14, 0, r4, c6, c0, 0	@ clock configuration, for turbo mode
535	mrc	p15, 0, r5, c15, c1, 0	@ CP access reg
536	mrc	p15, 0, r6, c13, c0, 0	@ PID
537	mrc	p15, 0, r7, c3, c0, 0	@ domain ID
538	mrc	p15, 0, r8, c1, c0, 1	@ auxiliary control reg
539	mrc	p15, 0, r9, c1, c0, 0	@ control reg
 
540	bic	r4, r4, #2		@ clear frequency change bit
541	stmia	r0, {r4 - r9}		@ store cp regs
542	ldmfd	sp!, {r4 - r9, pc}
543ENDPROC(cpu_xscale_do_suspend)
544
545ENTRY(cpu_xscale_do_resume)
546	ldmia	r0, {r4 - r9}		@ load cp regs
547	mov	ip, #0
548	mcr	p15, 0, ip, c8, c7, 0	@ invalidate I & D TLBs
549	mcr	p15, 0, ip, c7, c7, 0	@ invalidate I & D caches, BTB
550	mcr	p14, 0, r4, c6, c0, 0	@ clock configuration, turbo mode.
551	mcr	p15, 0, r5, c15, c1, 0	@ CP access reg
552	mcr	p15, 0, r6, c13, c0, 0	@ PID
553	mcr	p15, 0, r7, c3, c0, 0	@ domain ID
554	mcr	p15, 0, r1, c2, c0, 0	@ translation table base addr
555	mcr	p15, 0, r8, c1, c0, 1	@ auxiliary control reg
556	mov	r0, r9			@ control register
 
 
 
 
557	b	cpu_resume_mmu
558ENDPROC(cpu_xscale_do_resume)
559#endif
560
 
 
561	.type	__xscale_setup, #function
562__xscale_setup:
563	mcr	p15, 0, ip, c7, c7, 0		@ invalidate I, D caches & BTB
564	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
565	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I, D TLBs
566	mov	r0, #1 << 6			@ cp6 for IOP3xx and Bulverde
567	orr	r0, r0, #1 << 13		@ Its undefined whether this
568	mcr	p15, 0, r0, c15, c1, 0		@ affects USR or SVC modes
569
570	adr	r5, xscale_crval
571	ldmia	r5, {r5, r6}
572	mrc	p15, 0, r0, c1, c0, 0		@ get control register
573	bic	r0, r0, r5
574	orr	r0, r0, r6
575	ret	lr
576	.size	__xscale_setup, . - __xscale_setup
577
578	/*
579	 *  R
580	 * .RVI ZFRS BLDP WCAM
581	 * ..11 1.01 .... .101
582	 * 
583	 */
584	.type	xscale_crval, #object
585xscale_crval:
586	crval	clear=0x00003b07, mmuset=0x00003905, ucset=0x00001900
587
588	__INITDATA
589
590	@ define struct processor (see <asm/proc-fns.h> and proc-macros.S)
591	define_processor_functions xscale, dabort=v5t_early_abort, pabort=legacy_pabort, suspend=1
592
593	.section ".rodata"
594
595	string	cpu_arch_name, "armv5te"
596	string	cpu_elf_name, "v5"
597
598	string	cpu_80200_A0_A1_name, "XScale-80200 A0/A1"
599	string	cpu_80200_name, "XScale-80200"
600	string	cpu_80219_name, "XScale-80219"
601	string	cpu_8032x_name, "XScale-IOP8032x Family"
602	string	cpu_8033x_name, "XScale-IOP8033x Family"
603	string	cpu_pxa250_name, "XScale-PXA250"
604	string	cpu_pxa210_name, "XScale-PXA210"
605	string	cpu_ixp42x_name, "XScale-IXP42x Family"
606	string	cpu_ixp43x_name, "XScale-IXP43x Family"
607	string	cpu_ixp46x_name, "XScale-IXP46x Family"
608	string	cpu_ixp2400_name, "XScale-IXP2400"
609	string	cpu_ixp2800_name, "XScale-IXP2800"
610	string	cpu_pxa255_name, "XScale-PXA255"
611	string	cpu_pxa270_name, "XScale-PXA270"
612
613	.align
614
615	.section ".proc.info.init", #alloc
616
617.macro xscale_proc_info name:req, cpu_val:req, cpu_mask:req, cpu_name:req, cache
618	.type	__\name\()_proc_info,#object
619__\name\()_proc_info:
620	.long	\cpu_val
621	.long	\cpu_mask
622	.long	PMD_TYPE_SECT | \
623		PMD_SECT_BUFFERABLE | \
624		PMD_SECT_CACHEABLE | \
625		PMD_SECT_AP_WRITE | \
626		PMD_SECT_AP_READ
627	.long	PMD_TYPE_SECT | \
628		PMD_SECT_AP_WRITE | \
629		PMD_SECT_AP_READ
630	initfn	__xscale_setup, __\name\()_proc_info
631	.long	cpu_arch_name
632	.long	cpu_elf_name
633	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
634	.long	\cpu_name
635	.long	xscale_processor_functions
636	.long	v4wbi_tlb_fns
637	.long	xscale_mc_user_fns
638	.ifb \cache
639		.long	xscale_cache_fns
640	.else
641		.long	\cache
642	.endif
643	.size	__\name\()_proc_info, . - __\name\()_proc_info
644.endm
645
646	xscale_proc_info 80200_A0_A1, 0x69052000, 0xfffffffe, cpu_80200_name, \
647		cache=xscale_80200_A0_A1_cache_fns
648	xscale_proc_info 80200, 0x69052000, 0xfffffff0, cpu_80200_name
649	xscale_proc_info 80219, 0x69052e20, 0xffffffe0, cpu_80219_name
650	xscale_proc_info 8032x, 0x69052420, 0xfffff7e0, cpu_8032x_name
651	xscale_proc_info 8033x, 0x69054010, 0xfffffd30, cpu_8033x_name
652	xscale_proc_info pxa250, 0x69052100, 0xfffff7f0, cpu_pxa250_name
653	xscale_proc_info pxa210, 0x69052120, 0xfffff3f0, cpu_pxa210_name
654	xscale_proc_info ixp2400, 0x69054190, 0xfffffff0, cpu_ixp2400_name
655	xscale_proc_info ixp2800, 0x690541a0, 0xfffffff0, cpu_ixp2800_name
656	xscale_proc_info ixp42x, 0x690541c0, 0xffffffc0, cpu_ixp42x_name
657	xscale_proc_info ixp43x, 0x69054040, 0xfffffff0, cpu_ixp43x_name
658	xscale_proc_info ixp46x, 0x69054200, 0xffffff00, cpu_ixp46x_name
659	xscale_proc_info pxa255, 0x69052d00, 0xfffffff0, cpu_pxa255_name
660	xscale_proc_info pxa270, 0x69054110, 0xfffffff0, cpu_pxa270_name