Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/cpu_pm.h>
  20#include <linux/errno.h>
  21#include <linux/err.h>
  22#include <linux/kvm_host.h>
  23#include <linux/list.h>
  24#include <linux/module.h>
  25#include <linux/vmalloc.h>
  26#include <linux/fs.h>
  27#include <linux/mman.h>
  28#include <linux/sched.h>
  29#include <linux/kvm.h>
  30#include <trace/events/kvm.h>
  31#include <kvm/arm_pmu.h>
  32
  33#define CREATE_TRACE_POINTS
  34#include "trace.h"
  35
  36#include <linux/uaccess.h>
  37#include <asm/ptrace.h>
  38#include <asm/mman.h>
  39#include <asm/tlbflush.h>
  40#include <asm/cacheflush.h>
  41#include <asm/virt.h>
  42#include <asm/kvm_arm.h>
  43#include <asm/kvm_asm.h>
  44#include <asm/kvm_mmu.h>
  45#include <asm/kvm_emulate.h>
  46#include <asm/kvm_coproc.h>
  47#include <asm/kvm_psci.h>
  48#include <asm/sections.h>
  49
  50#ifdef REQUIRES_VIRT
  51__asm__(".arch_extension	virt");
  52#endif
  53
  54static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  55static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
  56static unsigned long hyp_default_vectors;
  57
  58/* Per-CPU variable containing the currently running vcpu. */
  59static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  60
  61/* The VMID used in the VTTBR */
  62static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  63static u32 kvm_next_vmid;
  64static unsigned int kvm_vmid_bits __read_mostly;
  65static DEFINE_SPINLOCK(kvm_vmid_lock);
  66
  67static bool vgic_present;
  68
  69static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
  70
  71static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  72{
  73	BUG_ON(preemptible());
  74	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
  75}
  76
  77/**
  78 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  79 * Must be called from non-preemptible context
  80 */
  81struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  82{
  83	BUG_ON(preemptible());
  84	return __this_cpu_read(kvm_arm_running_vcpu);
  85}
  86
  87/**
  88 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  89 */
  90struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
  91{
  92	return &kvm_arm_running_vcpu;
  93}
  94
  95int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  96{
  97	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  98}
  99
 100int kvm_arch_hardware_setup(void)
 101{
 102	return 0;
 103}
 104
 105void kvm_arch_check_processor_compat(void *rtn)
 106{
 107	*(int *)rtn = 0;
 108}
 109
 110
 111/**
 112 * kvm_arch_init_vm - initializes a VM data structure
 113 * @kvm:	pointer to the KVM struct
 114 */
 115int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 116{
 117	int ret, cpu;
 118
 119	if (type)
 120		return -EINVAL;
 121
 122	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
 123	if (!kvm->arch.last_vcpu_ran)
 124		return -ENOMEM;
 125
 126	for_each_possible_cpu(cpu)
 127		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
 128
 129	ret = kvm_alloc_stage2_pgd(kvm);
 130	if (ret)
 131		goto out_fail_alloc;
 132
 133	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
 134	if (ret)
 135		goto out_free_stage2_pgd;
 136
 137	kvm_vgic_early_init(kvm);
 138	kvm_timer_init(kvm);
 139
 140	/* Mark the initial VMID generation invalid */
 141	kvm->arch.vmid_gen = 0;
 142
 143	/* The maximum number of VCPUs is limited by the host's GIC model */
 144	kvm->arch.max_vcpus = vgic_present ?
 145				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
 146
 147	return ret;
 148out_free_stage2_pgd:
 149	kvm_free_stage2_pgd(kvm);
 150out_fail_alloc:
 151	free_percpu(kvm->arch.last_vcpu_ran);
 152	kvm->arch.last_vcpu_ran = NULL;
 153	return ret;
 154}
 155
 156bool kvm_arch_has_vcpu_debugfs(void)
 157{
 158	return false;
 159}
 160
 161int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
 162{
 163	return 0;
 164}
 165
 166int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 167{
 168	return VM_FAULT_SIGBUS;
 169}
 170
 171
 172/**
 173 * kvm_arch_destroy_vm - destroy the VM data structure
 174 * @kvm:	pointer to the KVM struct
 175 */
 176void kvm_arch_destroy_vm(struct kvm *kvm)
 177{
 178	int i;
 179
 180	free_percpu(kvm->arch.last_vcpu_ran);
 181	kvm->arch.last_vcpu_ran = NULL;
 182
 183	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 184		if (kvm->vcpus[i]) {
 185			kvm_arch_vcpu_free(kvm->vcpus[i]);
 186			kvm->vcpus[i] = NULL;
 187		}
 188	}
 189
 190	kvm_vgic_destroy(kvm);
 191}
 192
 193int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 194{
 195	int r;
 196	switch (ext) {
 197	case KVM_CAP_IRQCHIP:
 198		r = vgic_present;
 199		break;
 200	case KVM_CAP_IOEVENTFD:
 201	case KVM_CAP_DEVICE_CTRL:
 202	case KVM_CAP_USER_MEMORY:
 203	case KVM_CAP_SYNC_MMU:
 204	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 205	case KVM_CAP_ONE_REG:
 206	case KVM_CAP_ARM_PSCI:
 207	case KVM_CAP_ARM_PSCI_0_2:
 208	case KVM_CAP_READONLY_MEM:
 209	case KVM_CAP_MP_STATE:
 210		r = 1;
 211		break;
 212	case KVM_CAP_COALESCED_MMIO:
 213		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 214		break;
 215	case KVM_CAP_ARM_SET_DEVICE_ADDR:
 216		r = 1;
 217		break;
 218	case KVM_CAP_NR_VCPUS:
 219		r = num_online_cpus();
 220		break;
 221	case KVM_CAP_MAX_VCPUS:
 222		r = KVM_MAX_VCPUS;
 223		break;
 224	case KVM_CAP_MSI_DEVID:
 225		if (!kvm)
 226			r = -EINVAL;
 227		else
 228			r = kvm->arch.vgic.msis_require_devid;
 229		break;
 230	default:
 231		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
 232		break;
 233	}
 234	return r;
 235}
 236
 237long kvm_arch_dev_ioctl(struct file *filp,
 238			unsigned int ioctl, unsigned long arg)
 239{
 240	return -EINVAL;
 241}
 242
 243
 244struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 245{
 246	int err;
 247	struct kvm_vcpu *vcpu;
 248
 249	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
 250		err = -EBUSY;
 251		goto out;
 252	}
 253
 254	if (id >= kvm->arch.max_vcpus) {
 255		err = -EINVAL;
 256		goto out;
 257	}
 258
 259	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 260	if (!vcpu) {
 261		err = -ENOMEM;
 262		goto out;
 263	}
 264
 265	err = kvm_vcpu_init(vcpu, kvm, id);
 266	if (err)
 267		goto free_vcpu;
 268
 269	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
 270	if (err)
 271		goto vcpu_uninit;
 272
 273	return vcpu;
 274vcpu_uninit:
 275	kvm_vcpu_uninit(vcpu);
 276free_vcpu:
 277	kmem_cache_free(kvm_vcpu_cache, vcpu);
 278out:
 279	return ERR_PTR(err);
 280}
 281
 282void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 283{
 284	kvm_vgic_vcpu_early_init(vcpu);
 285}
 286
 287void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 288{
 289	kvm_mmu_free_memory_caches(vcpu);
 290	kvm_timer_vcpu_terminate(vcpu);
 291	kvm_vgic_vcpu_destroy(vcpu);
 292	kvm_pmu_vcpu_destroy(vcpu);
 293	kvm_vcpu_uninit(vcpu);
 294	kmem_cache_free(kvm_vcpu_cache, vcpu);
 295}
 296
 297void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 298{
 299	kvm_arch_vcpu_free(vcpu);
 300}
 301
 302int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 303{
 304	return kvm_timer_should_fire(vcpu);
 305}
 306
 307void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
 308{
 309	kvm_timer_schedule(vcpu);
 310}
 311
 312void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
 313{
 314	kvm_timer_unschedule(vcpu);
 315}
 316
 317int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 318{
 319	/* Force users to call KVM_ARM_VCPU_INIT */
 320	vcpu->arch.target = -1;
 321	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
 322
 323	/* Set up the timer */
 324	kvm_timer_vcpu_init(vcpu);
 325
 326	kvm_arm_reset_debug_ptr(vcpu);
 327
 328	return 0;
 329}
 330
 331void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 332{
 333	int *last_ran;
 334
 335	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
 336
 337	/*
 338	 * We might get preempted before the vCPU actually runs, but
 339	 * over-invalidation doesn't affect correctness.
 340	 */
 341	if (*last_ran != vcpu->vcpu_id) {
 342		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
 343		*last_ran = vcpu->vcpu_id;
 344	}
 345
 346	vcpu->cpu = cpu;
 347	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
 348
 349	kvm_arm_set_running_vcpu(vcpu);
 350}
 351
 352void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 353{
 354	/*
 355	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
 356	 * if the vcpu is no longer assigned to a cpu.  This is used for the
 357	 * optimized make_all_cpus_request path.
 358	 */
 359	vcpu->cpu = -1;
 360
 361	kvm_arm_set_running_vcpu(NULL);
 362	kvm_timer_vcpu_put(vcpu);
 363}
 364
 365int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 366				    struct kvm_mp_state *mp_state)
 367{
 368	if (vcpu->arch.power_off)
 369		mp_state->mp_state = KVM_MP_STATE_STOPPED;
 370	else
 371		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 372
 373	return 0;
 374}
 375
 376int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 377				    struct kvm_mp_state *mp_state)
 378{
 379	switch (mp_state->mp_state) {
 380	case KVM_MP_STATE_RUNNABLE:
 381		vcpu->arch.power_off = false;
 382		break;
 383	case KVM_MP_STATE_STOPPED:
 384		vcpu->arch.power_off = true;
 385		break;
 386	default:
 387		return -EINVAL;
 388	}
 389
 390	return 0;
 391}
 392
 393/**
 394 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 395 * @v:		The VCPU pointer
 396 *
 397 * If the guest CPU is not waiting for interrupts or an interrupt line is
 398 * asserted, the CPU is by definition runnable.
 399 */
 400int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 401{
 402	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
 403		&& !v->arch.power_off && !v->arch.pause);
 404}
 405
 406/* Just ensure a guest exit from a particular CPU */
 407static void exit_vm_noop(void *info)
 408{
 409}
 410
 411void force_vm_exit(const cpumask_t *mask)
 412{
 413	preempt_disable();
 414	smp_call_function_many(mask, exit_vm_noop, NULL, true);
 415	preempt_enable();
 416}
 417
 418/**
 419 * need_new_vmid_gen - check that the VMID is still valid
 420 * @kvm: The VM's VMID to check
 421 *
 422 * return true if there is a new generation of VMIDs being used
 423 *
 424 * The hardware supports only 256 values with the value zero reserved for the
 425 * host, so we check if an assigned value belongs to a previous generation,
 426 * which which requires us to assign a new value. If we're the first to use a
 427 * VMID for the new generation, we must flush necessary caches and TLBs on all
 428 * CPUs.
 429 */
 430static bool need_new_vmid_gen(struct kvm *kvm)
 431{
 432	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
 433}
 434
 435/**
 436 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 437 * @kvm	The guest that we are about to run
 438 *
 439 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 440 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 441 * caches and TLBs.
 442 */
 443static void update_vttbr(struct kvm *kvm)
 444{
 445	phys_addr_t pgd_phys;
 446	u64 vmid;
 447
 448	if (!need_new_vmid_gen(kvm))
 449		return;
 450
 451	spin_lock(&kvm_vmid_lock);
 452
 453	/*
 454	 * We need to re-check the vmid_gen here to ensure that if another vcpu
 455	 * already allocated a valid vmid for this vm, then this vcpu should
 456	 * use the same vmid.
 457	 */
 458	if (!need_new_vmid_gen(kvm)) {
 459		spin_unlock(&kvm_vmid_lock);
 460		return;
 461	}
 462
 463	/* First user of a new VMID generation? */
 464	if (unlikely(kvm_next_vmid == 0)) {
 465		atomic64_inc(&kvm_vmid_gen);
 466		kvm_next_vmid = 1;
 467
 468		/*
 469		 * On SMP we know no other CPUs can use this CPU's or each
 470		 * other's VMID after force_vm_exit returns since the
 471		 * kvm_vmid_lock blocks them from reentry to the guest.
 472		 */
 473		force_vm_exit(cpu_all_mask);
 474		/*
 475		 * Now broadcast TLB + ICACHE invalidation over the inner
 476		 * shareable domain to make sure all data structures are
 477		 * clean.
 478		 */
 479		kvm_call_hyp(__kvm_flush_vm_context);
 480	}
 481
 482	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
 483	kvm->arch.vmid = kvm_next_vmid;
 484	kvm_next_vmid++;
 485	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
 486
 487	/* update vttbr to be used with the new vmid */
 488	pgd_phys = virt_to_phys(kvm->arch.pgd);
 489	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
 490	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
 491	kvm->arch.vttbr = pgd_phys | vmid;
 492
 493	spin_unlock(&kvm_vmid_lock);
 494}
 495
 496static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 497{
 498	struct kvm *kvm = vcpu->kvm;
 499	int ret = 0;
 500
 501	if (likely(vcpu->arch.has_run_once))
 502		return 0;
 503
 504	vcpu->arch.has_run_once = true;
 505
 506	/*
 507	 * Map the VGIC hardware resources before running a vcpu the first
 508	 * time on this VM.
 509	 */
 510	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
 511		ret = kvm_vgic_map_resources(kvm);
 512		if (ret)
 513			return ret;
 514	}
 515
 516	/*
 517	 * Enable the arch timers only if we have an in-kernel VGIC
 518	 * and it has been properly initialized, since we cannot handle
 519	 * interrupts from the virtual timer with a userspace gic.
 520	 */
 521	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
 522		ret = kvm_timer_enable(vcpu);
 523
 524	return ret;
 525}
 526
 527bool kvm_arch_intc_initialized(struct kvm *kvm)
 528{
 529	return vgic_initialized(kvm);
 530}
 531
 532void kvm_arm_halt_guest(struct kvm *kvm)
 533{
 534	int i;
 535	struct kvm_vcpu *vcpu;
 536
 537	kvm_for_each_vcpu(i, vcpu, kvm)
 538		vcpu->arch.pause = true;
 539	kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
 540}
 541
 542void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
 543{
 544	vcpu->arch.pause = true;
 545	kvm_vcpu_kick(vcpu);
 546}
 547
 548void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
 549{
 550	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
 551
 552	vcpu->arch.pause = false;
 553	swake_up(wq);
 554}
 555
 556void kvm_arm_resume_guest(struct kvm *kvm)
 557{
 558	int i;
 559	struct kvm_vcpu *vcpu;
 560
 561	kvm_for_each_vcpu(i, vcpu, kvm)
 562		kvm_arm_resume_vcpu(vcpu);
 563}
 564
 565static void vcpu_sleep(struct kvm_vcpu *vcpu)
 566{
 567	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
 568
 569	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
 570				       (!vcpu->arch.pause)));
 571}
 572
 573static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 574{
 575	return vcpu->arch.target >= 0;
 576}
 577
 578/**
 579 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 580 * @vcpu:	The VCPU pointer
 581 * @run:	The kvm_run structure pointer used for userspace state exchange
 582 *
 583 * This function is called through the VCPU_RUN ioctl called from user space. It
 584 * will execute VM code in a loop until the time slice for the process is used
 585 * or some emulation is needed from user space in which case the function will
 586 * return with return value 0 and with the kvm_run structure filled in with the
 587 * required data for the requested emulation.
 588 */
 589int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 590{
 591	int ret;
 592	sigset_t sigsaved;
 593
 594	if (unlikely(!kvm_vcpu_initialized(vcpu)))
 595		return -ENOEXEC;
 596
 597	ret = kvm_vcpu_first_run_init(vcpu);
 598	if (ret)
 599		return ret;
 600
 601	if (run->exit_reason == KVM_EXIT_MMIO) {
 602		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
 603		if (ret)
 604			return ret;
 605	}
 606
 607	if (vcpu->sigset_active)
 608		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 609
 610	ret = 1;
 611	run->exit_reason = KVM_EXIT_UNKNOWN;
 612	while (ret > 0) {
 613		/*
 614		 * Check conditions before entering the guest
 615		 */
 616		cond_resched();
 617
 618		update_vttbr(vcpu->kvm);
 619
 620		if (vcpu->arch.power_off || vcpu->arch.pause)
 621			vcpu_sleep(vcpu);
 622
 623		/*
 624		 * Preparing the interrupts to be injected also
 625		 * involves poking the GIC, which must be done in a
 626		 * non-preemptible context.
 627		 */
 628		preempt_disable();
 629		kvm_pmu_flush_hwstate(vcpu);
 630		kvm_timer_flush_hwstate(vcpu);
 631		kvm_vgic_flush_hwstate(vcpu);
 632
 633		local_irq_disable();
 634
 635		/*
 636		 * Re-check atomic conditions
 637		 */
 638		if (signal_pending(current)) {
 639			ret = -EINTR;
 640			run->exit_reason = KVM_EXIT_INTR;
 641		}
 642
 643		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
 644			vcpu->arch.power_off || vcpu->arch.pause) {
 645			local_irq_enable();
 646			kvm_pmu_sync_hwstate(vcpu);
 647			kvm_timer_sync_hwstate(vcpu);
 648			kvm_vgic_sync_hwstate(vcpu);
 649			preempt_enable();
 650			continue;
 651		}
 652
 653		kvm_arm_setup_debug(vcpu);
 654
 655		/**************************************************************
 656		 * Enter the guest
 657		 */
 658		trace_kvm_entry(*vcpu_pc(vcpu));
 659		guest_enter_irqoff();
 660		vcpu->mode = IN_GUEST_MODE;
 661
 662		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
 663
 664		vcpu->mode = OUTSIDE_GUEST_MODE;
 665		vcpu->stat.exits++;
 666		/*
 667		 * Back from guest
 668		 *************************************************************/
 669
 670		kvm_arm_clear_debug(vcpu);
 671
 672		/*
 673		 * We may have taken a host interrupt in HYP mode (ie
 674		 * while executing the guest). This interrupt is still
 675		 * pending, as we haven't serviced it yet!
 676		 *
 677		 * We're now back in SVC mode, with interrupts
 678		 * disabled.  Enabling the interrupts now will have
 679		 * the effect of taking the interrupt again, in SVC
 680		 * mode this time.
 681		 */
 682		local_irq_enable();
 683
 684		/*
 685		 * We do local_irq_enable() before calling guest_exit() so
 686		 * that if a timer interrupt hits while running the guest we
 687		 * account that tick as being spent in the guest.  We enable
 688		 * preemption after calling guest_exit() so that if we get
 689		 * preempted we make sure ticks after that is not counted as
 690		 * guest time.
 691		 */
 692		guest_exit();
 693		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
 694
 695		/*
 696		 * We must sync the PMU and timer state before the vgic state so
 697		 * that the vgic can properly sample the updated state of the
 698		 * interrupt line.
 699		 */
 700		kvm_pmu_sync_hwstate(vcpu);
 701		kvm_timer_sync_hwstate(vcpu);
 702
 703		kvm_vgic_sync_hwstate(vcpu);
 704
 705		preempt_enable();
 706
 707		ret = handle_exit(vcpu, run, ret);
 708	}
 709
 710	if (vcpu->sigset_active)
 711		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 712	return ret;
 713}
 714
 715static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 716{
 717	int bit_index;
 718	bool set;
 719	unsigned long *ptr;
 720
 721	if (number == KVM_ARM_IRQ_CPU_IRQ)
 722		bit_index = __ffs(HCR_VI);
 723	else /* KVM_ARM_IRQ_CPU_FIQ */
 724		bit_index = __ffs(HCR_VF);
 725
 726	ptr = (unsigned long *)&vcpu->arch.irq_lines;
 727	if (level)
 728		set = test_and_set_bit(bit_index, ptr);
 729	else
 730		set = test_and_clear_bit(bit_index, ptr);
 731
 732	/*
 733	 * If we didn't change anything, no need to wake up or kick other CPUs
 734	 */
 735	if (set == level)
 736		return 0;
 737
 738	/*
 739	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 740	 * trigger a world-switch round on the running physical CPU to set the
 741	 * virtual IRQ/FIQ fields in the HCR appropriately.
 742	 */
 743	kvm_vcpu_kick(vcpu);
 744
 745	return 0;
 746}
 747
 748int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 749			  bool line_status)
 750{
 751	u32 irq = irq_level->irq;
 752	unsigned int irq_type, vcpu_idx, irq_num;
 753	int nrcpus = atomic_read(&kvm->online_vcpus);
 754	struct kvm_vcpu *vcpu = NULL;
 755	bool level = irq_level->level;
 756
 757	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
 758	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
 759	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
 760
 761	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
 762
 763	switch (irq_type) {
 764	case KVM_ARM_IRQ_TYPE_CPU:
 765		if (irqchip_in_kernel(kvm))
 766			return -ENXIO;
 767
 768		if (vcpu_idx >= nrcpus)
 769			return -EINVAL;
 770
 771		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 772		if (!vcpu)
 773			return -EINVAL;
 774
 775		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
 776			return -EINVAL;
 777
 778		return vcpu_interrupt_line(vcpu, irq_num, level);
 779	case KVM_ARM_IRQ_TYPE_PPI:
 780		if (!irqchip_in_kernel(kvm))
 781			return -ENXIO;
 782
 783		if (vcpu_idx >= nrcpus)
 784			return -EINVAL;
 785
 786		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 787		if (!vcpu)
 788			return -EINVAL;
 789
 790		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
 791			return -EINVAL;
 792
 793		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
 794	case KVM_ARM_IRQ_TYPE_SPI:
 795		if (!irqchip_in_kernel(kvm))
 796			return -ENXIO;
 797
 798		if (irq_num < VGIC_NR_PRIVATE_IRQS)
 799			return -EINVAL;
 800
 801		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
 802	}
 803
 804	return -EINVAL;
 805}
 806
 807static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
 808			       const struct kvm_vcpu_init *init)
 809{
 810	unsigned int i;
 811	int phys_target = kvm_target_cpu();
 812
 813	if (init->target != phys_target)
 814		return -EINVAL;
 815
 816	/*
 817	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 818	 * use the same target.
 819	 */
 820	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
 821		return -EINVAL;
 822
 823	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
 824	for (i = 0; i < sizeof(init->features) * 8; i++) {
 825		bool set = (init->features[i / 32] & (1 << (i % 32)));
 826
 827		if (set && i >= KVM_VCPU_MAX_FEATURES)
 828			return -ENOENT;
 829
 830		/*
 831		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 832		 * use the same feature set.
 833		 */
 834		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
 835		    test_bit(i, vcpu->arch.features) != set)
 836			return -EINVAL;
 837
 838		if (set)
 839			set_bit(i, vcpu->arch.features);
 840	}
 841
 842	vcpu->arch.target = phys_target;
 843
 844	/* Now we know what it is, we can reset it. */
 845	return kvm_reset_vcpu(vcpu);
 846}
 847
 848
 849static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
 850					 struct kvm_vcpu_init *init)
 851{
 852	int ret;
 853
 854	ret = kvm_vcpu_set_target(vcpu, init);
 855	if (ret)
 856		return ret;
 857
 858	/*
 859	 * Ensure a rebooted VM will fault in RAM pages and detect if the
 860	 * guest MMU is turned off and flush the caches as needed.
 861	 */
 862	if (vcpu->arch.has_run_once)
 863		stage2_unmap_vm(vcpu->kvm);
 864
 865	vcpu_reset_hcr(vcpu);
 866
 867	/*
 868	 * Handle the "start in power-off" case.
 869	 */
 870	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
 871		vcpu->arch.power_off = true;
 872	else
 873		vcpu->arch.power_off = false;
 874
 875	return 0;
 876}
 877
 878static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
 879				 struct kvm_device_attr *attr)
 880{
 881	int ret = -ENXIO;
 882
 883	switch (attr->group) {
 884	default:
 885		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
 886		break;
 887	}
 888
 889	return ret;
 890}
 891
 892static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
 893				 struct kvm_device_attr *attr)
 894{
 895	int ret = -ENXIO;
 896
 897	switch (attr->group) {
 898	default:
 899		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
 900		break;
 901	}
 902
 903	return ret;
 904}
 905
 906static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
 907				 struct kvm_device_attr *attr)
 908{
 909	int ret = -ENXIO;
 910
 911	switch (attr->group) {
 912	default:
 913		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
 914		break;
 915	}
 916
 917	return ret;
 918}
 919
 920long kvm_arch_vcpu_ioctl(struct file *filp,
 921			 unsigned int ioctl, unsigned long arg)
 922{
 923	struct kvm_vcpu *vcpu = filp->private_data;
 924	void __user *argp = (void __user *)arg;
 925	struct kvm_device_attr attr;
 926
 927	switch (ioctl) {
 928	case KVM_ARM_VCPU_INIT: {
 929		struct kvm_vcpu_init init;
 930
 931		if (copy_from_user(&init, argp, sizeof(init)))
 932			return -EFAULT;
 933
 934		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
 935	}
 936	case KVM_SET_ONE_REG:
 937	case KVM_GET_ONE_REG: {
 938		struct kvm_one_reg reg;
 939
 940		if (unlikely(!kvm_vcpu_initialized(vcpu)))
 941			return -ENOEXEC;
 942
 943		if (copy_from_user(&reg, argp, sizeof(reg)))
 944			return -EFAULT;
 945		if (ioctl == KVM_SET_ONE_REG)
 946			return kvm_arm_set_reg(vcpu, &reg);
 947		else
 948			return kvm_arm_get_reg(vcpu, &reg);
 949	}
 950	case KVM_GET_REG_LIST: {
 951		struct kvm_reg_list __user *user_list = argp;
 952		struct kvm_reg_list reg_list;
 953		unsigned n;
 954
 955		if (unlikely(!kvm_vcpu_initialized(vcpu)))
 956			return -ENOEXEC;
 957
 958		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 959			return -EFAULT;
 960		n = reg_list.n;
 961		reg_list.n = kvm_arm_num_regs(vcpu);
 962		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 963			return -EFAULT;
 964		if (n < reg_list.n)
 965			return -E2BIG;
 966		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
 967	}
 968	case KVM_SET_DEVICE_ATTR: {
 969		if (copy_from_user(&attr, argp, sizeof(attr)))
 970			return -EFAULT;
 971		return kvm_arm_vcpu_set_attr(vcpu, &attr);
 972	}
 973	case KVM_GET_DEVICE_ATTR: {
 974		if (copy_from_user(&attr, argp, sizeof(attr)))
 975			return -EFAULT;
 976		return kvm_arm_vcpu_get_attr(vcpu, &attr);
 977	}
 978	case KVM_HAS_DEVICE_ATTR: {
 979		if (copy_from_user(&attr, argp, sizeof(attr)))
 980			return -EFAULT;
 981		return kvm_arm_vcpu_has_attr(vcpu, &attr);
 982	}
 983	default:
 984		return -EINVAL;
 985	}
 986}
 987
 988/**
 989 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 990 * @kvm: kvm instance
 991 * @log: slot id and address to which we copy the log
 992 *
 993 * Steps 1-4 below provide general overview of dirty page logging. See
 994 * kvm_get_dirty_log_protect() function description for additional details.
 995 *
 996 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 997 * always flush the TLB (step 4) even if previous step failed  and the dirty
 998 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 999 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1000 * writes will be marked dirty for next log read.
1001 *
1002 *   1. Take a snapshot of the bit and clear it if needed.
1003 *   2. Write protect the corresponding page.
1004 *   3. Copy the snapshot to the userspace.
1005 *   4. Flush TLB's if needed.
1006 */
1007int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1008{
1009	bool is_dirty = false;
1010	int r;
1011
1012	mutex_lock(&kvm->slots_lock);
1013
1014	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1015
1016	if (is_dirty)
1017		kvm_flush_remote_tlbs(kvm);
1018
1019	mutex_unlock(&kvm->slots_lock);
1020	return r;
1021}
1022
1023static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1024					struct kvm_arm_device_addr *dev_addr)
1025{
1026	unsigned long dev_id, type;
1027
1028	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1029		KVM_ARM_DEVICE_ID_SHIFT;
1030	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1031		KVM_ARM_DEVICE_TYPE_SHIFT;
1032
1033	switch (dev_id) {
1034	case KVM_ARM_DEVICE_VGIC_V2:
1035		if (!vgic_present)
1036			return -ENXIO;
1037		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1038	default:
1039		return -ENODEV;
1040	}
1041}
1042
1043long kvm_arch_vm_ioctl(struct file *filp,
1044		       unsigned int ioctl, unsigned long arg)
1045{
1046	struct kvm *kvm = filp->private_data;
1047	void __user *argp = (void __user *)arg;
1048
1049	switch (ioctl) {
1050	case KVM_CREATE_IRQCHIP: {
1051		int ret;
1052		if (!vgic_present)
1053			return -ENXIO;
1054		mutex_lock(&kvm->lock);
1055		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1056		mutex_unlock(&kvm->lock);
1057		return ret;
1058	}
1059	case KVM_ARM_SET_DEVICE_ADDR: {
1060		struct kvm_arm_device_addr dev_addr;
1061
1062		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1063			return -EFAULT;
1064		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1065	}
1066	case KVM_ARM_PREFERRED_TARGET: {
1067		int err;
1068		struct kvm_vcpu_init init;
1069
1070		err = kvm_vcpu_preferred_target(&init);
1071		if (err)
1072			return err;
1073
1074		if (copy_to_user(argp, &init, sizeof(init)))
1075			return -EFAULT;
1076
1077		return 0;
1078	}
1079	default:
1080		return -EINVAL;
1081	}
1082}
1083
1084static void cpu_init_hyp_mode(void *dummy)
1085{
1086	phys_addr_t pgd_ptr;
1087	unsigned long hyp_stack_ptr;
1088	unsigned long stack_page;
1089	unsigned long vector_ptr;
1090
1091	/* Switch from the HYP stub to our own HYP init vector */
1092	__hyp_set_vectors(kvm_get_idmap_vector());
1093
1094	pgd_ptr = kvm_mmu_get_httbr();
1095	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1096	hyp_stack_ptr = stack_page + PAGE_SIZE;
1097	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1098
1099	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1100	__cpu_init_stage2();
1101
1102	if (is_kernel_in_hyp_mode())
1103		kvm_timer_init_vhe();
1104
1105	kvm_arm_init_debug();
1106}
1107
1108static void cpu_hyp_reinit(void)
1109{
1110	if (is_kernel_in_hyp_mode()) {
1111		/*
1112		 * __cpu_init_stage2() is safe to call even if the PM
1113		 * event was cancelled before the CPU was reset.
1114		 */
1115		__cpu_init_stage2();
1116	} else {
1117		if (__hyp_get_vectors() == hyp_default_vectors)
1118			cpu_init_hyp_mode(NULL);
1119	}
1120}
1121
1122static void cpu_hyp_reset(void)
1123{
1124	if (!is_kernel_in_hyp_mode())
1125		__cpu_reset_hyp_mode(hyp_default_vectors,
1126				     kvm_get_idmap_start());
1127}
1128
1129static void _kvm_arch_hardware_enable(void *discard)
1130{
1131	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1132		cpu_hyp_reinit();
1133		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1134	}
1135}
1136
1137int kvm_arch_hardware_enable(void)
1138{
1139	_kvm_arch_hardware_enable(NULL);
1140	return 0;
1141}
1142
1143static void _kvm_arch_hardware_disable(void *discard)
1144{
1145	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1146		cpu_hyp_reset();
1147		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1148	}
1149}
1150
1151void kvm_arch_hardware_disable(void)
1152{
1153	_kvm_arch_hardware_disable(NULL);
1154}
1155
1156#ifdef CONFIG_CPU_PM
1157static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1158				    unsigned long cmd,
1159				    void *v)
1160{
1161	/*
1162	 * kvm_arm_hardware_enabled is left with its old value over
1163	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1164	 * re-enable hyp.
1165	 */
1166	switch (cmd) {
1167	case CPU_PM_ENTER:
1168		if (__this_cpu_read(kvm_arm_hardware_enabled))
1169			/*
1170			 * don't update kvm_arm_hardware_enabled here
1171			 * so that the hardware will be re-enabled
1172			 * when we resume. See below.
1173			 */
1174			cpu_hyp_reset();
1175
1176		return NOTIFY_OK;
1177	case CPU_PM_EXIT:
1178		if (__this_cpu_read(kvm_arm_hardware_enabled))
1179			/* The hardware was enabled before suspend. */
1180			cpu_hyp_reinit();
1181
1182		return NOTIFY_OK;
1183
1184	default:
1185		return NOTIFY_DONE;
1186	}
1187}
1188
1189static struct notifier_block hyp_init_cpu_pm_nb = {
1190	.notifier_call = hyp_init_cpu_pm_notifier,
1191};
1192
1193static void __init hyp_cpu_pm_init(void)
1194{
1195	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1196}
1197static void __init hyp_cpu_pm_exit(void)
1198{
1199	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1200}
1201#else
1202static inline void hyp_cpu_pm_init(void)
1203{
1204}
1205static inline void hyp_cpu_pm_exit(void)
1206{
1207}
1208#endif
1209
1210static void teardown_common_resources(void)
1211{
1212	free_percpu(kvm_host_cpu_state);
1213}
1214
1215static int init_common_resources(void)
1216{
1217	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1218	if (!kvm_host_cpu_state) {
1219		kvm_err("Cannot allocate host CPU state\n");
1220		return -ENOMEM;
1221	}
1222
1223	/* set size of VMID supported by CPU */
1224	kvm_vmid_bits = kvm_get_vmid_bits();
1225	kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1226
1227	return 0;
1228}
1229
1230static int init_subsystems(void)
1231{
1232	int err = 0;
1233
1234	/*
1235	 * Enable hardware so that subsystem initialisation can access EL2.
1236	 */
1237	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1238
1239	/*
1240	 * Register CPU lower-power notifier
1241	 */
1242	hyp_cpu_pm_init();
1243
1244	/*
1245	 * Init HYP view of VGIC
1246	 */
1247	err = kvm_vgic_hyp_init();
1248	switch (err) {
1249	case 0:
1250		vgic_present = true;
1251		break;
1252	case -ENODEV:
1253	case -ENXIO:
1254		vgic_present = false;
1255		err = 0;
1256		break;
1257	default:
1258		goto out;
1259	}
1260
1261	/*
1262	 * Init HYP architected timer support
1263	 */
1264	err = kvm_timer_hyp_init();
1265	if (err)
1266		goto out;
1267
1268	kvm_perf_init();
1269	kvm_coproc_table_init();
1270
1271out:
1272	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1273
1274	return err;
1275}
1276
1277static void teardown_hyp_mode(void)
1278{
1279	int cpu;
1280
1281	if (is_kernel_in_hyp_mode())
1282		return;
1283
1284	free_hyp_pgds();
1285	for_each_possible_cpu(cpu)
1286		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1287	hyp_cpu_pm_exit();
1288}
1289
1290static int init_vhe_mode(void)
1291{
1292	kvm_info("VHE mode initialized successfully\n");
1293	return 0;
1294}
1295
1296/**
1297 * Inits Hyp-mode on all online CPUs
1298 */
1299static int init_hyp_mode(void)
1300{
1301	int cpu;
1302	int err = 0;
1303
1304	/*
1305	 * Allocate Hyp PGD and setup Hyp identity mapping
1306	 */
1307	err = kvm_mmu_init();
1308	if (err)
1309		goto out_err;
1310
1311	/*
1312	 * It is probably enough to obtain the default on one
1313	 * CPU. It's unlikely to be different on the others.
1314	 */
1315	hyp_default_vectors = __hyp_get_vectors();
1316
1317	/*
1318	 * Allocate stack pages for Hypervisor-mode
1319	 */
1320	for_each_possible_cpu(cpu) {
1321		unsigned long stack_page;
1322
1323		stack_page = __get_free_page(GFP_KERNEL);
1324		if (!stack_page) {
1325			err = -ENOMEM;
1326			goto out_err;
1327		}
1328
1329		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1330	}
1331
1332	/*
1333	 * Map the Hyp-code called directly from the host
1334	 */
1335	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1336				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1337	if (err) {
1338		kvm_err("Cannot map world-switch code\n");
1339		goto out_err;
1340	}
1341
1342	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1343				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1344	if (err) {
1345		kvm_err("Cannot map rodata section\n");
1346		goto out_err;
1347	}
1348
1349	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1350				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1351	if (err) {
1352		kvm_err("Cannot map bss section\n");
1353		goto out_err;
1354	}
1355
1356	/*
1357	 * Map the Hyp stack pages
1358	 */
1359	for_each_possible_cpu(cpu) {
1360		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1361		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1362					  PAGE_HYP);
1363
1364		if (err) {
1365			kvm_err("Cannot map hyp stack\n");
1366			goto out_err;
1367		}
1368	}
1369
1370	for_each_possible_cpu(cpu) {
1371		kvm_cpu_context_t *cpu_ctxt;
1372
1373		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1374		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1375
1376		if (err) {
1377			kvm_err("Cannot map host CPU state: %d\n", err);
1378			goto out_err;
1379		}
1380	}
1381
1382	kvm_info("Hyp mode initialized successfully\n");
1383
1384	return 0;
1385
1386out_err:
1387	teardown_hyp_mode();
1388	kvm_err("error initializing Hyp mode: %d\n", err);
1389	return err;
1390}
1391
1392static void check_kvm_target_cpu(void *ret)
1393{
1394	*(int *)ret = kvm_target_cpu();
1395}
1396
1397struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1398{
1399	struct kvm_vcpu *vcpu;
1400	int i;
1401
1402	mpidr &= MPIDR_HWID_BITMASK;
1403	kvm_for_each_vcpu(i, vcpu, kvm) {
1404		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1405			return vcpu;
1406	}
1407	return NULL;
1408}
1409
1410/**
1411 * Initialize Hyp-mode and memory mappings on all CPUs.
1412 */
1413int kvm_arch_init(void *opaque)
1414{
1415	int err;
1416	int ret, cpu;
1417
1418	if (!is_hyp_mode_available()) {
1419		kvm_err("HYP mode not available\n");
1420		return -ENODEV;
1421	}
1422
1423	for_each_online_cpu(cpu) {
1424		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1425		if (ret < 0) {
1426			kvm_err("Error, CPU %d not supported!\n", cpu);
1427			return -ENODEV;
1428		}
1429	}
1430
1431	err = init_common_resources();
1432	if (err)
1433		return err;
1434
1435	if (is_kernel_in_hyp_mode())
1436		err = init_vhe_mode();
1437	else
1438		err = init_hyp_mode();
1439	if (err)
1440		goto out_err;
1441
1442	err = init_subsystems();
1443	if (err)
1444		goto out_hyp;
1445
1446	return 0;
1447
1448out_hyp:
1449	teardown_hyp_mode();
1450out_err:
1451	teardown_common_resources();
1452	return err;
1453}
1454
1455/* NOP: Compiling as a module not supported */
1456void kvm_arch_exit(void)
1457{
1458	kvm_perf_teardown();
1459}
1460
1461static int arm_init(void)
1462{
1463	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1464	return rc;
1465}
1466
1467module_init(arm_init);