Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file contains journal replay code. It runs when the file-system is being
  25 * mounted and requires no locking.
  26 *
  27 * The larger is the journal, the longer it takes to scan it, so the longer it
  28 * takes to mount UBIFS. This is why the journal has limited size which may be
  29 * changed depending on the system requirements. But a larger journal gives
  30 * faster I/O speed because it writes the index less frequently. So this is a
  31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  32 * larger is the journal, the more memory its index may consume.
  33 */
  34
  35#include "ubifs.h"
  36#include <linux/list_sort.h>
  37
  38/**
  39 * struct replay_entry - replay list entry.
  40 * @lnum: logical eraseblock number of the node
  41 * @offs: node offset
  42 * @len: node length
  43 * @deletion: non-zero if this entry corresponds to a node deletion
  44 * @sqnum: node sequence number
  45 * @list: links the replay list
  46 * @key: node key
  47 * @nm: directory entry name
  48 * @old_size: truncation old size
  49 * @new_size: truncation new size
  50 *
  51 * The replay process first scans all buds and builds the replay list, then
  52 * sorts the replay list in nodes sequence number order, and then inserts all
  53 * the replay entries to the TNC.
  54 */
  55struct replay_entry {
  56	int lnum;
  57	int offs;
  58	int len;
  59	unsigned int deletion:1;
  60	unsigned long long sqnum;
  61	struct list_head list;
  62	union ubifs_key key;
  63	union {
  64		struct qstr nm;
  65		struct {
  66			loff_t old_size;
  67			loff_t new_size;
  68		};
  69	};
  70};
  71
  72/**
  73 * struct bud_entry - entry in the list of buds to replay.
  74 * @list: next bud in the list
  75 * @bud: bud description object
  76 * @sqnum: reference node sequence number
  77 * @free: free bytes in the bud
  78 * @dirty: dirty bytes in the bud
  79 */
  80struct bud_entry {
  81	struct list_head list;
  82	struct ubifs_bud *bud;
  83	unsigned long long sqnum;
  84	int free;
  85	int dirty;
  86};
  87
  88/**
  89 * set_bud_lprops - set free and dirty space used by a bud.
  90 * @c: UBIFS file-system description object
  91 * @b: bud entry which describes the bud
  92 *
  93 * This function makes sure the LEB properties of bud @b are set correctly
  94 * after the replay. Returns zero in case of success and a negative error code
  95 * in case of failure.
  96 */
  97static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  98{
  99	const struct ubifs_lprops *lp;
 100	int err = 0, dirty;
 101
 102	ubifs_get_lprops(c);
 103
 104	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
 105	if (IS_ERR(lp)) {
 106		err = PTR_ERR(lp);
 107		goto out;
 108	}
 109
 110	dirty = lp->dirty;
 111	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 112		/*
 113		 * The LEB was added to the journal with a starting offset of
 114		 * zero which means the LEB must have been empty. The LEB
 115		 * property values should be @lp->free == @c->leb_size and
 116		 * @lp->dirty == 0, but that is not the case. The reason is that
 117		 * the LEB had been garbage collected before it became the bud,
 118		 * and there was not commit inbetween. The garbage collector
 119		 * resets the free and dirty space without recording it
 120		 * anywhere except lprops, so if there was no commit then
 121		 * lprops does not have that information.
 122		 *
 123		 * We do not need to adjust free space because the scan has told
 124		 * us the exact value which is recorded in the replay entry as
 125		 * @b->free.
 126		 *
 127		 * However we do need to subtract from the dirty space the
 128		 * amount of space that the garbage collector reclaimed, which
 129		 * is the whole LEB minus the amount of space that was free.
 130		 */
 131		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 132			lp->free, lp->dirty);
 133		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 134			lp->free, lp->dirty);
 135		dirty -= c->leb_size - lp->free;
 136		/*
 137		 * If the replay order was perfect the dirty space would now be
 138		 * zero. The order is not perfect because the journal heads
 139		 * race with each other. This is not a problem but is does mean
 140		 * that the dirty space may temporarily exceed c->leb_size
 141		 * during the replay.
 142		 */
 143		if (dirty != 0)
 144			dbg_msg("LEB %d lp: %d free %d dirty "
 145				"replay: %d free %d dirty", b->bud->lnum,
 146				lp->free, lp->dirty, b->free, b->dirty);
 147	}
 148	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 149			     lp->flags | LPROPS_TAKEN, 0);
 150	if (IS_ERR(lp)) {
 151		err = PTR_ERR(lp);
 152		goto out;
 153	}
 154
 155	/* Make sure the journal head points to the latest bud */
 156	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 157				     b->bud->lnum, c->leb_size - b->free,
 158				     UBI_SHORTTERM);
 159
 160out:
 161	ubifs_release_lprops(c);
 162	return err;
 163}
 164
 165/**
 166 * set_buds_lprops - set free and dirty space for all replayed buds.
 167 * @c: UBIFS file-system description object
 168 *
 169 * This function sets LEB properties for all replayed buds. Returns zero in
 170 * case of success and a negative error code in case of failure.
 171 */
 172static int set_buds_lprops(struct ubifs_info *c)
 173{
 174	struct bud_entry *b;
 175	int err;
 176
 177	list_for_each_entry(b, &c->replay_buds, list) {
 178		err = set_bud_lprops(c, b);
 179		if (err)
 180			return err;
 181	}
 182
 183	return 0;
 184}
 185
 186/**
 187 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 188 * @c: UBIFS file-system description object
 189 * @r: replay entry of truncation
 190 */
 191static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 192{
 193	unsigned min_blk, max_blk;
 194	union ubifs_key min_key, max_key;
 195	ino_t ino;
 196
 197	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 198	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 199		min_blk += 1;
 200
 201	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 202	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 203		max_blk -= 1;
 204
 205	ino = key_inum(c, &r->key);
 206
 207	data_key_init(c, &min_key, ino, min_blk);
 208	data_key_init(c, &max_key, ino, max_blk);
 209
 210	return ubifs_tnc_remove_range(c, &min_key, &max_key);
 211}
 212
 213/**
 214 * apply_replay_entry - apply a replay entry to the TNC.
 215 * @c: UBIFS file-system description object
 216 * @r: replay entry to apply
 217 *
 218 * Apply a replay entry to the TNC.
 219 */
 220static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 221{
 222	int err;
 223
 224	dbg_mnt("LEB %d:%d len %d deletion %d sqnum %llu %s", r->lnum,
 225		r->offs, r->len, r->deletion, r->sqnum, DBGKEY(&r->key));
 226
 227	/* Set c->replay_sqnum to help deal with dangling branches. */
 228	c->replay_sqnum = r->sqnum;
 229
 230	if (is_hash_key(c, &r->key)) {
 231		if (r->deletion)
 232			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 233		else
 234			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 235					       r->len, &r->nm);
 236	} else {
 237		if (r->deletion)
 238			switch (key_type(c, &r->key)) {
 239			case UBIFS_INO_KEY:
 240			{
 241				ino_t inum = key_inum(c, &r->key);
 242
 243				err = ubifs_tnc_remove_ino(c, inum);
 244				break;
 245			}
 246			case UBIFS_TRUN_KEY:
 247				err = trun_remove_range(c, r);
 248				break;
 249			default:
 250				err = ubifs_tnc_remove(c, &r->key);
 251				break;
 252			}
 253		else
 254			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 255					    r->len);
 256		if (err)
 257			return err;
 258
 259		if (c->need_recovery)
 260			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 261						       r->new_size);
 262	}
 263
 264	return err;
 265}
 266
 267/**
 268 * replay_entries_cmp - compare 2 replay entries.
 269 * @priv: UBIFS file-system description object
 270 * @a: first replay entry
 271 * @a: second replay entry
 272 *
 273 * This is a comparios function for 'list_sort()' which compares 2 replay
 274 * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
 275 * greater sequence number and %-1 otherwise.
 276 */
 277static int replay_entries_cmp(void *priv, struct list_head *a,
 278			      struct list_head *b)
 279{
 280	struct replay_entry *ra, *rb;
 281
 282	cond_resched();
 283	if (a == b)
 284		return 0;
 285
 286	ra = list_entry(a, struct replay_entry, list);
 287	rb = list_entry(b, struct replay_entry, list);
 288	ubifs_assert(ra->sqnum != rb->sqnum);
 289	if (ra->sqnum > rb->sqnum)
 290		return 1;
 291	return -1;
 292}
 293
 294/**
 295 * apply_replay_list - apply the replay list to the TNC.
 296 * @c: UBIFS file-system description object
 297 *
 298 * Apply all entries in the replay list to the TNC. Returns zero in case of
 299 * success and a negative error code in case of failure.
 300 */
 301static int apply_replay_list(struct ubifs_info *c)
 302{
 303	struct replay_entry *r;
 304	int err;
 305
 306	list_sort(c, &c->replay_list, &replay_entries_cmp);
 307
 308	list_for_each_entry(r, &c->replay_list, list) {
 309		cond_resched();
 310
 311		err = apply_replay_entry(c, r);
 312		if (err)
 313			return err;
 314	}
 315
 316	return 0;
 317}
 318
 319/**
 320 * destroy_replay_list - destroy the replay.
 321 * @c: UBIFS file-system description object
 322 *
 323 * Destroy the replay list.
 324 */
 325static void destroy_replay_list(struct ubifs_info *c)
 326{
 327	struct replay_entry *r, *tmp;
 328
 329	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 330		if (is_hash_key(c, &r->key))
 331			kfree(r->nm.name);
 332		list_del(&r->list);
 333		kfree(r);
 334	}
 335}
 336
 337/**
 338 * insert_node - insert a node to the replay list
 339 * @c: UBIFS file-system description object
 340 * @lnum: node logical eraseblock number
 341 * @offs: node offset
 342 * @len: node length
 343 * @key: node key
 344 * @sqnum: sequence number
 345 * @deletion: non-zero if this is a deletion
 346 * @used: number of bytes in use in a LEB
 347 * @old_size: truncation old size
 348 * @new_size: truncation new size
 349 *
 350 * This function inserts a scanned non-direntry node to the replay list. The
 351 * replay list contains @struct replay_entry elements, and we sort this list in
 352 * sequence number order before applying it. The replay list is applied at the
 353 * very end of the replay process. Since the list is sorted in sequence number
 354 * order, the older modifications are applied first. This function returns zero
 355 * in case of success and a negative error code in case of failure.
 356 */
 357static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 358		       union ubifs_key *key, unsigned long long sqnum,
 359		       int deletion, int *used, loff_t old_size,
 360		       loff_t new_size)
 361{
 362	struct replay_entry *r;
 363
 364	dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
 365
 366	if (key_inum(c, key) >= c->highest_inum)
 367		c->highest_inum = key_inum(c, key);
 368
 369	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 370	if (!r)
 371		return -ENOMEM;
 372
 373	if (!deletion)
 374		*used += ALIGN(len, 8);
 375	r->lnum = lnum;
 376	r->offs = offs;
 377	r->len = len;
 378	r->deletion = !!deletion;
 379	r->sqnum = sqnum;
 380	key_copy(c, key, &r->key);
 381	r->old_size = old_size;
 382	r->new_size = new_size;
 383
 384	list_add_tail(&r->list, &c->replay_list);
 385	return 0;
 386}
 387
 388/**
 389 * insert_dent - insert a directory entry node into the replay list.
 390 * @c: UBIFS file-system description object
 391 * @lnum: node logical eraseblock number
 392 * @offs: node offset
 393 * @len: node length
 394 * @key: node key
 395 * @name: directory entry name
 396 * @nlen: directory entry name length
 397 * @sqnum: sequence number
 398 * @deletion: non-zero if this is a deletion
 399 * @used: number of bytes in use in a LEB
 400 *
 401 * This function inserts a scanned directory entry node or an extended
 402 * attribute entry to the replay list. Returns zero in case of success and a
 403 * negative error code in case of failure.
 404 */
 405static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 406		       union ubifs_key *key, const char *name, int nlen,
 407		       unsigned long long sqnum, int deletion, int *used)
 408{
 409	struct replay_entry *r;
 410	char *nbuf;
 411
 412	dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
 413	if (key_inum(c, key) >= c->highest_inum)
 414		c->highest_inum = key_inum(c, key);
 415
 416	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 417	if (!r)
 418		return -ENOMEM;
 419
 420	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 421	if (!nbuf) {
 422		kfree(r);
 423		return -ENOMEM;
 424	}
 425
 426	if (!deletion)
 427		*used += ALIGN(len, 8);
 428	r->lnum = lnum;
 429	r->offs = offs;
 430	r->len = len;
 431	r->deletion = !!deletion;
 432	r->sqnum = sqnum;
 433	key_copy(c, key, &r->key);
 434	r->nm.len = nlen;
 435	memcpy(nbuf, name, nlen);
 436	nbuf[nlen] = '\0';
 437	r->nm.name = nbuf;
 438
 439	list_add_tail(&r->list, &c->replay_list);
 440	return 0;
 441}
 442
 443/**
 444 * ubifs_validate_entry - validate directory or extended attribute entry node.
 445 * @c: UBIFS file-system description object
 446 * @dent: the node to validate
 447 *
 448 * This function validates directory or extended attribute entry node @dent.
 449 * Returns zero if the node is all right and a %-EINVAL if not.
 450 */
 451int ubifs_validate_entry(struct ubifs_info *c,
 452			 const struct ubifs_dent_node *dent)
 453{
 454	int key_type = key_type_flash(c, dent->key);
 455	int nlen = le16_to_cpu(dent->nlen);
 456
 457	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 458	    dent->type >= UBIFS_ITYPES_CNT ||
 459	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 460	    strnlen(dent->name, nlen) != nlen ||
 461	    le64_to_cpu(dent->inum) > MAX_INUM) {
 462		ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
 463			  "directory entry" : "extended attribute entry");
 464		return -EINVAL;
 465	}
 466
 467	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 468		ubifs_err("bad key type %d", key_type);
 469		return -EINVAL;
 470	}
 471
 472	return 0;
 473}
 474
 475/**
 476 * is_last_bud - check if the bud is the last in the journal head.
 477 * @c: UBIFS file-system description object
 478 * @bud: bud description object
 479 *
 480 * This function checks if bud @bud is the last bud in its journal head. This
 481 * information is then used by 'replay_bud()' to decide whether the bud can
 482 * have corruptions or not. Indeed, only last buds can be corrupted by power
 483 * cuts. Returns %1 if this is the last bud, and %0 if not.
 484 */
 485static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 486{
 487	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 488	struct ubifs_bud *next;
 489	uint32_t data;
 490	int err;
 491
 492	if (list_is_last(&bud->list, &jh->buds_list))
 493		return 1;
 494
 495	/*
 496	 * The following is a quirk to make sure we work correctly with UBIFS
 497	 * images used with older UBIFS.
 498	 *
 499	 * Normally, the last bud will be the last in the journal head's list
 500	 * of bud. However, there is one exception if the UBIFS image belongs
 501	 * to older UBIFS. This is fairly unlikely: one would need to use old
 502	 * UBIFS, then have a power cut exactly at the right point, and then
 503	 * try to mount this image with new UBIFS.
 504	 *
 505	 * The exception is: it is possible to have 2 buds A and B, A goes
 506	 * before B, and B is the last, bud B is contains no data, and bud A is
 507	 * corrupted at the end. The reason is that in older versions when the
 508	 * journal code switched the next bud (from A to B), it first added a
 509	 * log reference node for the new bud (B), and only after this it
 510	 * synchronized the write-buffer of current bud (A). But later this was
 511	 * changed and UBIFS started to always synchronize the write-buffer of
 512	 * the bud (A) before writing the log reference for the new bud (B).
 513	 *
 514	 * But because older UBIFS always synchronized A's write-buffer before
 515	 * writing to B, we can recognize this exceptional situation but
 516	 * checking the contents of bud B - if it is empty, then A can be
 517	 * treated as the last and we can recover it.
 518	 *
 519	 * TODO: remove this piece of code in a couple of years (today it is
 520	 * 16.05.2011).
 521	 */
 522	next = list_entry(bud->list.next, struct ubifs_bud, list);
 523	if (!list_is_last(&next->list, &jh->buds_list))
 524		return 0;
 525
 526	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 527	if (err)
 528		return 0;
 529
 530	return data == 0xFFFFFFFF;
 531}
 532
 533/**
 534 * replay_bud - replay a bud logical eraseblock.
 535 * @c: UBIFS file-system description object
 536 * @b: bud entry which describes the bud
 537 *
 538 * This function replays bud @bud, recovers it if needed, and adds all nodes
 539 * from this bud to the replay list. Returns zero in case of success and a
 540 * negative error code in case of failure.
 541 */
 542static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 543{
 544	int is_last = is_last_bud(c, b->bud);
 545	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 546	struct ubifs_scan_leb *sleb;
 547	struct ubifs_scan_node *snod;
 548
 549	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 550		lnum, b->bud->jhead, offs, is_last);
 551
 552	if (c->need_recovery && is_last)
 553		/*
 554		 * Recover only last LEBs in the journal heads, because power
 555		 * cuts may cause corruptions only in these LEBs, because only
 556		 * these LEBs could possibly be written to at the power cut
 557		 * time.
 558		 */
 559		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 560	else
 561		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 562	if (IS_ERR(sleb))
 563		return PTR_ERR(sleb);
 564
 565	/*
 566	 * The bud does not have to start from offset zero - the beginning of
 567	 * the 'lnum' LEB may contain previously committed data. One of the
 568	 * things we have to do in replay is to correctly update lprops with
 569	 * newer information about this LEB.
 570	 *
 571	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 572	 * bytes of free space because it only contain information about
 573	 * committed data.
 574	 *
 575	 * But we know that real amount of free space is 'c->leb_size -
 576	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 577	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
 578	 * how much of these data are dirty and update lprops with this
 579	 * information.
 580	 *
 581	 * The dirt in that LEB region is comprised of padding nodes, deletion
 582	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
 583	 * nodes in this LEB. So instead of calculating clean space, we
 584	 * calculate used space ('used' variable).
 585	 */
 586
 587	list_for_each_entry(snod, &sleb->nodes, list) {
 588		int deletion = 0;
 589
 590		cond_resched();
 591
 592		if (snod->sqnum >= SQNUM_WATERMARK) {
 593			ubifs_err("file system's life ended");
 594			goto out_dump;
 595		}
 596
 597		if (snod->sqnum > c->max_sqnum)
 598			c->max_sqnum = snod->sqnum;
 599
 600		switch (snod->type) {
 601		case UBIFS_INO_NODE:
 602		{
 603			struct ubifs_ino_node *ino = snod->node;
 604			loff_t new_size = le64_to_cpu(ino->size);
 605
 606			if (le32_to_cpu(ino->nlink) == 0)
 607				deletion = 1;
 608			err = insert_node(c, lnum, snod->offs, snod->len,
 609					  &snod->key, snod->sqnum, deletion,
 610					  &used, 0, new_size);
 611			break;
 612		}
 613		case UBIFS_DATA_NODE:
 614		{
 615			struct ubifs_data_node *dn = snod->node;
 616			loff_t new_size = le32_to_cpu(dn->size) +
 617					  key_block(c, &snod->key) *
 618					  UBIFS_BLOCK_SIZE;
 619
 620			err = insert_node(c, lnum, snod->offs, snod->len,
 621					  &snod->key, snod->sqnum, deletion,
 622					  &used, 0, new_size);
 623			break;
 624		}
 625		case UBIFS_DENT_NODE:
 626		case UBIFS_XENT_NODE:
 627		{
 628			struct ubifs_dent_node *dent = snod->node;
 629
 630			err = ubifs_validate_entry(c, dent);
 631			if (err)
 632				goto out_dump;
 633
 634			err = insert_dent(c, lnum, snod->offs, snod->len,
 635					  &snod->key, dent->name,
 636					  le16_to_cpu(dent->nlen), snod->sqnum,
 637					  !le64_to_cpu(dent->inum), &used);
 638			break;
 639		}
 640		case UBIFS_TRUN_NODE:
 641		{
 642			struct ubifs_trun_node *trun = snod->node;
 643			loff_t old_size = le64_to_cpu(trun->old_size);
 644			loff_t new_size = le64_to_cpu(trun->new_size);
 645			union ubifs_key key;
 646
 647			/* Validate truncation node */
 648			if (old_size < 0 || old_size > c->max_inode_sz ||
 649			    new_size < 0 || new_size > c->max_inode_sz ||
 650			    old_size <= new_size) {
 651				ubifs_err("bad truncation node");
 652				goto out_dump;
 653			}
 654
 655			/*
 656			 * Create a fake truncation key just to use the same
 657			 * functions which expect nodes to have keys.
 658			 */
 659			trun_key_init(c, &key, le32_to_cpu(trun->inum));
 660			err = insert_node(c, lnum, snod->offs, snod->len,
 661					  &key, snod->sqnum, 1, &used,
 662					  old_size, new_size);
 663			break;
 664		}
 665		default:
 666			ubifs_err("unexpected node type %d in bud LEB %d:%d",
 667				  snod->type, lnum, snod->offs);
 668			err = -EINVAL;
 669			goto out_dump;
 670		}
 671		if (err)
 672			goto out;
 673	}
 674
 675	ubifs_assert(ubifs_search_bud(c, lnum));
 676	ubifs_assert(sleb->endpt - offs >= used);
 677	ubifs_assert(sleb->endpt % c->min_io_size == 0);
 678
 679	b->dirty = sleb->endpt - offs - used;
 680	b->free = c->leb_size - sleb->endpt;
 681	dbg_mnt("bud LEB %d replied: dirty %d, free %d", lnum, b->dirty, b->free);
 682
 683out:
 684	ubifs_scan_destroy(sleb);
 685	return err;
 686
 687out_dump:
 688	ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
 689	dbg_dump_node(c, snod->node);
 690	ubifs_scan_destroy(sleb);
 691	return -EINVAL;
 692}
 693
 694/**
 695 * replay_buds - replay all buds.
 696 * @c: UBIFS file-system description object
 697 *
 698 * This function returns zero in case of success and a negative error code in
 699 * case of failure.
 700 */
 701static int replay_buds(struct ubifs_info *c)
 702{
 703	struct bud_entry *b;
 704	int err;
 705	unsigned long long prev_sqnum = 0;
 706
 707	list_for_each_entry(b, &c->replay_buds, list) {
 708		err = replay_bud(c, b);
 709		if (err)
 710			return err;
 711
 712		ubifs_assert(b->sqnum > prev_sqnum);
 713		prev_sqnum = b->sqnum;
 714	}
 715
 716	return 0;
 717}
 718
 719/**
 720 * destroy_bud_list - destroy the list of buds to replay.
 721 * @c: UBIFS file-system description object
 722 */
 723static void destroy_bud_list(struct ubifs_info *c)
 724{
 725	struct bud_entry *b;
 726
 727	while (!list_empty(&c->replay_buds)) {
 728		b = list_entry(c->replay_buds.next, struct bud_entry, list);
 729		list_del(&b->list);
 730		kfree(b);
 731	}
 732}
 733
 734/**
 735 * add_replay_bud - add a bud to the list of buds to replay.
 736 * @c: UBIFS file-system description object
 737 * @lnum: bud logical eraseblock number to replay
 738 * @offs: bud start offset
 739 * @jhead: journal head to which this bud belongs
 740 * @sqnum: reference node sequence number
 741 *
 742 * This function returns zero in case of success and a negative error code in
 743 * case of failure.
 744 */
 745static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 746			  unsigned long long sqnum)
 747{
 748	struct ubifs_bud *bud;
 749	struct bud_entry *b;
 750
 751	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 752
 753	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 754	if (!bud)
 755		return -ENOMEM;
 756
 757	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 758	if (!b) {
 759		kfree(bud);
 760		return -ENOMEM;
 761	}
 762
 763	bud->lnum = lnum;
 764	bud->start = offs;
 765	bud->jhead = jhead;
 766	ubifs_add_bud(c, bud);
 767
 768	b->bud = bud;
 769	b->sqnum = sqnum;
 770	list_add_tail(&b->list, &c->replay_buds);
 771
 772	return 0;
 773}
 774
 775/**
 776 * validate_ref - validate a reference node.
 777 * @c: UBIFS file-system description object
 778 * @ref: the reference node to validate
 779 * @ref_lnum: LEB number of the reference node
 780 * @ref_offs: reference node offset
 781 *
 782 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 783 * returned if the reference node is new, otherwise %-EINVAL is returned if
 784 * validation failed.
 785 */
 786static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 787{
 788	struct ubifs_bud *bud;
 789	int lnum = le32_to_cpu(ref->lnum);
 790	unsigned int offs = le32_to_cpu(ref->offs);
 791	unsigned int jhead = le32_to_cpu(ref->jhead);
 792
 793	/*
 794	 * ref->offs may point to the end of LEB when the journal head points
 795	 * to the end of LEB and we write reference node for it during commit.
 796	 * So this is why we require 'offs > c->leb_size'.
 797	 */
 798	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 799	    lnum < c->main_first || offs > c->leb_size ||
 800	    offs & (c->min_io_size - 1))
 801		return -EINVAL;
 802
 803	/* Make sure we have not already looked at this bud */
 804	bud = ubifs_search_bud(c, lnum);
 805	if (bud) {
 806		if (bud->jhead == jhead && bud->start <= offs)
 807			return 1;
 808		ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
 809		return -EINVAL;
 810	}
 811
 812	return 0;
 813}
 814
 815/**
 816 * replay_log_leb - replay a log logical eraseblock.
 817 * @c: UBIFS file-system description object
 818 * @lnum: log logical eraseblock to replay
 819 * @offs: offset to start replaying from
 820 * @sbuf: scan buffer
 821 *
 822 * This function replays a log LEB and returns zero in case of success, %1 if
 823 * this is the last LEB in the log, and a negative error code in case of
 824 * failure.
 825 */
 826static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 827{
 828	int err;
 829	struct ubifs_scan_leb *sleb;
 830	struct ubifs_scan_node *snod;
 831	const struct ubifs_cs_node *node;
 832
 833	dbg_mnt("replay log LEB %d:%d", lnum, offs);
 834	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 835	if (IS_ERR(sleb)) {
 836		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 837			return PTR_ERR(sleb);
 838		/*
 839		 * Note, the below function will recover this log LEB only if
 840		 * it is the last, because unclean reboots can possibly corrupt
 841		 * only the tail of the log.
 842		 */
 843		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
 844		if (IS_ERR(sleb))
 845			return PTR_ERR(sleb);
 846	}
 847
 848	if (sleb->nodes_cnt == 0) {
 849		err = 1;
 850		goto out;
 851	}
 852
 853	node = sleb->buf;
 854	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 855	if (c->cs_sqnum == 0) {
 856		/*
 857		 * This is the first log LEB we are looking at, make sure that
 858		 * the first node is a commit start node. Also record its
 859		 * sequence number so that UBIFS can determine where the log
 860		 * ends, because all nodes which were have higher sequence
 861		 * numbers.
 862		 */
 863		if (snod->type != UBIFS_CS_NODE) {
 864			dbg_err("first log node at LEB %d:%d is not CS node",
 865				lnum, offs);
 866			goto out_dump;
 867		}
 868		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
 869			dbg_err("first CS node at LEB %d:%d has wrong "
 870				"commit number %llu expected %llu",
 871				lnum, offs,
 872				(unsigned long long)le64_to_cpu(node->cmt_no),
 873				c->cmt_no);
 874			goto out_dump;
 875		}
 876
 877		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
 878		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
 879	}
 880
 881	if (snod->sqnum < c->cs_sqnum) {
 882		/*
 883		 * This means that we reached end of log and now
 884		 * look to the older log data, which was already
 885		 * committed but the eraseblock was not erased (UBIFS
 886		 * only un-maps it). So this basically means we have to
 887		 * exit with "end of log" code.
 888		 */
 889		err = 1;
 890		goto out;
 891	}
 892
 893	/* Make sure the first node sits at offset zero of the LEB */
 894	if (snod->offs != 0) {
 895		dbg_err("first node is not at zero offset");
 896		goto out_dump;
 897	}
 898
 899	list_for_each_entry(snod, &sleb->nodes, list) {
 900		cond_resched();
 901
 902		if (snod->sqnum >= SQNUM_WATERMARK) {
 903			ubifs_err("file system's life ended");
 904			goto out_dump;
 905		}
 906
 907		if (snod->sqnum < c->cs_sqnum) {
 908			dbg_err("bad sqnum %llu, commit sqnum %llu",
 909				snod->sqnum, c->cs_sqnum);
 910			goto out_dump;
 911		}
 912
 913		if (snod->sqnum > c->max_sqnum)
 914			c->max_sqnum = snod->sqnum;
 915
 916		switch (snod->type) {
 917		case UBIFS_REF_NODE: {
 918			const struct ubifs_ref_node *ref = snod->node;
 919
 920			err = validate_ref(c, ref);
 921			if (err == 1)
 922				break; /* Already have this bud */
 923			if (err)
 924				goto out_dump;
 925
 926			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
 927					     le32_to_cpu(ref->offs),
 928					     le32_to_cpu(ref->jhead),
 929					     snod->sqnum);
 930			if (err)
 931				goto out;
 932
 933			break;
 934		}
 935		case UBIFS_CS_NODE:
 936			/* Make sure it sits at the beginning of LEB */
 937			if (snod->offs != 0) {
 938				ubifs_err("unexpected node in log");
 939				goto out_dump;
 940			}
 941			break;
 942		default:
 943			ubifs_err("unexpected node in log");
 944			goto out_dump;
 945		}
 946	}
 947
 948	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
 949		c->lhead_lnum = lnum;
 950		c->lhead_offs = sleb->endpt;
 951	}
 952
 953	err = !sleb->endpt;
 954out:
 955	ubifs_scan_destroy(sleb);
 956	return err;
 957
 958out_dump:
 959	ubifs_err("log error detected while replaying the log at LEB %d:%d",
 960		  lnum, offs + snod->offs);
 961	dbg_dump_node(c, snod->node);
 962	ubifs_scan_destroy(sleb);
 963	return -EINVAL;
 964}
 965
 966/**
 967 * take_ihead - update the status of the index head in lprops to 'taken'.
 968 * @c: UBIFS file-system description object
 969 *
 970 * This function returns the amount of free space in the index head LEB or a
 971 * negative error code.
 972 */
 973static int take_ihead(struct ubifs_info *c)
 974{
 975	const struct ubifs_lprops *lp;
 976	int err, free;
 977
 978	ubifs_get_lprops(c);
 979
 980	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
 981	if (IS_ERR(lp)) {
 982		err = PTR_ERR(lp);
 983		goto out;
 984	}
 985
 986	free = lp->free;
 987
 988	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 989			     lp->flags | LPROPS_TAKEN, 0);
 990	if (IS_ERR(lp)) {
 991		err = PTR_ERR(lp);
 992		goto out;
 993	}
 994
 995	err = free;
 996out:
 997	ubifs_release_lprops(c);
 998	return err;
 999}
1000
1001/**
1002 * ubifs_replay_journal - replay journal.
1003 * @c: UBIFS file-system description object
1004 *
1005 * This function scans the journal, replays and cleans it up. It makes sure all
1006 * memory data structures related to uncommitted journal are built (dirty TNC
1007 * tree, tree of buds, modified lprops, etc).
1008 */
1009int ubifs_replay_journal(struct ubifs_info *c)
1010{
1011	int err, i, lnum, offs, free;
1012
1013	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1014
1015	/* Update the status of the index head in lprops to 'taken' */
1016	free = take_ihead(c);
1017	if (free < 0)
1018		return free; /* Error code */
1019
1020	if (c->ihead_offs != c->leb_size - free) {
1021		ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
1022			  c->ihead_offs);
1023		return -EINVAL;
1024	}
1025
1026	dbg_mnt("start replaying the journal");
1027	c->replaying = 1;
1028	lnum = c->ltail_lnum = c->lhead_lnum;
1029	offs = c->lhead_offs;
1030
1031	for (i = 0; i < c->log_lebs; i++, lnum++) {
1032		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
1033			/*
1034			 * The log is logically circular, we reached the last
1035			 * LEB, switch to the first one.
1036			 */
1037			lnum = UBIFS_LOG_LNUM;
1038			offs = 0;
1039		}
1040		err = replay_log_leb(c, lnum, offs, c->sbuf);
1041		if (err == 1)
1042			/* We hit the end of the log */
1043			break;
1044		if (err)
1045			goto out;
1046		offs = 0;
1047	}
1048
1049	err = replay_buds(c);
1050	if (err)
1051		goto out;
1052
1053	err = apply_replay_list(c);
1054	if (err)
1055		goto out;
1056
1057	err = set_buds_lprops(c);
1058	if (err)
1059		goto out;
1060
1061	/*
1062	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1063	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1064	 * depend on it. This means we have to initialize it to make sure
1065	 * budgeting works properly.
1066	 */
1067	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1068	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1069
1070	ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1071	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
1072		"highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1073		(unsigned long)c->highest_inum);
1074out:
1075	destroy_replay_list(c);
1076	destroy_bud_list(c);
1077	c->replaying = 0;
1078	return err;
1079}
v3.5.6
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file contains journal replay code. It runs when the file-system is being
  25 * mounted and requires no locking.
  26 *
  27 * The larger is the journal, the longer it takes to scan it, so the longer it
  28 * takes to mount UBIFS. This is why the journal has limited size which may be
  29 * changed depending on the system requirements. But a larger journal gives
  30 * faster I/O speed because it writes the index less frequently. So this is a
  31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  32 * larger is the journal, the more memory its index may consume.
  33 */
  34
  35#include "ubifs.h"
  36#include <linux/list_sort.h>
  37
  38/**
  39 * struct replay_entry - replay list entry.
  40 * @lnum: logical eraseblock number of the node
  41 * @offs: node offset
  42 * @len: node length
  43 * @deletion: non-zero if this entry corresponds to a node deletion
  44 * @sqnum: node sequence number
  45 * @list: links the replay list
  46 * @key: node key
  47 * @nm: directory entry name
  48 * @old_size: truncation old size
  49 * @new_size: truncation new size
  50 *
  51 * The replay process first scans all buds and builds the replay list, then
  52 * sorts the replay list in nodes sequence number order, and then inserts all
  53 * the replay entries to the TNC.
  54 */
  55struct replay_entry {
  56	int lnum;
  57	int offs;
  58	int len;
  59	unsigned int deletion:1;
  60	unsigned long long sqnum;
  61	struct list_head list;
  62	union ubifs_key key;
  63	union {
  64		struct qstr nm;
  65		struct {
  66			loff_t old_size;
  67			loff_t new_size;
  68		};
  69	};
  70};
  71
  72/**
  73 * struct bud_entry - entry in the list of buds to replay.
  74 * @list: next bud in the list
  75 * @bud: bud description object
  76 * @sqnum: reference node sequence number
  77 * @free: free bytes in the bud
  78 * @dirty: dirty bytes in the bud
  79 */
  80struct bud_entry {
  81	struct list_head list;
  82	struct ubifs_bud *bud;
  83	unsigned long long sqnum;
  84	int free;
  85	int dirty;
  86};
  87
  88/**
  89 * set_bud_lprops - set free and dirty space used by a bud.
  90 * @c: UBIFS file-system description object
  91 * @b: bud entry which describes the bud
  92 *
  93 * This function makes sure the LEB properties of bud @b are set correctly
  94 * after the replay. Returns zero in case of success and a negative error code
  95 * in case of failure.
  96 */
  97static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  98{
  99	const struct ubifs_lprops *lp;
 100	int err = 0, dirty;
 101
 102	ubifs_get_lprops(c);
 103
 104	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
 105	if (IS_ERR(lp)) {
 106		err = PTR_ERR(lp);
 107		goto out;
 108	}
 109
 110	dirty = lp->dirty;
 111	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 112		/*
 113		 * The LEB was added to the journal with a starting offset of
 114		 * zero which means the LEB must have been empty. The LEB
 115		 * property values should be @lp->free == @c->leb_size and
 116		 * @lp->dirty == 0, but that is not the case. The reason is that
 117		 * the LEB had been garbage collected before it became the bud,
 118		 * and there was not commit inbetween. The garbage collector
 119		 * resets the free and dirty space without recording it
 120		 * anywhere except lprops, so if there was no commit then
 121		 * lprops does not have that information.
 122		 *
 123		 * We do not need to adjust free space because the scan has told
 124		 * us the exact value which is recorded in the replay entry as
 125		 * @b->free.
 126		 *
 127		 * However we do need to subtract from the dirty space the
 128		 * amount of space that the garbage collector reclaimed, which
 129		 * is the whole LEB minus the amount of space that was free.
 130		 */
 131		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 132			lp->free, lp->dirty);
 133		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 134			lp->free, lp->dirty);
 135		dirty -= c->leb_size - lp->free;
 136		/*
 137		 * If the replay order was perfect the dirty space would now be
 138		 * zero. The order is not perfect because the journal heads
 139		 * race with each other. This is not a problem but is does mean
 140		 * that the dirty space may temporarily exceed c->leb_size
 141		 * during the replay.
 142		 */
 143		if (dirty != 0)
 144			dbg_msg("LEB %d lp: %d free %d dirty "
 145				"replay: %d free %d dirty", b->bud->lnum,
 146				lp->free, lp->dirty, b->free, b->dirty);
 147	}
 148	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 149			     lp->flags | LPROPS_TAKEN, 0);
 150	if (IS_ERR(lp)) {
 151		err = PTR_ERR(lp);
 152		goto out;
 153	}
 154
 155	/* Make sure the journal head points to the latest bud */
 156	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 157				     b->bud->lnum, c->leb_size - b->free);
 
 158
 159out:
 160	ubifs_release_lprops(c);
 161	return err;
 162}
 163
 164/**
 165 * set_buds_lprops - set free and dirty space for all replayed buds.
 166 * @c: UBIFS file-system description object
 167 *
 168 * This function sets LEB properties for all replayed buds. Returns zero in
 169 * case of success and a negative error code in case of failure.
 170 */
 171static int set_buds_lprops(struct ubifs_info *c)
 172{
 173	struct bud_entry *b;
 174	int err;
 175
 176	list_for_each_entry(b, &c->replay_buds, list) {
 177		err = set_bud_lprops(c, b);
 178		if (err)
 179			return err;
 180	}
 181
 182	return 0;
 183}
 184
 185/**
 186 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 187 * @c: UBIFS file-system description object
 188 * @r: replay entry of truncation
 189 */
 190static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 191{
 192	unsigned min_blk, max_blk;
 193	union ubifs_key min_key, max_key;
 194	ino_t ino;
 195
 196	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 197	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 198		min_blk += 1;
 199
 200	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 201	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 202		max_blk -= 1;
 203
 204	ino = key_inum(c, &r->key);
 205
 206	data_key_init(c, &min_key, ino, min_blk);
 207	data_key_init(c, &max_key, ino, max_blk);
 208
 209	return ubifs_tnc_remove_range(c, &min_key, &max_key);
 210}
 211
 212/**
 213 * apply_replay_entry - apply a replay entry to the TNC.
 214 * @c: UBIFS file-system description object
 215 * @r: replay entry to apply
 216 *
 217 * Apply a replay entry to the TNC.
 218 */
 219static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 220{
 221	int err;
 222
 223	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 224		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 225
 226	/* Set c->replay_sqnum to help deal with dangling branches. */
 227	c->replay_sqnum = r->sqnum;
 228
 229	if (is_hash_key(c, &r->key)) {
 230		if (r->deletion)
 231			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 232		else
 233			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 234					       r->len, &r->nm);
 235	} else {
 236		if (r->deletion)
 237			switch (key_type(c, &r->key)) {
 238			case UBIFS_INO_KEY:
 239			{
 240				ino_t inum = key_inum(c, &r->key);
 241
 242				err = ubifs_tnc_remove_ino(c, inum);
 243				break;
 244			}
 245			case UBIFS_TRUN_KEY:
 246				err = trun_remove_range(c, r);
 247				break;
 248			default:
 249				err = ubifs_tnc_remove(c, &r->key);
 250				break;
 251			}
 252		else
 253			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 254					    r->len);
 255		if (err)
 256			return err;
 257
 258		if (c->need_recovery)
 259			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 260						       r->new_size);
 261	}
 262
 263	return err;
 264}
 265
 266/**
 267 * replay_entries_cmp - compare 2 replay entries.
 268 * @priv: UBIFS file-system description object
 269 * @a: first replay entry
 270 * @a: second replay entry
 271 *
 272 * This is a comparios function for 'list_sort()' which compares 2 replay
 273 * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
 274 * greater sequence number and %-1 otherwise.
 275 */
 276static int replay_entries_cmp(void *priv, struct list_head *a,
 277			      struct list_head *b)
 278{
 279	struct replay_entry *ra, *rb;
 280
 281	cond_resched();
 282	if (a == b)
 283		return 0;
 284
 285	ra = list_entry(a, struct replay_entry, list);
 286	rb = list_entry(b, struct replay_entry, list);
 287	ubifs_assert(ra->sqnum != rb->sqnum);
 288	if (ra->sqnum > rb->sqnum)
 289		return 1;
 290	return -1;
 291}
 292
 293/**
 294 * apply_replay_list - apply the replay list to the TNC.
 295 * @c: UBIFS file-system description object
 296 *
 297 * Apply all entries in the replay list to the TNC. Returns zero in case of
 298 * success and a negative error code in case of failure.
 299 */
 300static int apply_replay_list(struct ubifs_info *c)
 301{
 302	struct replay_entry *r;
 303	int err;
 304
 305	list_sort(c, &c->replay_list, &replay_entries_cmp);
 306
 307	list_for_each_entry(r, &c->replay_list, list) {
 308		cond_resched();
 309
 310		err = apply_replay_entry(c, r);
 311		if (err)
 312			return err;
 313	}
 314
 315	return 0;
 316}
 317
 318/**
 319 * destroy_replay_list - destroy the replay.
 320 * @c: UBIFS file-system description object
 321 *
 322 * Destroy the replay list.
 323 */
 324static void destroy_replay_list(struct ubifs_info *c)
 325{
 326	struct replay_entry *r, *tmp;
 327
 328	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 329		if (is_hash_key(c, &r->key))
 330			kfree(r->nm.name);
 331		list_del(&r->list);
 332		kfree(r);
 333	}
 334}
 335
 336/**
 337 * insert_node - insert a node to the replay list
 338 * @c: UBIFS file-system description object
 339 * @lnum: node logical eraseblock number
 340 * @offs: node offset
 341 * @len: node length
 342 * @key: node key
 343 * @sqnum: sequence number
 344 * @deletion: non-zero if this is a deletion
 345 * @used: number of bytes in use in a LEB
 346 * @old_size: truncation old size
 347 * @new_size: truncation new size
 348 *
 349 * This function inserts a scanned non-direntry node to the replay list. The
 350 * replay list contains @struct replay_entry elements, and we sort this list in
 351 * sequence number order before applying it. The replay list is applied at the
 352 * very end of the replay process. Since the list is sorted in sequence number
 353 * order, the older modifications are applied first. This function returns zero
 354 * in case of success and a negative error code in case of failure.
 355 */
 356static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 357		       union ubifs_key *key, unsigned long long sqnum,
 358		       int deletion, int *used, loff_t old_size,
 359		       loff_t new_size)
 360{
 361	struct replay_entry *r;
 362
 363	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 364
 365	if (key_inum(c, key) >= c->highest_inum)
 366		c->highest_inum = key_inum(c, key);
 367
 368	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 369	if (!r)
 370		return -ENOMEM;
 371
 372	if (!deletion)
 373		*used += ALIGN(len, 8);
 374	r->lnum = lnum;
 375	r->offs = offs;
 376	r->len = len;
 377	r->deletion = !!deletion;
 378	r->sqnum = sqnum;
 379	key_copy(c, key, &r->key);
 380	r->old_size = old_size;
 381	r->new_size = new_size;
 382
 383	list_add_tail(&r->list, &c->replay_list);
 384	return 0;
 385}
 386
 387/**
 388 * insert_dent - insert a directory entry node into the replay list.
 389 * @c: UBIFS file-system description object
 390 * @lnum: node logical eraseblock number
 391 * @offs: node offset
 392 * @len: node length
 393 * @key: node key
 394 * @name: directory entry name
 395 * @nlen: directory entry name length
 396 * @sqnum: sequence number
 397 * @deletion: non-zero if this is a deletion
 398 * @used: number of bytes in use in a LEB
 399 *
 400 * This function inserts a scanned directory entry node or an extended
 401 * attribute entry to the replay list. Returns zero in case of success and a
 402 * negative error code in case of failure.
 403 */
 404static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 405		       union ubifs_key *key, const char *name, int nlen,
 406		       unsigned long long sqnum, int deletion, int *used)
 407{
 408	struct replay_entry *r;
 409	char *nbuf;
 410
 411	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 412	if (key_inum(c, key) >= c->highest_inum)
 413		c->highest_inum = key_inum(c, key);
 414
 415	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 416	if (!r)
 417		return -ENOMEM;
 418
 419	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 420	if (!nbuf) {
 421		kfree(r);
 422		return -ENOMEM;
 423	}
 424
 425	if (!deletion)
 426		*used += ALIGN(len, 8);
 427	r->lnum = lnum;
 428	r->offs = offs;
 429	r->len = len;
 430	r->deletion = !!deletion;
 431	r->sqnum = sqnum;
 432	key_copy(c, key, &r->key);
 433	r->nm.len = nlen;
 434	memcpy(nbuf, name, nlen);
 435	nbuf[nlen] = '\0';
 436	r->nm.name = nbuf;
 437
 438	list_add_tail(&r->list, &c->replay_list);
 439	return 0;
 440}
 441
 442/**
 443 * ubifs_validate_entry - validate directory or extended attribute entry node.
 444 * @c: UBIFS file-system description object
 445 * @dent: the node to validate
 446 *
 447 * This function validates directory or extended attribute entry node @dent.
 448 * Returns zero if the node is all right and a %-EINVAL if not.
 449 */
 450int ubifs_validate_entry(struct ubifs_info *c,
 451			 const struct ubifs_dent_node *dent)
 452{
 453	int key_type = key_type_flash(c, dent->key);
 454	int nlen = le16_to_cpu(dent->nlen);
 455
 456	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 457	    dent->type >= UBIFS_ITYPES_CNT ||
 458	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 459	    strnlen(dent->name, nlen) != nlen ||
 460	    le64_to_cpu(dent->inum) > MAX_INUM) {
 461		ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
 462			  "directory entry" : "extended attribute entry");
 463		return -EINVAL;
 464	}
 465
 466	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 467		ubifs_err("bad key type %d", key_type);
 468		return -EINVAL;
 469	}
 470
 471	return 0;
 472}
 473
 474/**
 475 * is_last_bud - check if the bud is the last in the journal head.
 476 * @c: UBIFS file-system description object
 477 * @bud: bud description object
 478 *
 479 * This function checks if bud @bud is the last bud in its journal head. This
 480 * information is then used by 'replay_bud()' to decide whether the bud can
 481 * have corruptions or not. Indeed, only last buds can be corrupted by power
 482 * cuts. Returns %1 if this is the last bud, and %0 if not.
 483 */
 484static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 485{
 486	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 487	struct ubifs_bud *next;
 488	uint32_t data;
 489	int err;
 490
 491	if (list_is_last(&bud->list, &jh->buds_list))
 492		return 1;
 493
 494	/*
 495	 * The following is a quirk to make sure we work correctly with UBIFS
 496	 * images used with older UBIFS.
 497	 *
 498	 * Normally, the last bud will be the last in the journal head's list
 499	 * of bud. However, there is one exception if the UBIFS image belongs
 500	 * to older UBIFS. This is fairly unlikely: one would need to use old
 501	 * UBIFS, then have a power cut exactly at the right point, and then
 502	 * try to mount this image with new UBIFS.
 503	 *
 504	 * The exception is: it is possible to have 2 buds A and B, A goes
 505	 * before B, and B is the last, bud B is contains no data, and bud A is
 506	 * corrupted at the end. The reason is that in older versions when the
 507	 * journal code switched the next bud (from A to B), it first added a
 508	 * log reference node for the new bud (B), and only after this it
 509	 * synchronized the write-buffer of current bud (A). But later this was
 510	 * changed and UBIFS started to always synchronize the write-buffer of
 511	 * the bud (A) before writing the log reference for the new bud (B).
 512	 *
 513	 * But because older UBIFS always synchronized A's write-buffer before
 514	 * writing to B, we can recognize this exceptional situation but
 515	 * checking the contents of bud B - if it is empty, then A can be
 516	 * treated as the last and we can recover it.
 517	 *
 518	 * TODO: remove this piece of code in a couple of years (today it is
 519	 * 16.05.2011).
 520	 */
 521	next = list_entry(bud->list.next, struct ubifs_bud, list);
 522	if (!list_is_last(&next->list, &jh->buds_list))
 523		return 0;
 524
 525	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 526	if (err)
 527		return 0;
 528
 529	return data == 0xFFFFFFFF;
 530}
 531
 532/**
 533 * replay_bud - replay a bud logical eraseblock.
 534 * @c: UBIFS file-system description object
 535 * @b: bud entry which describes the bud
 536 *
 537 * This function replays bud @bud, recovers it if needed, and adds all nodes
 538 * from this bud to the replay list. Returns zero in case of success and a
 539 * negative error code in case of failure.
 540 */
 541static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 542{
 543	int is_last = is_last_bud(c, b->bud);
 544	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 545	struct ubifs_scan_leb *sleb;
 546	struct ubifs_scan_node *snod;
 547
 548	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 549		lnum, b->bud->jhead, offs, is_last);
 550
 551	if (c->need_recovery && is_last)
 552		/*
 553		 * Recover only last LEBs in the journal heads, because power
 554		 * cuts may cause corruptions only in these LEBs, because only
 555		 * these LEBs could possibly be written to at the power cut
 556		 * time.
 557		 */
 558		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 559	else
 560		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 561	if (IS_ERR(sleb))
 562		return PTR_ERR(sleb);
 563
 564	/*
 565	 * The bud does not have to start from offset zero - the beginning of
 566	 * the 'lnum' LEB may contain previously committed data. One of the
 567	 * things we have to do in replay is to correctly update lprops with
 568	 * newer information about this LEB.
 569	 *
 570	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 571	 * bytes of free space because it only contain information about
 572	 * committed data.
 573	 *
 574	 * But we know that real amount of free space is 'c->leb_size -
 575	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 576	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
 577	 * how much of these data are dirty and update lprops with this
 578	 * information.
 579	 *
 580	 * The dirt in that LEB region is comprised of padding nodes, deletion
 581	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
 582	 * nodes in this LEB. So instead of calculating clean space, we
 583	 * calculate used space ('used' variable).
 584	 */
 585
 586	list_for_each_entry(snod, &sleb->nodes, list) {
 587		int deletion = 0;
 588
 589		cond_resched();
 590
 591		if (snod->sqnum >= SQNUM_WATERMARK) {
 592			ubifs_err("file system's life ended");
 593			goto out_dump;
 594		}
 595
 596		if (snod->sqnum > c->max_sqnum)
 597			c->max_sqnum = snod->sqnum;
 598
 599		switch (snod->type) {
 600		case UBIFS_INO_NODE:
 601		{
 602			struct ubifs_ino_node *ino = snod->node;
 603			loff_t new_size = le64_to_cpu(ino->size);
 604
 605			if (le32_to_cpu(ino->nlink) == 0)
 606				deletion = 1;
 607			err = insert_node(c, lnum, snod->offs, snod->len,
 608					  &snod->key, snod->sqnum, deletion,
 609					  &used, 0, new_size);
 610			break;
 611		}
 612		case UBIFS_DATA_NODE:
 613		{
 614			struct ubifs_data_node *dn = snod->node;
 615			loff_t new_size = le32_to_cpu(dn->size) +
 616					  key_block(c, &snod->key) *
 617					  UBIFS_BLOCK_SIZE;
 618
 619			err = insert_node(c, lnum, snod->offs, snod->len,
 620					  &snod->key, snod->sqnum, deletion,
 621					  &used, 0, new_size);
 622			break;
 623		}
 624		case UBIFS_DENT_NODE:
 625		case UBIFS_XENT_NODE:
 626		{
 627			struct ubifs_dent_node *dent = snod->node;
 628
 629			err = ubifs_validate_entry(c, dent);
 630			if (err)
 631				goto out_dump;
 632
 633			err = insert_dent(c, lnum, snod->offs, snod->len,
 634					  &snod->key, dent->name,
 635					  le16_to_cpu(dent->nlen), snod->sqnum,
 636					  !le64_to_cpu(dent->inum), &used);
 637			break;
 638		}
 639		case UBIFS_TRUN_NODE:
 640		{
 641			struct ubifs_trun_node *trun = snod->node;
 642			loff_t old_size = le64_to_cpu(trun->old_size);
 643			loff_t new_size = le64_to_cpu(trun->new_size);
 644			union ubifs_key key;
 645
 646			/* Validate truncation node */
 647			if (old_size < 0 || old_size > c->max_inode_sz ||
 648			    new_size < 0 || new_size > c->max_inode_sz ||
 649			    old_size <= new_size) {
 650				ubifs_err("bad truncation node");
 651				goto out_dump;
 652			}
 653
 654			/*
 655			 * Create a fake truncation key just to use the same
 656			 * functions which expect nodes to have keys.
 657			 */
 658			trun_key_init(c, &key, le32_to_cpu(trun->inum));
 659			err = insert_node(c, lnum, snod->offs, snod->len,
 660					  &key, snod->sqnum, 1, &used,
 661					  old_size, new_size);
 662			break;
 663		}
 664		default:
 665			ubifs_err("unexpected node type %d in bud LEB %d:%d",
 666				  snod->type, lnum, snod->offs);
 667			err = -EINVAL;
 668			goto out_dump;
 669		}
 670		if (err)
 671			goto out;
 672	}
 673
 674	ubifs_assert(ubifs_search_bud(c, lnum));
 675	ubifs_assert(sleb->endpt - offs >= used);
 676	ubifs_assert(sleb->endpt % c->min_io_size == 0);
 677
 678	b->dirty = sleb->endpt - offs - used;
 679	b->free = c->leb_size - sleb->endpt;
 680	dbg_mnt("bud LEB %d replied: dirty %d, free %d", lnum, b->dirty, b->free);
 681
 682out:
 683	ubifs_scan_destroy(sleb);
 684	return err;
 685
 686out_dump:
 687	ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
 688	ubifs_dump_node(c, snod->node);
 689	ubifs_scan_destroy(sleb);
 690	return -EINVAL;
 691}
 692
 693/**
 694 * replay_buds - replay all buds.
 695 * @c: UBIFS file-system description object
 696 *
 697 * This function returns zero in case of success and a negative error code in
 698 * case of failure.
 699 */
 700static int replay_buds(struct ubifs_info *c)
 701{
 702	struct bud_entry *b;
 703	int err;
 704	unsigned long long prev_sqnum = 0;
 705
 706	list_for_each_entry(b, &c->replay_buds, list) {
 707		err = replay_bud(c, b);
 708		if (err)
 709			return err;
 710
 711		ubifs_assert(b->sqnum > prev_sqnum);
 712		prev_sqnum = b->sqnum;
 713	}
 714
 715	return 0;
 716}
 717
 718/**
 719 * destroy_bud_list - destroy the list of buds to replay.
 720 * @c: UBIFS file-system description object
 721 */
 722static void destroy_bud_list(struct ubifs_info *c)
 723{
 724	struct bud_entry *b;
 725
 726	while (!list_empty(&c->replay_buds)) {
 727		b = list_entry(c->replay_buds.next, struct bud_entry, list);
 728		list_del(&b->list);
 729		kfree(b);
 730	}
 731}
 732
 733/**
 734 * add_replay_bud - add a bud to the list of buds to replay.
 735 * @c: UBIFS file-system description object
 736 * @lnum: bud logical eraseblock number to replay
 737 * @offs: bud start offset
 738 * @jhead: journal head to which this bud belongs
 739 * @sqnum: reference node sequence number
 740 *
 741 * This function returns zero in case of success and a negative error code in
 742 * case of failure.
 743 */
 744static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 745			  unsigned long long sqnum)
 746{
 747	struct ubifs_bud *bud;
 748	struct bud_entry *b;
 749
 750	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 751
 752	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 753	if (!bud)
 754		return -ENOMEM;
 755
 756	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 757	if (!b) {
 758		kfree(bud);
 759		return -ENOMEM;
 760	}
 761
 762	bud->lnum = lnum;
 763	bud->start = offs;
 764	bud->jhead = jhead;
 765	ubifs_add_bud(c, bud);
 766
 767	b->bud = bud;
 768	b->sqnum = sqnum;
 769	list_add_tail(&b->list, &c->replay_buds);
 770
 771	return 0;
 772}
 773
 774/**
 775 * validate_ref - validate a reference node.
 776 * @c: UBIFS file-system description object
 777 * @ref: the reference node to validate
 778 * @ref_lnum: LEB number of the reference node
 779 * @ref_offs: reference node offset
 780 *
 781 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 782 * returned if the reference node is new, otherwise %-EINVAL is returned if
 783 * validation failed.
 784 */
 785static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 786{
 787	struct ubifs_bud *bud;
 788	int lnum = le32_to_cpu(ref->lnum);
 789	unsigned int offs = le32_to_cpu(ref->offs);
 790	unsigned int jhead = le32_to_cpu(ref->jhead);
 791
 792	/*
 793	 * ref->offs may point to the end of LEB when the journal head points
 794	 * to the end of LEB and we write reference node for it during commit.
 795	 * So this is why we require 'offs > c->leb_size'.
 796	 */
 797	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 798	    lnum < c->main_first || offs > c->leb_size ||
 799	    offs & (c->min_io_size - 1))
 800		return -EINVAL;
 801
 802	/* Make sure we have not already looked at this bud */
 803	bud = ubifs_search_bud(c, lnum);
 804	if (bud) {
 805		if (bud->jhead == jhead && bud->start <= offs)
 806			return 1;
 807		ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
 808		return -EINVAL;
 809	}
 810
 811	return 0;
 812}
 813
 814/**
 815 * replay_log_leb - replay a log logical eraseblock.
 816 * @c: UBIFS file-system description object
 817 * @lnum: log logical eraseblock to replay
 818 * @offs: offset to start replaying from
 819 * @sbuf: scan buffer
 820 *
 821 * This function replays a log LEB and returns zero in case of success, %1 if
 822 * this is the last LEB in the log, and a negative error code in case of
 823 * failure.
 824 */
 825static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 826{
 827	int err;
 828	struct ubifs_scan_leb *sleb;
 829	struct ubifs_scan_node *snod;
 830	const struct ubifs_cs_node *node;
 831
 832	dbg_mnt("replay log LEB %d:%d", lnum, offs);
 833	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 834	if (IS_ERR(sleb)) {
 835		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 836			return PTR_ERR(sleb);
 837		/*
 838		 * Note, the below function will recover this log LEB only if
 839		 * it is the last, because unclean reboots can possibly corrupt
 840		 * only the tail of the log.
 841		 */
 842		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
 843		if (IS_ERR(sleb))
 844			return PTR_ERR(sleb);
 845	}
 846
 847	if (sleb->nodes_cnt == 0) {
 848		err = 1;
 849		goto out;
 850	}
 851
 852	node = sleb->buf;
 853	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 854	if (c->cs_sqnum == 0) {
 855		/*
 856		 * This is the first log LEB we are looking at, make sure that
 857		 * the first node is a commit start node. Also record its
 858		 * sequence number so that UBIFS can determine where the log
 859		 * ends, because all nodes which were have higher sequence
 860		 * numbers.
 861		 */
 862		if (snod->type != UBIFS_CS_NODE) {
 863			ubifs_err("first log node at LEB %d:%d is not CS node",
 864				  lnum, offs);
 865			goto out_dump;
 866		}
 867		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
 868			ubifs_err("first CS node at LEB %d:%d has wrong "
 869				  "commit number %llu expected %llu",
 870				  lnum, offs,
 871				  (unsigned long long)le64_to_cpu(node->cmt_no),
 872				  c->cmt_no);
 873			goto out_dump;
 874		}
 875
 876		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
 877		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
 878	}
 879
 880	if (snod->sqnum < c->cs_sqnum) {
 881		/*
 882		 * This means that we reached end of log and now
 883		 * look to the older log data, which was already
 884		 * committed but the eraseblock was not erased (UBIFS
 885		 * only un-maps it). So this basically means we have to
 886		 * exit with "end of log" code.
 887		 */
 888		err = 1;
 889		goto out;
 890	}
 891
 892	/* Make sure the first node sits at offset zero of the LEB */
 893	if (snod->offs != 0) {
 894		ubifs_err("first node is not at zero offset");
 895		goto out_dump;
 896	}
 897
 898	list_for_each_entry(snod, &sleb->nodes, list) {
 899		cond_resched();
 900
 901		if (snod->sqnum >= SQNUM_WATERMARK) {
 902			ubifs_err("file system's life ended");
 903			goto out_dump;
 904		}
 905
 906		if (snod->sqnum < c->cs_sqnum) {
 907			ubifs_err("bad sqnum %llu, commit sqnum %llu",
 908				  snod->sqnum, c->cs_sqnum);
 909			goto out_dump;
 910		}
 911
 912		if (snod->sqnum > c->max_sqnum)
 913			c->max_sqnum = snod->sqnum;
 914
 915		switch (snod->type) {
 916		case UBIFS_REF_NODE: {
 917			const struct ubifs_ref_node *ref = snod->node;
 918
 919			err = validate_ref(c, ref);
 920			if (err == 1)
 921				break; /* Already have this bud */
 922			if (err)
 923				goto out_dump;
 924
 925			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
 926					     le32_to_cpu(ref->offs),
 927					     le32_to_cpu(ref->jhead),
 928					     snod->sqnum);
 929			if (err)
 930				goto out;
 931
 932			break;
 933		}
 934		case UBIFS_CS_NODE:
 935			/* Make sure it sits at the beginning of LEB */
 936			if (snod->offs != 0) {
 937				ubifs_err("unexpected node in log");
 938				goto out_dump;
 939			}
 940			break;
 941		default:
 942			ubifs_err("unexpected node in log");
 943			goto out_dump;
 944		}
 945	}
 946
 947	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
 948		c->lhead_lnum = lnum;
 949		c->lhead_offs = sleb->endpt;
 950	}
 951
 952	err = !sleb->endpt;
 953out:
 954	ubifs_scan_destroy(sleb);
 955	return err;
 956
 957out_dump:
 958	ubifs_err("log error detected while replaying the log at LEB %d:%d",
 959		  lnum, offs + snod->offs);
 960	ubifs_dump_node(c, snod->node);
 961	ubifs_scan_destroy(sleb);
 962	return -EINVAL;
 963}
 964
 965/**
 966 * take_ihead - update the status of the index head in lprops to 'taken'.
 967 * @c: UBIFS file-system description object
 968 *
 969 * This function returns the amount of free space in the index head LEB or a
 970 * negative error code.
 971 */
 972static int take_ihead(struct ubifs_info *c)
 973{
 974	const struct ubifs_lprops *lp;
 975	int err, free;
 976
 977	ubifs_get_lprops(c);
 978
 979	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
 980	if (IS_ERR(lp)) {
 981		err = PTR_ERR(lp);
 982		goto out;
 983	}
 984
 985	free = lp->free;
 986
 987	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 988			     lp->flags | LPROPS_TAKEN, 0);
 989	if (IS_ERR(lp)) {
 990		err = PTR_ERR(lp);
 991		goto out;
 992	}
 993
 994	err = free;
 995out:
 996	ubifs_release_lprops(c);
 997	return err;
 998}
 999
1000/**
1001 * ubifs_replay_journal - replay journal.
1002 * @c: UBIFS file-system description object
1003 *
1004 * This function scans the journal, replays and cleans it up. It makes sure all
1005 * memory data structures related to uncommitted journal are built (dirty TNC
1006 * tree, tree of buds, modified lprops, etc).
1007 */
1008int ubifs_replay_journal(struct ubifs_info *c)
1009{
1010	int err, i, lnum, offs, free;
1011
1012	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1013
1014	/* Update the status of the index head in lprops to 'taken' */
1015	free = take_ihead(c);
1016	if (free < 0)
1017		return free; /* Error code */
1018
1019	if (c->ihead_offs != c->leb_size - free) {
1020		ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
1021			  c->ihead_offs);
1022		return -EINVAL;
1023	}
1024
1025	dbg_mnt("start replaying the journal");
1026	c->replaying = 1;
1027	lnum = c->ltail_lnum = c->lhead_lnum;
1028	offs = c->lhead_offs;
1029
1030	for (i = 0; i < c->log_lebs; i++, lnum++) {
1031		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
1032			/*
1033			 * The log is logically circular, we reached the last
1034			 * LEB, switch to the first one.
1035			 */
1036			lnum = UBIFS_LOG_LNUM;
1037			offs = 0;
1038		}
1039		err = replay_log_leb(c, lnum, offs, c->sbuf);
1040		if (err == 1)
1041			/* We hit the end of the log */
1042			break;
1043		if (err)
1044			goto out;
1045		offs = 0;
1046	}
1047
1048	err = replay_buds(c);
1049	if (err)
1050		goto out;
1051
1052	err = apply_replay_list(c);
1053	if (err)
1054		goto out;
1055
1056	err = set_buds_lprops(c);
1057	if (err)
1058		goto out;
1059
1060	/*
1061	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1062	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1063	 * depend on it. This means we have to initialize it to make sure
1064	 * budgeting works properly.
1065	 */
1066	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1067	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1068
1069	ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1070	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
1071		"highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1072		(unsigned long)c->highest_inum);
1073out:
1074	destroy_replay_list(c);
1075	destroy_bud_list(c);
1076	c->replaying = 0;
1077	return err;
1078}