Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
 
  20#include "ctree.h"
  21#include "volumes.h"
  22#include "disk-io.h"
  23#include "ordered-data.h"
 
 
 
 
 
  24
  25/*
  26 * This is only the first step towards a full-features scrub. It reads all
  27 * extent and super block and verifies the checksums. In case a bad checksum
  28 * is found or the extent cannot be read, good data will be written back if
  29 * any can be found.
  30 *
  31 * Future enhancements:
  32 *  - To enhance the performance, better read-ahead strategies for the
  33 *    extent-tree can be employed.
  34 *  - In case an unrepairable extent is encountered, track which files are
  35 *    affected and report them
  36 *  - In case of a read error on files with nodatasum, map the file and read
  37 *    the extent to trigger a writeback of the good copy
  38 *  - track and record media errors, throw out bad devices
  39 *  - add a mode to also read unallocated space
  40 *  - make the prefetch cancellable
  41 */
  42
  43struct scrub_bio;
  44struct scrub_page;
  45struct scrub_dev;
  46static void scrub_bio_end_io(struct bio *bio, int err);
  47static void scrub_checksum(struct btrfs_work *work);
  48static int scrub_checksum_data(struct scrub_dev *sdev,
  49			       struct scrub_page *spag, void *buffer);
  50static int scrub_checksum_tree_block(struct scrub_dev *sdev,
  51				     struct scrub_page *spag, u64 logical,
  52				     void *buffer);
  53static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
  54static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
  55static void scrub_fixup_end_io(struct bio *bio, int err);
  56static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
  57			  struct page *page);
  58static void scrub_fixup(struct scrub_bio *sbio, int ix);
  59
  60#define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
  61#define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
 
  62
  63struct scrub_page {
 
 
 
  64	u64			flags;  /* extent flags */
  65	u64			generation;
  66	u64			mirror_num;
  67	int			have_csum;
 
 
 
 
 
  68	u8			csum[BTRFS_CSUM_SIZE];
  69};
  70
  71struct scrub_bio {
  72	int			index;
  73	struct scrub_dev	*sdev;
  74	struct bio		*bio;
  75	int			err;
  76	u64			logical;
  77	u64			physical;
  78	struct scrub_page	spag[SCRUB_PAGES_PER_BIO];
  79	u64			count;
  80	int			next_free;
  81	struct btrfs_work	work;
  82};
  83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84struct scrub_dev {
  85	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
  86	struct btrfs_device	*dev;
  87	int			first_free;
  88	int			curr;
  89	atomic_t		in_flight;
 
  90	spinlock_t		list_lock;
  91	wait_queue_head_t	list_wait;
  92	u16			csum_size;
  93	struct list_head	csum_list;
  94	atomic_t		cancel_req;
  95	int			readonly;
 
 
 
 
  96	/*
  97	 * statistics
  98	 */
  99	struct btrfs_scrub_progress stat;
 100	spinlock_t		stat_lock;
 101};
 102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103static void scrub_free_csums(struct scrub_dev *sdev)
 104{
 105	while (!list_empty(&sdev->csum_list)) {
 106		struct btrfs_ordered_sum *sum;
 107		sum = list_first_entry(&sdev->csum_list,
 108				       struct btrfs_ordered_sum, list);
 109		list_del(&sum->list);
 110		kfree(sum);
 111	}
 112}
 113
 114static void scrub_free_bio(struct bio *bio)
 115{
 116	int i;
 117	struct page *last_page = NULL;
 118
 119	if (!bio)
 120		return;
 121
 122	for (i = 0; i < bio->bi_vcnt; ++i) {
 123		if (bio->bi_io_vec[i].bv_page == last_page)
 124			continue;
 125		last_page = bio->bi_io_vec[i].bv_page;
 126		__free_page(last_page);
 127	}
 128	bio_put(bio);
 129}
 130
 131static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
 132{
 133	int i;
 134
 135	if (!sdev)
 136		return;
 137
 
 
 
 
 
 
 
 
 
 
 
 
 138	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 139		struct scrub_bio *sbio = sdev->bios[i];
 140
 141		if (!sbio)
 142			break;
 143
 144		scrub_free_bio(sbio->bio);
 145		kfree(sbio);
 146	}
 147
 148	scrub_free_csums(sdev);
 149	kfree(sdev);
 150}
 151
 152static noinline_for_stack
 153struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
 154{
 155	struct scrub_dev *sdev;
 156	int		i;
 157	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 
 158
 
 
 159	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
 160	if (!sdev)
 161		goto nomem;
 162	sdev->dev = dev;
 
 
 163	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 164		struct scrub_bio *sbio;
 165
 166		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 167		if (!sbio)
 168			goto nomem;
 169		sdev->bios[i] = sbio;
 170
 171		sbio->index = i;
 172		sbio->sdev = sdev;
 173		sbio->count = 0;
 174		sbio->work.func = scrub_checksum;
 175
 176		if (i != SCRUB_BIOS_PER_DEV-1)
 177			sdev->bios[i]->next_free = i + 1;
 178		 else
 179			sdev->bios[i]->next_free = -1;
 180	}
 181	sdev->first_free = 0;
 182	sdev->curr = -1;
 
 
 183	atomic_set(&sdev->in_flight, 0);
 
 184	atomic_set(&sdev->cancel_req, 0);
 185	sdev->csum_size = btrfs_super_csum_size(&fs_info->super_copy);
 186	INIT_LIST_HEAD(&sdev->csum_list);
 187
 188	spin_lock_init(&sdev->list_lock);
 189	spin_lock_init(&sdev->stat_lock);
 190	init_waitqueue_head(&sdev->list_wait);
 191	return sdev;
 192
 193nomem:
 194	scrub_free_dev(sdev);
 195	return ERR_PTR(-ENOMEM);
 196}
 197
 198/*
 199 * scrub_recheck_error gets called when either verification of the page
 200 * failed or the bio failed to read, e.g. with EIO. In the latter case,
 201 * recheck_error gets called for every page in the bio, even though only
 202 * one may be bad
 203 */
 204static void scrub_recheck_error(struct scrub_bio *sbio, int ix)
 205{
 206	if (sbio->err) {
 207		if (scrub_fixup_io(READ, sbio->sdev->dev->bdev,
 208				   (sbio->physical + ix * PAGE_SIZE) >> 9,
 209				   sbio->bio->bi_io_vec[ix].bv_page) == 0) {
 210			if (scrub_fixup_check(sbio, ix) == 0)
 211				return;
 212		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214
 215	scrub_fixup(sbio, ix);
 
 
 
 
 
 
 
 
 
 
 
 216}
 217
 218static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
 219{
 220	int ret = 1;
 221	struct page *page;
 222	void *buffer;
 223	u64 flags = sbio->spag[ix].flags;
 
 
 
 
 
 
 
 
 
 
 224
 225	page = sbio->bio->bi_io_vec[ix].bv_page;
 226	buffer = kmap_atomic(page, KM_USER0);
 227	if (flags & BTRFS_EXTENT_FLAG_DATA) {
 228		ret = scrub_checksum_data(sbio->sdev,
 229					  sbio->spag + ix, buffer);
 230	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 231		ret = scrub_checksum_tree_block(sbio->sdev,
 232						sbio->spag + ix,
 233						sbio->logical + ix * PAGE_SIZE,
 234						buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235	} else {
 236		WARN_ON(1);
 
 
 
 237	}
 238	kunmap_atomic(buffer, KM_USER0);
 239
 240	return ret;
 
 
 
 241}
 242
 243static void scrub_fixup_end_io(struct bio *bio, int err)
 244{
 245	complete((struct completion *)bio->bi_private);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246}
 247
 248static void scrub_fixup(struct scrub_bio *sbio, int ix)
 249{
 250	struct scrub_dev *sdev = sbio->sdev;
 251	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 252	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
 253	struct btrfs_multi_bio *multi = NULL;
 254	u64 logical = sbio->logical + ix * PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255	u64 length;
 256	int i;
 
 
 
 
 
 
 
 257	int ret;
 258	DECLARE_COMPLETION_ONSTACK(complete);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259
 260	if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
 261	    (sbio->spag[ix].have_csum == 0)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262		/*
 263		 * nodatasum, don't try to fix anything
 264		 * FIXME: we can do better, open the inode and trigger a
 265		 * writeback
 
 
 
 266		 */
 267		goto uncorrectable;
 
 
 
 
 268	}
 269
 270	length = PAGE_SIZE;
 271	ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
 272			      &multi, 0);
 273	if (ret || !multi || length < PAGE_SIZE) {
 274		printk(KERN_ERR
 275		       "scrub_fixup: btrfs_map_block failed us for %llu\n",
 276		       (unsigned long long)logical);
 277		WARN_ON(1);
 278		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279	}
 280
 281	if (multi->num_stripes == 1)
 282		/* there aren't any replicas */
 283		goto uncorrectable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285	/*
 286	 * first find a good copy
 
 287	 */
 288	for (i = 0; i < multi->num_stripes; ++i) {
 289		if (i == sbio->spag[ix].mirror_num)
 
 
 
 290			continue;
 291
 292		if (scrub_fixup_io(READ, multi->stripes[i].dev->bdev,
 293				   multi->stripes[i].physical >> 9,
 294				   sbio->bio->bi_io_vec[ix].bv_page)) {
 295			/* I/O-error, this is not a good copy */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297		}
 298
 299		if (scrub_fixup_check(sbio, ix) == 0)
 300			break;
 
 
 301	}
 302	if (i == multi->num_stripes)
 303		goto uncorrectable;
 304
 305	if (!sdev->readonly) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306		/*
 307		 * bi_io_vec[ix].bv_page now contains good data, write it back
 
 308		 */
 309		if (scrub_fixup_io(WRITE, sdev->dev->bdev,
 310				   (sbio->physical + ix * PAGE_SIZE) >> 9,
 311				   sbio->bio->bi_io_vec[ix].bv_page)) {
 312			/* I/O-error, writeback failed, give up */
 313			goto uncorrectable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314		}
 
 
 
 
 315	}
 316
 317	kfree(multi);
 318	spin_lock(&sdev->stat_lock);
 319	++sdev->stat.corrected_errors;
 320	spin_unlock(&sdev->stat_lock);
 321
 322	if (printk_ratelimit())
 323		printk(KERN_ERR "btrfs: fixed up at %llu\n",
 324		       (unsigned long long)logical);
 325	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 326
 327uncorrectable:
 328	kfree(multi);
 329	spin_lock(&sdev->stat_lock);
 330	++sdev->stat.uncorrectable_errors;
 331	spin_unlock(&sdev->stat_lock);
 332
 333	if (printk_ratelimit())
 334		printk(KERN_ERR "btrfs: unable to fixup at %llu\n",
 335			 (unsigned long long)logical);
 336}
 
 337
 338static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
 339			 struct page *page)
 340{
 341	struct bio *bio = NULL;
 342	int ret;
 343	DECLARE_COMPLETION_ONSTACK(complete);
 
 
 
 
 
 
 
 
 
 344
 345	bio = bio_alloc(GFP_NOFS, 1);
 346	bio->bi_bdev = bdev;
 347	bio->bi_sector = sector;
 348	bio_add_page(bio, page, PAGE_SIZE, 0);
 349	bio->bi_end_io = scrub_fixup_end_io;
 350	bio->bi_private = &complete;
 351	submit_bio(rw, bio);
 352
 353	/* this will also unplug the queue */
 354	wait_for_completion(&complete);
 
 
 
 355
 356	ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
 357	bio_put(bio);
 358	return ret;
 
 
 
 359}
 360
 361static void scrub_bio_end_io(struct bio *bio, int err)
 
 
 
 
 362{
 363	struct scrub_bio *sbio = bio->bi_private;
 364	struct scrub_dev *sdev = sbio->sdev;
 365	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 
 
 366
 367	sbio->err = err;
 368	sbio->bio = bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369
 370	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371}
 372
 373static void scrub_checksum(struct btrfs_work *work)
 374{
 375	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
 376	struct scrub_dev *sdev = sbio->sdev;
 377	struct page *page;
 378	void *buffer;
 379	int i;
 380	u64 flags;
 381	u64 logical;
 382	int ret;
 383
 384	if (sbio->err) {
 385		for (i = 0; i < sbio->count; ++i)
 386			scrub_recheck_error(sbio, i);
 
 
 
 387
 388		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
 389		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
 390		sbio->bio->bi_phys_segments = 0;
 391		sbio->bio->bi_idx = 0;
 392
 393		for (i = 0; i < sbio->count; i++) {
 394			struct bio_vec *bi;
 395			bi = &sbio->bio->bi_io_vec[i];
 396			bi->bv_offset = 0;
 397			bi->bv_len = PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398		}
 
 399
 400		spin_lock(&sdev->stat_lock);
 401		++sdev->stat.read_errors;
 402		spin_unlock(&sdev->stat_lock);
 403		goto out;
 404	}
 405	for (i = 0; i < sbio->count; ++i) {
 406		page = sbio->bio->bi_io_vec[i].bv_page;
 407		buffer = kmap_atomic(page, KM_USER0);
 408		flags = sbio->spag[i].flags;
 409		logical = sbio->logical + i * PAGE_SIZE;
 410		ret = 0;
 411		if (flags & BTRFS_EXTENT_FLAG_DATA) {
 412			ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
 413		} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 414			ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
 415							logical, buffer);
 416		} else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
 417			BUG_ON(i);
 418			(void)scrub_checksum_super(sbio, buffer);
 419		} else {
 420			WARN_ON(1);
 421		}
 422		kunmap_atomic(buffer, KM_USER0);
 423		if (ret)
 424			scrub_recheck_error(sbio, i);
 425	}
 426
 427out:
 428	scrub_free_bio(sbio->bio);
 429	sbio->bio = NULL;
 430	spin_lock(&sdev->list_lock);
 431	sbio->next_free = sdev->first_free;
 432	sdev->first_free = sbio->index;
 433	spin_unlock(&sdev->list_lock);
 434	atomic_dec(&sdev->in_flight);
 435	wake_up(&sdev->list_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 436}
 437
 438static int scrub_checksum_data(struct scrub_dev *sdev,
 439			       struct scrub_page *spag, void *buffer)
 440{
 
 441	u8 csum[BTRFS_CSUM_SIZE];
 
 
 
 442	u32 crc = ~(u32)0;
 443	int fail = 0;
 444	struct btrfs_root *root = sdev->dev->dev_root;
 
 
 445
 446	if (!spag->have_csum)
 
 447		return 0;
 448
 449	crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450	btrfs_csum_final(crc, csum);
 451	if (memcmp(csum, spag->csum, sdev->csum_size))
 452		fail = 1;
 453
 454	spin_lock(&sdev->stat_lock);
 455	++sdev->stat.data_extents_scrubbed;
 456	sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
 457	if (fail)
 458		++sdev->stat.csum_errors;
 459	spin_unlock(&sdev->stat_lock);
 460
 461	return fail;
 462}
 463
 464static int scrub_checksum_tree_block(struct scrub_dev *sdev,
 465				     struct scrub_page *spag, u64 logical,
 466				     void *buffer)
 467{
 
 468	struct btrfs_header *h;
 469	struct btrfs_root *root = sdev->dev->dev_root;
 470	struct btrfs_fs_info *fs_info = root->fs_info;
 471	u8 csum[BTRFS_CSUM_SIZE];
 
 
 
 
 
 472	u32 crc = ~(u32)0;
 473	int fail = 0;
 474	int crc_fail = 0;
 
 
 
 
 
 
 
 
 475
 476	/*
 477	 * we don't use the getter functions here, as we
 478	 * a) don't have an extent buffer and
 479	 * b) the page is already kmapped
 480	 */
 481	h = (struct btrfs_header *)buffer;
 482
 483	if (logical != le64_to_cpu(h->bytenr))
 484		++fail;
 485
 486	if (spag->generation != le64_to_cpu(h->generation))
 487		++fail;
 488
 489	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
 490		++fail;
 491
 492	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 493		   BTRFS_UUID_SIZE))
 494		++fail;
 495
 496	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
 497			      PAGE_SIZE - BTRFS_CSUM_SIZE);
 498	btrfs_csum_final(crc, csum);
 499	if (memcmp(csum, h->csum, sdev->csum_size))
 500		++crc_fail;
 
 
 501
 502	spin_lock(&sdev->stat_lock);
 503	++sdev->stat.tree_extents_scrubbed;
 504	sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
 505	if (crc_fail)
 506		++sdev->stat.csum_errors;
 507	if (fail)
 508		++sdev->stat.verify_errors;
 509	spin_unlock(&sdev->stat_lock);
 
 
 
 
 
 
 
 
 
 510
 511	return fail || crc_fail;
 512}
 513
 514static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
 515{
 516	struct btrfs_super_block *s;
 517	u64 logical;
 518	struct scrub_dev *sdev = sbio->sdev;
 519	struct btrfs_root *root = sdev->dev->dev_root;
 520	struct btrfs_fs_info *fs_info = root->fs_info;
 521	u8 csum[BTRFS_CSUM_SIZE];
 
 
 
 
 
 522	u32 crc = ~(u32)0;
 523	int fail = 0;
 
 
 
 
 
 
 
 
 
 524
 525	s = (struct btrfs_super_block *)buffer;
 526	logical = sbio->logical;
 527
 528	if (logical != le64_to_cpu(s->bytenr))
 529		++fail;
 530
 531	if (sbio->spag[0].generation != le64_to_cpu(s->generation))
 532		++fail;
 533
 534	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
 535		++fail;
 536
 537	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
 538			      PAGE_SIZE - BTRFS_CSUM_SIZE);
 539	btrfs_csum_final(crc, csum);
 540	if (memcmp(csum, s->csum, sbio->sdev->csum_size))
 541		++fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542
 543	if (fail) {
 
 
 
 
 544		/*
 545		 * if we find an error in a super block, we just report it.
 546		 * They will get written with the next transaction commit
 547		 * anyway
 548		 */
 549		spin_lock(&sdev->stat_lock);
 550		++sdev->stat.super_errors;
 551		spin_unlock(&sdev->stat_lock);
 
 
 
 
 
 
 552	}
 553
 554	return fail;
 555}
 556
 557static int scrub_submit(struct scrub_dev *sdev)
 558{
 559	struct scrub_bio *sbio;
 560	struct bio *bio;
 561	int i;
 562
 563	if (sdev->curr == -1)
 564		return 0;
 565
 566	sbio = sdev->bios[sdev->curr];
 567
 568	bio = bio_alloc(GFP_NOFS, sbio->count);
 569	if (!bio)
 570		goto nomem;
 571
 572	bio->bi_private = sbio;
 573	bio->bi_end_io = scrub_bio_end_io;
 574	bio->bi_bdev = sdev->dev->bdev;
 575	bio->bi_sector = sbio->physical >> 9;
 576
 577	for (i = 0; i < sbio->count; ++i) {
 578		struct page *page;
 579		int ret;
 
 
 
 580
 581		page = alloc_page(GFP_NOFS);
 582		if (!page)
 583			goto nomem;
 584
 585		ret = bio_add_page(bio, page, PAGE_SIZE, 0);
 586		if (!ret) {
 587			__free_page(page);
 588			goto nomem;
 589		}
 590	}
 591
 592	sbio->err = 0;
 593	sdev->curr = -1;
 594	atomic_inc(&sdev->in_flight);
 595
 596	submit_bio(READ, bio);
 597
 598	return 0;
 599
 600nomem:
 601	scrub_free_bio(bio);
 602
 603	return -ENOMEM;
 604}
 605
 606static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
 607		      u64 physical, u64 flags, u64 gen, u64 mirror_num,
 608		      u8 *csum, int force)
 609{
 
 610	struct scrub_bio *sbio;
 
 611
 612again:
 613	/*
 614	 * grab a fresh bio or wait for one to become available
 615	 */
 616	while (sdev->curr == -1) {
 617		spin_lock(&sdev->list_lock);
 618		sdev->curr = sdev->first_free;
 619		if (sdev->curr != -1) {
 620			sdev->first_free = sdev->bios[sdev->curr]->next_free;
 621			sdev->bios[sdev->curr]->next_free = -1;
 622			sdev->bios[sdev->curr]->count = 0;
 623			spin_unlock(&sdev->list_lock);
 624		} else {
 625			spin_unlock(&sdev->list_lock);
 626			wait_event(sdev->list_wait, sdev->first_free != -1);
 627		}
 628	}
 629	sbio = sdev->bios[sdev->curr];
 630	if (sbio->count == 0) {
 631		sbio->physical = physical;
 632		sbio->logical = logical;
 633	} else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
 634		   sbio->logical + sbio->count * PAGE_SIZE != logical) {
 635		int ret;
 636
 637		ret = scrub_submit(sdev);
 638		if (ret)
 639			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640		goto again;
 641	}
 642	sbio->spag[sbio->count].flags = flags;
 643	sbio->spag[sbio->count].generation = gen;
 644	sbio->spag[sbio->count].have_csum = 0;
 645	sbio->spag[sbio->count].mirror_num = mirror_num;
 646	if (csum) {
 647		sbio->spag[sbio->count].have_csum = 1;
 648		memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649	}
 650	++sbio->count;
 651	if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652		int ret;
 653
 654		ret = scrub_submit(sdev);
 655		if (ret)
 
 656			return ret;
 
 657	}
 658
 
 
 
 
 
 659	return 0;
 660}
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
 663			   u8 *csum)
 664{
 665	struct btrfs_ordered_sum *sum = NULL;
 666	int ret = 0;
 667	unsigned long i;
 668	unsigned long num_sectors;
 669	u32 sectorsize = sdev->dev->dev_root->sectorsize;
 670
 671	while (!list_empty(&sdev->csum_list)) {
 672		sum = list_first_entry(&sdev->csum_list,
 673				       struct btrfs_ordered_sum, list);
 674		if (sum->bytenr > logical)
 675			return 0;
 676		if (sum->bytenr + sum->len > logical)
 677			break;
 678
 679		++sdev->stat.csum_discards;
 680		list_del(&sum->list);
 681		kfree(sum);
 682		sum = NULL;
 683	}
 684	if (!sum)
 685		return 0;
 686
 687	num_sectors = sum->len / sectorsize;
 688	for (i = 0; i < num_sectors; ++i) {
 689		if (sum->sums[i].bytenr == logical) {
 690			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
 691			ret = 1;
 692			break;
 693		}
 694	}
 695	if (ret && i == num_sectors - 1) {
 696		list_del(&sum->list);
 697		kfree(sum);
 698	}
 699	return ret;
 700}
 701
 702/* scrub extent tries to collect up to 64 kB for each bio */
 703static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
 704			u64 physical, u64 flags, u64 gen, u64 mirror_num)
 705{
 706	int ret;
 707	u8 csum[BTRFS_CSUM_SIZE];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708
 709	while (len) {
 710		u64 l = min_t(u64, len, PAGE_SIZE);
 711		int have_csum = 0;
 712
 713		if (flags & BTRFS_EXTENT_FLAG_DATA) {
 714			/* push csums to sbio */
 715			have_csum = scrub_find_csum(sdev, logical, l, csum);
 716			if (have_csum == 0)
 717				++sdev->stat.no_csum;
 718		}
 719		ret = scrub_page(sdev, logical, l, physical, flags, gen,
 720				 mirror_num, have_csum ? csum : NULL, 0);
 721		if (ret)
 722			return ret;
 723		len -= l;
 724		logical += l;
 725		physical += l;
 726	}
 727	return 0;
 728}
 729
 730static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
 731	struct map_lookup *map, int num, u64 base, u64 length)
 732{
 733	struct btrfs_path *path;
 734	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 735	struct btrfs_root *root = fs_info->extent_root;
 736	struct btrfs_root *csum_root = fs_info->csum_root;
 737	struct btrfs_extent_item *extent;
 738	struct blk_plug plug;
 739	u64 flags;
 740	int ret;
 741	int slot;
 742	int i;
 743	u64 nstripes;
 744	int start_stripe;
 745	struct extent_buffer *l;
 746	struct btrfs_key key;
 747	u64 physical;
 748	u64 logical;
 749	u64 generation;
 750	u64 mirror_num;
 
 
 
 
 751
 752	u64 increment = map->stripe_len;
 753	u64 offset;
 754
 755	nstripes = length;
 756	offset = 0;
 757	do_div(nstripes, map->stripe_len);
 758	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
 759		offset = map->stripe_len * num;
 760		increment = map->stripe_len * map->num_stripes;
 761		mirror_num = 0;
 762	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 763		int factor = map->num_stripes / map->sub_stripes;
 764		offset = map->stripe_len * (num / map->sub_stripes);
 765		increment = map->stripe_len * factor;
 766		mirror_num = num % map->sub_stripes;
 767	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
 768		increment = map->stripe_len;
 769		mirror_num = num % map->num_stripes;
 770	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
 771		increment = map->stripe_len;
 772		mirror_num = num % map->num_stripes;
 773	} else {
 774		increment = map->stripe_len;
 775		mirror_num = 0;
 776	}
 777
 778	path = btrfs_alloc_path();
 779	if (!path)
 780		return -ENOMEM;
 781
 782	path->reada = 2;
 
 
 
 
 783	path->search_commit_root = 1;
 784	path->skip_locking = 1;
 785
 786	/*
 787	 * find all extents for each stripe and just read them to get
 788	 * them into the page cache
 789	 * FIXME: we can do better. build a more intelligent prefetching
 790	 */
 791	logical = base + offset;
 792	physical = map->stripes[num].physical;
 793	ret = 0;
 794	for (i = 0; i < nstripes; ++i) {
 795		key.objectid = logical;
 796		key.type = BTRFS_EXTENT_ITEM_KEY;
 797		key.offset = (u64)0;
 798
 799		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 800		if (ret < 0)
 801			goto out_noplug;
 802
 803		/*
 804		 * we might miss half an extent here, but that doesn't matter,
 805		 * as it's only the prefetch
 806		 */
 807		while (1) {
 808			l = path->nodes[0];
 809			slot = path->slots[0];
 810			if (slot >= btrfs_header_nritems(l)) {
 811				ret = btrfs_next_leaf(root, path);
 812				if (ret == 0)
 813					continue;
 814				if (ret < 0)
 815					goto out_noplug;
 816
 817				break;
 818			}
 819			btrfs_item_key_to_cpu(l, &key, slot);
 820
 821			if (key.objectid >= logical + map->stripe_len)
 822				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823
 824			path->slots[0]++;
 825		}
 826		btrfs_release_path(path);
 827		logical += increment;
 828		physical += map->stripe_len;
 829		cond_resched();
 830	}
 
 
 
 831
 832	/*
 833	 * collect all data csums for the stripe to avoid seeking during
 834	 * the scrub. This might currently (crc32) end up to be about 1MB
 835	 */
 836	start_stripe = 0;
 837	blk_start_plug(&plug);
 838again:
 839	logical = base + offset + start_stripe * increment;
 840	for (i = start_stripe; i < nstripes; ++i) {
 841		ret = btrfs_lookup_csums_range(csum_root, logical,
 842					       logical + map->stripe_len - 1,
 843					       &sdev->csum_list, 1);
 844		if (ret)
 845			goto out;
 846
 847		logical += increment;
 848		cond_resched();
 849	}
 850	/*
 851	 * now find all extents for each stripe and scrub them
 852	 */
 853	logical = base + offset + start_stripe * increment;
 854	physical = map->stripes[num].physical + start_stripe * map->stripe_len;
 855	ret = 0;
 856	for (i = start_stripe; i < nstripes; ++i) {
 857		/*
 858		 * canceled?
 859		 */
 860		if (atomic_read(&fs_info->scrub_cancel_req) ||
 861		    atomic_read(&sdev->cancel_req)) {
 862			ret = -ECANCELED;
 863			goto out;
 864		}
 865		/*
 866		 * check to see if we have to pause
 867		 */
 868		if (atomic_read(&fs_info->scrub_pause_req)) {
 869			/* push queued extents */
 870			scrub_submit(sdev);
 871			wait_event(sdev->list_wait,
 872				   atomic_read(&sdev->in_flight) == 0);
 873			atomic_inc(&fs_info->scrubs_paused);
 874			wake_up(&fs_info->scrub_pause_wait);
 875			mutex_lock(&fs_info->scrub_lock);
 876			while (atomic_read(&fs_info->scrub_pause_req)) {
 877				mutex_unlock(&fs_info->scrub_lock);
 878				wait_event(fs_info->scrub_pause_wait,
 879				   atomic_read(&fs_info->scrub_pause_req) == 0);
 880				mutex_lock(&fs_info->scrub_lock);
 881			}
 882			atomic_dec(&fs_info->scrubs_paused);
 883			mutex_unlock(&fs_info->scrub_lock);
 884			wake_up(&fs_info->scrub_pause_wait);
 885			scrub_free_csums(sdev);
 886			start_stripe = i;
 887			goto again;
 888		}
 889
 
 
 
 
 
 
 890		key.objectid = logical;
 891		key.type = BTRFS_EXTENT_ITEM_KEY;
 892		key.offset = (u64)0;
 893
 894		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 895		if (ret < 0)
 896			goto out;
 897		if (ret > 0) {
 898			ret = btrfs_previous_item(root, path, 0,
 899						  BTRFS_EXTENT_ITEM_KEY);
 900			if (ret < 0)
 901				goto out;
 902			if (ret > 0) {
 903				/* there's no smaller item, so stick with the
 904				 * larger one */
 905				btrfs_release_path(path);
 906				ret = btrfs_search_slot(NULL, root, &key,
 907							path, 0, 0);
 908				if (ret < 0)
 909					goto out;
 910			}
 911		}
 912
 913		while (1) {
 914			l = path->nodes[0];
 915			slot = path->slots[0];
 916			if (slot >= btrfs_header_nritems(l)) {
 917				ret = btrfs_next_leaf(root, path);
 918				if (ret == 0)
 919					continue;
 920				if (ret < 0)
 921					goto out;
 922
 923				break;
 924			}
 925			btrfs_item_key_to_cpu(l, &key, slot);
 926
 927			if (key.objectid + key.offset <= logical)
 928				goto next;
 929
 930			if (key.objectid >= logical + map->stripe_len)
 931				break;
 932
 933			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
 934				goto next;
 935
 936			extent = btrfs_item_ptr(l, slot,
 937						struct btrfs_extent_item);
 938			flags = btrfs_extent_flags(l, extent);
 939			generation = btrfs_extent_generation(l, extent);
 940
 941			if (key.objectid < logical &&
 942			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
 943				printk(KERN_ERR
 944				       "btrfs scrub: tree block %llu spanning "
 945				       "stripes, ignored. logical=%llu\n",
 946				       (unsigned long long)key.objectid,
 947				       (unsigned long long)logical);
 948				goto next;
 949			}
 950
 951			/*
 952			 * trim extent to this stripe
 953			 */
 954			if (key.objectid < logical) {
 955				key.offset -= logical - key.objectid;
 956				key.objectid = logical;
 957			}
 958			if (key.objectid + key.offset >
 959			    logical + map->stripe_len) {
 960				key.offset = logical + map->stripe_len -
 961					     key.objectid;
 962			}
 963
 964			ret = scrub_extent(sdev, key.objectid, key.offset,
 965					   key.objectid - logical + physical,
 966					   flags, generation, mirror_num);
 967			if (ret)
 968				goto out;
 969
 970next:
 971			path->slots[0]++;
 972		}
 973		btrfs_release_path(path);
 974		logical += increment;
 975		physical += map->stripe_len;
 976		spin_lock(&sdev->stat_lock);
 977		sdev->stat.last_physical = physical;
 978		spin_unlock(&sdev->stat_lock);
 979	}
 980	/* push queued extents */
 981	scrub_submit(sdev);
 982
 983out:
 984	blk_finish_plug(&plug);
 985out_noplug:
 986	btrfs_free_path(path);
 987	return ret < 0 ? ret : 0;
 988}
 989
 990static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
 991	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length)
 
 992{
 993	struct btrfs_mapping_tree *map_tree =
 994		&sdev->dev->dev_root->fs_info->mapping_tree;
 995	struct map_lookup *map;
 996	struct extent_map *em;
 997	int i;
 998	int ret = -EINVAL;
 999
1000	read_lock(&map_tree->map_tree.lock);
1001	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
1002	read_unlock(&map_tree->map_tree.lock);
1003
1004	if (!em)
1005		return -EINVAL;
1006
1007	map = (struct map_lookup *)em->bdev;
1008	if (em->start != chunk_offset)
1009		goto out;
1010
1011	if (em->len < length)
1012		goto out;
1013
1014	for (i = 0; i < map->num_stripes; ++i) {
1015		if (map->stripes[i].dev == sdev->dev) {
 
1016			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
1017			if (ret)
1018				goto out;
1019		}
1020	}
1021out:
1022	free_extent_map(em);
1023
1024	return ret;
1025}
1026
1027static noinline_for_stack
1028int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
1029{
1030	struct btrfs_dev_extent *dev_extent = NULL;
1031	struct btrfs_path *path;
1032	struct btrfs_root *root = sdev->dev->dev_root;
1033	struct btrfs_fs_info *fs_info = root->fs_info;
1034	u64 length;
1035	u64 chunk_tree;
1036	u64 chunk_objectid;
1037	u64 chunk_offset;
1038	int ret;
1039	int slot;
1040	struct extent_buffer *l;
1041	struct btrfs_key key;
1042	struct btrfs_key found_key;
1043	struct btrfs_block_group_cache *cache;
1044
1045	path = btrfs_alloc_path();
1046	if (!path)
1047		return -ENOMEM;
1048
1049	path->reada = 2;
1050	path->search_commit_root = 1;
1051	path->skip_locking = 1;
1052
1053	key.objectid = sdev->dev->devid;
1054	key.offset = 0ull;
1055	key.type = BTRFS_DEV_EXTENT_KEY;
1056
1057
1058	while (1) {
1059		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1060		if (ret < 0)
1061			break;
1062		if (ret > 0) {
1063			if (path->slots[0] >=
1064			    btrfs_header_nritems(path->nodes[0])) {
1065				ret = btrfs_next_leaf(root, path);
1066				if (ret)
1067					break;
1068			}
1069		}
1070
1071		l = path->nodes[0];
1072		slot = path->slots[0];
1073
1074		btrfs_item_key_to_cpu(l, &found_key, slot);
1075
1076		if (found_key.objectid != sdev->dev->devid)
1077			break;
1078
1079		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
1080			break;
1081
1082		if (found_key.offset >= end)
1083			break;
1084
1085		if (found_key.offset < key.offset)
1086			break;
1087
1088		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1089		length = btrfs_dev_extent_length(l, dev_extent);
1090
1091		if (found_key.offset + length <= start) {
1092			key.offset = found_key.offset + length;
1093			btrfs_release_path(path);
1094			continue;
1095		}
1096
1097		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1098		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1099		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1100
1101		/*
1102		 * get a reference on the corresponding block group to prevent
1103		 * the chunk from going away while we scrub it
1104		 */
1105		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
1106		if (!cache) {
1107			ret = -ENOENT;
1108			break;
1109		}
1110		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
1111				  chunk_offset, length);
1112		btrfs_put_block_group(cache);
1113		if (ret)
1114			break;
1115
1116		key.offset = found_key.offset + length;
1117		btrfs_release_path(path);
1118	}
1119
1120	btrfs_free_path(path);
1121
1122	/*
1123	 * ret can still be 1 from search_slot or next_leaf,
1124	 * that's not an error
1125	 */
1126	return ret < 0 ? ret : 0;
1127}
1128
1129static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
1130{
1131	int	i;
1132	u64	bytenr;
1133	u64	gen;
1134	int	ret;
1135	struct btrfs_device *device = sdev->dev;
1136	struct btrfs_root *root = device->dev_root;
1137
 
 
 
1138	gen = root->fs_info->last_trans_committed;
1139
1140	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1141		bytenr = btrfs_sb_offset(i);
1142		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1143			break;
1144
1145		ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
1146				 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
1147		if (ret)
1148			return ret;
1149	}
1150	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1151
1152	return 0;
1153}
1154
1155/*
1156 * get a reference count on fs_info->scrub_workers. start worker if necessary
1157 */
1158static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
1159{
1160	struct btrfs_fs_info *fs_info = root->fs_info;
 
1161
1162	mutex_lock(&fs_info->scrub_lock);
1163	if (fs_info->scrub_workers_refcnt == 0) {
1164		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
1165			   fs_info->thread_pool_size, &fs_info->generic_worker);
1166		fs_info->scrub_workers.idle_thresh = 4;
1167		btrfs_start_workers(&fs_info->scrub_workers, 1);
 
 
1168	}
1169	++fs_info->scrub_workers_refcnt;
 
1170	mutex_unlock(&fs_info->scrub_lock);
1171
1172	return 0;
1173}
1174
1175static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
1176{
1177	struct btrfs_fs_info *fs_info = root->fs_info;
1178
1179	mutex_lock(&fs_info->scrub_lock);
1180	if (--fs_info->scrub_workers_refcnt == 0)
1181		btrfs_stop_workers(&fs_info->scrub_workers);
1182	WARN_ON(fs_info->scrub_workers_refcnt < 0);
1183	mutex_unlock(&fs_info->scrub_lock);
1184}
1185
1186
1187int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
1188		    struct btrfs_scrub_progress *progress, int readonly)
1189{
1190	struct scrub_dev *sdev;
1191	struct btrfs_fs_info *fs_info = root->fs_info;
1192	int ret;
1193	struct btrfs_device *dev;
1194
1195	if (btrfs_fs_closing(root->fs_info))
1196		return -EINVAL;
1197
1198	/*
1199	 * check some assumptions
1200	 */
1201	if (root->sectorsize != PAGE_SIZE ||
1202	    root->sectorsize != root->leafsize ||
1203	    root->sectorsize != root->nodesize) {
1204		printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205		return -EINVAL;
1206	}
1207
1208	ret = scrub_workers_get(root);
1209	if (ret)
1210		return ret;
1211
1212	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1213	dev = btrfs_find_device(root, devid, NULL, NULL);
1214	if (!dev || dev->missing) {
1215		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1216		scrub_workers_put(root);
1217		return -ENODEV;
1218	}
1219	mutex_lock(&fs_info->scrub_lock);
1220
1221	if (!dev->in_fs_metadata) {
1222		mutex_unlock(&fs_info->scrub_lock);
1223		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1224		scrub_workers_put(root);
1225		return -ENODEV;
1226	}
1227
1228	if (dev->scrub_device) {
1229		mutex_unlock(&fs_info->scrub_lock);
1230		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1231		scrub_workers_put(root);
1232		return -EINPROGRESS;
1233	}
1234	sdev = scrub_setup_dev(dev);
1235	if (IS_ERR(sdev)) {
1236		mutex_unlock(&fs_info->scrub_lock);
1237		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1238		scrub_workers_put(root);
1239		return PTR_ERR(sdev);
1240	}
1241	sdev->readonly = readonly;
1242	dev->scrub_device = sdev;
1243
1244	atomic_inc(&fs_info->scrubs_running);
1245	mutex_unlock(&fs_info->scrub_lock);
1246	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1247
1248	down_read(&fs_info->scrub_super_lock);
1249	ret = scrub_supers(sdev);
1250	up_read(&fs_info->scrub_super_lock);
1251
1252	if (!ret)
1253		ret = scrub_enumerate_chunks(sdev, start, end);
1254
1255	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1256
1257	atomic_dec(&fs_info->scrubs_running);
1258	wake_up(&fs_info->scrub_pause_wait);
1259
 
 
1260	if (progress)
1261		memcpy(progress, &sdev->stat, sizeof(*progress));
1262
1263	mutex_lock(&fs_info->scrub_lock);
1264	dev->scrub_device = NULL;
1265	mutex_unlock(&fs_info->scrub_lock);
1266
1267	scrub_free_dev(sdev);
1268	scrub_workers_put(root);
1269
1270	return ret;
1271}
1272
1273int btrfs_scrub_pause(struct btrfs_root *root)
1274{
1275	struct btrfs_fs_info *fs_info = root->fs_info;
1276
1277	mutex_lock(&fs_info->scrub_lock);
1278	atomic_inc(&fs_info->scrub_pause_req);
1279	while (atomic_read(&fs_info->scrubs_paused) !=
1280	       atomic_read(&fs_info->scrubs_running)) {
1281		mutex_unlock(&fs_info->scrub_lock);
1282		wait_event(fs_info->scrub_pause_wait,
1283			   atomic_read(&fs_info->scrubs_paused) ==
1284			   atomic_read(&fs_info->scrubs_running));
1285		mutex_lock(&fs_info->scrub_lock);
1286	}
1287	mutex_unlock(&fs_info->scrub_lock);
1288
1289	return 0;
1290}
1291
1292int btrfs_scrub_continue(struct btrfs_root *root)
1293{
1294	struct btrfs_fs_info *fs_info = root->fs_info;
1295
1296	atomic_dec(&fs_info->scrub_pause_req);
1297	wake_up(&fs_info->scrub_pause_wait);
1298	return 0;
1299}
1300
1301int btrfs_scrub_pause_super(struct btrfs_root *root)
1302{
1303	down_write(&root->fs_info->scrub_super_lock);
1304	return 0;
1305}
1306
1307int btrfs_scrub_continue_super(struct btrfs_root *root)
1308{
1309	up_write(&root->fs_info->scrub_super_lock);
1310	return 0;
1311}
1312
1313int btrfs_scrub_cancel(struct btrfs_root *root)
1314{
1315	struct btrfs_fs_info *fs_info = root->fs_info;
1316
1317	mutex_lock(&fs_info->scrub_lock);
1318	if (!atomic_read(&fs_info->scrubs_running)) {
1319		mutex_unlock(&fs_info->scrub_lock);
1320		return -ENOTCONN;
1321	}
1322
1323	atomic_inc(&fs_info->scrub_cancel_req);
1324	while (atomic_read(&fs_info->scrubs_running)) {
1325		mutex_unlock(&fs_info->scrub_lock);
1326		wait_event(fs_info->scrub_pause_wait,
1327			   atomic_read(&fs_info->scrubs_running) == 0);
1328		mutex_lock(&fs_info->scrub_lock);
1329	}
1330	atomic_dec(&fs_info->scrub_cancel_req);
1331	mutex_unlock(&fs_info->scrub_lock);
1332
1333	return 0;
1334}
1335
 
 
 
 
 
1336int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
1337{
1338	struct btrfs_fs_info *fs_info = root->fs_info;
1339	struct scrub_dev *sdev;
1340
1341	mutex_lock(&fs_info->scrub_lock);
1342	sdev = dev->scrub_device;
1343	if (!sdev) {
1344		mutex_unlock(&fs_info->scrub_lock);
1345		return -ENOTCONN;
1346	}
1347	atomic_inc(&sdev->cancel_req);
1348	while (dev->scrub_device) {
1349		mutex_unlock(&fs_info->scrub_lock);
1350		wait_event(fs_info->scrub_pause_wait,
1351			   dev->scrub_device == NULL);
1352		mutex_lock(&fs_info->scrub_lock);
1353	}
1354	mutex_unlock(&fs_info->scrub_lock);
1355
1356	return 0;
1357}
 
1358int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
1359{
1360	struct btrfs_fs_info *fs_info = root->fs_info;
1361	struct btrfs_device *dev;
1362	int ret;
1363
1364	/*
1365	 * we have to hold the device_list_mutex here so the device
1366	 * does not go away in cancel_dev. FIXME: find a better solution
1367	 */
1368	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1369	dev = btrfs_find_device(root, devid, NULL, NULL);
1370	if (!dev) {
1371		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1372		return -ENODEV;
1373	}
1374	ret = btrfs_scrub_cancel_dev(root, dev);
1375	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1376
1377	return ret;
1378}
1379
1380int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
1381			 struct btrfs_scrub_progress *progress)
1382{
1383	struct btrfs_device *dev;
1384	struct scrub_dev *sdev = NULL;
1385
1386	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1387	dev = btrfs_find_device(root, devid, NULL, NULL);
1388	if (dev)
1389		sdev = dev->scrub_device;
1390	if (sdev)
1391		memcpy(progress, &sdev->stat, sizeof(*progress));
1392	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1393
1394	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
1395}
v3.5.6
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "check-integrity.h"
  29#include "rcu-string.h"
  30
  31/*
  32 * This is only the first step towards a full-features scrub. It reads all
  33 * extent and super block and verifies the checksums. In case a bad checksum
  34 * is found or the extent cannot be read, good data will be written back if
  35 * any can be found.
  36 *
  37 * Future enhancements:
 
 
  38 *  - In case an unrepairable extent is encountered, track which files are
  39 *    affected and report them
 
 
  40 *  - track and record media errors, throw out bad devices
  41 *  - add a mode to also read unallocated space
 
  42 */
  43
  44struct scrub_block;
 
  45struct scrub_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47#define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
  48#define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
  49#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  50
  51struct scrub_page {
  52	struct scrub_block	*sblock;
  53	struct page		*page;
  54	struct btrfs_device	*dev;
  55	u64			flags;  /* extent flags */
  56	u64			generation;
  57	u64			logical;
  58	u64			physical;
  59	struct {
  60		unsigned int	mirror_num:8;
  61		unsigned int	have_csum:1;
  62		unsigned int	io_error:1;
  63	};
  64	u8			csum[BTRFS_CSUM_SIZE];
  65};
  66
  67struct scrub_bio {
  68	int			index;
  69	struct scrub_dev	*sdev;
  70	struct bio		*bio;
  71	int			err;
  72	u64			logical;
  73	u64			physical;
  74	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
  75	int			page_count;
  76	int			next_free;
  77	struct btrfs_work	work;
  78};
  79
  80struct scrub_block {
  81	struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK];
  82	int			page_count;
  83	atomic_t		outstanding_pages;
  84	atomic_t		ref_count; /* free mem on transition to zero */
  85	struct scrub_dev	*sdev;
  86	struct {
  87		unsigned int	header_error:1;
  88		unsigned int	checksum_error:1;
  89		unsigned int	no_io_error_seen:1;
  90		unsigned int	generation_error:1; /* also sets header_error */
  91	};
  92};
  93
  94struct scrub_dev {
  95	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
  96	struct btrfs_device	*dev;
  97	int			first_free;
  98	int			curr;
  99	atomic_t		in_flight;
 100	atomic_t		fixup_cnt;
 101	spinlock_t		list_lock;
 102	wait_queue_head_t	list_wait;
 103	u16			csum_size;
 104	struct list_head	csum_list;
 105	atomic_t		cancel_req;
 106	int			readonly;
 107	int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
 108	u32			sectorsize;
 109	u32			nodesize;
 110	u32			leafsize;
 111	/*
 112	 * statistics
 113	 */
 114	struct btrfs_scrub_progress stat;
 115	spinlock_t		stat_lock;
 116};
 117
 118struct scrub_fixup_nodatasum {
 119	struct scrub_dev	*sdev;
 120	u64			logical;
 121	struct btrfs_root	*root;
 122	struct btrfs_work	work;
 123	int			mirror_num;
 124};
 125
 126struct scrub_warning {
 127	struct btrfs_path	*path;
 128	u64			extent_item_size;
 129	char			*scratch_buf;
 130	char			*msg_buf;
 131	const char		*errstr;
 132	sector_t		sector;
 133	u64			logical;
 134	struct btrfs_device	*dev;
 135	int			msg_bufsize;
 136	int			scratch_bufsize;
 137};
 138
 139
 140static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 141static int scrub_setup_recheck_block(struct scrub_dev *sdev,
 142				     struct btrfs_mapping_tree *map_tree,
 143				     u64 length, u64 logical,
 144				     struct scrub_block *sblock);
 145static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
 146			       struct scrub_block *sblock, int is_metadata,
 147			       int have_csum, u8 *csum, u64 generation,
 148			       u16 csum_size);
 149static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 150					 struct scrub_block *sblock,
 151					 int is_metadata, int have_csum,
 152					 const u8 *csum, u64 generation,
 153					 u16 csum_size);
 154static void scrub_complete_bio_end_io(struct bio *bio, int err);
 155static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 156					     struct scrub_block *sblock_good,
 157					     int force_write);
 158static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 159					    struct scrub_block *sblock_good,
 160					    int page_num, int force_write);
 161static int scrub_checksum_data(struct scrub_block *sblock);
 162static int scrub_checksum_tree_block(struct scrub_block *sblock);
 163static int scrub_checksum_super(struct scrub_block *sblock);
 164static void scrub_block_get(struct scrub_block *sblock);
 165static void scrub_block_put(struct scrub_block *sblock);
 166static int scrub_add_page_to_bio(struct scrub_dev *sdev,
 167				 struct scrub_page *spage);
 168static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
 169		       u64 physical, u64 flags, u64 gen, int mirror_num,
 170		       u8 *csum, int force);
 171static void scrub_bio_end_io(struct bio *bio, int err);
 172static void scrub_bio_end_io_worker(struct btrfs_work *work);
 173static void scrub_block_complete(struct scrub_block *sblock);
 174
 175
 176static void scrub_free_csums(struct scrub_dev *sdev)
 177{
 178	while (!list_empty(&sdev->csum_list)) {
 179		struct btrfs_ordered_sum *sum;
 180		sum = list_first_entry(&sdev->csum_list,
 181				       struct btrfs_ordered_sum, list);
 182		list_del(&sum->list);
 183		kfree(sum);
 184	}
 185}
 186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
 188{
 189	int i;
 190
 191	if (!sdev)
 192		return;
 193
 194	/* this can happen when scrub is cancelled */
 195	if (sdev->curr != -1) {
 196		struct scrub_bio *sbio = sdev->bios[sdev->curr];
 197
 198		for (i = 0; i < sbio->page_count; i++) {
 199			BUG_ON(!sbio->pagev[i]);
 200			BUG_ON(!sbio->pagev[i]->page);
 201			scrub_block_put(sbio->pagev[i]->sblock);
 202		}
 203		bio_put(sbio->bio);
 204	}
 205
 206	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 207		struct scrub_bio *sbio = sdev->bios[i];
 208
 209		if (!sbio)
 210			break;
 
 
 211		kfree(sbio);
 212	}
 213
 214	scrub_free_csums(sdev);
 215	kfree(sdev);
 216}
 217
 218static noinline_for_stack
 219struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
 220{
 221	struct scrub_dev *sdev;
 222	int		i;
 223	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 224	int pages_per_bio;
 225
 226	pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
 227			      bio_get_nr_vecs(dev->bdev));
 228	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
 229	if (!sdev)
 230		goto nomem;
 231	sdev->dev = dev;
 232	sdev->pages_per_bio = pages_per_bio;
 233	sdev->curr = -1;
 234	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 235		struct scrub_bio *sbio;
 236
 237		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 238		if (!sbio)
 239			goto nomem;
 240		sdev->bios[i] = sbio;
 241
 242		sbio->index = i;
 243		sbio->sdev = sdev;
 244		sbio->page_count = 0;
 245		sbio->work.func = scrub_bio_end_io_worker;
 246
 247		if (i != SCRUB_BIOS_PER_DEV-1)
 248			sdev->bios[i]->next_free = i + 1;
 249		else
 250			sdev->bios[i]->next_free = -1;
 251	}
 252	sdev->first_free = 0;
 253	sdev->nodesize = dev->dev_root->nodesize;
 254	sdev->leafsize = dev->dev_root->leafsize;
 255	sdev->sectorsize = dev->dev_root->sectorsize;
 256	atomic_set(&sdev->in_flight, 0);
 257	atomic_set(&sdev->fixup_cnt, 0);
 258	atomic_set(&sdev->cancel_req, 0);
 259	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 260	INIT_LIST_HEAD(&sdev->csum_list);
 261
 262	spin_lock_init(&sdev->list_lock);
 263	spin_lock_init(&sdev->stat_lock);
 264	init_waitqueue_head(&sdev->list_wait);
 265	return sdev;
 266
 267nomem:
 268	scrub_free_dev(sdev);
 269	return ERR_PTR(-ENOMEM);
 270}
 271
 272static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
 
 
 
 
 
 
 273{
 274	u64 isize;
 275	u32 nlink;
 276	int ret;
 277	int i;
 278	struct extent_buffer *eb;
 279	struct btrfs_inode_item *inode_item;
 280	struct scrub_warning *swarn = ctx;
 281	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 282	struct inode_fs_paths *ipath = NULL;
 283	struct btrfs_root *local_root;
 284	struct btrfs_key root_key;
 285
 286	root_key.objectid = root;
 287	root_key.type = BTRFS_ROOT_ITEM_KEY;
 288	root_key.offset = (u64)-1;
 289	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 290	if (IS_ERR(local_root)) {
 291		ret = PTR_ERR(local_root);
 292		goto err;
 293	}
 294
 295	ret = inode_item_info(inum, 0, local_root, swarn->path);
 296	if (ret) {
 297		btrfs_release_path(swarn->path);
 298		goto err;
 299	}
 300
 301	eb = swarn->path->nodes[0];
 302	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 303					struct btrfs_inode_item);
 304	isize = btrfs_inode_size(eb, inode_item);
 305	nlink = btrfs_inode_nlink(eb, inode_item);
 306	btrfs_release_path(swarn->path);
 307
 308	ipath = init_ipath(4096, local_root, swarn->path);
 309	if (IS_ERR(ipath)) {
 310		ret = PTR_ERR(ipath);
 311		ipath = NULL;
 312		goto err;
 313	}
 314	ret = paths_from_inode(inum, ipath);
 315
 316	if (ret < 0)
 317		goto err;
 318
 319	/*
 320	 * we deliberately ignore the bit ipath might have been too small to
 321	 * hold all of the paths here
 322	 */
 323	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 324		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
 325			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
 326			"length %llu, links %u (path: %s)\n", swarn->errstr,
 327			swarn->logical, rcu_str_deref(swarn->dev->name),
 328			(unsigned long long)swarn->sector, root, inum, offset,
 329			min(isize - offset, (u64)PAGE_SIZE), nlink,
 330			(char *)(unsigned long)ipath->fspath->val[i]);
 331
 332	free_ipath(ipath);
 333	return 0;
 334
 335err:
 336	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
 337		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 338		"resolving failed with ret=%d\n", swarn->errstr,
 339		swarn->logical, rcu_str_deref(swarn->dev->name),
 340		(unsigned long long)swarn->sector, root, inum, offset, ret);
 341
 342	free_ipath(ipath);
 343	return 0;
 344}
 345
 346static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 347{
 348	struct btrfs_device *dev = sblock->sdev->dev;
 349	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 350	struct btrfs_path *path;
 351	struct btrfs_key found_key;
 352	struct extent_buffer *eb;
 353	struct btrfs_extent_item *ei;
 354	struct scrub_warning swarn;
 355	u32 item_size;
 356	int ret;
 357	u64 ref_root;
 358	u8 ref_level;
 359	unsigned long ptr = 0;
 360	const int bufsize = 4096;
 361	u64 extent_item_pos;
 362
 363	path = btrfs_alloc_path();
 364
 365	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 366	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 367	BUG_ON(sblock->page_count < 1);
 368	swarn.sector = (sblock->pagev[0].physical) >> 9;
 369	swarn.logical = sblock->pagev[0].logical;
 370	swarn.errstr = errstr;
 371	swarn.dev = dev;
 372	swarn.msg_bufsize = bufsize;
 373	swarn.scratch_bufsize = bufsize;
 374
 375	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 376		goto out;
 377
 378	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
 379	if (ret < 0)
 380		goto out;
 381
 382	extent_item_pos = swarn.logical - found_key.objectid;
 383	swarn.extent_item_size = found_key.offset;
 384
 385	eb = path->nodes[0];
 386	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 387	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 388	btrfs_release_path(path);
 389
 390	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 391		do {
 392			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 393							&ref_root, &ref_level);
 394			printk_in_rcu(KERN_WARNING
 395				"btrfs: %s at logical %llu on dev %s, "
 396				"sector %llu: metadata %s (level %d) in tree "
 397				"%llu\n", errstr, swarn.logical,
 398				rcu_str_deref(dev->name),
 399				(unsigned long long)swarn.sector,
 400				ref_level ? "node" : "leaf",
 401				ret < 0 ? -1 : ref_level,
 402				ret < 0 ? -1 : ref_root);
 403		} while (ret != 1);
 404	} else {
 405		swarn.path = path;
 406		iterate_extent_inodes(fs_info, found_key.objectid,
 407					extent_item_pos, 1,
 408					scrub_print_warning_inode, &swarn);
 409	}
 
 410
 411out:
 412	btrfs_free_path(path);
 413	kfree(swarn.scratch_buf);
 414	kfree(swarn.msg_buf);
 415}
 416
 417static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
 418{
 419	struct page *page = NULL;
 420	unsigned long index;
 421	struct scrub_fixup_nodatasum *fixup = ctx;
 422	int ret;
 423	int corrected = 0;
 424	struct btrfs_key key;
 425	struct inode *inode = NULL;
 426	u64 end = offset + PAGE_SIZE - 1;
 427	struct btrfs_root *local_root;
 428
 429	key.objectid = root;
 430	key.type = BTRFS_ROOT_ITEM_KEY;
 431	key.offset = (u64)-1;
 432	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
 433	if (IS_ERR(local_root))
 434		return PTR_ERR(local_root);
 435
 436	key.type = BTRFS_INODE_ITEM_KEY;
 437	key.objectid = inum;
 438	key.offset = 0;
 439	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
 440	if (IS_ERR(inode))
 441		return PTR_ERR(inode);
 442
 443	index = offset >> PAGE_CACHE_SHIFT;
 444
 445	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 446	if (!page) {
 447		ret = -ENOMEM;
 448		goto out;
 449	}
 450
 451	if (PageUptodate(page)) {
 452		struct btrfs_mapping_tree *map_tree;
 453		if (PageDirty(page)) {
 454			/*
 455			 * we need to write the data to the defect sector. the
 456			 * data that was in that sector is not in memory,
 457			 * because the page was modified. we must not write the
 458			 * modified page to that sector.
 459			 *
 460			 * TODO: what could be done here: wait for the delalloc
 461			 *       runner to write out that page (might involve
 462			 *       COW) and see whether the sector is still
 463			 *       referenced afterwards.
 464			 *
 465			 * For the meantime, we'll treat this error
 466			 * incorrectable, although there is a chance that a
 467			 * later scrub will find the bad sector again and that
 468			 * there's no dirty page in memory, then.
 469			 */
 470			ret = -EIO;
 471			goto out;
 472		}
 473		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
 474		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
 475					fixup->logical, page,
 476					fixup->mirror_num);
 477		unlock_page(page);
 478		corrected = !ret;
 479	} else {
 480		/*
 481		 * we need to get good data first. the general readpage path
 482		 * will call repair_io_failure for us, we just have to make
 483		 * sure we read the bad mirror.
 484		 */
 485		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 486					EXTENT_DAMAGED, GFP_NOFS);
 487		if (ret) {
 488			/* set_extent_bits should give proper error */
 489			WARN_ON(ret > 0);
 490			if (ret > 0)
 491				ret = -EFAULT;
 492			goto out;
 493		}
 494
 495		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 496						btrfs_get_extent,
 497						fixup->mirror_num);
 498		wait_on_page_locked(page);
 499
 500		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 501						end, EXTENT_DAMAGED, 0, NULL);
 502		if (!corrected)
 503			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 504						EXTENT_DAMAGED, GFP_NOFS);
 505	}
 506
 507out:
 508	if (page)
 509		put_page(page);
 510	if (inode)
 511		iput(inode);
 512
 513	if (ret < 0)
 514		return ret;
 515
 516	if (ret == 0 && corrected) {
 517		/*
 518		 * we only need to call readpage for one of the inodes belonging
 519		 * to this extent. so make iterate_extent_inodes stop
 520		 */
 521		return 1;
 522	}
 523
 524	return -EIO;
 525}
 526
 527static void scrub_fixup_nodatasum(struct btrfs_work *work)
 528{
 529	int ret;
 530	struct scrub_fixup_nodatasum *fixup;
 531	struct scrub_dev *sdev;
 532	struct btrfs_trans_handle *trans = NULL;
 533	struct btrfs_fs_info *fs_info;
 534	struct btrfs_path *path;
 535	int uncorrectable = 0;
 536
 537	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 538	sdev = fixup->sdev;
 539	fs_info = fixup->root->fs_info;
 540
 541	path = btrfs_alloc_path();
 542	if (!path) {
 543		spin_lock(&sdev->stat_lock);
 544		++sdev->stat.malloc_errors;
 545		spin_unlock(&sdev->stat_lock);
 546		uncorrectable = 1;
 547		goto out;
 548	}
 549
 550	trans = btrfs_join_transaction(fixup->root);
 551	if (IS_ERR(trans)) {
 552		uncorrectable = 1;
 553		goto out;
 554	}
 555
 556	/*
 557	 * the idea is to trigger a regular read through the standard path. we
 558	 * read a page from the (failed) logical address by specifying the
 559	 * corresponding copynum of the failed sector. thus, that readpage is
 560	 * expected to fail.
 561	 * that is the point where on-the-fly error correction will kick in
 562	 * (once it's finished) and rewrite the failed sector if a good copy
 563	 * can be found.
 564	 */
 565	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 566						path, scrub_fixup_readpage,
 567						fixup);
 568	if (ret < 0) {
 569		uncorrectable = 1;
 570		goto out;
 571	}
 572	WARN_ON(ret != 1);
 573
 574	spin_lock(&sdev->stat_lock);
 575	++sdev->stat.corrected_errors;
 576	spin_unlock(&sdev->stat_lock);
 577
 578out:
 579	if (trans && !IS_ERR(trans))
 580		btrfs_end_transaction(trans, fixup->root);
 581	if (uncorrectable) {
 582		spin_lock(&sdev->stat_lock);
 583		++sdev->stat.uncorrectable_errors;
 584		spin_unlock(&sdev->stat_lock);
 585
 586		printk_ratelimited_in_rcu(KERN_ERR
 587			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 588			(unsigned long long)fixup->logical,
 589			rcu_str_deref(sdev->dev->name));
 590	}
 591
 592	btrfs_free_path(path);
 593	kfree(fixup);
 594
 595	/* see caller why we're pretending to be paused in the scrub counters */
 596	mutex_lock(&fs_info->scrub_lock);
 597	atomic_dec(&fs_info->scrubs_running);
 598	atomic_dec(&fs_info->scrubs_paused);
 599	mutex_unlock(&fs_info->scrub_lock);
 600	atomic_dec(&sdev->fixup_cnt);
 601	wake_up(&fs_info->scrub_pause_wait);
 602	wake_up(&sdev->list_wait);
 603}
 604
 605/*
 606 * scrub_handle_errored_block gets called when either verification of the
 607 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 608 * case, this function handles all pages in the bio, even though only one
 609 * may be bad.
 610 * The goal of this function is to repair the errored block by using the
 611 * contents of one of the mirrors.
 612 */
 613static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 614{
 615	struct scrub_dev *sdev = sblock_to_check->sdev;
 616	struct btrfs_fs_info *fs_info;
 617	u64 length;
 618	u64 logical;
 619	u64 generation;
 620	unsigned int failed_mirror_index;
 621	unsigned int is_metadata;
 622	unsigned int have_csum;
 623	u8 *csum;
 624	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 625	struct scrub_block *sblock_bad;
 626	int ret;
 627	int mirror_index;
 628	int page_num;
 629	int success;
 630	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 631				      DEFAULT_RATELIMIT_BURST);
 632
 633	BUG_ON(sblock_to_check->page_count < 1);
 634	fs_info = sdev->dev->dev_root->fs_info;
 635	length = sblock_to_check->page_count * PAGE_SIZE;
 636	logical = sblock_to_check->pagev[0].logical;
 637	generation = sblock_to_check->pagev[0].generation;
 638	BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
 639	failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
 640	is_metadata = !(sblock_to_check->pagev[0].flags &
 641			BTRFS_EXTENT_FLAG_DATA);
 642	have_csum = sblock_to_check->pagev[0].have_csum;
 643	csum = sblock_to_check->pagev[0].csum;
 644
 645	/*
 646	 * read all mirrors one after the other. This includes to
 647	 * re-read the extent or metadata block that failed (that was
 648	 * the cause that this fixup code is called) another time,
 649	 * page by page this time in order to know which pages
 650	 * caused I/O errors and which ones are good (for all mirrors).
 651	 * It is the goal to handle the situation when more than one
 652	 * mirror contains I/O errors, but the errors do not
 653	 * overlap, i.e. the data can be repaired by selecting the
 654	 * pages from those mirrors without I/O error on the
 655	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 656	 * would be that mirror #1 has an I/O error on the first page,
 657	 * the second page is good, and mirror #2 has an I/O error on
 658	 * the second page, but the first page is good.
 659	 * Then the first page of the first mirror can be repaired by
 660	 * taking the first page of the second mirror, and the
 661	 * second page of the second mirror can be repaired by
 662	 * copying the contents of the 2nd page of the 1st mirror.
 663	 * One more note: if the pages of one mirror contain I/O
 664	 * errors, the checksum cannot be verified. In order to get
 665	 * the best data for repairing, the first attempt is to find
 666	 * a mirror without I/O errors and with a validated checksum.
 667	 * Only if this is not possible, the pages are picked from
 668	 * mirrors with I/O errors without considering the checksum.
 669	 * If the latter is the case, at the end, the checksum of the
 670	 * repaired area is verified in order to correctly maintain
 671	 * the statistics.
 672	 */
 673
 674	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 675				     sizeof(*sblocks_for_recheck),
 676				     GFP_NOFS);
 677	if (!sblocks_for_recheck) {
 678		spin_lock(&sdev->stat_lock);
 679		sdev->stat.malloc_errors++;
 680		sdev->stat.read_errors++;
 681		sdev->stat.uncorrectable_errors++;
 682		spin_unlock(&sdev->stat_lock);
 683		btrfs_dev_stat_inc_and_print(sdev->dev,
 684					     BTRFS_DEV_STAT_READ_ERRS);
 685		goto out;
 686	}
 687
 688	/* setup the context, map the logical blocks and alloc the pages */
 689	ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
 690					logical, sblocks_for_recheck);
 691	if (ret) {
 692		spin_lock(&sdev->stat_lock);
 693		sdev->stat.read_errors++;
 694		sdev->stat.uncorrectable_errors++;
 695		spin_unlock(&sdev->stat_lock);
 696		btrfs_dev_stat_inc_and_print(sdev->dev,
 697					     BTRFS_DEV_STAT_READ_ERRS);
 698		goto out;
 699	}
 700	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 701	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 702
 703	/* build and submit the bios for the failed mirror, check checksums */
 704	ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 705				  csum, generation, sdev->csum_size);
 706	if (ret) {
 707		spin_lock(&sdev->stat_lock);
 708		sdev->stat.read_errors++;
 709		sdev->stat.uncorrectable_errors++;
 710		spin_unlock(&sdev->stat_lock);
 711		btrfs_dev_stat_inc_and_print(sdev->dev,
 712					     BTRFS_DEV_STAT_READ_ERRS);
 713		goto out;
 714	}
 715
 716	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 717	    sblock_bad->no_io_error_seen) {
 718		/*
 719		 * the error disappeared after reading page by page, or
 720		 * the area was part of a huge bio and other parts of the
 721		 * bio caused I/O errors, or the block layer merged several
 722		 * read requests into one and the error is caused by a
 723		 * different bio (usually one of the two latter cases is
 724		 * the cause)
 725		 */
 726		spin_lock(&sdev->stat_lock);
 727		sdev->stat.unverified_errors++;
 728		spin_unlock(&sdev->stat_lock);
 729
 730		goto out;
 731	}
 732
 733	if (!sblock_bad->no_io_error_seen) {
 734		spin_lock(&sdev->stat_lock);
 735		sdev->stat.read_errors++;
 736		spin_unlock(&sdev->stat_lock);
 737		if (__ratelimit(&_rs))
 738			scrub_print_warning("i/o error", sblock_to_check);
 739		btrfs_dev_stat_inc_and_print(sdev->dev,
 740					     BTRFS_DEV_STAT_READ_ERRS);
 741	} else if (sblock_bad->checksum_error) {
 742		spin_lock(&sdev->stat_lock);
 743		sdev->stat.csum_errors++;
 744		spin_unlock(&sdev->stat_lock);
 745		if (__ratelimit(&_rs))
 746			scrub_print_warning("checksum error", sblock_to_check);
 747		btrfs_dev_stat_inc_and_print(sdev->dev,
 748					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 749	} else if (sblock_bad->header_error) {
 750		spin_lock(&sdev->stat_lock);
 751		sdev->stat.verify_errors++;
 752		spin_unlock(&sdev->stat_lock);
 753		if (__ratelimit(&_rs))
 754			scrub_print_warning("checksum/header error",
 755					    sblock_to_check);
 756		if (sblock_bad->generation_error)
 757			btrfs_dev_stat_inc_and_print(sdev->dev,
 758				BTRFS_DEV_STAT_GENERATION_ERRS);
 759		else
 760			btrfs_dev_stat_inc_and_print(sdev->dev,
 761				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 762	}
 763
 764	if (sdev->readonly)
 765		goto did_not_correct_error;
 766
 767	if (!is_metadata && !have_csum) {
 768		struct scrub_fixup_nodatasum *fixup_nodatasum;
 769
 770		/*
 771		 * !is_metadata and !have_csum, this means that the data
 772		 * might not be COW'ed, that it might be modified
 773		 * concurrently. The general strategy to work on the
 774		 * commit root does not help in the case when COW is not
 775		 * used.
 776		 */
 777		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 778		if (!fixup_nodatasum)
 779			goto did_not_correct_error;
 780		fixup_nodatasum->sdev = sdev;
 781		fixup_nodatasum->logical = logical;
 782		fixup_nodatasum->root = fs_info->extent_root;
 783		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
 784		/*
 785		 * increment scrubs_running to prevent cancel requests from
 786		 * completing as long as a fixup worker is running. we must also
 787		 * increment scrubs_paused to prevent deadlocking on pause
 788		 * requests used for transactions commits (as the worker uses a
 789		 * transaction context). it is safe to regard the fixup worker
 790		 * as paused for all matters practical. effectively, we only
 791		 * avoid cancellation requests from completing.
 792		 */
 793		mutex_lock(&fs_info->scrub_lock);
 794		atomic_inc(&fs_info->scrubs_running);
 795		atomic_inc(&fs_info->scrubs_paused);
 796		mutex_unlock(&fs_info->scrub_lock);
 797		atomic_inc(&sdev->fixup_cnt);
 798		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
 799		btrfs_queue_worker(&fs_info->scrub_workers,
 800				   &fixup_nodatasum->work);
 801		goto out;
 802	}
 803
 804	/*
 805	 * now build and submit the bios for the other mirrors, check
 806	 * checksums
 807	 */
 808	for (mirror_index = 0;
 809	     mirror_index < BTRFS_MAX_MIRRORS &&
 810	     sblocks_for_recheck[mirror_index].page_count > 0;
 811	     mirror_index++) {
 812		if (mirror_index == failed_mirror_index)
 813			continue;
 814
 815		/* build and submit the bios, check checksums */
 816		ret = scrub_recheck_block(fs_info,
 817					  sblocks_for_recheck + mirror_index,
 818					  is_metadata, have_csum, csum,
 819					  generation, sdev->csum_size);
 820		if (ret)
 821			goto did_not_correct_error;
 822	}
 823
 824	/*
 825	 * first try to pick the mirror which is completely without I/O
 826	 * errors and also does not have a checksum error.
 827	 * If one is found, and if a checksum is present, the full block
 828	 * that is known to contain an error is rewritten. Afterwards
 829	 * the block is known to be corrected.
 830	 * If a mirror is found which is completely correct, and no
 831	 * checksum is present, only those pages are rewritten that had
 832	 * an I/O error in the block to be repaired, since it cannot be
 833	 * determined, which copy of the other pages is better (and it
 834	 * could happen otherwise that a correct page would be
 835	 * overwritten by a bad one).
 836	 */
 837	for (mirror_index = 0;
 838	     mirror_index < BTRFS_MAX_MIRRORS &&
 839	     sblocks_for_recheck[mirror_index].page_count > 0;
 840	     mirror_index++) {
 841		struct scrub_block *sblock_other = sblocks_for_recheck +
 842						   mirror_index;
 843
 844		if (!sblock_other->header_error &&
 845		    !sblock_other->checksum_error &&
 846		    sblock_other->no_io_error_seen) {
 847			int force_write = is_metadata || have_csum;
 848
 849			ret = scrub_repair_block_from_good_copy(sblock_bad,
 850								sblock_other,
 851								force_write);
 852			if (0 == ret)
 853				goto corrected_error;
 854		}
 855	}
 856
 857	/*
 858	 * in case of I/O errors in the area that is supposed to be
 859	 * repaired, continue by picking good copies of those pages.
 860	 * Select the good pages from mirrors to rewrite bad pages from
 861	 * the area to fix. Afterwards verify the checksum of the block
 862	 * that is supposed to be repaired. This verification step is
 863	 * only done for the purpose of statistic counting and for the
 864	 * final scrub report, whether errors remain.
 865	 * A perfect algorithm could make use of the checksum and try
 866	 * all possible combinations of pages from the different mirrors
 867	 * until the checksum verification succeeds. For example, when
 868	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
 869	 * of mirror #2 is readable but the final checksum test fails,
 870	 * then the 2nd page of mirror #3 could be tried, whether now
 871	 * the final checksum succeedes. But this would be a rare
 872	 * exception and is therefore not implemented. At least it is
 873	 * avoided that the good copy is overwritten.
 874	 * A more useful improvement would be to pick the sectors
 875	 * without I/O error based on sector sizes (512 bytes on legacy
 876	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
 877	 * mirror could be repaired by taking 512 byte of a different
 878	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
 879	 * area are unreadable.
 880	 */
 881
 882	/* can only fix I/O errors from here on */
 883	if (sblock_bad->no_io_error_seen)
 884		goto did_not_correct_error;
 885
 886	success = 1;
 887	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
 888		struct scrub_page *page_bad = sblock_bad->pagev + page_num;
 889
 890		if (!page_bad->io_error)
 891			continue;
 892
 893		for (mirror_index = 0;
 894		     mirror_index < BTRFS_MAX_MIRRORS &&
 895		     sblocks_for_recheck[mirror_index].page_count > 0;
 896		     mirror_index++) {
 897			struct scrub_block *sblock_other = sblocks_for_recheck +
 898							   mirror_index;
 899			struct scrub_page *page_other = sblock_other->pagev +
 900							page_num;
 901
 902			if (!page_other->io_error) {
 903				ret = scrub_repair_page_from_good_copy(
 904					sblock_bad, sblock_other, page_num, 0);
 905				if (0 == ret) {
 906					page_bad->io_error = 0;
 907					break; /* succeeded for this page */
 908				}
 909			}
 910		}
 911
 912		if (page_bad->io_error) {
 913			/* did not find a mirror to copy the page from */
 914			success = 0;
 915		}
 916	}
 
 
 917
 918	if (success) {
 919		if (is_metadata || have_csum) {
 920			/*
 921			 * need to verify the checksum now that all
 922			 * sectors on disk are repaired (the write
 923			 * request for data to be repaired is on its way).
 924			 * Just be lazy and use scrub_recheck_block()
 925			 * which re-reads the data before the checksum
 926			 * is verified, but most likely the data comes out
 927			 * of the page cache.
 928			 */
 929			ret = scrub_recheck_block(fs_info, sblock_bad,
 930						  is_metadata, have_csum, csum,
 931						  generation, sdev->csum_size);
 932			if (!ret && !sblock_bad->header_error &&
 933			    !sblock_bad->checksum_error &&
 934			    sblock_bad->no_io_error_seen)
 935				goto corrected_error;
 936			else
 937				goto did_not_correct_error;
 938		} else {
 939corrected_error:
 940			spin_lock(&sdev->stat_lock);
 941			sdev->stat.corrected_errors++;
 942			spin_unlock(&sdev->stat_lock);
 943			printk_ratelimited_in_rcu(KERN_ERR
 944				"btrfs: fixed up error at logical %llu on dev %s\n",
 945				(unsigned long long)logical,
 946				rcu_str_deref(sdev->dev->name));
 947		}
 948	} else {
 949did_not_correct_error:
 950		spin_lock(&sdev->stat_lock);
 951		sdev->stat.uncorrectable_errors++;
 952		spin_unlock(&sdev->stat_lock);
 953		printk_ratelimited_in_rcu(KERN_ERR
 954			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
 955			(unsigned long long)logical,
 956			rcu_str_deref(sdev->dev->name));
 957	}
 958
 959out:
 960	if (sblocks_for_recheck) {
 961		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
 962		     mirror_index++) {
 963			struct scrub_block *sblock = sblocks_for_recheck +
 964						     mirror_index;
 965			int page_index;
 966
 967			for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
 968			     page_index++)
 969				if (sblock->pagev[page_index].page)
 970					__free_page(
 971						sblock->pagev[page_index].page);
 972		}
 973		kfree(sblocks_for_recheck);
 974	}
 975
 976	return 0;
 977}
 978
 979static int scrub_setup_recheck_block(struct scrub_dev *sdev,
 980				     struct btrfs_mapping_tree *map_tree,
 981				     u64 length, u64 logical,
 982				     struct scrub_block *sblocks_for_recheck)
 983{
 984	int page_index;
 985	int mirror_index;
 986	int ret;
 987
 988	/*
 989	 * note: the three members sdev, ref_count and outstanding_pages
 990	 * are not used (and not set) in the blocks that are used for
 991	 * the recheck procedure
 992	 */
 993
 994	page_index = 0;
 995	while (length > 0) {
 996		u64 sublen = min_t(u64, length, PAGE_SIZE);
 997		u64 mapped_length = sublen;
 998		struct btrfs_bio *bbio = NULL;
 999
1000		/*
1001		 * with a length of PAGE_SIZE, each returned stripe
1002		 * represents one mirror
1003		 */
1004		ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
1005				      &bbio, 0);
1006		if (ret || !bbio || mapped_length < sublen) {
1007			kfree(bbio);
1008			return -EIO;
1009		}
1010
1011		BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1012		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1013		     mirror_index++) {
1014			struct scrub_block *sblock;
1015			struct scrub_page *page;
1016
1017			if (mirror_index >= BTRFS_MAX_MIRRORS)
1018				continue;
1019
1020			sblock = sblocks_for_recheck + mirror_index;
1021			page = sblock->pagev + page_index;
1022			page->logical = logical;
1023			page->physical = bbio->stripes[mirror_index].physical;
1024			/* for missing devices, dev->bdev is NULL */
1025			page->dev = bbio->stripes[mirror_index].dev;
1026			page->mirror_num = mirror_index + 1;
1027			page->page = alloc_page(GFP_NOFS);
1028			if (!page->page) {
1029				spin_lock(&sdev->stat_lock);
1030				sdev->stat.malloc_errors++;
1031				spin_unlock(&sdev->stat_lock);
1032				return -ENOMEM;
1033			}
1034			sblock->page_count++;
1035		}
1036		kfree(bbio);
1037		length -= sublen;
1038		logical += sublen;
1039		page_index++;
1040	}
1041
1042	return 0;
1043}
 
 
1044
1045/*
1046 * this function will check the on disk data for checksum errors, header
1047 * errors and read I/O errors. If any I/O errors happen, the exact pages
1048 * which are errored are marked as being bad. The goal is to enable scrub
1049 * to take those pages that are not errored from all the mirrors so that
1050 * the pages that are errored in the just handled mirror can be repaired.
1051 */
1052static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1053			       struct scrub_block *sblock, int is_metadata,
1054			       int have_csum, u8 *csum, u64 generation,
1055			       u16 csum_size)
1056{
1057	int page_num;
1058
1059	sblock->no_io_error_seen = 1;
1060	sblock->header_error = 0;
1061	sblock->checksum_error = 0;
1062
1063	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1064		struct bio *bio;
1065		int ret;
1066		struct scrub_page *page = sblock->pagev + page_num;
1067		DECLARE_COMPLETION_ONSTACK(complete);
1068
1069		if (page->dev->bdev == NULL) {
1070			page->io_error = 1;
1071			sblock->no_io_error_seen = 0;
1072			continue;
1073		}
1074
1075		BUG_ON(!page->page);
1076		bio = bio_alloc(GFP_NOFS, 1);
1077		if (!bio)
1078			return -EIO;
1079		bio->bi_bdev = page->dev->bdev;
1080		bio->bi_sector = page->physical >> 9;
1081		bio->bi_end_io = scrub_complete_bio_end_io;
1082		bio->bi_private = &complete;
1083
1084		ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1085		if (PAGE_SIZE != ret) {
1086			bio_put(bio);
1087			return -EIO;
1088		}
1089		btrfsic_submit_bio(READ, bio);
1090
1091		/* this will also unplug the queue */
1092		wait_for_completion(&complete);
 
 
 
 
 
1093
1094		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1095		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1096			sblock->no_io_error_seen = 0;
1097		bio_put(bio);
1098	}
1099
1100	if (sblock->no_io_error_seen)
1101		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1102					     have_csum, csum, generation,
1103					     csum_size);
1104
1105	return 0;
1106}
1107
1108static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1109					 struct scrub_block *sblock,
1110					 int is_metadata, int have_csum,
1111					 const u8 *csum, u64 generation,
1112					 u16 csum_size)
1113{
1114	int page_num;
1115	u8 calculated_csum[BTRFS_CSUM_SIZE];
1116	u32 crc = ~(u32)0;
1117	struct btrfs_root *root = fs_info->extent_root;
1118	void *mapped_buffer;
1119
1120	BUG_ON(!sblock->pagev[0].page);
1121	if (is_metadata) {
1122		struct btrfs_header *h;
1123
1124		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1125		h = (struct btrfs_header *)mapped_buffer;
1126
1127		if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1128		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1129		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1130			   BTRFS_UUID_SIZE)) {
1131			sblock->header_error = 1;
1132		} else if (generation != le64_to_cpu(h->generation)) {
1133			sblock->header_error = 1;
1134			sblock->generation_error = 1;
1135		}
1136		csum = h->csum;
1137	} else {
1138		if (!have_csum)
1139			return;
1140
1141		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1142	}
1143
1144	for (page_num = 0;;) {
1145		if (page_num == 0 && is_metadata)
1146			crc = btrfs_csum_data(root,
1147				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1148				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1149		else
1150			crc = btrfs_csum_data(root, mapped_buffer, crc,
1151					      PAGE_SIZE);
1152
1153		kunmap_atomic(mapped_buffer);
1154		page_num++;
1155		if (page_num >= sblock->page_count)
1156			break;
1157		BUG_ON(!sblock->pagev[page_num].page);
1158
1159		mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1160	}
1161
1162	btrfs_csum_final(crc, calculated_csum);
1163	if (memcmp(calculated_csum, csum, csum_size))
1164		sblock->checksum_error = 1;
1165}
1166
1167static void scrub_complete_bio_end_io(struct bio *bio, int err)
1168{
1169	complete((struct completion *)bio->bi_private);
1170}
 
 
 
 
 
 
1171
1172static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1173					     struct scrub_block *sblock_good,
1174					     int force_write)
1175{
1176	int page_num;
1177	int ret = 0;
1178
1179	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1180		int ret_sub;
 
 
1181
1182		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1183							   sblock_good,
1184							   page_num,
1185							   force_write);
1186		if (ret_sub)
1187			ret = ret_sub;
1188	}
1189
1190	return ret;
1191}
1192
1193static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1194					    struct scrub_block *sblock_good,
1195					    int page_num, int force_write)
1196{
1197	struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1198	struct scrub_page *page_good = sblock_good->pagev + page_num;
1199
1200	BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1201	BUG_ON(sblock_good->pagev[page_num].page == NULL);
1202	if (force_write || sblock_bad->header_error ||
1203	    sblock_bad->checksum_error || page_bad->io_error) {
1204		struct bio *bio;
1205		int ret;
1206		DECLARE_COMPLETION_ONSTACK(complete);
1207
1208		bio = bio_alloc(GFP_NOFS, 1);
1209		if (!bio)
1210			return -EIO;
1211		bio->bi_bdev = page_bad->dev->bdev;
1212		bio->bi_sector = page_bad->physical >> 9;
1213		bio->bi_end_io = scrub_complete_bio_end_io;
1214		bio->bi_private = &complete;
1215
1216		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1217		if (PAGE_SIZE != ret) {
1218			bio_put(bio);
1219			return -EIO;
1220		}
1221		btrfsic_submit_bio(WRITE, bio);
1222
1223		/* this will also unplug the queue */
1224		wait_for_completion(&complete);
1225		if (!bio_flagged(bio, BIO_UPTODATE)) {
1226			btrfs_dev_stat_inc_and_print(page_bad->dev,
1227				BTRFS_DEV_STAT_WRITE_ERRS);
1228			bio_put(bio);
1229			return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230		}
1231		bio_put(bio);
 
 
1232	}
1233
1234	return 0;
1235}
1236
1237static void scrub_checksum(struct scrub_block *sblock)
1238{
1239	u64 flags;
1240	int ret;
1241
1242	BUG_ON(sblock->page_count < 1);
1243	flags = sblock->pagev[0].flags;
1244	ret = 0;
1245	if (flags & BTRFS_EXTENT_FLAG_DATA)
1246		ret = scrub_checksum_data(sblock);
1247	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1248		ret = scrub_checksum_tree_block(sblock);
1249	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1250		(void)scrub_checksum_super(sblock);
1251	else
1252		WARN_ON(1);
1253	if (ret)
1254		scrub_handle_errored_block(sblock);
1255}
1256
1257static int scrub_checksum_data(struct scrub_block *sblock)
 
1258{
1259	struct scrub_dev *sdev = sblock->sdev;
1260	u8 csum[BTRFS_CSUM_SIZE];
1261	u8 *on_disk_csum;
1262	struct page *page;
1263	void *buffer;
1264	u32 crc = ~(u32)0;
1265	int fail = 0;
1266	struct btrfs_root *root = sdev->dev->dev_root;
1267	u64 len;
1268	int index;
1269
1270	BUG_ON(sblock->page_count < 1);
1271	if (!sblock->pagev[0].have_csum)
1272		return 0;
1273
1274	on_disk_csum = sblock->pagev[0].csum;
1275	page = sblock->pagev[0].page;
1276	buffer = kmap_atomic(page);
1277
1278	len = sdev->sectorsize;
1279	index = 0;
1280	for (;;) {
1281		u64 l = min_t(u64, len, PAGE_SIZE);
1282
1283		crc = btrfs_csum_data(root, buffer, crc, l);
1284		kunmap_atomic(buffer);
1285		len -= l;
1286		if (len == 0)
1287			break;
1288		index++;
1289		BUG_ON(index >= sblock->page_count);
1290		BUG_ON(!sblock->pagev[index].page);
1291		page = sblock->pagev[index].page;
1292		buffer = kmap_atomic(page);
1293	}
1294
1295	btrfs_csum_final(crc, csum);
1296	if (memcmp(csum, on_disk_csum, sdev->csum_size))
1297		fail = 1;
1298
 
 
 
 
 
 
 
1299	return fail;
1300}
1301
1302static int scrub_checksum_tree_block(struct scrub_block *sblock)
 
 
1303{
1304	struct scrub_dev *sdev = sblock->sdev;
1305	struct btrfs_header *h;
1306	struct btrfs_root *root = sdev->dev->dev_root;
1307	struct btrfs_fs_info *fs_info = root->fs_info;
1308	u8 calculated_csum[BTRFS_CSUM_SIZE];
1309	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1310	struct page *page;
1311	void *mapped_buffer;
1312	u64 mapped_size;
1313	void *p;
1314	u32 crc = ~(u32)0;
1315	int fail = 0;
1316	int crc_fail = 0;
1317	u64 len;
1318	int index;
1319
1320	BUG_ON(sblock->page_count < 1);
1321	page = sblock->pagev[0].page;
1322	mapped_buffer = kmap_atomic(page);
1323	h = (struct btrfs_header *)mapped_buffer;
1324	memcpy(on_disk_csum, h->csum, sdev->csum_size);
1325
1326	/*
1327	 * we don't use the getter functions here, as we
1328	 * a) don't have an extent buffer and
1329	 * b) the page is already kmapped
1330	 */
 
1331
1332	if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1333		++fail;
1334
1335	if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1336		++fail;
1337
1338	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1339		++fail;
1340
1341	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1342		   BTRFS_UUID_SIZE))
1343		++fail;
1344
1345	BUG_ON(sdev->nodesize != sdev->leafsize);
1346	len = sdev->nodesize - BTRFS_CSUM_SIZE;
1347	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1348	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1349	index = 0;
1350	for (;;) {
1351		u64 l = min_t(u64, len, mapped_size);
1352
1353		crc = btrfs_csum_data(root, p, crc, l);
1354		kunmap_atomic(mapped_buffer);
1355		len -= l;
1356		if (len == 0)
1357			break;
1358		index++;
1359		BUG_ON(index >= sblock->page_count);
1360		BUG_ON(!sblock->pagev[index].page);
1361		page = sblock->pagev[index].page;
1362		mapped_buffer = kmap_atomic(page);
1363		mapped_size = PAGE_SIZE;
1364		p = mapped_buffer;
1365	}
1366
1367	btrfs_csum_final(crc, calculated_csum);
1368	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1369		++crc_fail;
1370
1371	return fail || crc_fail;
1372}
1373
1374static int scrub_checksum_super(struct scrub_block *sblock)
1375{
1376	struct btrfs_super_block *s;
1377	struct scrub_dev *sdev = sblock->sdev;
 
1378	struct btrfs_root *root = sdev->dev->dev_root;
1379	struct btrfs_fs_info *fs_info = root->fs_info;
1380	u8 calculated_csum[BTRFS_CSUM_SIZE];
1381	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1382	struct page *page;
1383	void *mapped_buffer;
1384	u64 mapped_size;
1385	void *p;
1386	u32 crc = ~(u32)0;
1387	int fail_gen = 0;
1388	int fail_cor = 0;
1389	u64 len;
1390	int index;
1391
1392	BUG_ON(sblock->page_count < 1);
1393	page = sblock->pagev[0].page;
1394	mapped_buffer = kmap_atomic(page);
1395	s = (struct btrfs_super_block *)mapped_buffer;
1396	memcpy(on_disk_csum, s->csum, sdev->csum_size);
1397
1398	if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1399		++fail_cor;
1400
1401	if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1402		++fail_gen;
 
 
 
1403
1404	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1405		++fail_cor;
1406
1407	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1408	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1409	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1410	index = 0;
1411	for (;;) {
1412		u64 l = min_t(u64, len, mapped_size);
1413
1414		crc = btrfs_csum_data(root, p, crc, l);
1415		kunmap_atomic(mapped_buffer);
1416		len -= l;
1417		if (len == 0)
1418			break;
1419		index++;
1420		BUG_ON(index >= sblock->page_count);
1421		BUG_ON(!sblock->pagev[index].page);
1422		page = sblock->pagev[index].page;
1423		mapped_buffer = kmap_atomic(page);
1424		mapped_size = PAGE_SIZE;
1425		p = mapped_buffer;
1426	}
1427
1428	btrfs_csum_final(crc, calculated_csum);
1429	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1430		++fail_cor;
1431
1432	if (fail_cor + fail_gen) {
1433		/*
1434		 * if we find an error in a super block, we just report it.
1435		 * They will get written with the next transaction commit
1436		 * anyway
1437		 */
1438		spin_lock(&sdev->stat_lock);
1439		++sdev->stat.super_errors;
1440		spin_unlock(&sdev->stat_lock);
1441		if (fail_cor)
1442			btrfs_dev_stat_inc_and_print(sdev->dev,
1443				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1444		else
1445			btrfs_dev_stat_inc_and_print(sdev->dev,
1446				BTRFS_DEV_STAT_GENERATION_ERRS);
1447	}
1448
1449	return fail_cor + fail_gen;
1450}
1451
1452static void scrub_block_get(struct scrub_block *sblock)
1453{
1454	atomic_inc(&sblock->ref_count);
1455}
 
 
 
 
 
 
 
 
 
 
1456
1457static void scrub_block_put(struct scrub_block *sblock)
1458{
1459	if (atomic_dec_and_test(&sblock->ref_count)) {
1460		int i;
1461
1462		for (i = 0; i < sblock->page_count; i++)
1463			if (sblock->pagev[i].page)
1464				__free_page(sblock->pagev[i].page);
1465		kfree(sblock);
1466	}
1467}
1468
1469static void scrub_submit(struct scrub_dev *sdev)
1470{
1471	struct scrub_bio *sbio;
1472
1473	if (sdev->curr == -1)
1474		return;
 
 
 
 
1475
1476	sbio = sdev->bios[sdev->curr];
1477	sdev->curr = -1;
1478	atomic_inc(&sdev->in_flight);
1479
1480	btrfsic_submit_bio(READ, sbio->bio);
 
 
 
 
 
 
 
1481}
1482
1483static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1484				 struct scrub_page *spage)
 
1485{
1486	struct scrub_block *sblock = spage->sblock;
1487	struct scrub_bio *sbio;
1488	int ret;
1489
1490again:
1491	/*
1492	 * grab a fresh bio or wait for one to become available
1493	 */
1494	while (sdev->curr == -1) {
1495		spin_lock(&sdev->list_lock);
1496		sdev->curr = sdev->first_free;
1497		if (sdev->curr != -1) {
1498			sdev->first_free = sdev->bios[sdev->curr]->next_free;
1499			sdev->bios[sdev->curr]->next_free = -1;
1500			sdev->bios[sdev->curr]->page_count = 0;
1501			spin_unlock(&sdev->list_lock);
1502		} else {
1503			spin_unlock(&sdev->list_lock);
1504			wait_event(sdev->list_wait, sdev->first_free != -1);
1505		}
1506	}
1507	sbio = sdev->bios[sdev->curr];
1508	if (sbio->page_count == 0) {
1509		struct bio *bio;
 
 
 
 
1510
1511		sbio->physical = spage->physical;
1512		sbio->logical = spage->logical;
1513		bio = sbio->bio;
1514		if (!bio) {
1515			bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1516			if (!bio)
1517				return -ENOMEM;
1518			sbio->bio = bio;
1519		}
1520
1521		bio->bi_private = sbio;
1522		bio->bi_end_io = scrub_bio_end_io;
1523		bio->bi_bdev = sdev->dev->bdev;
1524		bio->bi_sector = spage->physical >> 9;
1525		sbio->err = 0;
1526	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1527		   spage->physical ||
1528		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1529		   spage->logical) {
1530		scrub_submit(sdev);
1531		goto again;
1532	}
1533
1534	sbio->pagev[sbio->page_count] = spage;
1535	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1536	if (ret != PAGE_SIZE) {
1537		if (sbio->page_count < 1) {
1538			bio_put(sbio->bio);
1539			sbio->bio = NULL;
1540			return -EIO;
1541		}
1542		scrub_submit(sdev);
1543		goto again;
1544	}
1545
1546	scrub_block_get(sblock); /* one for the added page */
1547	atomic_inc(&sblock->outstanding_pages);
1548	sbio->page_count++;
1549	if (sbio->page_count == sdev->pages_per_bio)
1550		scrub_submit(sdev);
1551
1552	return 0;
1553}
1554
1555static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1556		       u64 physical, u64 flags, u64 gen, int mirror_num,
1557		       u8 *csum, int force)
1558{
1559	struct scrub_block *sblock;
1560	int index;
1561
1562	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1563	if (!sblock) {
1564		spin_lock(&sdev->stat_lock);
1565		sdev->stat.malloc_errors++;
1566		spin_unlock(&sdev->stat_lock);
1567		return -ENOMEM;
1568	}
1569
1570	/* one ref inside this function, plus one for each page later on */
1571	atomic_set(&sblock->ref_count, 1);
1572	sblock->sdev = sdev;
1573	sblock->no_io_error_seen = 1;
1574
1575	for (index = 0; len > 0; index++) {
1576		struct scrub_page *spage = sblock->pagev + index;
1577		u64 l = min_t(u64, len, PAGE_SIZE);
1578
1579		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1580		spage->page = alloc_page(GFP_NOFS);
1581		if (!spage->page) {
1582			spin_lock(&sdev->stat_lock);
1583			sdev->stat.malloc_errors++;
1584			spin_unlock(&sdev->stat_lock);
1585			while (index > 0) {
1586				index--;
1587				__free_page(sblock->pagev[index].page);
1588			}
1589			kfree(sblock);
1590			return -ENOMEM;
1591		}
1592		spage->sblock = sblock;
1593		spage->dev = sdev->dev;
1594		spage->flags = flags;
1595		spage->generation = gen;
1596		spage->logical = logical;
1597		spage->physical = physical;
1598		spage->mirror_num = mirror_num;
1599		if (csum) {
1600			spage->have_csum = 1;
1601			memcpy(spage->csum, csum, sdev->csum_size);
1602		} else {
1603			spage->have_csum = 0;
1604		}
1605		sblock->page_count++;
1606		len -= l;
1607		logical += l;
1608		physical += l;
1609	}
1610
1611	BUG_ON(sblock->page_count == 0);
1612	for (index = 0; index < sblock->page_count; index++) {
1613		struct scrub_page *spage = sblock->pagev + index;
1614		int ret;
1615
1616		ret = scrub_add_page_to_bio(sdev, spage);
1617		if (ret) {
1618			scrub_block_put(sblock);
1619			return ret;
1620		}
1621	}
1622
1623	if (force)
1624		scrub_submit(sdev);
1625
1626	/* last one frees, either here or in bio completion for last page */
1627	scrub_block_put(sblock);
1628	return 0;
1629}
1630
1631static void scrub_bio_end_io(struct bio *bio, int err)
1632{
1633	struct scrub_bio *sbio = bio->bi_private;
1634	struct scrub_dev *sdev = sbio->sdev;
1635	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1636
1637	sbio->err = err;
1638	sbio->bio = bio;
1639
1640	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1641}
1642
1643static void scrub_bio_end_io_worker(struct btrfs_work *work)
1644{
1645	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1646	struct scrub_dev *sdev = sbio->sdev;
1647	int i;
1648
1649	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1650	if (sbio->err) {
1651		for (i = 0; i < sbio->page_count; i++) {
1652			struct scrub_page *spage = sbio->pagev[i];
1653
1654			spage->io_error = 1;
1655			spage->sblock->no_io_error_seen = 0;
1656		}
1657	}
1658
1659	/* now complete the scrub_block items that have all pages completed */
1660	for (i = 0; i < sbio->page_count; i++) {
1661		struct scrub_page *spage = sbio->pagev[i];
1662		struct scrub_block *sblock = spage->sblock;
1663
1664		if (atomic_dec_and_test(&sblock->outstanding_pages))
1665			scrub_block_complete(sblock);
1666		scrub_block_put(sblock);
1667	}
1668
1669	if (sbio->err) {
1670		/* what is this good for??? */
1671		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1672		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1673		sbio->bio->bi_phys_segments = 0;
1674		sbio->bio->bi_idx = 0;
1675
1676		for (i = 0; i < sbio->page_count; i++) {
1677			struct bio_vec *bi;
1678			bi = &sbio->bio->bi_io_vec[i];
1679			bi->bv_offset = 0;
1680			bi->bv_len = PAGE_SIZE;
1681		}
1682	}
1683
1684	bio_put(sbio->bio);
1685	sbio->bio = NULL;
1686	spin_lock(&sdev->list_lock);
1687	sbio->next_free = sdev->first_free;
1688	sdev->first_free = sbio->index;
1689	spin_unlock(&sdev->list_lock);
1690	atomic_dec(&sdev->in_flight);
1691	wake_up(&sdev->list_wait);
1692}
1693
1694static void scrub_block_complete(struct scrub_block *sblock)
1695{
1696	if (!sblock->no_io_error_seen)
1697		scrub_handle_errored_block(sblock);
1698	else
1699		scrub_checksum(sblock);
1700}
1701
1702static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1703			   u8 *csum)
1704{
1705	struct btrfs_ordered_sum *sum = NULL;
1706	int ret = 0;
1707	unsigned long i;
1708	unsigned long num_sectors;
 
1709
1710	while (!list_empty(&sdev->csum_list)) {
1711		sum = list_first_entry(&sdev->csum_list,
1712				       struct btrfs_ordered_sum, list);
1713		if (sum->bytenr > logical)
1714			return 0;
1715		if (sum->bytenr + sum->len > logical)
1716			break;
1717
1718		++sdev->stat.csum_discards;
1719		list_del(&sum->list);
1720		kfree(sum);
1721		sum = NULL;
1722	}
1723	if (!sum)
1724		return 0;
1725
1726	num_sectors = sum->len / sdev->sectorsize;
1727	for (i = 0; i < num_sectors; ++i) {
1728		if (sum->sums[i].bytenr == logical) {
1729			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1730			ret = 1;
1731			break;
1732		}
1733	}
1734	if (ret && i == num_sectors - 1) {
1735		list_del(&sum->list);
1736		kfree(sum);
1737	}
1738	return ret;
1739}
1740
1741/* scrub extent tries to collect up to 64 kB for each bio */
1742static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1743			u64 physical, u64 flags, u64 gen, int mirror_num)
1744{
1745	int ret;
1746	u8 csum[BTRFS_CSUM_SIZE];
1747	u32 blocksize;
1748
1749	if (flags & BTRFS_EXTENT_FLAG_DATA) {
1750		blocksize = sdev->sectorsize;
1751		spin_lock(&sdev->stat_lock);
1752		sdev->stat.data_extents_scrubbed++;
1753		sdev->stat.data_bytes_scrubbed += len;
1754		spin_unlock(&sdev->stat_lock);
1755	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1756		BUG_ON(sdev->nodesize != sdev->leafsize);
1757		blocksize = sdev->nodesize;
1758		spin_lock(&sdev->stat_lock);
1759		sdev->stat.tree_extents_scrubbed++;
1760		sdev->stat.tree_bytes_scrubbed += len;
1761		spin_unlock(&sdev->stat_lock);
1762	} else {
1763		blocksize = sdev->sectorsize;
1764		BUG_ON(1);
1765	}
1766
1767	while (len) {
1768		u64 l = min_t(u64, len, blocksize);
1769		int have_csum = 0;
1770
1771		if (flags & BTRFS_EXTENT_FLAG_DATA) {
1772			/* push csums to sbio */
1773			have_csum = scrub_find_csum(sdev, logical, l, csum);
1774			if (have_csum == 0)
1775				++sdev->stat.no_csum;
1776		}
1777		ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1778				  mirror_num, have_csum ? csum : NULL, 0);
1779		if (ret)
1780			return ret;
1781		len -= l;
1782		logical += l;
1783		physical += l;
1784	}
1785	return 0;
1786}
1787
1788static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1789	struct map_lookup *map, int num, u64 base, u64 length)
1790{
1791	struct btrfs_path *path;
1792	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1793	struct btrfs_root *root = fs_info->extent_root;
1794	struct btrfs_root *csum_root = fs_info->csum_root;
1795	struct btrfs_extent_item *extent;
1796	struct blk_plug plug;
1797	u64 flags;
1798	int ret;
1799	int slot;
1800	int i;
1801	u64 nstripes;
 
1802	struct extent_buffer *l;
1803	struct btrfs_key key;
1804	u64 physical;
1805	u64 logical;
1806	u64 generation;
1807	int mirror_num;
1808	struct reada_control *reada1;
1809	struct reada_control *reada2;
1810	struct btrfs_key key_start;
1811	struct btrfs_key key_end;
1812
1813	u64 increment = map->stripe_len;
1814	u64 offset;
1815
1816	nstripes = length;
1817	offset = 0;
1818	do_div(nstripes, map->stripe_len);
1819	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1820		offset = map->stripe_len * num;
1821		increment = map->stripe_len * map->num_stripes;
1822		mirror_num = 1;
1823	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1824		int factor = map->num_stripes / map->sub_stripes;
1825		offset = map->stripe_len * (num / map->sub_stripes);
1826		increment = map->stripe_len * factor;
1827		mirror_num = num % map->sub_stripes + 1;
1828	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1829		increment = map->stripe_len;
1830		mirror_num = num % map->num_stripes + 1;
1831	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1832		increment = map->stripe_len;
1833		mirror_num = num % map->num_stripes + 1;
1834	} else {
1835		increment = map->stripe_len;
1836		mirror_num = 1;
1837	}
1838
1839	path = btrfs_alloc_path();
1840	if (!path)
1841		return -ENOMEM;
1842
1843	/*
1844	 * work on commit root. The related disk blocks are static as
1845	 * long as COW is applied. This means, it is save to rewrite
1846	 * them to repair disk errors without any race conditions
1847	 */
1848	path->search_commit_root = 1;
1849	path->skip_locking = 1;
1850
1851	/*
1852	 * trigger the readahead for extent tree csum tree and wait for
1853	 * completion. During readahead, the scrub is officially paused
1854	 * to not hold off transaction commits
1855	 */
1856	logical = base + offset;
 
 
 
 
 
 
1857
1858	wait_event(sdev->list_wait,
1859		   atomic_read(&sdev->in_flight) == 0);
1860	atomic_inc(&fs_info->scrubs_paused);
1861	wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862
1863	/* FIXME it might be better to start readahead at commit root */
1864	key_start.objectid = logical;
1865	key_start.type = BTRFS_EXTENT_ITEM_KEY;
1866	key_start.offset = (u64)0;
1867	key_end.objectid = base + offset + nstripes * increment;
1868	key_end.type = BTRFS_EXTENT_ITEM_KEY;
1869	key_end.offset = (u64)0;
1870	reada1 = btrfs_reada_add(root, &key_start, &key_end);
1871
1872	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1873	key_start.type = BTRFS_EXTENT_CSUM_KEY;
1874	key_start.offset = logical;
1875	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1876	key_end.type = BTRFS_EXTENT_CSUM_KEY;
1877	key_end.offset = base + offset + nstripes * increment;
1878	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1879
1880	if (!IS_ERR(reada1))
1881		btrfs_reada_wait(reada1);
1882	if (!IS_ERR(reada2))
1883		btrfs_reada_wait(reada2);
1884
1885	mutex_lock(&fs_info->scrub_lock);
1886	while (atomic_read(&fs_info->scrub_pause_req)) {
1887		mutex_unlock(&fs_info->scrub_lock);
1888		wait_event(fs_info->scrub_pause_wait,
1889		   atomic_read(&fs_info->scrub_pause_req) == 0);
1890		mutex_lock(&fs_info->scrub_lock);
1891	}
1892	atomic_dec(&fs_info->scrubs_paused);
1893	mutex_unlock(&fs_info->scrub_lock);
1894	wake_up(&fs_info->scrub_pause_wait);
1895
1896	/*
1897	 * collect all data csums for the stripe to avoid seeking during
1898	 * the scrub. This might currently (crc32) end up to be about 1MB
1899	 */
 
1900	blk_start_plug(&plug);
 
 
 
 
 
 
 
 
1901
 
 
 
1902	/*
1903	 * now find all extents for each stripe and scrub them
1904	 */
1905	logical = base + offset;
1906	physical = map->stripes[num].physical;
1907	ret = 0;
1908	for (i = 0; i < nstripes; ++i) {
1909		/*
1910		 * canceled?
1911		 */
1912		if (atomic_read(&fs_info->scrub_cancel_req) ||
1913		    atomic_read(&sdev->cancel_req)) {
1914			ret = -ECANCELED;
1915			goto out;
1916		}
1917		/*
1918		 * check to see if we have to pause
1919		 */
1920		if (atomic_read(&fs_info->scrub_pause_req)) {
1921			/* push queued extents */
1922			scrub_submit(sdev);
1923			wait_event(sdev->list_wait,
1924				   atomic_read(&sdev->in_flight) == 0);
1925			atomic_inc(&fs_info->scrubs_paused);
1926			wake_up(&fs_info->scrub_pause_wait);
1927			mutex_lock(&fs_info->scrub_lock);
1928			while (atomic_read(&fs_info->scrub_pause_req)) {
1929				mutex_unlock(&fs_info->scrub_lock);
1930				wait_event(fs_info->scrub_pause_wait,
1931				   atomic_read(&fs_info->scrub_pause_req) == 0);
1932				mutex_lock(&fs_info->scrub_lock);
1933			}
1934			atomic_dec(&fs_info->scrubs_paused);
1935			mutex_unlock(&fs_info->scrub_lock);
1936			wake_up(&fs_info->scrub_pause_wait);
 
 
 
1937		}
1938
1939		ret = btrfs_lookup_csums_range(csum_root, logical,
1940					       logical + map->stripe_len - 1,
1941					       &sdev->csum_list, 1);
1942		if (ret)
1943			goto out;
1944
1945		key.objectid = logical;
1946		key.type = BTRFS_EXTENT_ITEM_KEY;
1947		key.offset = (u64)0;
1948
1949		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1950		if (ret < 0)
1951			goto out;
1952		if (ret > 0) {
1953			ret = btrfs_previous_item(root, path, 0,
1954						  BTRFS_EXTENT_ITEM_KEY);
1955			if (ret < 0)
1956				goto out;
1957			if (ret > 0) {
1958				/* there's no smaller item, so stick with the
1959				 * larger one */
1960				btrfs_release_path(path);
1961				ret = btrfs_search_slot(NULL, root, &key,
1962							path, 0, 0);
1963				if (ret < 0)
1964					goto out;
1965			}
1966		}
1967
1968		while (1) {
1969			l = path->nodes[0];
1970			slot = path->slots[0];
1971			if (slot >= btrfs_header_nritems(l)) {
1972				ret = btrfs_next_leaf(root, path);
1973				if (ret == 0)
1974					continue;
1975				if (ret < 0)
1976					goto out;
1977
1978				break;
1979			}
1980			btrfs_item_key_to_cpu(l, &key, slot);
1981
1982			if (key.objectid + key.offset <= logical)
1983				goto next;
1984
1985			if (key.objectid >= logical + map->stripe_len)
1986				break;
1987
1988			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1989				goto next;
1990
1991			extent = btrfs_item_ptr(l, slot,
1992						struct btrfs_extent_item);
1993			flags = btrfs_extent_flags(l, extent);
1994			generation = btrfs_extent_generation(l, extent);
1995
1996			if (key.objectid < logical &&
1997			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1998				printk(KERN_ERR
1999				       "btrfs scrub: tree block %llu spanning "
2000				       "stripes, ignored. logical=%llu\n",
2001				       (unsigned long long)key.objectid,
2002				       (unsigned long long)logical);
2003				goto next;
2004			}
2005
2006			/*
2007			 * trim extent to this stripe
2008			 */
2009			if (key.objectid < logical) {
2010				key.offset -= logical - key.objectid;
2011				key.objectid = logical;
2012			}
2013			if (key.objectid + key.offset >
2014			    logical + map->stripe_len) {
2015				key.offset = logical + map->stripe_len -
2016					     key.objectid;
2017			}
2018
2019			ret = scrub_extent(sdev, key.objectid, key.offset,
2020					   key.objectid - logical + physical,
2021					   flags, generation, mirror_num);
2022			if (ret)
2023				goto out;
2024
2025next:
2026			path->slots[0]++;
2027		}
2028		btrfs_release_path(path);
2029		logical += increment;
2030		physical += map->stripe_len;
2031		spin_lock(&sdev->stat_lock);
2032		sdev->stat.last_physical = physical;
2033		spin_unlock(&sdev->stat_lock);
2034	}
2035	/* push queued extents */
2036	scrub_submit(sdev);
2037
2038out:
2039	blk_finish_plug(&plug);
 
2040	btrfs_free_path(path);
2041	return ret < 0 ? ret : 0;
2042}
2043
2044static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2045	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2046	u64 dev_offset)
2047{
2048	struct btrfs_mapping_tree *map_tree =
2049		&sdev->dev->dev_root->fs_info->mapping_tree;
2050	struct map_lookup *map;
2051	struct extent_map *em;
2052	int i;
2053	int ret = -EINVAL;
2054
2055	read_lock(&map_tree->map_tree.lock);
2056	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2057	read_unlock(&map_tree->map_tree.lock);
2058
2059	if (!em)
2060		return -EINVAL;
2061
2062	map = (struct map_lookup *)em->bdev;
2063	if (em->start != chunk_offset)
2064		goto out;
2065
2066	if (em->len < length)
2067		goto out;
2068
2069	for (i = 0; i < map->num_stripes; ++i) {
2070		if (map->stripes[i].dev == sdev->dev &&
2071		    map->stripes[i].physical == dev_offset) {
2072			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2073			if (ret)
2074				goto out;
2075		}
2076	}
2077out:
2078	free_extent_map(em);
2079
2080	return ret;
2081}
2082
2083static noinline_for_stack
2084int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2085{
2086	struct btrfs_dev_extent *dev_extent = NULL;
2087	struct btrfs_path *path;
2088	struct btrfs_root *root = sdev->dev->dev_root;
2089	struct btrfs_fs_info *fs_info = root->fs_info;
2090	u64 length;
2091	u64 chunk_tree;
2092	u64 chunk_objectid;
2093	u64 chunk_offset;
2094	int ret;
2095	int slot;
2096	struct extent_buffer *l;
2097	struct btrfs_key key;
2098	struct btrfs_key found_key;
2099	struct btrfs_block_group_cache *cache;
2100
2101	path = btrfs_alloc_path();
2102	if (!path)
2103		return -ENOMEM;
2104
2105	path->reada = 2;
2106	path->search_commit_root = 1;
2107	path->skip_locking = 1;
2108
2109	key.objectid = sdev->dev->devid;
2110	key.offset = 0ull;
2111	key.type = BTRFS_DEV_EXTENT_KEY;
2112
2113
2114	while (1) {
2115		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2116		if (ret < 0)
2117			break;
2118		if (ret > 0) {
2119			if (path->slots[0] >=
2120			    btrfs_header_nritems(path->nodes[0])) {
2121				ret = btrfs_next_leaf(root, path);
2122				if (ret)
2123					break;
2124			}
2125		}
2126
2127		l = path->nodes[0];
2128		slot = path->slots[0];
2129
2130		btrfs_item_key_to_cpu(l, &found_key, slot);
2131
2132		if (found_key.objectid != sdev->dev->devid)
2133			break;
2134
2135		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2136			break;
2137
2138		if (found_key.offset >= end)
2139			break;
2140
2141		if (found_key.offset < key.offset)
2142			break;
2143
2144		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2145		length = btrfs_dev_extent_length(l, dev_extent);
2146
2147		if (found_key.offset + length <= start) {
2148			key.offset = found_key.offset + length;
2149			btrfs_release_path(path);
2150			continue;
2151		}
2152
2153		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2154		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2155		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2156
2157		/*
2158		 * get a reference on the corresponding block group to prevent
2159		 * the chunk from going away while we scrub it
2160		 */
2161		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2162		if (!cache) {
2163			ret = -ENOENT;
2164			break;
2165		}
2166		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2167				  chunk_offset, length, found_key.offset);
2168		btrfs_put_block_group(cache);
2169		if (ret)
2170			break;
2171
2172		key.offset = found_key.offset + length;
2173		btrfs_release_path(path);
2174	}
2175
2176	btrfs_free_path(path);
2177
2178	/*
2179	 * ret can still be 1 from search_slot or next_leaf,
2180	 * that's not an error
2181	 */
2182	return ret < 0 ? ret : 0;
2183}
2184
2185static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2186{
2187	int	i;
2188	u64	bytenr;
2189	u64	gen;
2190	int	ret;
2191	struct btrfs_device *device = sdev->dev;
2192	struct btrfs_root *root = device->dev_root;
2193
2194	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2195		return -EIO;
2196
2197	gen = root->fs_info->last_trans_committed;
2198
2199	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2200		bytenr = btrfs_sb_offset(i);
2201		if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2202			break;
2203
2204		ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2205				     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2206		if (ret)
2207			return ret;
2208	}
2209	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2210
2211	return 0;
2212}
2213
2214/*
2215 * get a reference count on fs_info->scrub_workers. start worker if necessary
2216 */
2217static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2218{
2219	struct btrfs_fs_info *fs_info = root->fs_info;
2220	int ret = 0;
2221
2222	mutex_lock(&fs_info->scrub_lock);
2223	if (fs_info->scrub_workers_refcnt == 0) {
2224		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2225			   fs_info->thread_pool_size, &fs_info->generic_worker);
2226		fs_info->scrub_workers.idle_thresh = 4;
2227		ret = btrfs_start_workers(&fs_info->scrub_workers);
2228		if (ret)
2229			goto out;
2230	}
2231	++fs_info->scrub_workers_refcnt;
2232out:
2233	mutex_unlock(&fs_info->scrub_lock);
2234
2235	return ret;
2236}
2237
2238static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2239{
2240	struct btrfs_fs_info *fs_info = root->fs_info;
2241
2242	mutex_lock(&fs_info->scrub_lock);
2243	if (--fs_info->scrub_workers_refcnt == 0)
2244		btrfs_stop_workers(&fs_info->scrub_workers);
2245	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2246	mutex_unlock(&fs_info->scrub_lock);
2247}
2248
2249
2250int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2251		    struct btrfs_scrub_progress *progress, int readonly)
2252{
2253	struct scrub_dev *sdev;
2254	struct btrfs_fs_info *fs_info = root->fs_info;
2255	int ret;
2256	struct btrfs_device *dev;
2257
2258	if (btrfs_fs_closing(root->fs_info))
2259		return -EINVAL;
2260
2261	/*
2262	 * check some assumptions
2263	 */
2264	if (root->nodesize != root->leafsize) {
2265		printk(KERN_ERR
2266		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2267		       root->nodesize, root->leafsize);
2268		return -EINVAL;
2269	}
2270
2271	if (root->nodesize > BTRFS_STRIPE_LEN) {
2272		/*
2273		 * in this case scrub is unable to calculate the checksum
2274		 * the way scrub is implemented. Do not handle this
2275		 * situation at all because it won't ever happen.
2276		 */
2277		printk(KERN_ERR
2278		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2279		       root->nodesize, BTRFS_STRIPE_LEN);
2280		return -EINVAL;
2281	}
2282
2283	if (root->sectorsize != PAGE_SIZE) {
2284		/* not supported for data w/o checksums */
2285		printk(KERN_ERR
2286		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2287		       root->sectorsize, (unsigned long long)PAGE_SIZE);
2288		return -EINVAL;
2289	}
2290
2291	ret = scrub_workers_get(root);
2292	if (ret)
2293		return ret;
2294
2295	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2296	dev = btrfs_find_device(root, devid, NULL, NULL);
2297	if (!dev || dev->missing) {
2298		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2299		scrub_workers_put(root);
2300		return -ENODEV;
2301	}
2302	mutex_lock(&fs_info->scrub_lock);
2303
2304	if (!dev->in_fs_metadata) {
2305		mutex_unlock(&fs_info->scrub_lock);
2306		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2307		scrub_workers_put(root);
2308		return -ENODEV;
2309	}
2310
2311	if (dev->scrub_device) {
2312		mutex_unlock(&fs_info->scrub_lock);
2313		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2314		scrub_workers_put(root);
2315		return -EINPROGRESS;
2316	}
2317	sdev = scrub_setup_dev(dev);
2318	if (IS_ERR(sdev)) {
2319		mutex_unlock(&fs_info->scrub_lock);
2320		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2321		scrub_workers_put(root);
2322		return PTR_ERR(sdev);
2323	}
2324	sdev->readonly = readonly;
2325	dev->scrub_device = sdev;
2326
2327	atomic_inc(&fs_info->scrubs_running);
2328	mutex_unlock(&fs_info->scrub_lock);
2329	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2330
2331	down_read(&fs_info->scrub_super_lock);
2332	ret = scrub_supers(sdev);
2333	up_read(&fs_info->scrub_super_lock);
2334
2335	if (!ret)
2336		ret = scrub_enumerate_chunks(sdev, start, end);
2337
2338	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
 
2339	atomic_dec(&fs_info->scrubs_running);
2340	wake_up(&fs_info->scrub_pause_wait);
2341
2342	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2343
2344	if (progress)
2345		memcpy(progress, &sdev->stat, sizeof(*progress));
2346
2347	mutex_lock(&fs_info->scrub_lock);
2348	dev->scrub_device = NULL;
2349	mutex_unlock(&fs_info->scrub_lock);
2350
2351	scrub_free_dev(sdev);
2352	scrub_workers_put(root);
2353
2354	return ret;
2355}
2356
2357void btrfs_scrub_pause(struct btrfs_root *root)
2358{
2359	struct btrfs_fs_info *fs_info = root->fs_info;
2360
2361	mutex_lock(&fs_info->scrub_lock);
2362	atomic_inc(&fs_info->scrub_pause_req);
2363	while (atomic_read(&fs_info->scrubs_paused) !=
2364	       atomic_read(&fs_info->scrubs_running)) {
2365		mutex_unlock(&fs_info->scrub_lock);
2366		wait_event(fs_info->scrub_pause_wait,
2367			   atomic_read(&fs_info->scrubs_paused) ==
2368			   atomic_read(&fs_info->scrubs_running));
2369		mutex_lock(&fs_info->scrub_lock);
2370	}
2371	mutex_unlock(&fs_info->scrub_lock);
 
 
2372}
2373
2374void btrfs_scrub_continue(struct btrfs_root *root)
2375{
2376	struct btrfs_fs_info *fs_info = root->fs_info;
2377
2378	atomic_dec(&fs_info->scrub_pause_req);
2379	wake_up(&fs_info->scrub_pause_wait);
 
2380}
2381
2382void btrfs_scrub_pause_super(struct btrfs_root *root)
2383{
2384	down_write(&root->fs_info->scrub_super_lock);
 
2385}
2386
2387void btrfs_scrub_continue_super(struct btrfs_root *root)
2388{
2389	up_write(&root->fs_info->scrub_super_lock);
 
2390}
2391
2392int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2393{
 
2394
2395	mutex_lock(&fs_info->scrub_lock);
2396	if (!atomic_read(&fs_info->scrubs_running)) {
2397		mutex_unlock(&fs_info->scrub_lock);
2398		return -ENOTCONN;
2399	}
2400
2401	atomic_inc(&fs_info->scrub_cancel_req);
2402	while (atomic_read(&fs_info->scrubs_running)) {
2403		mutex_unlock(&fs_info->scrub_lock);
2404		wait_event(fs_info->scrub_pause_wait,
2405			   atomic_read(&fs_info->scrubs_running) == 0);
2406		mutex_lock(&fs_info->scrub_lock);
2407	}
2408	atomic_dec(&fs_info->scrub_cancel_req);
2409	mutex_unlock(&fs_info->scrub_lock);
2410
2411	return 0;
2412}
2413
2414int btrfs_scrub_cancel(struct btrfs_root *root)
2415{
2416	return __btrfs_scrub_cancel(root->fs_info);
2417}
2418
2419int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2420{
2421	struct btrfs_fs_info *fs_info = root->fs_info;
2422	struct scrub_dev *sdev;
2423
2424	mutex_lock(&fs_info->scrub_lock);
2425	sdev = dev->scrub_device;
2426	if (!sdev) {
2427		mutex_unlock(&fs_info->scrub_lock);
2428		return -ENOTCONN;
2429	}
2430	atomic_inc(&sdev->cancel_req);
2431	while (dev->scrub_device) {
2432		mutex_unlock(&fs_info->scrub_lock);
2433		wait_event(fs_info->scrub_pause_wait,
2434			   dev->scrub_device == NULL);
2435		mutex_lock(&fs_info->scrub_lock);
2436	}
2437	mutex_unlock(&fs_info->scrub_lock);
2438
2439	return 0;
2440}
2441
2442int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2443{
2444	struct btrfs_fs_info *fs_info = root->fs_info;
2445	struct btrfs_device *dev;
2446	int ret;
2447
2448	/*
2449	 * we have to hold the device_list_mutex here so the device
2450	 * does not go away in cancel_dev. FIXME: find a better solution
2451	 */
2452	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2453	dev = btrfs_find_device(root, devid, NULL, NULL);
2454	if (!dev) {
2455		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2456		return -ENODEV;
2457	}
2458	ret = btrfs_scrub_cancel_dev(root, dev);
2459	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2460
2461	return ret;
2462}
2463
2464int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2465			 struct btrfs_scrub_progress *progress)
2466{
2467	struct btrfs_device *dev;
2468	struct scrub_dev *sdev = NULL;
2469
2470	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2471	dev = btrfs_find_device(root, devid, NULL, NULL);
2472	if (dev)
2473		sdev = dev->scrub_device;
2474	if (sdev)
2475		memcpy(progress, &sdev->stat, sizeof(*progress));
2476	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2477
2478	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2479}