Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.1
  1#include <linux/module.h>
  2#include <linux/string.h>
  3#include <linux/bitops.h>
  4#include <linux/slab.h>
  5#include <linux/init.h>
  6#include <linux/log2.h>
  7#include <linux/usb.h>
  8#include <linux/wait.h>
  9#include <linux/usb/hcd.h>
 10
 11#define to_urb(d) container_of(d, struct urb, kref)
 12
 13
 14static void urb_destroy(struct kref *kref)
 15{
 16	struct urb *urb = to_urb(kref);
 17
 18	if (urb->transfer_flags & URB_FREE_BUFFER)
 19		kfree(urb->transfer_buffer);
 20
 21	kfree(urb);
 22}
 23
 24/**
 25 * usb_init_urb - initializes a urb so that it can be used by a USB driver
 26 * @urb: pointer to the urb to initialize
 27 *
 28 * Initializes a urb so that the USB subsystem can use it properly.
 29 *
 30 * If a urb is created with a call to usb_alloc_urb() it is not
 31 * necessary to call this function.  Only use this if you allocate the
 32 * space for a struct urb on your own.  If you call this function, be
 33 * careful when freeing the memory for your urb that it is no longer in
 34 * use by the USB core.
 35 *
 36 * Only use this function if you _really_ understand what you are doing.
 37 */
 38void usb_init_urb(struct urb *urb)
 39{
 40	if (urb) {
 41		memset(urb, 0, sizeof(*urb));
 42		kref_init(&urb->kref);
 43		INIT_LIST_HEAD(&urb->anchor_list);
 44	}
 45}
 46EXPORT_SYMBOL_GPL(usb_init_urb);
 47
 48/**
 49 * usb_alloc_urb - creates a new urb for a USB driver to use
 50 * @iso_packets: number of iso packets for this urb
 51 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
 52 *	valid options for this.
 53 *
 54 * Creates an urb for the USB driver to use, initializes a few internal
 55 * structures, incrementes the usage counter, and returns a pointer to it.
 56 *
 57 * If no memory is available, NULL is returned.
 58 *
 59 * If the driver want to use this urb for interrupt, control, or bulk
 60 * endpoints, pass '0' as the number of iso packets.
 61 *
 62 * The driver must call usb_free_urb() when it is finished with the urb.
 63 */
 64struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
 65{
 66	struct urb *urb;
 67
 68	urb = kmalloc(sizeof(struct urb) +
 69		iso_packets * sizeof(struct usb_iso_packet_descriptor),
 70		mem_flags);
 71	if (!urb) {
 72		printk(KERN_ERR "alloc_urb: kmalloc failed\n");
 73		return NULL;
 74	}
 75	usb_init_urb(urb);
 76	return urb;
 77}
 78EXPORT_SYMBOL_GPL(usb_alloc_urb);
 79
 80/**
 81 * usb_free_urb - frees the memory used by a urb when all users of it are finished
 82 * @urb: pointer to the urb to free, may be NULL
 83 *
 84 * Must be called when a user of a urb is finished with it.  When the last user
 85 * of the urb calls this function, the memory of the urb is freed.
 86 *
 87 * Note: The transfer buffer associated with the urb is not freed unless the
 88 * URB_FREE_BUFFER transfer flag is set.
 89 */
 90void usb_free_urb(struct urb *urb)
 91{
 92	if (urb)
 93		kref_put(&urb->kref, urb_destroy);
 94}
 95EXPORT_SYMBOL_GPL(usb_free_urb);
 96
 97/**
 98 * usb_get_urb - increments the reference count of the urb
 99 * @urb: pointer to the urb to modify, may be NULL
100 *
101 * This must be  called whenever a urb is transferred from a device driver to a
102 * host controller driver.  This allows proper reference counting to happen
103 * for urbs.
104 *
105 * A pointer to the urb with the incremented reference counter is returned.
106 */
107struct urb *usb_get_urb(struct urb *urb)
108{
109	if (urb)
110		kref_get(&urb->kref);
111	return urb;
112}
113EXPORT_SYMBOL_GPL(usb_get_urb);
114
115/**
116 * usb_anchor_urb - anchors an URB while it is processed
117 * @urb: pointer to the urb to anchor
118 * @anchor: pointer to the anchor
119 *
120 * This can be called to have access to URBs which are to be executed
121 * without bothering to track them
122 */
123void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124{
125	unsigned long flags;
126
127	spin_lock_irqsave(&anchor->lock, flags);
128	usb_get_urb(urb);
129	list_add_tail(&urb->anchor_list, &anchor->urb_list);
130	urb->anchor = anchor;
131
132	if (unlikely(anchor->poisoned)) {
133		atomic_inc(&urb->reject);
134	}
135
136	spin_unlock_irqrestore(&anchor->lock, flags);
137}
138EXPORT_SYMBOL_GPL(usb_anchor_urb);
139
140/* Callers must hold anchor->lock */
141static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
142{
143	urb->anchor = NULL;
144	list_del(&urb->anchor_list);
145	usb_put_urb(urb);
146	if (list_empty(&anchor->urb_list))
147		wake_up(&anchor->wait);
148}
149
150/**
151 * usb_unanchor_urb - unanchors an URB
152 * @urb: pointer to the urb to anchor
153 *
154 * Call this to stop the system keeping track of this URB
155 */
156void usb_unanchor_urb(struct urb *urb)
157{
158	unsigned long flags;
159	struct usb_anchor *anchor;
160
161	if (!urb)
162		return;
163
164	anchor = urb->anchor;
165	if (!anchor)
166		return;
167
168	spin_lock_irqsave(&anchor->lock, flags);
169	/*
170	 * At this point, we could be competing with another thread which
171	 * has the same intention. To protect the urb from being unanchored
172	 * twice, only the winner of the race gets the job.
173	 */
174	if (likely(anchor == urb->anchor))
175		__usb_unanchor_urb(urb, anchor);
176	spin_unlock_irqrestore(&anchor->lock, flags);
177}
178EXPORT_SYMBOL_GPL(usb_unanchor_urb);
179
180/*-------------------------------------------------------------------*/
181
182/**
183 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
184 * @urb: pointer to the urb describing the request
185 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
186 *	of valid options for this.
187 *
188 * This submits a transfer request, and transfers control of the URB
189 * describing that request to the USB subsystem.  Request completion will
190 * be indicated later, asynchronously, by calling the completion handler.
191 * The three types of completion are success, error, and unlink
192 * (a software-induced fault, also called "request cancellation").
193 *
194 * URBs may be submitted in interrupt context.
195 *
196 * The caller must have correctly initialized the URB before submitting
197 * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
198 * available to ensure that most fields are correctly initialized, for
199 * the particular kind of transfer, although they will not initialize
200 * any transfer flags.
201 *
202 * Successful submissions return 0; otherwise this routine returns a
203 * negative error number.  If the submission is successful, the complete()
204 * callback from the URB will be called exactly once, when the USB core and
205 * Host Controller Driver (HCD) are finished with the URB.  When the completion
206 * function is called, control of the URB is returned to the device
207 * driver which issued the request.  The completion handler may then
208 * immediately free or reuse that URB.
209 *
210 * With few exceptions, USB device drivers should never access URB fields
211 * provided by usbcore or the HCD until its complete() is called.
212 * The exceptions relate to periodic transfer scheduling.  For both
213 * interrupt and isochronous urbs, as part of successful URB submission
214 * urb->interval is modified to reflect the actual transfer period used
215 * (normally some power of two units).  And for isochronous urbs,
216 * urb->start_frame is modified to reflect when the URB's transfers were
217 * scheduled to start.  Not all isochronous transfer scheduling policies
218 * will work, but most host controller drivers should easily handle ISO
219 * queues going from now until 10-200 msec into the future.
220 *
221 * For control endpoints, the synchronous usb_control_msg() call is
222 * often used (in non-interrupt context) instead of this call.
223 * That is often used through convenience wrappers, for the requests
224 * that are standardized in the USB 2.0 specification.  For bulk
225 * endpoints, a synchronous usb_bulk_msg() call is available.
226 *
227 * Request Queuing:
228 *
229 * URBs may be submitted to endpoints before previous ones complete, to
230 * minimize the impact of interrupt latencies and system overhead on data
231 * throughput.  With that queuing policy, an endpoint's queue would never
232 * be empty.  This is required for continuous isochronous data streams,
233 * and may also be required for some kinds of interrupt transfers. Such
234 * queuing also maximizes bandwidth utilization by letting USB controllers
235 * start work on later requests before driver software has finished the
236 * completion processing for earlier (successful) requests.
237 *
238 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
239 * than one.  This was previously a HCD-specific behavior, except for ISO
240 * transfers.  Non-isochronous endpoint queues are inactive during cleanup
241 * after faults (transfer errors or cancellation).
242 *
243 * Reserved Bandwidth Transfers:
244 *
245 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
246 * using the interval specified in the urb.  Submitting the first urb to
247 * the endpoint reserves the bandwidth necessary to make those transfers.
248 * If the USB subsystem can't allocate sufficient bandwidth to perform
249 * the periodic request, submitting such a periodic request should fail.
250 *
251 * For devices under xHCI, the bandwidth is reserved at configuration time, or
252 * when the alt setting is selected.  If there is not enough bus bandwidth, the
253 * configuration/alt setting request will fail.  Therefore, submissions to
254 * periodic endpoints on devices under xHCI should never fail due to bandwidth
255 * constraints.
256 *
257 * Device drivers must explicitly request that repetition, by ensuring that
258 * some URB is always on the endpoint's queue (except possibly for short
259 * periods during completion callacks).  When there is no longer an urb
260 * queued, the endpoint's bandwidth reservation is canceled.  This means
261 * drivers can use their completion handlers to ensure they keep bandwidth
262 * they need, by reinitializing and resubmitting the just-completed urb
263 * until the driver longer needs that periodic bandwidth.
264 *
265 * Memory Flags:
266 *
267 * The general rules for how to decide which mem_flags to use
268 * are the same as for kmalloc.  There are four
269 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
270 * GFP_ATOMIC.
271 *
272 * GFP_NOFS is not ever used, as it has not been implemented yet.
273 *
274 * GFP_ATOMIC is used when
275 *   (a) you are inside a completion handler, an interrupt, bottom half,
276 *       tasklet or timer, or
277 *   (b) you are holding a spinlock or rwlock (does not apply to
278 *       semaphores), or
279 *   (c) current->state != TASK_RUNNING, this is the case only after
280 *       you've changed it.
281 *
282 * GFP_NOIO is used in the block io path and error handling of storage
283 * devices.
284 *
285 * All other situations use GFP_KERNEL.
286 *
287 * Some more specific rules for mem_flags can be inferred, such as
288 *  (1) start_xmit, timeout, and receive methods of network drivers must
289 *      use GFP_ATOMIC (they are called with a spinlock held);
290 *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
291 *      called with a spinlock held);
292 *  (3) If you use a kernel thread with a network driver you must use
293 *      GFP_NOIO, unless (b) or (c) apply;
294 *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
295 *      apply or your are in a storage driver's block io path;
296 *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
297 *  (6) changing firmware on a running storage or net device uses
298 *      GFP_NOIO, unless b) or c) apply
299 *
300 */
301int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
302{
303	int				xfertype, max;
304	struct usb_device		*dev;
305	struct usb_host_endpoint	*ep;
306	int				is_out;
307
308	if (!urb || urb->hcpriv || !urb->complete)
309		return -EINVAL;
310	dev = urb->dev;
311	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
312		return -ENODEV;
313
314	/* For now, get the endpoint from the pipe.  Eventually drivers
315	 * will be required to set urb->ep directly and we will eliminate
316	 * urb->pipe.
317	 */
318	ep = usb_pipe_endpoint(dev, urb->pipe);
319	if (!ep)
320		return -ENOENT;
321
322	urb->ep = ep;
323	urb->status = -EINPROGRESS;
324	urb->actual_length = 0;
325
326	/* Lots of sanity checks, so HCDs can rely on clean data
327	 * and don't need to duplicate tests
328	 */
329	xfertype = usb_endpoint_type(&ep->desc);
330	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
331		struct usb_ctrlrequest *setup =
332				(struct usb_ctrlrequest *) urb->setup_packet;
333
334		if (!setup)
335			return -ENOEXEC;
336		is_out = !(setup->bRequestType & USB_DIR_IN) ||
337				!setup->wLength;
338	} else {
339		is_out = usb_endpoint_dir_out(&ep->desc);
340	}
341
342	/* Clear the internal flags and cache the direction for later use */
343	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
344			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
345			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
346			URB_DMA_SG_COMBINED);
347	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
348
349	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
350			dev->state < USB_STATE_CONFIGURED)
351		return -ENODEV;
352
353	max = le16_to_cpu(ep->desc.wMaxPacketSize);
354	if (max <= 0) {
355		dev_dbg(&dev->dev,
356			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
357			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
358			__func__, max);
359		return -EMSGSIZE;
360	}
361
362	/* periodic transfers limit size per frame/uframe,
363	 * but drivers only control those sizes for ISO.
364	 * while we're checking, initialize return status.
365	 */
366	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
367		int	n, len;
368
369		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
370		 * 3 packets each
371		 */
372		if (dev->speed == USB_SPEED_SUPER) {
373			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
374			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
375			max *= burst;
376			max *= mult;
377		}
378
379		/* "high bandwidth" mode, 1-3 packets/uframe? */
380		if (dev->speed == USB_SPEED_HIGH) {
381			int	mult = 1 + ((max >> 11) & 0x03);
382			max &= 0x07ff;
383			max *= mult;
384		}
385
386		if (urb->number_of_packets <= 0)
387			return -EINVAL;
388		for (n = 0; n < urb->number_of_packets; n++) {
389			len = urb->iso_frame_desc[n].length;
390			if (len < 0 || len > max)
391				return -EMSGSIZE;
392			urb->iso_frame_desc[n].status = -EXDEV;
393			urb->iso_frame_desc[n].actual_length = 0;
394		}
395	}
396
397	/* the I/O buffer must be mapped/unmapped, except when length=0 */
398	if (urb->transfer_buffer_length > INT_MAX)
399		return -EMSGSIZE;
400
401#ifdef DEBUG
402	/* stuff that drivers shouldn't do, but which shouldn't
403	 * cause problems in HCDs if they get it wrong.
404	 */
405	{
406	unsigned int	orig_flags = urb->transfer_flags;
407	unsigned int	allowed;
408	static int pipetypes[4] = {
409		PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
410	};
411
412	/* Check that the pipe's type matches the endpoint's type */
413	if (usb_pipetype(urb->pipe) != pipetypes[xfertype]) {
414		dev_err(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
415			usb_pipetype(urb->pipe), pipetypes[xfertype]);
416		return -EPIPE;		/* The most suitable error code :-) */
417	}
418
419	/* enforce simple/standard policy */
420	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
421			URB_FREE_BUFFER);
422	switch (xfertype) {
423	case USB_ENDPOINT_XFER_BULK:
424		if (is_out)
425			allowed |= URB_ZERO_PACKET;
426		/* FALLTHROUGH */
427	case USB_ENDPOINT_XFER_CONTROL:
428		allowed |= URB_NO_FSBR;	/* only affects UHCI */
429		/* FALLTHROUGH */
430	default:			/* all non-iso endpoints */
431		if (!is_out)
432			allowed |= URB_SHORT_NOT_OK;
433		break;
434	case USB_ENDPOINT_XFER_ISOC:
435		allowed |= URB_ISO_ASAP;
436		break;
437	}
438	urb->transfer_flags &= allowed;
439
440	/* fail if submitter gave bogus flags */
441	if (urb->transfer_flags != orig_flags) {
442		dev_err(&dev->dev, "BOGUS urb flags, %x --> %x\n",
443			orig_flags, urb->transfer_flags);
444		return -EINVAL;
445	}
446	}
447#endif
448	/*
449	 * Force periodic transfer intervals to be legal values that are
450	 * a power of two (so HCDs don't need to).
451	 *
452	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
453	 * supports different values... this uses EHCI/UHCI defaults (and
454	 * EHCI can use smaller non-default values).
455	 */
456	switch (xfertype) {
457	case USB_ENDPOINT_XFER_ISOC:
458	case USB_ENDPOINT_XFER_INT:
459		/* too small? */
460		switch (dev->speed) {
461		case USB_SPEED_WIRELESS:
462			if (urb->interval < 6)
463				return -EINVAL;
464			break;
465		default:
466			if (urb->interval <= 0)
467				return -EINVAL;
468			break;
469		}
470		/* too big? */
471		switch (dev->speed) {
472		case USB_SPEED_SUPER:	/* units are 125us */
473			/* Handle up to 2^(16-1) microframes */
474			if (urb->interval > (1 << 15))
475				return -EINVAL;
476			max = 1 << 15;
477			break;
478		case USB_SPEED_WIRELESS:
479			if (urb->interval > 16)
480				return -EINVAL;
481			break;
482		case USB_SPEED_HIGH:	/* units are microframes */
483			/* NOTE usb handles 2^15 */
484			if (urb->interval > (1024 * 8))
485				urb->interval = 1024 * 8;
486			max = 1024 * 8;
487			break;
488		case USB_SPEED_FULL:	/* units are frames/msec */
489		case USB_SPEED_LOW:
490			if (xfertype == USB_ENDPOINT_XFER_INT) {
491				if (urb->interval > 255)
492					return -EINVAL;
493				/* NOTE ohci only handles up to 32 */
494				max = 128;
495			} else {
496				if (urb->interval > 1024)
497					urb->interval = 1024;
498				/* NOTE usb and ohci handle up to 2^15 */
499				max = 1024;
500			}
501			break;
502		default:
503			return -EINVAL;
504		}
505		if (dev->speed != USB_SPEED_WIRELESS) {
506			/* Round down to a power of 2, no more than max */
507			urb->interval = min(max, 1 << ilog2(urb->interval));
508		}
509	}
510
511	return usb_hcd_submit_urb(urb, mem_flags);
512}
513EXPORT_SYMBOL_GPL(usb_submit_urb);
514
515/*-------------------------------------------------------------------*/
516
517/**
518 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
519 * @urb: pointer to urb describing a previously submitted request,
520 *	may be NULL
521 *
522 * This routine cancels an in-progress request.  URBs complete only once
523 * per submission, and may be canceled only once per submission.
524 * Successful cancellation means termination of @urb will be expedited
525 * and the completion handler will be called with a status code
526 * indicating that the request has been canceled (rather than any other
527 * code).
528 *
529 * Drivers should not call this routine or related routines, such as
530 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
531 * method has returned.  The disconnect function should synchronize with
532 * a driver's I/O routines to insure that all URB-related activity has
533 * completed before it returns.
534 *
535 * This request is always asynchronous.  Success is indicated by
536 * returning -EINPROGRESS, at which time the URB will probably not yet
537 * have been given back to the device driver.  When it is eventually
538 * called, the completion function will see @urb->status == -ECONNRESET.
 
 
 
539 * Failure is indicated by usb_unlink_urb() returning any other value.
540 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
541 * never submitted, or it was unlinked before, or the hardware is already
542 * finished with it), even if the completion handler has not yet run.
543 *
 
 
 
 
544 * Unlinking and Endpoint Queues:
545 *
546 * [The behaviors and guarantees described below do not apply to virtual
547 * root hubs but only to endpoint queues for physical USB devices.]
548 *
549 * Host Controller Drivers (HCDs) place all the URBs for a particular
550 * endpoint in a queue.  Normally the queue advances as the controller
551 * hardware processes each request.  But when an URB terminates with an
552 * error its queue generally stops (see below), at least until that URB's
553 * completion routine returns.  It is guaranteed that a stopped queue
554 * will not restart until all its unlinked URBs have been fully retired,
555 * with their completion routines run, even if that's not until some time
556 * after the original completion handler returns.  The same behavior and
557 * guarantee apply when an URB terminates because it was unlinked.
558 *
559 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
560 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
561 * and -EREMOTEIO.  Control endpoint queues behave the same way except
562 * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
563 * for isochronous endpoints are treated differently, because they must
564 * advance at fixed rates.  Such queues do not stop when an URB
565 * encounters an error or is unlinked.  An unlinked isochronous URB may
566 * leave a gap in the stream of packets; it is undefined whether such
567 * gaps can be filled in.
568 *
569 * Note that early termination of an URB because a short packet was
570 * received will generate a -EREMOTEIO error if and only if the
571 * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
572 * drivers can build deep queues for large or complex bulk transfers
573 * and clean them up reliably after any sort of aborted transfer by
574 * unlinking all pending URBs at the first fault.
575 *
576 * When a control URB terminates with an error other than -EREMOTEIO, it
577 * is quite likely that the status stage of the transfer will not take
578 * place.
579 */
580int usb_unlink_urb(struct urb *urb)
581{
582	if (!urb)
583		return -EINVAL;
584	if (!urb->dev)
585		return -ENODEV;
586	if (!urb->ep)
587		return -EIDRM;
588	return usb_hcd_unlink_urb(urb, -ECONNRESET);
589}
590EXPORT_SYMBOL_GPL(usb_unlink_urb);
591
592/**
593 * usb_kill_urb - cancel a transfer request and wait for it to finish
594 * @urb: pointer to URB describing a previously submitted request,
595 *	may be NULL
596 *
597 * This routine cancels an in-progress request.  It is guaranteed that
598 * upon return all completion handlers will have finished and the URB
599 * will be totally idle and available for reuse.  These features make
600 * this an ideal way to stop I/O in a disconnect() callback or close()
601 * function.  If the request has not already finished or been unlinked
602 * the completion handler will see urb->status == -ENOENT.
603 *
604 * While the routine is running, attempts to resubmit the URB will fail
605 * with error -EPERM.  Thus even if the URB's completion handler always
606 * tries to resubmit, it will not succeed and the URB will become idle.
607 *
 
 
 
 
608 * This routine may not be used in an interrupt context (such as a bottom
609 * half or a completion handler), or when holding a spinlock, or in other
610 * situations where the caller can't schedule().
611 *
612 * This routine should not be called by a driver after its disconnect
613 * method has returned.
614 */
615void usb_kill_urb(struct urb *urb)
616{
617	might_sleep();
618	if (!(urb && urb->dev && urb->ep))
619		return;
620	atomic_inc(&urb->reject);
621
622	usb_hcd_unlink_urb(urb, -ENOENT);
623	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
624
625	atomic_dec(&urb->reject);
626}
627EXPORT_SYMBOL_GPL(usb_kill_urb);
628
629/**
630 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
631 * @urb: pointer to URB describing a previously submitted request,
632 *	may be NULL
633 *
634 * This routine cancels an in-progress request.  It is guaranteed that
635 * upon return all completion handlers will have finished and the URB
636 * will be totally idle and cannot be reused.  These features make
637 * this an ideal way to stop I/O in a disconnect() callback.
638 * If the request has not already finished or been unlinked
639 * the completion handler will see urb->status == -ENOENT.
640 *
641 * After and while the routine runs, attempts to resubmit the URB will fail
642 * with error -EPERM.  Thus even if the URB's completion handler always
643 * tries to resubmit, it will not succeed and the URB will become idle.
644 *
 
 
 
 
645 * This routine may not be used in an interrupt context (such as a bottom
646 * half or a completion handler), or when holding a spinlock, or in other
647 * situations where the caller can't schedule().
648 *
649 * This routine should not be called by a driver after its disconnect
650 * method has returned.
651 */
652void usb_poison_urb(struct urb *urb)
653{
654	might_sleep();
655	if (!(urb && urb->dev && urb->ep))
656		return;
657	atomic_inc(&urb->reject);
658
659	usb_hcd_unlink_urb(urb, -ENOENT);
660	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
661}
662EXPORT_SYMBOL_GPL(usb_poison_urb);
663
664void usb_unpoison_urb(struct urb *urb)
665{
666	if (!urb)
667		return;
668
669	atomic_dec(&urb->reject);
670}
671EXPORT_SYMBOL_GPL(usb_unpoison_urb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672
673/**
674 * usb_kill_anchored_urbs - cancel transfer requests en masse
675 * @anchor: anchor the requests are bound to
676 *
677 * this allows all outstanding URBs to be killed starting
678 * from the back of the queue
679 *
680 * This routine should not be called by a driver after its disconnect
681 * method has returned.
682 */
683void usb_kill_anchored_urbs(struct usb_anchor *anchor)
684{
685	struct urb *victim;
686
687	spin_lock_irq(&anchor->lock);
688	while (!list_empty(&anchor->urb_list)) {
689		victim = list_entry(anchor->urb_list.prev, struct urb,
690				    anchor_list);
691		/* we must make sure the URB isn't freed before we kill it*/
692		usb_get_urb(victim);
693		spin_unlock_irq(&anchor->lock);
694		/* this will unanchor the URB */
695		usb_kill_urb(victim);
696		usb_put_urb(victim);
697		spin_lock_irq(&anchor->lock);
698	}
699	spin_unlock_irq(&anchor->lock);
700}
701EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
702
703
704/**
705 * usb_poison_anchored_urbs - cease all traffic from an anchor
706 * @anchor: anchor the requests are bound to
707 *
708 * this allows all outstanding URBs to be poisoned starting
709 * from the back of the queue. Newly added URBs will also be
710 * poisoned
711 *
712 * This routine should not be called by a driver after its disconnect
713 * method has returned.
714 */
715void usb_poison_anchored_urbs(struct usb_anchor *anchor)
716{
717	struct urb *victim;
718
719	spin_lock_irq(&anchor->lock);
720	anchor->poisoned = 1;
721	while (!list_empty(&anchor->urb_list)) {
722		victim = list_entry(anchor->urb_list.prev, struct urb,
723				    anchor_list);
724		/* we must make sure the URB isn't freed before we kill it*/
725		usb_get_urb(victim);
726		spin_unlock_irq(&anchor->lock);
727		/* this will unanchor the URB */
728		usb_poison_urb(victim);
729		usb_put_urb(victim);
730		spin_lock_irq(&anchor->lock);
731	}
732	spin_unlock_irq(&anchor->lock);
733}
734EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
735
736/**
737 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
738 * @anchor: anchor the requests are bound to
739 *
740 * Reverses the effect of usb_poison_anchored_urbs
741 * the anchor can be used normally after it returns
742 */
743void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
744{
745	unsigned long flags;
746	struct urb *lazarus;
747
748	spin_lock_irqsave(&anchor->lock, flags);
749	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
750		usb_unpoison_urb(lazarus);
751	}
752	anchor->poisoned = 0;
753	spin_unlock_irqrestore(&anchor->lock, flags);
754}
755EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
756/**
757 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
758 * @anchor: anchor the requests are bound to
759 *
760 * this allows all outstanding URBs to be unlinked starting
761 * from the back of the queue. This function is asynchronous.
762 * The unlinking is just tiggered. It may happen after this
763 * function has returned.
764 *
765 * This routine should not be called by a driver after its disconnect
766 * method has returned.
767 */
768void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
769{
770	struct urb *victim;
771
772	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
773		usb_unlink_urb(victim);
774		usb_put_urb(victim);
775	}
776}
777EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
778
779/**
780 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
781 * @anchor: the anchor you want to become unused
782 * @timeout: how long you are willing to wait in milliseconds
783 *
784 * Call this is you want to be sure all an anchor's
785 * URBs have finished
786 */
787int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
788				  unsigned int timeout)
789{
790	return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
791				  msecs_to_jiffies(timeout));
792}
793EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
794
795/**
796 * usb_get_from_anchor - get an anchor's oldest urb
797 * @anchor: the anchor whose urb you want
798 *
799 * this will take the oldest urb from an anchor,
800 * unanchor and return it
801 */
802struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
803{
804	struct urb *victim;
805	unsigned long flags;
806
807	spin_lock_irqsave(&anchor->lock, flags);
808	if (!list_empty(&anchor->urb_list)) {
809		victim = list_entry(anchor->urb_list.next, struct urb,
810				    anchor_list);
811		usb_get_urb(victim);
812		__usb_unanchor_urb(victim, anchor);
813	} else {
814		victim = NULL;
815	}
816	spin_unlock_irqrestore(&anchor->lock, flags);
817
818	return victim;
819}
820
821EXPORT_SYMBOL_GPL(usb_get_from_anchor);
822
823/**
824 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
825 * @anchor: the anchor whose urbs you want to unanchor
826 *
827 * use this to get rid of all an anchor's urbs
828 */
829void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
830{
831	struct urb *victim;
832	unsigned long flags;
833
834	spin_lock_irqsave(&anchor->lock, flags);
835	while (!list_empty(&anchor->urb_list)) {
836		victim = list_entry(anchor->urb_list.prev, struct urb,
837				    anchor_list);
838		__usb_unanchor_urb(victim, anchor);
839	}
840	spin_unlock_irqrestore(&anchor->lock, flags);
841}
842
843EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
844
845/**
846 * usb_anchor_empty - is an anchor empty
847 * @anchor: the anchor you want to query
848 *
849 * returns 1 if the anchor has no urbs associated with it
850 */
851int usb_anchor_empty(struct usb_anchor *anchor)
852{
853	return list_empty(&anchor->urb_list);
854}
855
856EXPORT_SYMBOL_GPL(usb_anchor_empty);
857
v3.5.6
  1#include <linux/module.h>
  2#include <linux/string.h>
  3#include <linux/bitops.h>
  4#include <linux/slab.h>
  5#include <linux/init.h>
  6#include <linux/log2.h>
  7#include <linux/usb.h>
  8#include <linux/wait.h>
  9#include <linux/usb/hcd.h>
 10
 11#define to_urb(d) container_of(d, struct urb, kref)
 12
 13
 14static void urb_destroy(struct kref *kref)
 15{
 16	struct urb *urb = to_urb(kref);
 17
 18	if (urb->transfer_flags & URB_FREE_BUFFER)
 19		kfree(urb->transfer_buffer);
 20
 21	kfree(urb);
 22}
 23
 24/**
 25 * usb_init_urb - initializes a urb so that it can be used by a USB driver
 26 * @urb: pointer to the urb to initialize
 27 *
 28 * Initializes a urb so that the USB subsystem can use it properly.
 29 *
 30 * If a urb is created with a call to usb_alloc_urb() it is not
 31 * necessary to call this function.  Only use this if you allocate the
 32 * space for a struct urb on your own.  If you call this function, be
 33 * careful when freeing the memory for your urb that it is no longer in
 34 * use by the USB core.
 35 *
 36 * Only use this function if you _really_ understand what you are doing.
 37 */
 38void usb_init_urb(struct urb *urb)
 39{
 40	if (urb) {
 41		memset(urb, 0, sizeof(*urb));
 42		kref_init(&urb->kref);
 43		INIT_LIST_HEAD(&urb->anchor_list);
 44	}
 45}
 46EXPORT_SYMBOL_GPL(usb_init_urb);
 47
 48/**
 49 * usb_alloc_urb - creates a new urb for a USB driver to use
 50 * @iso_packets: number of iso packets for this urb
 51 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
 52 *	valid options for this.
 53 *
 54 * Creates an urb for the USB driver to use, initializes a few internal
 55 * structures, incrementes the usage counter, and returns a pointer to it.
 56 *
 57 * If no memory is available, NULL is returned.
 58 *
 59 * If the driver want to use this urb for interrupt, control, or bulk
 60 * endpoints, pass '0' as the number of iso packets.
 61 *
 62 * The driver must call usb_free_urb() when it is finished with the urb.
 63 */
 64struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
 65{
 66	struct urb *urb;
 67
 68	urb = kmalloc(sizeof(struct urb) +
 69		iso_packets * sizeof(struct usb_iso_packet_descriptor),
 70		mem_flags);
 71	if (!urb) {
 72		printk(KERN_ERR "alloc_urb: kmalloc failed\n");
 73		return NULL;
 74	}
 75	usb_init_urb(urb);
 76	return urb;
 77}
 78EXPORT_SYMBOL_GPL(usb_alloc_urb);
 79
 80/**
 81 * usb_free_urb - frees the memory used by a urb when all users of it are finished
 82 * @urb: pointer to the urb to free, may be NULL
 83 *
 84 * Must be called when a user of a urb is finished with it.  When the last user
 85 * of the urb calls this function, the memory of the urb is freed.
 86 *
 87 * Note: The transfer buffer associated with the urb is not freed unless the
 88 * URB_FREE_BUFFER transfer flag is set.
 89 */
 90void usb_free_urb(struct urb *urb)
 91{
 92	if (urb)
 93		kref_put(&urb->kref, urb_destroy);
 94}
 95EXPORT_SYMBOL_GPL(usb_free_urb);
 96
 97/**
 98 * usb_get_urb - increments the reference count of the urb
 99 * @urb: pointer to the urb to modify, may be NULL
100 *
101 * This must be  called whenever a urb is transferred from a device driver to a
102 * host controller driver.  This allows proper reference counting to happen
103 * for urbs.
104 *
105 * A pointer to the urb with the incremented reference counter is returned.
106 */
107struct urb *usb_get_urb(struct urb *urb)
108{
109	if (urb)
110		kref_get(&urb->kref);
111	return urb;
112}
113EXPORT_SYMBOL_GPL(usb_get_urb);
114
115/**
116 * usb_anchor_urb - anchors an URB while it is processed
117 * @urb: pointer to the urb to anchor
118 * @anchor: pointer to the anchor
119 *
120 * This can be called to have access to URBs which are to be executed
121 * without bothering to track them
122 */
123void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124{
125	unsigned long flags;
126
127	spin_lock_irqsave(&anchor->lock, flags);
128	usb_get_urb(urb);
129	list_add_tail(&urb->anchor_list, &anchor->urb_list);
130	urb->anchor = anchor;
131
132	if (unlikely(anchor->poisoned)) {
133		atomic_inc(&urb->reject);
134	}
135
136	spin_unlock_irqrestore(&anchor->lock, flags);
137}
138EXPORT_SYMBOL_GPL(usb_anchor_urb);
139
140/* Callers must hold anchor->lock */
141static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
142{
143	urb->anchor = NULL;
144	list_del(&urb->anchor_list);
145	usb_put_urb(urb);
146	if (list_empty(&anchor->urb_list))
147		wake_up(&anchor->wait);
148}
149
150/**
151 * usb_unanchor_urb - unanchors an URB
152 * @urb: pointer to the urb to anchor
153 *
154 * Call this to stop the system keeping track of this URB
155 */
156void usb_unanchor_urb(struct urb *urb)
157{
158	unsigned long flags;
159	struct usb_anchor *anchor;
160
161	if (!urb)
162		return;
163
164	anchor = urb->anchor;
165	if (!anchor)
166		return;
167
168	spin_lock_irqsave(&anchor->lock, flags);
169	/*
170	 * At this point, we could be competing with another thread which
171	 * has the same intention. To protect the urb from being unanchored
172	 * twice, only the winner of the race gets the job.
173	 */
174	if (likely(anchor == urb->anchor))
175		__usb_unanchor_urb(urb, anchor);
176	spin_unlock_irqrestore(&anchor->lock, flags);
177}
178EXPORT_SYMBOL_GPL(usb_unanchor_urb);
179
180/*-------------------------------------------------------------------*/
181
182/**
183 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
184 * @urb: pointer to the urb describing the request
185 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
186 *	of valid options for this.
187 *
188 * This submits a transfer request, and transfers control of the URB
189 * describing that request to the USB subsystem.  Request completion will
190 * be indicated later, asynchronously, by calling the completion handler.
191 * The three types of completion are success, error, and unlink
192 * (a software-induced fault, also called "request cancellation").
193 *
194 * URBs may be submitted in interrupt context.
195 *
196 * The caller must have correctly initialized the URB before submitting
197 * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
198 * available to ensure that most fields are correctly initialized, for
199 * the particular kind of transfer, although they will not initialize
200 * any transfer flags.
201 *
202 * Successful submissions return 0; otherwise this routine returns a
203 * negative error number.  If the submission is successful, the complete()
204 * callback from the URB will be called exactly once, when the USB core and
205 * Host Controller Driver (HCD) are finished with the URB.  When the completion
206 * function is called, control of the URB is returned to the device
207 * driver which issued the request.  The completion handler may then
208 * immediately free or reuse that URB.
209 *
210 * With few exceptions, USB device drivers should never access URB fields
211 * provided by usbcore or the HCD until its complete() is called.
212 * The exceptions relate to periodic transfer scheduling.  For both
213 * interrupt and isochronous urbs, as part of successful URB submission
214 * urb->interval is modified to reflect the actual transfer period used
215 * (normally some power of two units).  And for isochronous urbs,
216 * urb->start_frame is modified to reflect when the URB's transfers were
217 * scheduled to start.  Not all isochronous transfer scheduling policies
218 * will work, but most host controller drivers should easily handle ISO
219 * queues going from now until 10-200 msec into the future.
220 *
221 * For control endpoints, the synchronous usb_control_msg() call is
222 * often used (in non-interrupt context) instead of this call.
223 * That is often used through convenience wrappers, for the requests
224 * that are standardized in the USB 2.0 specification.  For bulk
225 * endpoints, a synchronous usb_bulk_msg() call is available.
226 *
227 * Request Queuing:
228 *
229 * URBs may be submitted to endpoints before previous ones complete, to
230 * minimize the impact of interrupt latencies and system overhead on data
231 * throughput.  With that queuing policy, an endpoint's queue would never
232 * be empty.  This is required for continuous isochronous data streams,
233 * and may also be required for some kinds of interrupt transfers. Such
234 * queuing also maximizes bandwidth utilization by letting USB controllers
235 * start work on later requests before driver software has finished the
236 * completion processing for earlier (successful) requests.
237 *
238 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
239 * than one.  This was previously a HCD-specific behavior, except for ISO
240 * transfers.  Non-isochronous endpoint queues are inactive during cleanup
241 * after faults (transfer errors or cancellation).
242 *
243 * Reserved Bandwidth Transfers:
244 *
245 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
246 * using the interval specified in the urb.  Submitting the first urb to
247 * the endpoint reserves the bandwidth necessary to make those transfers.
248 * If the USB subsystem can't allocate sufficient bandwidth to perform
249 * the periodic request, submitting such a periodic request should fail.
250 *
251 * For devices under xHCI, the bandwidth is reserved at configuration time, or
252 * when the alt setting is selected.  If there is not enough bus bandwidth, the
253 * configuration/alt setting request will fail.  Therefore, submissions to
254 * periodic endpoints on devices under xHCI should never fail due to bandwidth
255 * constraints.
256 *
257 * Device drivers must explicitly request that repetition, by ensuring that
258 * some URB is always on the endpoint's queue (except possibly for short
259 * periods during completion callacks).  When there is no longer an urb
260 * queued, the endpoint's bandwidth reservation is canceled.  This means
261 * drivers can use their completion handlers to ensure they keep bandwidth
262 * they need, by reinitializing and resubmitting the just-completed urb
263 * until the driver longer needs that periodic bandwidth.
264 *
265 * Memory Flags:
266 *
267 * The general rules for how to decide which mem_flags to use
268 * are the same as for kmalloc.  There are four
269 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
270 * GFP_ATOMIC.
271 *
272 * GFP_NOFS is not ever used, as it has not been implemented yet.
273 *
274 * GFP_ATOMIC is used when
275 *   (a) you are inside a completion handler, an interrupt, bottom half,
276 *       tasklet or timer, or
277 *   (b) you are holding a spinlock or rwlock (does not apply to
278 *       semaphores), or
279 *   (c) current->state != TASK_RUNNING, this is the case only after
280 *       you've changed it.
281 *
282 * GFP_NOIO is used in the block io path and error handling of storage
283 * devices.
284 *
285 * All other situations use GFP_KERNEL.
286 *
287 * Some more specific rules for mem_flags can be inferred, such as
288 *  (1) start_xmit, timeout, and receive methods of network drivers must
289 *      use GFP_ATOMIC (they are called with a spinlock held);
290 *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
291 *      called with a spinlock held);
292 *  (3) If you use a kernel thread with a network driver you must use
293 *      GFP_NOIO, unless (b) or (c) apply;
294 *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
295 *      apply or your are in a storage driver's block io path;
296 *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
297 *  (6) changing firmware on a running storage or net device uses
298 *      GFP_NOIO, unless b) or c) apply
299 *
300 */
301int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
302{
303	int				xfertype, max;
304	struct usb_device		*dev;
305	struct usb_host_endpoint	*ep;
306	int				is_out;
307
308	if (!urb || urb->hcpriv || !urb->complete)
309		return -EINVAL;
310	dev = urb->dev;
311	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
312		return -ENODEV;
313
314	/* For now, get the endpoint from the pipe.  Eventually drivers
315	 * will be required to set urb->ep directly and we will eliminate
316	 * urb->pipe.
317	 */
318	ep = usb_pipe_endpoint(dev, urb->pipe);
319	if (!ep)
320		return -ENOENT;
321
322	urb->ep = ep;
323	urb->status = -EINPROGRESS;
324	urb->actual_length = 0;
325
326	/* Lots of sanity checks, so HCDs can rely on clean data
327	 * and don't need to duplicate tests
328	 */
329	xfertype = usb_endpoint_type(&ep->desc);
330	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
331		struct usb_ctrlrequest *setup =
332				(struct usb_ctrlrequest *) urb->setup_packet;
333
334		if (!setup)
335			return -ENOEXEC;
336		is_out = !(setup->bRequestType & USB_DIR_IN) ||
337				!setup->wLength;
338	} else {
339		is_out = usb_endpoint_dir_out(&ep->desc);
340	}
341
342	/* Clear the internal flags and cache the direction for later use */
343	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
344			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
345			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
346			URB_DMA_SG_COMBINED);
347	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
348
349	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
350			dev->state < USB_STATE_CONFIGURED)
351		return -ENODEV;
352
353	max = usb_endpoint_maxp(&ep->desc);
354	if (max <= 0) {
355		dev_dbg(&dev->dev,
356			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
357			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
358			__func__, max);
359		return -EMSGSIZE;
360	}
361
362	/* periodic transfers limit size per frame/uframe,
363	 * but drivers only control those sizes for ISO.
364	 * while we're checking, initialize return status.
365	 */
366	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
367		int	n, len;
368
369		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
370		 * 3 packets each
371		 */
372		if (dev->speed == USB_SPEED_SUPER) {
373			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
374			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
375			max *= burst;
376			max *= mult;
377		}
378
379		/* "high bandwidth" mode, 1-3 packets/uframe? */
380		if (dev->speed == USB_SPEED_HIGH) {
381			int	mult = 1 + ((max >> 11) & 0x03);
382			max &= 0x07ff;
383			max *= mult;
384		}
385
386		if (urb->number_of_packets <= 0)
387			return -EINVAL;
388		for (n = 0; n < urb->number_of_packets; n++) {
389			len = urb->iso_frame_desc[n].length;
390			if (len < 0 || len > max)
391				return -EMSGSIZE;
392			urb->iso_frame_desc[n].status = -EXDEV;
393			urb->iso_frame_desc[n].actual_length = 0;
394		}
395	}
396
397	/* the I/O buffer must be mapped/unmapped, except when length=0 */
398	if (urb->transfer_buffer_length > INT_MAX)
399		return -EMSGSIZE;
400
401#ifdef DEBUG
402	/* stuff that drivers shouldn't do, but which shouldn't
403	 * cause problems in HCDs if they get it wrong.
404	 */
405	{
 
406	unsigned int	allowed;
407	static int pipetypes[4] = {
408		PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
409	};
410
411	/* Check that the pipe's type matches the endpoint's type */
412	if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
413		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
414			usb_pipetype(urb->pipe), pipetypes[xfertype]);
 
 
415
416	/* Check against a simple/standard policy */
417	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
418			URB_FREE_BUFFER);
419	switch (xfertype) {
420	case USB_ENDPOINT_XFER_BULK:
421		if (is_out)
422			allowed |= URB_ZERO_PACKET;
423		/* FALLTHROUGH */
424	case USB_ENDPOINT_XFER_CONTROL:
425		allowed |= URB_NO_FSBR;	/* only affects UHCI */
426		/* FALLTHROUGH */
427	default:			/* all non-iso endpoints */
428		if (!is_out)
429			allowed |= URB_SHORT_NOT_OK;
430		break;
431	case USB_ENDPOINT_XFER_ISOC:
432		allowed |= URB_ISO_ASAP;
433		break;
434	}
435	allowed &= urb->transfer_flags;
436
437	/* warn if submitter gave bogus flags */
438	if (allowed != urb->transfer_flags)
439		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
440			urb->transfer_flags, allowed);
 
 
441	}
442#endif
443	/*
444	 * Force periodic transfer intervals to be legal values that are
445	 * a power of two (so HCDs don't need to).
446	 *
447	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
448	 * supports different values... this uses EHCI/UHCI defaults (and
449	 * EHCI can use smaller non-default values).
450	 */
451	switch (xfertype) {
452	case USB_ENDPOINT_XFER_ISOC:
453	case USB_ENDPOINT_XFER_INT:
454		/* too small? */
455		switch (dev->speed) {
456		case USB_SPEED_WIRELESS:
457			if (urb->interval < 6)
458				return -EINVAL;
459			break;
460		default:
461			if (urb->interval <= 0)
462				return -EINVAL;
463			break;
464		}
465		/* too big? */
466		switch (dev->speed) {
467		case USB_SPEED_SUPER:	/* units are 125us */
468			/* Handle up to 2^(16-1) microframes */
469			if (urb->interval > (1 << 15))
470				return -EINVAL;
471			max = 1 << 15;
472			break;
473		case USB_SPEED_WIRELESS:
474			if (urb->interval > 16)
475				return -EINVAL;
476			break;
477		case USB_SPEED_HIGH:	/* units are microframes */
478			/* NOTE usb handles 2^15 */
479			if (urb->interval > (1024 * 8))
480				urb->interval = 1024 * 8;
481			max = 1024 * 8;
482			break;
483		case USB_SPEED_FULL:	/* units are frames/msec */
484		case USB_SPEED_LOW:
485			if (xfertype == USB_ENDPOINT_XFER_INT) {
486				if (urb->interval > 255)
487					return -EINVAL;
488				/* NOTE ohci only handles up to 32 */
489				max = 128;
490			} else {
491				if (urb->interval > 1024)
492					urb->interval = 1024;
493				/* NOTE usb and ohci handle up to 2^15 */
494				max = 1024;
495			}
496			break;
497		default:
498			return -EINVAL;
499		}
500		if (dev->speed != USB_SPEED_WIRELESS) {
501			/* Round down to a power of 2, no more than max */
502			urb->interval = min(max, 1 << ilog2(urb->interval));
503		}
504	}
505
506	return usb_hcd_submit_urb(urb, mem_flags);
507}
508EXPORT_SYMBOL_GPL(usb_submit_urb);
509
510/*-------------------------------------------------------------------*/
511
512/**
513 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
514 * @urb: pointer to urb describing a previously submitted request,
515 *	may be NULL
516 *
517 * This routine cancels an in-progress request.  URBs complete only once
518 * per submission, and may be canceled only once per submission.
519 * Successful cancellation means termination of @urb will be expedited
520 * and the completion handler will be called with a status code
521 * indicating that the request has been canceled (rather than any other
522 * code).
523 *
524 * Drivers should not call this routine or related routines, such as
525 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
526 * method has returned.  The disconnect function should synchronize with
527 * a driver's I/O routines to insure that all URB-related activity has
528 * completed before it returns.
529 *
530 * This request is asynchronous, however the HCD might call the ->complete()
531 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
532 * must not hold any locks that may be taken by the completion function.
533 * Success is indicated by returning -EINPROGRESS, at which time the URB will
534 * probably not yet have been given back to the device driver. When it is
535 * eventually called, the completion function will see @urb->status ==
536 * -ECONNRESET.
537 * Failure is indicated by usb_unlink_urb() returning any other value.
538 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
539 * never submitted, or it was unlinked before, or the hardware is already
540 * finished with it), even if the completion handler has not yet run.
541 *
542 * The URB must not be deallocated while this routine is running.  In
543 * particular, when a driver calls this routine, it must insure that the
544 * completion handler cannot deallocate the URB.
545 *
546 * Unlinking and Endpoint Queues:
547 *
548 * [The behaviors and guarantees described below do not apply to virtual
549 * root hubs but only to endpoint queues for physical USB devices.]
550 *
551 * Host Controller Drivers (HCDs) place all the URBs for a particular
552 * endpoint in a queue.  Normally the queue advances as the controller
553 * hardware processes each request.  But when an URB terminates with an
554 * error its queue generally stops (see below), at least until that URB's
555 * completion routine returns.  It is guaranteed that a stopped queue
556 * will not restart until all its unlinked URBs have been fully retired,
557 * with their completion routines run, even if that's not until some time
558 * after the original completion handler returns.  The same behavior and
559 * guarantee apply when an URB terminates because it was unlinked.
560 *
561 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
562 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
563 * and -EREMOTEIO.  Control endpoint queues behave the same way except
564 * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
565 * for isochronous endpoints are treated differently, because they must
566 * advance at fixed rates.  Such queues do not stop when an URB
567 * encounters an error or is unlinked.  An unlinked isochronous URB may
568 * leave a gap in the stream of packets; it is undefined whether such
569 * gaps can be filled in.
570 *
571 * Note that early termination of an URB because a short packet was
572 * received will generate a -EREMOTEIO error if and only if the
573 * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
574 * drivers can build deep queues for large or complex bulk transfers
575 * and clean them up reliably after any sort of aborted transfer by
576 * unlinking all pending URBs at the first fault.
577 *
578 * When a control URB terminates with an error other than -EREMOTEIO, it
579 * is quite likely that the status stage of the transfer will not take
580 * place.
581 */
582int usb_unlink_urb(struct urb *urb)
583{
584	if (!urb)
585		return -EINVAL;
586	if (!urb->dev)
587		return -ENODEV;
588	if (!urb->ep)
589		return -EIDRM;
590	return usb_hcd_unlink_urb(urb, -ECONNRESET);
591}
592EXPORT_SYMBOL_GPL(usb_unlink_urb);
593
594/**
595 * usb_kill_urb - cancel a transfer request and wait for it to finish
596 * @urb: pointer to URB describing a previously submitted request,
597 *	may be NULL
598 *
599 * This routine cancels an in-progress request.  It is guaranteed that
600 * upon return all completion handlers will have finished and the URB
601 * will be totally idle and available for reuse.  These features make
602 * this an ideal way to stop I/O in a disconnect() callback or close()
603 * function.  If the request has not already finished or been unlinked
604 * the completion handler will see urb->status == -ENOENT.
605 *
606 * While the routine is running, attempts to resubmit the URB will fail
607 * with error -EPERM.  Thus even if the URB's completion handler always
608 * tries to resubmit, it will not succeed and the URB will become idle.
609 *
610 * The URB must not be deallocated while this routine is running.  In
611 * particular, when a driver calls this routine, it must insure that the
612 * completion handler cannot deallocate the URB.
613 *
614 * This routine may not be used in an interrupt context (such as a bottom
615 * half or a completion handler), or when holding a spinlock, or in other
616 * situations where the caller can't schedule().
617 *
618 * This routine should not be called by a driver after its disconnect
619 * method has returned.
620 */
621void usb_kill_urb(struct urb *urb)
622{
623	might_sleep();
624	if (!(urb && urb->dev && urb->ep))
625		return;
626	atomic_inc(&urb->reject);
627
628	usb_hcd_unlink_urb(urb, -ENOENT);
629	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
630
631	atomic_dec(&urb->reject);
632}
633EXPORT_SYMBOL_GPL(usb_kill_urb);
634
635/**
636 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
637 * @urb: pointer to URB describing a previously submitted request,
638 *	may be NULL
639 *
640 * This routine cancels an in-progress request.  It is guaranteed that
641 * upon return all completion handlers will have finished and the URB
642 * will be totally idle and cannot be reused.  These features make
643 * this an ideal way to stop I/O in a disconnect() callback.
644 * If the request has not already finished or been unlinked
645 * the completion handler will see urb->status == -ENOENT.
646 *
647 * After and while the routine runs, attempts to resubmit the URB will fail
648 * with error -EPERM.  Thus even if the URB's completion handler always
649 * tries to resubmit, it will not succeed and the URB will become idle.
650 *
651 * The URB must not be deallocated while this routine is running.  In
652 * particular, when a driver calls this routine, it must insure that the
653 * completion handler cannot deallocate the URB.
654 *
655 * This routine may not be used in an interrupt context (such as a bottom
656 * half or a completion handler), or when holding a spinlock, or in other
657 * situations where the caller can't schedule().
658 *
659 * This routine should not be called by a driver after its disconnect
660 * method has returned.
661 */
662void usb_poison_urb(struct urb *urb)
663{
664	might_sleep();
665	if (!(urb && urb->dev && urb->ep))
666		return;
667	atomic_inc(&urb->reject);
668
669	usb_hcd_unlink_urb(urb, -ENOENT);
670	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
671}
672EXPORT_SYMBOL_GPL(usb_poison_urb);
673
674void usb_unpoison_urb(struct urb *urb)
675{
676	if (!urb)
677		return;
678
679	atomic_dec(&urb->reject);
680}
681EXPORT_SYMBOL_GPL(usb_unpoison_urb);
682
683/**
684 * usb_block_urb - reliably prevent further use of an URB
685 * @urb: pointer to URB to be blocked, may be NULL
686 *
687 * After the routine has run, attempts to resubmit the URB will fail
688 * with error -EPERM.  Thus even if the URB's completion handler always
689 * tries to resubmit, it will not succeed and the URB will become idle.
690 *
691 * The URB must not be deallocated while this routine is running.  In
692 * particular, when a driver calls this routine, it must insure that the
693 * completion handler cannot deallocate the URB.
694 */
695void usb_block_urb(struct urb *urb)
696{
697	if (!urb)
698		return;
699
700	atomic_inc(&urb->reject);
701}
702EXPORT_SYMBOL_GPL(usb_block_urb);
703
704/**
705 * usb_kill_anchored_urbs - cancel transfer requests en masse
706 * @anchor: anchor the requests are bound to
707 *
708 * this allows all outstanding URBs to be killed starting
709 * from the back of the queue
710 *
711 * This routine should not be called by a driver after its disconnect
712 * method has returned.
713 */
714void usb_kill_anchored_urbs(struct usb_anchor *anchor)
715{
716	struct urb *victim;
717
718	spin_lock_irq(&anchor->lock);
719	while (!list_empty(&anchor->urb_list)) {
720		victim = list_entry(anchor->urb_list.prev, struct urb,
721				    anchor_list);
722		/* we must make sure the URB isn't freed before we kill it*/
723		usb_get_urb(victim);
724		spin_unlock_irq(&anchor->lock);
725		/* this will unanchor the URB */
726		usb_kill_urb(victim);
727		usb_put_urb(victim);
728		spin_lock_irq(&anchor->lock);
729	}
730	spin_unlock_irq(&anchor->lock);
731}
732EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
733
734
735/**
736 * usb_poison_anchored_urbs - cease all traffic from an anchor
737 * @anchor: anchor the requests are bound to
738 *
739 * this allows all outstanding URBs to be poisoned starting
740 * from the back of the queue. Newly added URBs will also be
741 * poisoned
742 *
743 * This routine should not be called by a driver after its disconnect
744 * method has returned.
745 */
746void usb_poison_anchored_urbs(struct usb_anchor *anchor)
747{
748	struct urb *victim;
749
750	spin_lock_irq(&anchor->lock);
751	anchor->poisoned = 1;
752	while (!list_empty(&anchor->urb_list)) {
753		victim = list_entry(anchor->urb_list.prev, struct urb,
754				    anchor_list);
755		/* we must make sure the URB isn't freed before we kill it*/
756		usb_get_urb(victim);
757		spin_unlock_irq(&anchor->lock);
758		/* this will unanchor the URB */
759		usb_poison_urb(victim);
760		usb_put_urb(victim);
761		spin_lock_irq(&anchor->lock);
762	}
763	spin_unlock_irq(&anchor->lock);
764}
765EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
766
767/**
768 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
769 * @anchor: anchor the requests are bound to
770 *
771 * Reverses the effect of usb_poison_anchored_urbs
772 * the anchor can be used normally after it returns
773 */
774void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
775{
776	unsigned long flags;
777	struct urb *lazarus;
778
779	spin_lock_irqsave(&anchor->lock, flags);
780	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
781		usb_unpoison_urb(lazarus);
782	}
783	anchor->poisoned = 0;
784	spin_unlock_irqrestore(&anchor->lock, flags);
785}
786EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
787/**
788 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
789 * @anchor: anchor the requests are bound to
790 *
791 * this allows all outstanding URBs to be unlinked starting
792 * from the back of the queue. This function is asynchronous.
793 * The unlinking is just tiggered. It may happen after this
794 * function has returned.
795 *
796 * This routine should not be called by a driver after its disconnect
797 * method has returned.
798 */
799void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
800{
801	struct urb *victim;
802
803	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
804		usb_unlink_urb(victim);
805		usb_put_urb(victim);
806	}
807}
808EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
809
810/**
811 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
812 * @anchor: the anchor you want to become unused
813 * @timeout: how long you are willing to wait in milliseconds
814 *
815 * Call this is you want to be sure all an anchor's
816 * URBs have finished
817 */
818int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
819				  unsigned int timeout)
820{
821	return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
822				  msecs_to_jiffies(timeout));
823}
824EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
825
826/**
827 * usb_get_from_anchor - get an anchor's oldest urb
828 * @anchor: the anchor whose urb you want
829 *
830 * this will take the oldest urb from an anchor,
831 * unanchor and return it
832 */
833struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
834{
835	struct urb *victim;
836	unsigned long flags;
837
838	spin_lock_irqsave(&anchor->lock, flags);
839	if (!list_empty(&anchor->urb_list)) {
840		victim = list_entry(anchor->urb_list.next, struct urb,
841				    anchor_list);
842		usb_get_urb(victim);
843		__usb_unanchor_urb(victim, anchor);
844	} else {
845		victim = NULL;
846	}
847	spin_unlock_irqrestore(&anchor->lock, flags);
848
849	return victim;
850}
851
852EXPORT_SYMBOL_GPL(usb_get_from_anchor);
853
854/**
855 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
856 * @anchor: the anchor whose urbs you want to unanchor
857 *
858 * use this to get rid of all an anchor's urbs
859 */
860void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
861{
862	struct urb *victim;
863	unsigned long flags;
864
865	spin_lock_irqsave(&anchor->lock, flags);
866	while (!list_empty(&anchor->urb_list)) {
867		victim = list_entry(anchor->urb_list.prev, struct urb,
868				    anchor_list);
869		__usb_unanchor_urb(victim, anchor);
870	}
871	spin_unlock_irqrestore(&anchor->lock, flags);
872}
873
874EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
875
876/**
877 * usb_anchor_empty - is an anchor empty
878 * @anchor: the anchor you want to query
879 *
880 * returns 1 if the anchor has no urbs associated with it
881 */
882int usb_anchor_empty(struct usb_anchor *anchor)
883{
884	return list_empty(&anchor->urb_list);
885}
886
887EXPORT_SYMBOL_GPL(usb_anchor_empty);
888