Loading...
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/module.h>
26#include <linux/version.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/completion.h>
30#include <linux/utsname.h>
31#include <linux/mm.h>
32#include <asm/io.h>
33#include <linux/device.h>
34#include <linux/dma-mapping.h>
35#include <linux/mutex.h>
36#include <asm/irq.h>
37#include <asm/byteorder.h>
38#include <asm/unaligned.h>
39#include <linux/platform_device.h>
40#include <linux/workqueue.h>
41
42#include <linux/usb.h>
43#include <linux/usb/hcd.h>
44
45#include "usb.h"
46
47
48/*-------------------------------------------------------------------------*/
49
50/*
51 * USB Host Controller Driver framework
52 *
53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54 * HCD-specific behaviors/bugs.
55 *
56 * This does error checks, tracks devices and urbs, and delegates to a
57 * "hc_driver" only for code (and data) that really needs to know about
58 * hardware differences. That includes root hub registers, i/o queues,
59 * and so on ... but as little else as possible.
60 *
61 * Shared code includes most of the "root hub" code (these are emulated,
62 * though each HC's hardware works differently) and PCI glue, plus request
63 * tracking overhead. The HCD code should only block on spinlocks or on
64 * hardware handshaking; blocking on software events (such as other kernel
65 * threads releasing resources, or completing actions) is all generic.
66 *
67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69 * only by the hub driver ... and that neither should be seen or used by
70 * usb client device drivers.
71 *
72 * Contributors of ideas or unattributed patches include: David Brownell,
73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74 *
75 * HISTORY:
76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
77 * associated cleanup. "usb_hcd" still != "usb_bus".
78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
79 */
80
81/*-------------------------------------------------------------------------*/
82
83/* Keep track of which host controller drivers are loaded */
84unsigned long usb_hcds_loaded;
85EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87/* host controllers we manage */
88LIST_HEAD (usb_bus_list);
89EXPORT_SYMBOL_GPL (usb_bus_list);
90
91/* used when allocating bus numbers */
92#define USB_MAXBUS 64
93struct usb_busmap {
94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95};
96static struct usb_busmap busmap;
97
98/* used when updating list of hcds */
99DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
100EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102/* used for controlling access to virtual root hubs */
103static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105/* used when updating an endpoint's URB list */
106static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108/* used to protect against unlinking URBs after the device is gone */
109static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111/* wait queue for synchronous unlinks */
112DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114static inline int is_root_hub(struct usb_device *udev)
115{
116 return (udev->parent == NULL);
117}
118
119/*-------------------------------------------------------------------------*/
120
121/*
122 * Sharable chunks of root hub code.
123 */
124
125/*-------------------------------------------------------------------------*/
126
127#define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128#define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130/* usb 3.0 root hub device descriptor */
131static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149};
150
151/* usb 2.0 root hub device descriptor */
152static const u8 usb2_rh_dev_descriptor [18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170};
171
172/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174/* usb 1.1 root hub device descriptor */
175static const u8 usb11_rh_dev_descriptor [18] = {
176 0x12, /* __u8 bLength; */
177 0x01, /* __u8 bDescriptorType; Device */
178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
179
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
184
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
188
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
193};
194
195
196/*-------------------------------------------------------------------------*/
197
198/* Configuration descriptors for our root hubs */
199
200static const u8 fs_rh_config_descriptor [] = {
201
202 /* one configuration */
203 0x09, /* __u8 bLength; */
204 0x02, /* __u8 bDescriptorType; Configuration */
205 0x19, 0x00, /* __le16 wTotalLength; */
206 0x01, /* __u8 bNumInterfaces; (1) */
207 0x01, /* __u8 bConfigurationValue; */
208 0x00, /* __u8 iConfiguration; */
209 0xc0, /* __u8 bmAttributes;
210 Bit 7: must be set,
211 6: Self-powered,
212 5: Remote wakeup,
213 4..0: resvd */
214 0x00, /* __u8 MaxPower; */
215
216 /* USB 1.1:
217 * USB 2.0, single TT organization (mandatory):
218 * one interface, protocol 0
219 *
220 * USB 2.0, multiple TT organization (optional):
221 * two interfaces, protocols 1 (like single TT)
222 * and 2 (multiple TT mode) ... config is
223 * sometimes settable
224 * NOT IMPLEMENTED
225 */
226
227 /* one interface */
228 0x09, /* __u8 if_bLength; */
229 0x04, /* __u8 if_bDescriptorType; Interface */
230 0x00, /* __u8 if_bInterfaceNumber; */
231 0x00, /* __u8 if_bAlternateSetting; */
232 0x01, /* __u8 if_bNumEndpoints; */
233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
234 0x00, /* __u8 if_bInterfaceSubClass; */
235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
236 0x00, /* __u8 if_iInterface; */
237
238 /* one endpoint (status change endpoint) */
239 0x07, /* __u8 ep_bLength; */
240 0x05, /* __u8 ep_bDescriptorType; Endpoint */
241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
242 0x03, /* __u8 ep_bmAttributes; Interrupt */
243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
245};
246
247static const u8 hs_rh_config_descriptor [] = {
248
249 /* one configuration */
250 0x09, /* __u8 bLength; */
251 0x02, /* __u8 bDescriptorType; Configuration */
252 0x19, 0x00, /* __le16 wTotalLength; */
253 0x01, /* __u8 bNumInterfaces; (1) */
254 0x01, /* __u8 bConfigurationValue; */
255 0x00, /* __u8 iConfiguration; */
256 0xc0, /* __u8 bmAttributes;
257 Bit 7: must be set,
258 6: Self-powered,
259 5: Remote wakeup,
260 4..0: resvd */
261 0x00, /* __u8 MaxPower; */
262
263 /* USB 1.1:
264 * USB 2.0, single TT organization (mandatory):
265 * one interface, protocol 0
266 *
267 * USB 2.0, multiple TT organization (optional):
268 * two interfaces, protocols 1 (like single TT)
269 * and 2 (multiple TT mode) ... config is
270 * sometimes settable
271 * NOT IMPLEMENTED
272 */
273
274 /* one interface */
275 0x09, /* __u8 if_bLength; */
276 0x04, /* __u8 if_bDescriptorType; Interface */
277 0x00, /* __u8 if_bInterfaceNumber; */
278 0x00, /* __u8 if_bAlternateSetting; */
279 0x01, /* __u8 if_bNumEndpoints; */
280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
281 0x00, /* __u8 if_bInterfaceSubClass; */
282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
283 0x00, /* __u8 if_iInterface; */
284
285 /* one endpoint (status change endpoint) */
286 0x07, /* __u8 ep_bLength; */
287 0x05, /* __u8 ep_bDescriptorType; Endpoint */
288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
289 0x03, /* __u8 ep_bmAttributes; Interrupt */
290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 * see hub.c:hub_configure() for details. */
292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
294};
295
296static const u8 ss_rh_config_descriptor[] = {
297 /* one configuration */
298 0x09, /* __u8 bLength; */
299 0x02, /* __u8 bDescriptorType; Configuration */
300 0x1f, 0x00, /* __le16 wTotalLength; */
301 0x01, /* __u8 bNumInterfaces; (1) */
302 0x01, /* __u8 bConfigurationValue; */
303 0x00, /* __u8 iConfiguration; */
304 0xc0, /* __u8 bmAttributes;
305 Bit 7: must be set,
306 6: Self-powered,
307 5: Remote wakeup,
308 4..0: resvd */
309 0x00, /* __u8 MaxPower; */
310
311 /* one interface */
312 0x09, /* __u8 if_bLength; */
313 0x04, /* __u8 if_bDescriptorType; Interface */
314 0x00, /* __u8 if_bInterfaceNumber; */
315 0x00, /* __u8 if_bAlternateSetting; */
316 0x01, /* __u8 if_bNumEndpoints; */
317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
318 0x00, /* __u8 if_bInterfaceSubClass; */
319 0x00, /* __u8 if_bInterfaceProtocol; */
320 0x00, /* __u8 if_iInterface; */
321
322 /* one endpoint (status change endpoint) */
323 0x07, /* __u8 ep_bLength; */
324 0x05, /* __u8 ep_bDescriptorType; Endpoint */
325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
326 0x03, /* __u8 ep_bmAttributes; Interrupt */
327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 * see hub.c:hub_configure() for details. */
329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
331
332 /* one SuperSpeed endpoint companion descriptor */
333 0x06, /* __u8 ss_bLength */
334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338};
339
340/* authorized_default behaviour:
341 * -1 is authorized for all devices except wireless (old behaviour)
342 * 0 is unauthorized for all devices
343 * 1 is authorized for all devices
344 */
345static int authorized_default = -1;
346module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347MODULE_PARM_DESC(authorized_default,
348 "Default USB device authorization: 0 is not authorized, 1 is "
349 "authorized, -1 is authorized except for wireless USB (default, "
350 "old behaviour");
351/*-------------------------------------------------------------------------*/
352
353/**
354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355 * @s: Null-terminated ASCII (actually ISO-8859-1) string
356 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357 * @len: Length (in bytes; may be odd) of descriptor buffer.
358 *
359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360 * buflen, whichever is less.
361 *
362 * USB String descriptors can contain at most 126 characters; input
363 * strings longer than that are truncated.
364 */
365static unsigned
366ascii2desc(char const *s, u8 *buf, unsigned len)
367{
368 unsigned n, t = 2 + 2*strlen(s);
369
370 if (t > 254)
371 t = 254; /* Longest possible UTF string descriptor */
372 if (len > t)
373 len = t;
374
375 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
376
377 n = len;
378 while (n--) {
379 *buf++ = t;
380 if (!n--)
381 break;
382 *buf++ = t >> 8;
383 t = (unsigned char)*s++;
384 }
385 return len;
386}
387
388/**
389 * rh_string() - provides string descriptors for root hub
390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391 * @hcd: the host controller for this root hub
392 * @data: buffer for output packet
393 * @len: length of the provided buffer
394 *
395 * Produces either a manufacturer, product or serial number string for the
396 * virtual root hub device.
397 * Returns the number of bytes filled in: the length of the descriptor or
398 * of the provided buffer, whichever is less.
399 */
400static unsigned
401rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402{
403 char buf[100];
404 char const *s;
405 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407 // language ids
408 switch (id) {
409 case 0:
410 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412 if (len > 4)
413 len = 4;
414 memcpy(data, langids, len);
415 return len;
416 case 1:
417 /* Serial number */
418 s = hcd->self.bus_name;
419 break;
420 case 2:
421 /* Product name */
422 s = hcd->product_desc;
423 break;
424 case 3:
425 /* Manufacturer */
426 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427 init_utsname()->release, hcd->driver->description);
428 s = buf;
429 break;
430 default:
431 /* Can't happen; caller guarantees it */
432 return 0;
433 }
434
435 return ascii2desc(s, data, len);
436}
437
438
439/* Root hub control transfers execute synchronously */
440static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441{
442 struct usb_ctrlrequest *cmd;
443 u16 typeReq, wValue, wIndex, wLength;
444 u8 *ubuf = urb->transfer_buffer;
445 u8 tbuf [sizeof (struct usb_hub_descriptor)]
446 __attribute__((aligned(4)));
447 const u8 *bufp = tbuf;
448 unsigned len = 0;
449 int status;
450 u8 patch_wakeup = 0;
451 u8 patch_protocol = 0;
452
453 might_sleep();
454
455 spin_lock_irq(&hcd_root_hub_lock);
456 status = usb_hcd_link_urb_to_ep(hcd, urb);
457 spin_unlock_irq(&hcd_root_hub_lock);
458 if (status)
459 return status;
460 urb->hcpriv = hcd; /* Indicate it's queued */
461
462 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
463 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
464 wValue = le16_to_cpu (cmd->wValue);
465 wIndex = le16_to_cpu (cmd->wIndex);
466 wLength = le16_to_cpu (cmd->wLength);
467
468 if (wLength > urb->transfer_buffer_length)
469 goto error;
470
471 urb->actual_length = 0;
472 switch (typeReq) {
473
474 /* DEVICE REQUESTS */
475
476 /* The root hub's remote wakeup enable bit is implemented using
477 * driver model wakeup flags. If this system supports wakeup
478 * through USB, userspace may change the default "allow wakeup"
479 * policy through sysfs or these calls.
480 *
481 * Most root hubs support wakeup from downstream devices, for
482 * runtime power management (disabling USB clocks and reducing
483 * VBUS power usage). However, not all of them do so; silicon,
484 * board, and BIOS bugs here are not uncommon, so these can't
485 * be treated quite like external hubs.
486 *
487 * Likewise, not all root hubs will pass wakeup events upstream,
488 * to wake up the whole system. So don't assume root hub and
489 * controller capabilities are identical.
490 */
491
492 case DeviceRequest | USB_REQ_GET_STATUS:
493 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
494 << USB_DEVICE_REMOTE_WAKEUP)
495 | (1 << USB_DEVICE_SELF_POWERED);
496 tbuf [1] = 0;
497 len = 2;
498 break;
499 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
500 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
501 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
502 else
503 goto error;
504 break;
505 case DeviceOutRequest | USB_REQ_SET_FEATURE:
506 if (device_can_wakeup(&hcd->self.root_hub->dev)
507 && wValue == USB_DEVICE_REMOTE_WAKEUP)
508 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
509 else
510 goto error;
511 break;
512 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
513 tbuf [0] = 1;
514 len = 1;
515 /* FALLTHROUGH */
516 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
517 break;
518 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
519 switch (wValue & 0xff00) {
520 case USB_DT_DEVICE << 8:
521 switch (hcd->speed) {
522 case HCD_USB3:
523 bufp = usb3_rh_dev_descriptor;
524 break;
525 case HCD_USB2:
526 bufp = usb2_rh_dev_descriptor;
527 break;
528 case HCD_USB11:
529 bufp = usb11_rh_dev_descriptor;
530 break;
531 default:
532 goto error;
533 }
534 len = 18;
535 if (hcd->has_tt)
536 patch_protocol = 1;
537 break;
538 case USB_DT_CONFIG << 8:
539 switch (hcd->speed) {
540 case HCD_USB3:
541 bufp = ss_rh_config_descriptor;
542 len = sizeof ss_rh_config_descriptor;
543 break;
544 case HCD_USB2:
545 bufp = hs_rh_config_descriptor;
546 len = sizeof hs_rh_config_descriptor;
547 break;
548 case HCD_USB11:
549 bufp = fs_rh_config_descriptor;
550 len = sizeof fs_rh_config_descriptor;
551 break;
552 default:
553 goto error;
554 }
555 if (device_can_wakeup(&hcd->self.root_hub->dev))
556 patch_wakeup = 1;
557 break;
558 case USB_DT_STRING << 8:
559 if ((wValue & 0xff) < 4)
560 urb->actual_length = rh_string(wValue & 0xff,
561 hcd, ubuf, wLength);
562 else /* unsupported IDs --> "protocol stall" */
563 goto error;
564 break;
565 default:
566 goto error;
567 }
568 break;
569 case DeviceRequest | USB_REQ_GET_INTERFACE:
570 tbuf [0] = 0;
571 len = 1;
572 /* FALLTHROUGH */
573 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
574 break;
575 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
576 // wValue == urb->dev->devaddr
577 dev_dbg (hcd->self.controller, "root hub device address %d\n",
578 wValue);
579 break;
580
581 /* INTERFACE REQUESTS (no defined feature/status flags) */
582
583 /* ENDPOINT REQUESTS */
584
585 case EndpointRequest | USB_REQ_GET_STATUS:
586 // ENDPOINT_HALT flag
587 tbuf [0] = 0;
588 tbuf [1] = 0;
589 len = 2;
590 /* FALLTHROUGH */
591 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
592 case EndpointOutRequest | USB_REQ_SET_FEATURE:
593 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
594 break;
595
596 /* CLASS REQUESTS (and errors) */
597
598 default:
599 /* non-generic request */
600 switch (typeReq) {
601 case GetHubStatus:
602 case GetPortStatus:
603 len = 4;
604 break;
605 case GetHubDescriptor:
606 len = sizeof (struct usb_hub_descriptor);
607 break;
608 }
609 status = hcd->driver->hub_control (hcd,
610 typeReq, wValue, wIndex,
611 tbuf, wLength);
612 break;
613error:
614 /* "protocol stall" on error */
615 status = -EPIPE;
616 }
617
618 if (status) {
619 len = 0;
620 if (status != -EPIPE) {
621 dev_dbg (hcd->self.controller,
622 "CTRL: TypeReq=0x%x val=0x%x "
623 "idx=0x%x len=%d ==> %d\n",
624 typeReq, wValue, wIndex,
625 wLength, status);
626 }
627 }
628 if (len) {
629 if (urb->transfer_buffer_length < len)
630 len = urb->transfer_buffer_length;
631 urb->actual_length = len;
632 // always USB_DIR_IN, toward host
633 memcpy (ubuf, bufp, len);
634
635 /* report whether RH hardware supports remote wakeup */
636 if (patch_wakeup &&
637 len > offsetof (struct usb_config_descriptor,
638 bmAttributes))
639 ((struct usb_config_descriptor *)ubuf)->bmAttributes
640 |= USB_CONFIG_ATT_WAKEUP;
641
642 /* report whether RH hardware has an integrated TT */
643 if (patch_protocol &&
644 len > offsetof(struct usb_device_descriptor,
645 bDeviceProtocol))
646 ((struct usb_device_descriptor *) ubuf)->
647 bDeviceProtocol = 1;
648 }
649
650 /* any errors get returned through the urb completion */
651 spin_lock_irq(&hcd_root_hub_lock);
652 usb_hcd_unlink_urb_from_ep(hcd, urb);
653
654 /* This peculiar use of spinlocks echoes what real HC drivers do.
655 * Avoiding calls to local_irq_disable/enable makes the code
656 * RT-friendly.
657 */
658 spin_unlock(&hcd_root_hub_lock);
659 usb_hcd_giveback_urb(hcd, urb, status);
660 spin_lock(&hcd_root_hub_lock);
661
662 spin_unlock_irq(&hcd_root_hub_lock);
663 return 0;
664}
665
666/*-------------------------------------------------------------------------*/
667
668/*
669 * Root Hub interrupt transfers are polled using a timer if the
670 * driver requests it; otherwise the driver is responsible for
671 * calling usb_hcd_poll_rh_status() when an event occurs.
672 *
673 * Completions are called in_interrupt(), but they may or may not
674 * be in_irq().
675 */
676void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
677{
678 struct urb *urb;
679 int length;
680 unsigned long flags;
681 char buffer[6]; /* Any root hubs with > 31 ports? */
682
683 if (unlikely(!hcd->rh_pollable))
684 return;
685 if (!hcd->uses_new_polling && !hcd->status_urb)
686 return;
687
688 length = hcd->driver->hub_status_data(hcd, buffer);
689 if (length > 0) {
690
691 /* try to complete the status urb */
692 spin_lock_irqsave(&hcd_root_hub_lock, flags);
693 urb = hcd->status_urb;
694 if (urb) {
695 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
696 hcd->status_urb = NULL;
697 urb->actual_length = length;
698 memcpy(urb->transfer_buffer, buffer, length);
699
700 usb_hcd_unlink_urb_from_ep(hcd, urb);
701 spin_unlock(&hcd_root_hub_lock);
702 usb_hcd_giveback_urb(hcd, urb, 0);
703 spin_lock(&hcd_root_hub_lock);
704 } else {
705 length = 0;
706 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
707 }
708 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
709 }
710
711 /* The USB 2.0 spec says 256 ms. This is close enough and won't
712 * exceed that limit if HZ is 100. The math is more clunky than
713 * maybe expected, this is to make sure that all timers for USB devices
714 * fire at the same time to give the CPU a break in between */
715 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
716 (length == 0 && hcd->status_urb != NULL))
717 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
718}
719EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
720
721/* timer callback */
722static void rh_timer_func (unsigned long _hcd)
723{
724 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
725}
726
727/*-------------------------------------------------------------------------*/
728
729static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
730{
731 int retval;
732 unsigned long flags;
733 unsigned len = 1 + (urb->dev->maxchild / 8);
734
735 spin_lock_irqsave (&hcd_root_hub_lock, flags);
736 if (hcd->status_urb || urb->transfer_buffer_length < len) {
737 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
738 retval = -EINVAL;
739 goto done;
740 }
741
742 retval = usb_hcd_link_urb_to_ep(hcd, urb);
743 if (retval)
744 goto done;
745
746 hcd->status_urb = urb;
747 urb->hcpriv = hcd; /* indicate it's queued */
748 if (!hcd->uses_new_polling)
749 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
750
751 /* If a status change has already occurred, report it ASAP */
752 else if (HCD_POLL_PENDING(hcd))
753 mod_timer(&hcd->rh_timer, jiffies);
754 retval = 0;
755 done:
756 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
757 return retval;
758}
759
760static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
761{
762 if (usb_endpoint_xfer_int(&urb->ep->desc))
763 return rh_queue_status (hcd, urb);
764 if (usb_endpoint_xfer_control(&urb->ep->desc))
765 return rh_call_control (hcd, urb);
766 return -EINVAL;
767}
768
769/*-------------------------------------------------------------------------*/
770
771/* Unlinks of root-hub control URBs are legal, but they don't do anything
772 * since these URBs always execute synchronously.
773 */
774static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
775{
776 unsigned long flags;
777 int rc;
778
779 spin_lock_irqsave(&hcd_root_hub_lock, flags);
780 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
781 if (rc)
782 goto done;
783
784 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
785 ; /* Do nothing */
786
787 } else { /* Status URB */
788 if (!hcd->uses_new_polling)
789 del_timer (&hcd->rh_timer);
790 if (urb == hcd->status_urb) {
791 hcd->status_urb = NULL;
792 usb_hcd_unlink_urb_from_ep(hcd, urb);
793
794 spin_unlock(&hcd_root_hub_lock);
795 usb_hcd_giveback_urb(hcd, urb, status);
796 spin_lock(&hcd_root_hub_lock);
797 }
798 }
799 done:
800 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
801 return rc;
802}
803
804
805
806/*
807 * Show & store the current value of authorized_default
808 */
809static ssize_t usb_host_authorized_default_show(struct device *dev,
810 struct device_attribute *attr,
811 char *buf)
812{
813 struct usb_device *rh_usb_dev = to_usb_device(dev);
814 struct usb_bus *usb_bus = rh_usb_dev->bus;
815 struct usb_hcd *usb_hcd;
816
817 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
818 return -ENODEV;
819 usb_hcd = bus_to_hcd(usb_bus);
820 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
821}
822
823static ssize_t usb_host_authorized_default_store(struct device *dev,
824 struct device_attribute *attr,
825 const char *buf, size_t size)
826{
827 ssize_t result;
828 unsigned val;
829 struct usb_device *rh_usb_dev = to_usb_device(dev);
830 struct usb_bus *usb_bus = rh_usb_dev->bus;
831 struct usb_hcd *usb_hcd;
832
833 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
834 return -ENODEV;
835 usb_hcd = bus_to_hcd(usb_bus);
836 result = sscanf(buf, "%u\n", &val);
837 if (result == 1) {
838 usb_hcd->authorized_default = val? 1 : 0;
839 result = size;
840 }
841 else
842 result = -EINVAL;
843 return result;
844}
845
846static DEVICE_ATTR(authorized_default, 0644,
847 usb_host_authorized_default_show,
848 usb_host_authorized_default_store);
849
850
851/* Group all the USB bus attributes */
852static struct attribute *usb_bus_attrs[] = {
853 &dev_attr_authorized_default.attr,
854 NULL,
855};
856
857static struct attribute_group usb_bus_attr_group = {
858 .name = NULL, /* we want them in the same directory */
859 .attrs = usb_bus_attrs,
860};
861
862
863
864/*-------------------------------------------------------------------------*/
865
866/**
867 * usb_bus_init - shared initialization code
868 * @bus: the bus structure being initialized
869 *
870 * This code is used to initialize a usb_bus structure, memory for which is
871 * separately managed.
872 */
873static void usb_bus_init (struct usb_bus *bus)
874{
875 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
876
877 bus->devnum_next = 1;
878
879 bus->root_hub = NULL;
880 bus->busnum = -1;
881 bus->bandwidth_allocated = 0;
882 bus->bandwidth_int_reqs = 0;
883 bus->bandwidth_isoc_reqs = 0;
884
885 INIT_LIST_HEAD (&bus->bus_list);
886}
887
888/*-------------------------------------------------------------------------*/
889
890/**
891 * usb_register_bus - registers the USB host controller with the usb core
892 * @bus: pointer to the bus to register
893 * Context: !in_interrupt()
894 *
895 * Assigns a bus number, and links the controller into usbcore data
896 * structures so that it can be seen by scanning the bus list.
897 */
898static int usb_register_bus(struct usb_bus *bus)
899{
900 int result = -E2BIG;
901 int busnum;
902
903 mutex_lock(&usb_bus_list_lock);
904 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
905 if (busnum >= USB_MAXBUS) {
906 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
907 goto error_find_busnum;
908 }
909 set_bit (busnum, busmap.busmap);
910 bus->busnum = busnum;
911
912 /* Add it to the local list of buses */
913 list_add (&bus->bus_list, &usb_bus_list);
914 mutex_unlock(&usb_bus_list_lock);
915
916 usb_notify_add_bus(bus);
917
918 dev_info (bus->controller, "new USB bus registered, assigned bus "
919 "number %d\n", bus->busnum);
920 return 0;
921
922error_find_busnum:
923 mutex_unlock(&usb_bus_list_lock);
924 return result;
925}
926
927/**
928 * usb_deregister_bus - deregisters the USB host controller
929 * @bus: pointer to the bus to deregister
930 * Context: !in_interrupt()
931 *
932 * Recycles the bus number, and unlinks the controller from usbcore data
933 * structures so that it won't be seen by scanning the bus list.
934 */
935static void usb_deregister_bus (struct usb_bus *bus)
936{
937 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
938
939 /*
940 * NOTE: make sure that all the devices are removed by the
941 * controller code, as well as having it call this when cleaning
942 * itself up
943 */
944 mutex_lock(&usb_bus_list_lock);
945 list_del (&bus->bus_list);
946 mutex_unlock(&usb_bus_list_lock);
947
948 usb_notify_remove_bus(bus);
949
950 clear_bit (bus->busnum, busmap.busmap);
951}
952
953/**
954 * register_root_hub - called by usb_add_hcd() to register a root hub
955 * @hcd: host controller for this root hub
956 *
957 * This function registers the root hub with the USB subsystem. It sets up
958 * the device properly in the device tree and then calls usb_new_device()
959 * to register the usb device. It also assigns the root hub's USB address
960 * (always 1).
961 */
962static int register_root_hub(struct usb_hcd *hcd)
963{
964 struct device *parent_dev = hcd->self.controller;
965 struct usb_device *usb_dev = hcd->self.root_hub;
966 const int devnum = 1;
967 int retval;
968
969 usb_dev->devnum = devnum;
970 usb_dev->bus->devnum_next = devnum + 1;
971 memset (&usb_dev->bus->devmap.devicemap, 0,
972 sizeof usb_dev->bus->devmap.devicemap);
973 set_bit (devnum, usb_dev->bus->devmap.devicemap);
974 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
975
976 mutex_lock(&usb_bus_list_lock);
977
978 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
979 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
980 if (retval != sizeof usb_dev->descriptor) {
981 mutex_unlock(&usb_bus_list_lock);
982 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
983 dev_name(&usb_dev->dev), retval);
984 return (retval < 0) ? retval : -EMSGSIZE;
985 }
986
987 retval = usb_new_device (usb_dev);
988 if (retval) {
989 dev_err (parent_dev, "can't register root hub for %s, %d\n",
990 dev_name(&usb_dev->dev), retval);
991 }
992 mutex_unlock(&usb_bus_list_lock);
993
994 if (retval == 0) {
995 spin_lock_irq (&hcd_root_hub_lock);
996 hcd->rh_registered = 1;
997 spin_unlock_irq (&hcd_root_hub_lock);
998
999 /* Did the HC die before the root hub was registered? */
1000 if (HCD_DEAD(hcd))
1001 usb_hc_died (hcd); /* This time clean up */
1002 }
1003
1004 return retval;
1005}
1006
1007
1008/*-------------------------------------------------------------------------*/
1009
1010/**
1011 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1012 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1013 * @is_input: true iff the transaction sends data to the host
1014 * @isoc: true for isochronous transactions, false for interrupt ones
1015 * @bytecount: how many bytes in the transaction.
1016 *
1017 * Returns approximate bus time in nanoseconds for a periodic transaction.
1018 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1019 * scheduled in software, this function is only used for such scheduling.
1020 */
1021long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1022{
1023 unsigned long tmp;
1024
1025 switch (speed) {
1026 case USB_SPEED_LOW: /* INTR only */
1027 if (is_input) {
1028 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1029 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1030 } else {
1031 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1032 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1033 }
1034 case USB_SPEED_FULL: /* ISOC or INTR */
1035 if (isoc) {
1036 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1037 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1038 } else {
1039 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1040 return (9107L + BW_HOST_DELAY + tmp);
1041 }
1042 case USB_SPEED_HIGH: /* ISOC or INTR */
1043 // FIXME adjust for input vs output
1044 if (isoc)
1045 tmp = HS_NSECS_ISO (bytecount);
1046 else
1047 tmp = HS_NSECS (bytecount);
1048 return tmp;
1049 default:
1050 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1051 return -1;
1052 }
1053}
1054EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1055
1056
1057/*-------------------------------------------------------------------------*/
1058
1059/*
1060 * Generic HC operations.
1061 */
1062
1063/*-------------------------------------------------------------------------*/
1064
1065/**
1066 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1067 * @hcd: host controller to which @urb was submitted
1068 * @urb: URB being submitted
1069 *
1070 * Host controller drivers should call this routine in their enqueue()
1071 * method. The HCD's private spinlock must be held and interrupts must
1072 * be disabled. The actions carried out here are required for URB
1073 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1074 *
1075 * Returns 0 for no error, otherwise a negative error code (in which case
1076 * the enqueue() method must fail). If no error occurs but enqueue() fails
1077 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1078 * the private spinlock and returning.
1079 */
1080int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1081{
1082 int rc = 0;
1083
1084 spin_lock(&hcd_urb_list_lock);
1085
1086 /* Check that the URB isn't being killed */
1087 if (unlikely(atomic_read(&urb->reject))) {
1088 rc = -EPERM;
1089 goto done;
1090 }
1091
1092 if (unlikely(!urb->ep->enabled)) {
1093 rc = -ENOENT;
1094 goto done;
1095 }
1096
1097 if (unlikely(!urb->dev->can_submit)) {
1098 rc = -EHOSTUNREACH;
1099 goto done;
1100 }
1101
1102 /*
1103 * Check the host controller's state and add the URB to the
1104 * endpoint's queue.
1105 */
1106 if (HCD_RH_RUNNING(hcd)) {
1107 urb->unlinked = 0;
1108 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1109 } else {
1110 rc = -ESHUTDOWN;
1111 goto done;
1112 }
1113 done:
1114 spin_unlock(&hcd_urb_list_lock);
1115 return rc;
1116}
1117EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1118
1119/**
1120 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1121 * @hcd: host controller to which @urb was submitted
1122 * @urb: URB being checked for unlinkability
1123 * @status: error code to store in @urb if the unlink succeeds
1124 *
1125 * Host controller drivers should call this routine in their dequeue()
1126 * method. The HCD's private spinlock must be held and interrupts must
1127 * be disabled. The actions carried out here are required for making
1128 * sure than an unlink is valid.
1129 *
1130 * Returns 0 for no error, otherwise a negative error code (in which case
1131 * the dequeue() method must fail). The possible error codes are:
1132 *
1133 * -EIDRM: @urb was not submitted or has already completed.
1134 * The completion function may not have been called yet.
1135 *
1136 * -EBUSY: @urb has already been unlinked.
1137 */
1138int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1139 int status)
1140{
1141 struct list_head *tmp;
1142
1143 /* insist the urb is still queued */
1144 list_for_each(tmp, &urb->ep->urb_list) {
1145 if (tmp == &urb->urb_list)
1146 break;
1147 }
1148 if (tmp != &urb->urb_list)
1149 return -EIDRM;
1150
1151 /* Any status except -EINPROGRESS means something already started to
1152 * unlink this URB from the hardware. So there's no more work to do.
1153 */
1154 if (urb->unlinked)
1155 return -EBUSY;
1156 urb->unlinked = status;
1157
1158 /* IRQ setup can easily be broken so that USB controllers
1159 * never get completion IRQs ... maybe even the ones we need to
1160 * finish unlinking the initial failed usb_set_address()
1161 * or device descriptor fetch.
1162 */
1163 if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1164 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1165 "Controller is probably using the wrong IRQ.\n");
1166 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1167 if (hcd->shared_hcd)
1168 set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
1169 }
1170
1171 return 0;
1172}
1173EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1174
1175/**
1176 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1177 * @hcd: host controller to which @urb was submitted
1178 * @urb: URB being unlinked
1179 *
1180 * Host controller drivers should call this routine before calling
1181 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1182 * interrupts must be disabled. The actions carried out here are required
1183 * for URB completion.
1184 */
1185void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1186{
1187 /* clear all state linking urb to this dev (and hcd) */
1188 spin_lock(&hcd_urb_list_lock);
1189 list_del_init(&urb->urb_list);
1190 spin_unlock(&hcd_urb_list_lock);
1191}
1192EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1193
1194/*
1195 * Some usb host controllers can only perform dma using a small SRAM area.
1196 * The usb core itself is however optimized for host controllers that can dma
1197 * using regular system memory - like pci devices doing bus mastering.
1198 *
1199 * To support host controllers with limited dma capabilites we provide dma
1200 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1201 * For this to work properly the host controller code must first use the
1202 * function dma_declare_coherent_memory() to point out which memory area
1203 * that should be used for dma allocations.
1204 *
1205 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1206 * dma using dma_alloc_coherent() which in turn allocates from the memory
1207 * area pointed out with dma_declare_coherent_memory().
1208 *
1209 * So, to summarize...
1210 *
1211 * - We need "local" memory, canonical example being
1212 * a small SRAM on a discrete controller being the
1213 * only memory that the controller can read ...
1214 * (a) "normal" kernel memory is no good, and
1215 * (b) there's not enough to share
1216 *
1217 * - The only *portable* hook for such stuff in the
1218 * DMA framework is dma_declare_coherent_memory()
1219 *
1220 * - So we use that, even though the primary requirement
1221 * is that the memory be "local" (hence addressible
1222 * by that device), not "coherent".
1223 *
1224 */
1225
1226static int hcd_alloc_coherent(struct usb_bus *bus,
1227 gfp_t mem_flags, dma_addr_t *dma_handle,
1228 void **vaddr_handle, size_t size,
1229 enum dma_data_direction dir)
1230{
1231 unsigned char *vaddr;
1232
1233 if (*vaddr_handle == NULL) {
1234 WARN_ON_ONCE(1);
1235 return -EFAULT;
1236 }
1237
1238 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1239 mem_flags, dma_handle);
1240 if (!vaddr)
1241 return -ENOMEM;
1242
1243 /*
1244 * Store the virtual address of the buffer at the end
1245 * of the allocated dma buffer. The size of the buffer
1246 * may be uneven so use unaligned functions instead
1247 * of just rounding up. It makes sense to optimize for
1248 * memory footprint over access speed since the amount
1249 * of memory available for dma may be limited.
1250 */
1251 put_unaligned((unsigned long)*vaddr_handle,
1252 (unsigned long *)(vaddr + size));
1253
1254 if (dir == DMA_TO_DEVICE)
1255 memcpy(vaddr, *vaddr_handle, size);
1256
1257 *vaddr_handle = vaddr;
1258 return 0;
1259}
1260
1261static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1262 void **vaddr_handle, size_t size,
1263 enum dma_data_direction dir)
1264{
1265 unsigned char *vaddr = *vaddr_handle;
1266
1267 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1268
1269 if (dir == DMA_FROM_DEVICE)
1270 memcpy(vaddr, *vaddr_handle, size);
1271
1272 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1273
1274 *vaddr_handle = vaddr;
1275 *dma_handle = 0;
1276}
1277
1278void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1279{
1280 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1281 dma_unmap_single(hcd->self.controller,
1282 urb->setup_dma,
1283 sizeof(struct usb_ctrlrequest),
1284 DMA_TO_DEVICE);
1285 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1286 hcd_free_coherent(urb->dev->bus,
1287 &urb->setup_dma,
1288 (void **) &urb->setup_packet,
1289 sizeof(struct usb_ctrlrequest),
1290 DMA_TO_DEVICE);
1291
1292 /* Make it safe to call this routine more than once */
1293 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1294}
1295EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1296
1297static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1298{
1299 if (hcd->driver->unmap_urb_for_dma)
1300 hcd->driver->unmap_urb_for_dma(hcd, urb);
1301 else
1302 usb_hcd_unmap_urb_for_dma(hcd, urb);
1303}
1304
1305void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1306{
1307 enum dma_data_direction dir;
1308
1309 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1310
1311 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1312 if (urb->transfer_flags & URB_DMA_MAP_SG)
1313 dma_unmap_sg(hcd->self.controller,
1314 urb->sg,
1315 urb->num_sgs,
1316 dir);
1317 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1318 dma_unmap_page(hcd->self.controller,
1319 urb->transfer_dma,
1320 urb->transfer_buffer_length,
1321 dir);
1322 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1323 dma_unmap_single(hcd->self.controller,
1324 urb->transfer_dma,
1325 urb->transfer_buffer_length,
1326 dir);
1327 else if (urb->transfer_flags & URB_MAP_LOCAL)
1328 hcd_free_coherent(urb->dev->bus,
1329 &urb->transfer_dma,
1330 &urb->transfer_buffer,
1331 urb->transfer_buffer_length,
1332 dir);
1333
1334 /* Make it safe to call this routine more than once */
1335 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1336 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1337}
1338EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1339
1340static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1341 gfp_t mem_flags)
1342{
1343 if (hcd->driver->map_urb_for_dma)
1344 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1345 else
1346 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1347}
1348
1349int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1350 gfp_t mem_flags)
1351{
1352 enum dma_data_direction dir;
1353 int ret = 0;
1354
1355 /* Map the URB's buffers for DMA access.
1356 * Lower level HCD code should use *_dma exclusively,
1357 * unless it uses pio or talks to another transport,
1358 * or uses the provided scatter gather list for bulk.
1359 */
1360
1361 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1362 if (hcd->self.uses_pio_for_control)
1363 return ret;
1364 if (hcd->self.uses_dma) {
1365 urb->setup_dma = dma_map_single(
1366 hcd->self.controller,
1367 urb->setup_packet,
1368 sizeof(struct usb_ctrlrequest),
1369 DMA_TO_DEVICE);
1370 if (dma_mapping_error(hcd->self.controller,
1371 urb->setup_dma))
1372 return -EAGAIN;
1373 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1374 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1375 ret = hcd_alloc_coherent(
1376 urb->dev->bus, mem_flags,
1377 &urb->setup_dma,
1378 (void **)&urb->setup_packet,
1379 sizeof(struct usb_ctrlrequest),
1380 DMA_TO_DEVICE);
1381 if (ret)
1382 return ret;
1383 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1384 }
1385 }
1386
1387 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1388 if (urb->transfer_buffer_length != 0
1389 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1390 if (hcd->self.uses_dma) {
1391 if (urb->num_sgs) {
1392 int n = dma_map_sg(
1393 hcd->self.controller,
1394 urb->sg,
1395 urb->num_sgs,
1396 dir);
1397 if (n <= 0)
1398 ret = -EAGAIN;
1399 else
1400 urb->transfer_flags |= URB_DMA_MAP_SG;
1401 if (n != urb->num_sgs) {
1402 urb->num_sgs = n;
1403 urb->transfer_flags |=
1404 URB_DMA_SG_COMBINED;
1405 }
1406 } else if (urb->sg) {
1407 struct scatterlist *sg = urb->sg;
1408 urb->transfer_dma = dma_map_page(
1409 hcd->self.controller,
1410 sg_page(sg),
1411 sg->offset,
1412 urb->transfer_buffer_length,
1413 dir);
1414 if (dma_mapping_error(hcd->self.controller,
1415 urb->transfer_dma))
1416 ret = -EAGAIN;
1417 else
1418 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1419 } else {
1420 urb->transfer_dma = dma_map_single(
1421 hcd->self.controller,
1422 urb->transfer_buffer,
1423 urb->transfer_buffer_length,
1424 dir);
1425 if (dma_mapping_error(hcd->self.controller,
1426 urb->transfer_dma))
1427 ret = -EAGAIN;
1428 else
1429 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1430 }
1431 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1432 ret = hcd_alloc_coherent(
1433 urb->dev->bus, mem_flags,
1434 &urb->transfer_dma,
1435 &urb->transfer_buffer,
1436 urb->transfer_buffer_length,
1437 dir);
1438 if (ret == 0)
1439 urb->transfer_flags |= URB_MAP_LOCAL;
1440 }
1441 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1442 URB_SETUP_MAP_LOCAL)))
1443 usb_hcd_unmap_urb_for_dma(hcd, urb);
1444 }
1445 return ret;
1446}
1447EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1448
1449/*-------------------------------------------------------------------------*/
1450
1451/* may be called in any context with a valid urb->dev usecount
1452 * caller surrenders "ownership" of urb
1453 * expects usb_submit_urb() to have sanity checked and conditioned all
1454 * inputs in the urb
1455 */
1456int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1457{
1458 int status;
1459 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1460
1461 /* increment urb's reference count as part of giving it to the HCD
1462 * (which will control it). HCD guarantees that it either returns
1463 * an error or calls giveback(), but not both.
1464 */
1465 usb_get_urb(urb);
1466 atomic_inc(&urb->use_count);
1467 atomic_inc(&urb->dev->urbnum);
1468 usbmon_urb_submit(&hcd->self, urb);
1469
1470 /* NOTE requirements on root-hub callers (usbfs and the hub
1471 * driver, for now): URBs' urb->transfer_buffer must be
1472 * valid and usb_buffer_{sync,unmap}() not be needed, since
1473 * they could clobber root hub response data. Also, control
1474 * URBs must be submitted in process context with interrupts
1475 * enabled.
1476 */
1477
1478 if (is_root_hub(urb->dev)) {
1479 status = rh_urb_enqueue(hcd, urb);
1480 } else {
1481 status = map_urb_for_dma(hcd, urb, mem_flags);
1482 if (likely(status == 0)) {
1483 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1484 if (unlikely(status))
1485 unmap_urb_for_dma(hcd, urb);
1486 }
1487 }
1488
1489 if (unlikely(status)) {
1490 usbmon_urb_submit_error(&hcd->self, urb, status);
1491 urb->hcpriv = NULL;
1492 INIT_LIST_HEAD(&urb->urb_list);
1493 atomic_dec(&urb->use_count);
1494 atomic_dec(&urb->dev->urbnum);
1495 if (atomic_read(&urb->reject))
1496 wake_up(&usb_kill_urb_queue);
1497 usb_put_urb(urb);
1498 }
1499 return status;
1500}
1501
1502/*-------------------------------------------------------------------------*/
1503
1504/* this makes the hcd giveback() the urb more quickly, by kicking it
1505 * off hardware queues (which may take a while) and returning it as
1506 * soon as practical. we've already set up the urb's return status,
1507 * but we can't know if the callback completed already.
1508 */
1509static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1510{
1511 int value;
1512
1513 if (is_root_hub(urb->dev))
1514 value = usb_rh_urb_dequeue(hcd, urb, status);
1515 else {
1516
1517 /* The only reason an HCD might fail this call is if
1518 * it has not yet fully queued the urb to begin with.
1519 * Such failures should be harmless. */
1520 value = hcd->driver->urb_dequeue(hcd, urb, status);
1521 }
1522 return value;
1523}
1524
1525/*
1526 * called in any context
1527 *
1528 * caller guarantees urb won't be recycled till both unlink()
1529 * and the urb's completion function return
1530 */
1531int usb_hcd_unlink_urb (struct urb *urb, int status)
1532{
1533 struct usb_hcd *hcd;
1534 int retval = -EIDRM;
1535 unsigned long flags;
1536
1537 /* Prevent the device and bus from going away while
1538 * the unlink is carried out. If they are already gone
1539 * then urb->use_count must be 0, since disconnected
1540 * devices can't have any active URBs.
1541 */
1542 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1543 if (atomic_read(&urb->use_count) > 0) {
1544 retval = 0;
1545 usb_get_dev(urb->dev);
1546 }
1547 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1548 if (retval == 0) {
1549 hcd = bus_to_hcd(urb->dev->bus);
1550 retval = unlink1(hcd, urb, status);
1551 usb_put_dev(urb->dev);
1552 }
1553
1554 if (retval == 0)
1555 retval = -EINPROGRESS;
1556 else if (retval != -EIDRM && retval != -EBUSY)
1557 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1558 urb, retval);
1559 return retval;
1560}
1561
1562/*-------------------------------------------------------------------------*/
1563
1564/**
1565 * usb_hcd_giveback_urb - return URB from HCD to device driver
1566 * @hcd: host controller returning the URB
1567 * @urb: urb being returned to the USB device driver.
1568 * @status: completion status code for the URB.
1569 * Context: in_interrupt()
1570 *
1571 * This hands the URB from HCD to its USB device driver, using its
1572 * completion function. The HCD has freed all per-urb resources
1573 * (and is done using urb->hcpriv). It also released all HCD locks;
1574 * the device driver won't cause problems if it frees, modifies,
1575 * or resubmits this URB.
1576 *
1577 * If @urb was unlinked, the value of @status will be overridden by
1578 * @urb->unlinked. Erroneous short transfers are detected in case
1579 * the HCD hasn't checked for them.
1580 */
1581void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1582{
1583 urb->hcpriv = NULL;
1584 if (unlikely(urb->unlinked))
1585 status = urb->unlinked;
1586 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1587 urb->actual_length < urb->transfer_buffer_length &&
1588 !status))
1589 status = -EREMOTEIO;
1590
1591 unmap_urb_for_dma(hcd, urb);
1592 usbmon_urb_complete(&hcd->self, urb, status);
1593 usb_unanchor_urb(urb);
1594
1595 /* pass ownership to the completion handler */
1596 urb->status = status;
1597 urb->complete (urb);
1598 atomic_dec (&urb->use_count);
1599 if (unlikely(atomic_read(&urb->reject)))
1600 wake_up (&usb_kill_urb_queue);
1601 usb_put_urb (urb);
1602}
1603EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1604
1605/*-------------------------------------------------------------------------*/
1606
1607/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1608 * queue to drain completely. The caller must first insure that no more
1609 * URBs can be submitted for this endpoint.
1610 */
1611void usb_hcd_flush_endpoint(struct usb_device *udev,
1612 struct usb_host_endpoint *ep)
1613{
1614 struct usb_hcd *hcd;
1615 struct urb *urb;
1616
1617 if (!ep)
1618 return;
1619 might_sleep();
1620 hcd = bus_to_hcd(udev->bus);
1621
1622 /* No more submits can occur */
1623 spin_lock_irq(&hcd_urb_list_lock);
1624rescan:
1625 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1626 int is_in;
1627
1628 if (urb->unlinked)
1629 continue;
1630 usb_get_urb (urb);
1631 is_in = usb_urb_dir_in(urb);
1632 spin_unlock(&hcd_urb_list_lock);
1633
1634 /* kick hcd */
1635 unlink1(hcd, urb, -ESHUTDOWN);
1636 dev_dbg (hcd->self.controller,
1637 "shutdown urb %p ep%d%s%s\n",
1638 urb, usb_endpoint_num(&ep->desc),
1639 is_in ? "in" : "out",
1640 ({ char *s;
1641
1642 switch (usb_endpoint_type(&ep->desc)) {
1643 case USB_ENDPOINT_XFER_CONTROL:
1644 s = ""; break;
1645 case USB_ENDPOINT_XFER_BULK:
1646 s = "-bulk"; break;
1647 case USB_ENDPOINT_XFER_INT:
1648 s = "-intr"; break;
1649 default:
1650 s = "-iso"; break;
1651 };
1652 s;
1653 }));
1654 usb_put_urb (urb);
1655
1656 /* list contents may have changed */
1657 spin_lock(&hcd_urb_list_lock);
1658 goto rescan;
1659 }
1660 spin_unlock_irq(&hcd_urb_list_lock);
1661
1662 /* Wait until the endpoint queue is completely empty */
1663 while (!list_empty (&ep->urb_list)) {
1664 spin_lock_irq(&hcd_urb_list_lock);
1665
1666 /* The list may have changed while we acquired the spinlock */
1667 urb = NULL;
1668 if (!list_empty (&ep->urb_list)) {
1669 urb = list_entry (ep->urb_list.prev, struct urb,
1670 urb_list);
1671 usb_get_urb (urb);
1672 }
1673 spin_unlock_irq(&hcd_urb_list_lock);
1674
1675 if (urb) {
1676 usb_kill_urb (urb);
1677 usb_put_urb (urb);
1678 }
1679 }
1680}
1681
1682/**
1683 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1684 * the bus bandwidth
1685 * @udev: target &usb_device
1686 * @new_config: new configuration to install
1687 * @cur_alt: the current alternate interface setting
1688 * @new_alt: alternate interface setting that is being installed
1689 *
1690 * To change configurations, pass in the new configuration in new_config,
1691 * and pass NULL for cur_alt and new_alt.
1692 *
1693 * To reset a device's configuration (put the device in the ADDRESSED state),
1694 * pass in NULL for new_config, cur_alt, and new_alt.
1695 *
1696 * To change alternate interface settings, pass in NULL for new_config,
1697 * pass in the current alternate interface setting in cur_alt,
1698 * and pass in the new alternate interface setting in new_alt.
1699 *
1700 * Returns an error if the requested bandwidth change exceeds the
1701 * bus bandwidth or host controller internal resources.
1702 */
1703int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1704 struct usb_host_config *new_config,
1705 struct usb_host_interface *cur_alt,
1706 struct usb_host_interface *new_alt)
1707{
1708 int num_intfs, i, j;
1709 struct usb_host_interface *alt = NULL;
1710 int ret = 0;
1711 struct usb_hcd *hcd;
1712 struct usb_host_endpoint *ep;
1713
1714 hcd = bus_to_hcd(udev->bus);
1715 if (!hcd->driver->check_bandwidth)
1716 return 0;
1717
1718 /* Configuration is being removed - set configuration 0 */
1719 if (!new_config && !cur_alt) {
1720 for (i = 1; i < 16; ++i) {
1721 ep = udev->ep_out[i];
1722 if (ep)
1723 hcd->driver->drop_endpoint(hcd, udev, ep);
1724 ep = udev->ep_in[i];
1725 if (ep)
1726 hcd->driver->drop_endpoint(hcd, udev, ep);
1727 }
1728 hcd->driver->check_bandwidth(hcd, udev);
1729 return 0;
1730 }
1731 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1732 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1733 * of the bus. There will always be bandwidth for endpoint 0, so it's
1734 * ok to exclude it.
1735 */
1736 if (new_config) {
1737 num_intfs = new_config->desc.bNumInterfaces;
1738 /* Remove endpoints (except endpoint 0, which is always on the
1739 * schedule) from the old config from the schedule
1740 */
1741 for (i = 1; i < 16; ++i) {
1742 ep = udev->ep_out[i];
1743 if (ep) {
1744 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1745 if (ret < 0)
1746 goto reset;
1747 }
1748 ep = udev->ep_in[i];
1749 if (ep) {
1750 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1751 if (ret < 0)
1752 goto reset;
1753 }
1754 }
1755 for (i = 0; i < num_intfs; ++i) {
1756 struct usb_host_interface *first_alt;
1757 int iface_num;
1758
1759 first_alt = &new_config->intf_cache[i]->altsetting[0];
1760 iface_num = first_alt->desc.bInterfaceNumber;
1761 /* Set up endpoints for alternate interface setting 0 */
1762 alt = usb_find_alt_setting(new_config, iface_num, 0);
1763 if (!alt)
1764 /* No alt setting 0? Pick the first setting. */
1765 alt = first_alt;
1766
1767 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1768 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1769 if (ret < 0)
1770 goto reset;
1771 }
1772 }
1773 }
1774 if (cur_alt && new_alt) {
1775 struct usb_interface *iface = usb_ifnum_to_if(udev,
1776 cur_alt->desc.bInterfaceNumber);
1777
1778 if (!iface)
1779 return -EINVAL;
1780 if (iface->resetting_device) {
1781 /*
1782 * The USB core just reset the device, so the xHCI host
1783 * and the device will think alt setting 0 is installed.
1784 * However, the USB core will pass in the alternate
1785 * setting installed before the reset as cur_alt. Dig
1786 * out the alternate setting 0 structure, or the first
1787 * alternate setting if a broken device doesn't have alt
1788 * setting 0.
1789 */
1790 cur_alt = usb_altnum_to_altsetting(iface, 0);
1791 if (!cur_alt)
1792 cur_alt = &iface->altsetting[0];
1793 }
1794
1795 /* Drop all the endpoints in the current alt setting */
1796 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1797 ret = hcd->driver->drop_endpoint(hcd, udev,
1798 &cur_alt->endpoint[i]);
1799 if (ret < 0)
1800 goto reset;
1801 }
1802 /* Add all the endpoints in the new alt setting */
1803 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1804 ret = hcd->driver->add_endpoint(hcd, udev,
1805 &new_alt->endpoint[i]);
1806 if (ret < 0)
1807 goto reset;
1808 }
1809 }
1810 ret = hcd->driver->check_bandwidth(hcd, udev);
1811reset:
1812 if (ret < 0)
1813 hcd->driver->reset_bandwidth(hcd, udev);
1814 return ret;
1815}
1816
1817/* Disables the endpoint: synchronizes with the hcd to make sure all
1818 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1819 * have been called previously. Use for set_configuration, set_interface,
1820 * driver removal, physical disconnect.
1821 *
1822 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1823 * type, maxpacket size, toggle, halt status, and scheduling.
1824 */
1825void usb_hcd_disable_endpoint(struct usb_device *udev,
1826 struct usb_host_endpoint *ep)
1827{
1828 struct usb_hcd *hcd;
1829
1830 might_sleep();
1831 hcd = bus_to_hcd(udev->bus);
1832 if (hcd->driver->endpoint_disable)
1833 hcd->driver->endpoint_disable(hcd, ep);
1834}
1835
1836/**
1837 * usb_hcd_reset_endpoint - reset host endpoint state
1838 * @udev: USB device.
1839 * @ep: the endpoint to reset.
1840 *
1841 * Resets any host endpoint state such as the toggle bit, sequence
1842 * number and current window.
1843 */
1844void usb_hcd_reset_endpoint(struct usb_device *udev,
1845 struct usb_host_endpoint *ep)
1846{
1847 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1848
1849 if (hcd->driver->endpoint_reset)
1850 hcd->driver->endpoint_reset(hcd, ep);
1851 else {
1852 int epnum = usb_endpoint_num(&ep->desc);
1853 int is_out = usb_endpoint_dir_out(&ep->desc);
1854 int is_control = usb_endpoint_xfer_control(&ep->desc);
1855
1856 usb_settoggle(udev, epnum, is_out, 0);
1857 if (is_control)
1858 usb_settoggle(udev, epnum, !is_out, 0);
1859 }
1860}
1861
1862/**
1863 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1864 * @interface: alternate setting that includes all endpoints.
1865 * @eps: array of endpoints that need streams.
1866 * @num_eps: number of endpoints in the array.
1867 * @num_streams: number of streams to allocate.
1868 * @mem_flags: flags hcd should use to allocate memory.
1869 *
1870 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1871 * Drivers may queue multiple transfers to different stream IDs, which may
1872 * complete in a different order than they were queued.
1873 */
1874int usb_alloc_streams(struct usb_interface *interface,
1875 struct usb_host_endpoint **eps, unsigned int num_eps,
1876 unsigned int num_streams, gfp_t mem_flags)
1877{
1878 struct usb_hcd *hcd;
1879 struct usb_device *dev;
1880 int i;
1881
1882 dev = interface_to_usbdev(interface);
1883 hcd = bus_to_hcd(dev->bus);
1884 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1885 return -EINVAL;
1886 if (dev->speed != USB_SPEED_SUPER)
1887 return -EINVAL;
1888
1889 /* Streams only apply to bulk endpoints. */
1890 for (i = 0; i < num_eps; i++)
1891 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1892 return -EINVAL;
1893
1894 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1895 num_streams, mem_flags);
1896}
1897EXPORT_SYMBOL_GPL(usb_alloc_streams);
1898
1899/**
1900 * usb_free_streams - free bulk endpoint stream IDs.
1901 * @interface: alternate setting that includes all endpoints.
1902 * @eps: array of endpoints to remove streams from.
1903 * @num_eps: number of endpoints in the array.
1904 * @mem_flags: flags hcd should use to allocate memory.
1905 *
1906 * Reverts a group of bulk endpoints back to not using stream IDs.
1907 * Can fail if we are given bad arguments, or HCD is broken.
1908 */
1909void usb_free_streams(struct usb_interface *interface,
1910 struct usb_host_endpoint **eps, unsigned int num_eps,
1911 gfp_t mem_flags)
1912{
1913 struct usb_hcd *hcd;
1914 struct usb_device *dev;
1915 int i;
1916
1917 dev = interface_to_usbdev(interface);
1918 hcd = bus_to_hcd(dev->bus);
1919 if (dev->speed != USB_SPEED_SUPER)
1920 return;
1921
1922 /* Streams only apply to bulk endpoints. */
1923 for (i = 0; i < num_eps; i++)
1924 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1925 return;
1926
1927 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1928}
1929EXPORT_SYMBOL_GPL(usb_free_streams);
1930
1931/* Protect against drivers that try to unlink URBs after the device
1932 * is gone, by waiting until all unlinks for @udev are finished.
1933 * Since we don't currently track URBs by device, simply wait until
1934 * nothing is running in the locked region of usb_hcd_unlink_urb().
1935 */
1936void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1937{
1938 spin_lock_irq(&hcd_urb_unlink_lock);
1939 spin_unlock_irq(&hcd_urb_unlink_lock);
1940}
1941
1942/*-------------------------------------------------------------------------*/
1943
1944/* called in any context */
1945int usb_hcd_get_frame_number (struct usb_device *udev)
1946{
1947 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1948
1949 if (!HCD_RH_RUNNING(hcd))
1950 return -ESHUTDOWN;
1951 return hcd->driver->get_frame_number (hcd);
1952}
1953
1954/*-------------------------------------------------------------------------*/
1955
1956#ifdef CONFIG_PM
1957
1958int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1959{
1960 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1961 int status;
1962 int old_state = hcd->state;
1963
1964 dev_dbg(&rhdev->dev, "bus %s%s\n",
1965 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1966 if (HCD_DEAD(hcd)) {
1967 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1968 return 0;
1969 }
1970
1971 if (!hcd->driver->bus_suspend) {
1972 status = -ENOENT;
1973 } else {
1974 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1975 hcd->state = HC_STATE_QUIESCING;
1976 status = hcd->driver->bus_suspend(hcd);
1977 }
1978 if (status == 0) {
1979 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1980 hcd->state = HC_STATE_SUSPENDED;
1981 } else {
1982 spin_lock_irq(&hcd_root_hub_lock);
1983 if (!HCD_DEAD(hcd)) {
1984 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1985 hcd->state = old_state;
1986 }
1987 spin_unlock_irq(&hcd_root_hub_lock);
1988 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1989 "suspend", status);
1990 }
1991 return status;
1992}
1993
1994int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1995{
1996 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1997 int status;
1998 int old_state = hcd->state;
1999
2000 dev_dbg(&rhdev->dev, "usb %s%s\n",
2001 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
2002 if (HCD_DEAD(hcd)) {
2003 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2004 return 0;
2005 }
2006 if (!hcd->driver->bus_resume)
2007 return -ENOENT;
2008 if (HCD_RH_RUNNING(hcd))
2009 return 0;
2010
2011 hcd->state = HC_STATE_RESUMING;
2012 status = hcd->driver->bus_resume(hcd);
2013 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2014 if (status == 0) {
2015 /* TRSMRCY = 10 msec */
2016 msleep(10);
2017 spin_lock_irq(&hcd_root_hub_lock);
2018 if (!HCD_DEAD(hcd)) {
2019 usb_set_device_state(rhdev, rhdev->actconfig
2020 ? USB_STATE_CONFIGURED
2021 : USB_STATE_ADDRESS);
2022 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2023 hcd->state = HC_STATE_RUNNING;
2024 }
2025 spin_unlock_irq(&hcd_root_hub_lock);
2026 } else {
2027 hcd->state = old_state;
2028 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2029 "resume", status);
2030 if (status != -ESHUTDOWN)
2031 usb_hc_died(hcd);
2032 }
2033 return status;
2034}
2035
2036#endif /* CONFIG_PM */
2037
2038#ifdef CONFIG_USB_SUSPEND
2039
2040/* Workqueue routine for root-hub remote wakeup */
2041static void hcd_resume_work(struct work_struct *work)
2042{
2043 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2044 struct usb_device *udev = hcd->self.root_hub;
2045
2046 usb_lock_device(udev);
2047 usb_remote_wakeup(udev);
2048 usb_unlock_device(udev);
2049}
2050
2051/**
2052 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2053 * @hcd: host controller for this root hub
2054 *
2055 * The USB host controller calls this function when its root hub is
2056 * suspended (with the remote wakeup feature enabled) and a remote
2057 * wakeup request is received. The routine submits a workqueue request
2058 * to resume the root hub (that is, manage its downstream ports again).
2059 */
2060void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2061{
2062 unsigned long flags;
2063
2064 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2065 if (hcd->rh_registered) {
2066 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2067 queue_work(pm_wq, &hcd->wakeup_work);
2068 }
2069 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2070}
2071EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2072
2073#endif /* CONFIG_USB_SUSPEND */
2074
2075/*-------------------------------------------------------------------------*/
2076
2077#ifdef CONFIG_USB_OTG
2078
2079/**
2080 * usb_bus_start_enum - start immediate enumeration (for OTG)
2081 * @bus: the bus (must use hcd framework)
2082 * @port_num: 1-based number of port; usually bus->otg_port
2083 * Context: in_interrupt()
2084 *
2085 * Starts enumeration, with an immediate reset followed later by
2086 * khubd identifying and possibly configuring the device.
2087 * This is needed by OTG controller drivers, where it helps meet
2088 * HNP protocol timing requirements for starting a port reset.
2089 */
2090int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2091{
2092 struct usb_hcd *hcd;
2093 int status = -EOPNOTSUPP;
2094
2095 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2096 * boards with root hubs hooked up to internal devices (instead of
2097 * just the OTG port) may need more attention to resetting...
2098 */
2099 hcd = container_of (bus, struct usb_hcd, self);
2100 if (port_num && hcd->driver->start_port_reset)
2101 status = hcd->driver->start_port_reset(hcd, port_num);
2102
2103 /* run khubd shortly after (first) root port reset finishes;
2104 * it may issue others, until at least 50 msecs have passed.
2105 */
2106 if (status == 0)
2107 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2108 return status;
2109}
2110EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2111
2112#endif
2113
2114/*-------------------------------------------------------------------------*/
2115
2116/**
2117 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2118 * @irq: the IRQ being raised
2119 * @__hcd: pointer to the HCD whose IRQ is being signaled
2120 *
2121 * If the controller isn't HALTed, calls the driver's irq handler.
2122 * Checks whether the controller is now dead.
2123 */
2124irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2125{
2126 struct usb_hcd *hcd = __hcd;
2127 unsigned long flags;
2128 irqreturn_t rc;
2129
2130 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2131 * when the first handler doesn't use it. So let's just
2132 * assume it's never used.
2133 */
2134 local_irq_save(flags);
2135
2136 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
2137 rc = IRQ_NONE;
2138 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2139 rc = IRQ_NONE;
2140 } else {
2141 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2142 if (hcd->shared_hcd)
2143 set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
2144 rc = IRQ_HANDLED;
2145 }
2146
2147 local_irq_restore(flags);
2148 return rc;
2149}
2150EXPORT_SYMBOL_GPL(usb_hcd_irq);
2151
2152/*-------------------------------------------------------------------------*/
2153
2154/**
2155 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2156 * @hcd: pointer to the HCD representing the controller
2157 *
2158 * This is called by bus glue to report a USB host controller that died
2159 * while operations may still have been pending. It's called automatically
2160 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2161 *
2162 * Only call this function with the primary HCD.
2163 */
2164void usb_hc_died (struct usb_hcd *hcd)
2165{
2166 unsigned long flags;
2167
2168 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2169
2170 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2171 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2172 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2173 if (hcd->rh_registered) {
2174 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2175
2176 /* make khubd clean up old urbs and devices */
2177 usb_set_device_state (hcd->self.root_hub,
2178 USB_STATE_NOTATTACHED);
2179 usb_kick_khubd (hcd->self.root_hub);
2180 }
2181 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2182 hcd = hcd->shared_hcd;
2183 if (hcd->rh_registered) {
2184 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2185
2186 /* make khubd clean up old urbs and devices */
2187 usb_set_device_state(hcd->self.root_hub,
2188 USB_STATE_NOTATTACHED);
2189 usb_kick_khubd(hcd->self.root_hub);
2190 }
2191 }
2192 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2193 /* Make sure that the other roothub is also deallocated. */
2194}
2195EXPORT_SYMBOL_GPL (usb_hc_died);
2196
2197/*-------------------------------------------------------------------------*/
2198
2199/**
2200 * usb_create_shared_hcd - create and initialize an HCD structure
2201 * @driver: HC driver that will use this hcd
2202 * @dev: device for this HC, stored in hcd->self.controller
2203 * @bus_name: value to store in hcd->self.bus_name
2204 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2205 * PCI device. Only allocate certain resources for the primary HCD
2206 * Context: !in_interrupt()
2207 *
2208 * Allocate a struct usb_hcd, with extra space at the end for the
2209 * HC driver's private data. Initialize the generic members of the
2210 * hcd structure.
2211 *
2212 * If memory is unavailable, returns NULL.
2213 */
2214struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2215 struct device *dev, const char *bus_name,
2216 struct usb_hcd *primary_hcd)
2217{
2218 struct usb_hcd *hcd;
2219
2220 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2221 if (!hcd) {
2222 dev_dbg (dev, "hcd alloc failed\n");
2223 return NULL;
2224 }
2225 if (primary_hcd == NULL) {
2226 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2227 GFP_KERNEL);
2228 if (!hcd->bandwidth_mutex) {
2229 kfree(hcd);
2230 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2231 return NULL;
2232 }
2233 mutex_init(hcd->bandwidth_mutex);
2234 dev_set_drvdata(dev, hcd);
2235 } else {
2236 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2237 hcd->primary_hcd = primary_hcd;
2238 primary_hcd->primary_hcd = primary_hcd;
2239 hcd->shared_hcd = primary_hcd;
2240 primary_hcd->shared_hcd = hcd;
2241 }
2242
2243 kref_init(&hcd->kref);
2244
2245 usb_bus_init(&hcd->self);
2246 hcd->self.controller = dev;
2247 hcd->self.bus_name = bus_name;
2248 hcd->self.uses_dma = (dev->dma_mask != NULL);
2249
2250 init_timer(&hcd->rh_timer);
2251 hcd->rh_timer.function = rh_timer_func;
2252 hcd->rh_timer.data = (unsigned long) hcd;
2253#ifdef CONFIG_USB_SUSPEND
2254 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2255#endif
2256
2257 hcd->driver = driver;
2258 hcd->speed = driver->flags & HCD_MASK;
2259 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2260 "USB Host Controller";
2261 return hcd;
2262}
2263EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2264
2265/**
2266 * usb_create_hcd - create and initialize an HCD structure
2267 * @driver: HC driver that will use this hcd
2268 * @dev: device for this HC, stored in hcd->self.controller
2269 * @bus_name: value to store in hcd->self.bus_name
2270 * Context: !in_interrupt()
2271 *
2272 * Allocate a struct usb_hcd, with extra space at the end for the
2273 * HC driver's private data. Initialize the generic members of the
2274 * hcd structure.
2275 *
2276 * If memory is unavailable, returns NULL.
2277 */
2278struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2279 struct device *dev, const char *bus_name)
2280{
2281 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2282}
2283EXPORT_SYMBOL_GPL(usb_create_hcd);
2284
2285/*
2286 * Roothubs that share one PCI device must also share the bandwidth mutex.
2287 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2288 * deallocated.
2289 *
2290 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2291 * freed. When hcd_release() is called for the non-primary HCD, set the
2292 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2293 * freed shortly).
2294 */
2295static void hcd_release (struct kref *kref)
2296{
2297 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2298
2299 if (usb_hcd_is_primary_hcd(hcd))
2300 kfree(hcd->bandwidth_mutex);
2301 else
2302 hcd->shared_hcd->shared_hcd = NULL;
2303 kfree(hcd);
2304}
2305
2306struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2307{
2308 if (hcd)
2309 kref_get (&hcd->kref);
2310 return hcd;
2311}
2312EXPORT_SYMBOL_GPL(usb_get_hcd);
2313
2314void usb_put_hcd (struct usb_hcd *hcd)
2315{
2316 if (hcd)
2317 kref_put (&hcd->kref, hcd_release);
2318}
2319EXPORT_SYMBOL_GPL(usb_put_hcd);
2320
2321int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2322{
2323 if (!hcd->primary_hcd)
2324 return 1;
2325 return hcd == hcd->primary_hcd;
2326}
2327EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2328
2329static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2330 unsigned int irqnum, unsigned long irqflags)
2331{
2332 int retval;
2333
2334 if (hcd->driver->irq) {
2335
2336 /* IRQF_DISABLED doesn't work as advertised when used together
2337 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2338 * interrupts we can remove it here.
2339 */
2340 if (irqflags & IRQF_SHARED)
2341 irqflags &= ~IRQF_DISABLED;
2342
2343 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2344 hcd->driver->description, hcd->self.busnum);
2345 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2346 hcd->irq_descr, hcd);
2347 if (retval != 0) {
2348 dev_err(hcd->self.controller,
2349 "request interrupt %d failed\n",
2350 irqnum);
2351 return retval;
2352 }
2353 hcd->irq = irqnum;
2354 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2355 (hcd->driver->flags & HCD_MEMORY) ?
2356 "io mem" : "io base",
2357 (unsigned long long)hcd->rsrc_start);
2358 } else {
2359 hcd->irq = -1;
2360 if (hcd->rsrc_start)
2361 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2362 (hcd->driver->flags & HCD_MEMORY) ?
2363 "io mem" : "io base",
2364 (unsigned long long)hcd->rsrc_start);
2365 }
2366 return 0;
2367}
2368
2369/**
2370 * usb_add_hcd - finish generic HCD structure initialization and register
2371 * @hcd: the usb_hcd structure to initialize
2372 * @irqnum: Interrupt line to allocate
2373 * @irqflags: Interrupt type flags
2374 *
2375 * Finish the remaining parts of generic HCD initialization: allocate the
2376 * buffers of consistent memory, register the bus, request the IRQ line,
2377 * and call the driver's reset() and start() routines.
2378 */
2379int usb_add_hcd(struct usb_hcd *hcd,
2380 unsigned int irqnum, unsigned long irqflags)
2381{
2382 int retval;
2383 struct usb_device *rhdev;
2384
2385 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2386
2387 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2388 if (authorized_default < 0 || authorized_default > 1)
2389 hcd->authorized_default = hcd->wireless? 0 : 1;
2390 else
2391 hcd->authorized_default = authorized_default;
2392 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2393
2394 /* HC is in reset state, but accessible. Now do the one-time init,
2395 * bottom up so that hcds can customize the root hubs before khubd
2396 * starts talking to them. (Note, bus id is assigned early too.)
2397 */
2398 if ((retval = hcd_buffer_create(hcd)) != 0) {
2399 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2400 return retval;
2401 }
2402
2403 if ((retval = usb_register_bus(&hcd->self)) < 0)
2404 goto err_register_bus;
2405
2406 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2407 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2408 retval = -ENOMEM;
2409 goto err_allocate_root_hub;
2410 }
2411 hcd->self.root_hub = rhdev;
2412
2413 switch (hcd->speed) {
2414 case HCD_USB11:
2415 rhdev->speed = USB_SPEED_FULL;
2416 break;
2417 case HCD_USB2:
2418 rhdev->speed = USB_SPEED_HIGH;
2419 break;
2420 case HCD_USB3:
2421 rhdev->speed = USB_SPEED_SUPER;
2422 break;
2423 default:
2424 retval = -EINVAL;
2425 goto err_set_rh_speed;
2426 }
2427
2428 /* wakeup flag init defaults to "everything works" for root hubs,
2429 * but drivers can override it in reset() if needed, along with
2430 * recording the overall controller's system wakeup capability.
2431 */
2432 device_init_wakeup(&rhdev->dev, 1);
2433
2434 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2435 * registered. But since the controller can die at any time,
2436 * let's initialize the flag before touching the hardware.
2437 */
2438 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2439
2440 /* "reset" is misnamed; its role is now one-time init. the controller
2441 * should already have been reset (and boot firmware kicked off etc).
2442 */
2443 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2444 dev_err(hcd->self.controller, "can't setup\n");
2445 goto err_hcd_driver_setup;
2446 }
2447 hcd->rh_pollable = 1;
2448
2449 /* NOTE: root hub and controller capabilities may not be the same */
2450 if (device_can_wakeup(hcd->self.controller)
2451 && device_can_wakeup(&hcd->self.root_hub->dev))
2452 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2453
2454 /* enable irqs just before we start the controller */
2455 if (usb_hcd_is_primary_hcd(hcd)) {
2456 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2457 if (retval)
2458 goto err_request_irq;
2459 }
2460
2461 hcd->state = HC_STATE_RUNNING;
2462 retval = hcd->driver->start(hcd);
2463 if (retval < 0) {
2464 dev_err(hcd->self.controller, "startup error %d\n", retval);
2465 goto err_hcd_driver_start;
2466 }
2467
2468 /* starting here, usbcore will pay attention to this root hub */
2469 rhdev->bus_mA = min(500u, hcd->power_budget);
2470 if ((retval = register_root_hub(hcd)) != 0)
2471 goto err_register_root_hub;
2472
2473 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2474 if (retval < 0) {
2475 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2476 retval);
2477 goto error_create_attr_group;
2478 }
2479 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2480 usb_hcd_poll_rh_status(hcd);
2481 return retval;
2482
2483error_create_attr_group:
2484 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2485 if (HC_IS_RUNNING(hcd->state))
2486 hcd->state = HC_STATE_QUIESCING;
2487 spin_lock_irq(&hcd_root_hub_lock);
2488 hcd->rh_registered = 0;
2489 spin_unlock_irq(&hcd_root_hub_lock);
2490
2491#ifdef CONFIG_USB_SUSPEND
2492 cancel_work_sync(&hcd->wakeup_work);
2493#endif
2494 mutex_lock(&usb_bus_list_lock);
2495 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2496 mutex_unlock(&usb_bus_list_lock);
2497err_register_root_hub:
2498 hcd->rh_pollable = 0;
2499 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2500 del_timer_sync(&hcd->rh_timer);
2501 hcd->driver->stop(hcd);
2502 hcd->state = HC_STATE_HALT;
2503 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2504 del_timer_sync(&hcd->rh_timer);
2505err_hcd_driver_start:
2506 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0)
2507 free_irq(irqnum, hcd);
2508err_request_irq:
2509err_hcd_driver_setup:
2510err_set_rh_speed:
2511 usb_put_dev(hcd->self.root_hub);
2512err_allocate_root_hub:
2513 usb_deregister_bus(&hcd->self);
2514err_register_bus:
2515 hcd_buffer_destroy(hcd);
2516 return retval;
2517}
2518EXPORT_SYMBOL_GPL(usb_add_hcd);
2519
2520/**
2521 * usb_remove_hcd - shutdown processing for generic HCDs
2522 * @hcd: the usb_hcd structure to remove
2523 * Context: !in_interrupt()
2524 *
2525 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2526 * invoking the HCD's stop() method.
2527 */
2528void usb_remove_hcd(struct usb_hcd *hcd)
2529{
2530 struct usb_device *rhdev = hcd->self.root_hub;
2531
2532 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2533
2534 usb_get_dev(rhdev);
2535 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2536
2537 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2538 if (HC_IS_RUNNING (hcd->state))
2539 hcd->state = HC_STATE_QUIESCING;
2540
2541 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2542 spin_lock_irq (&hcd_root_hub_lock);
2543 hcd->rh_registered = 0;
2544 spin_unlock_irq (&hcd_root_hub_lock);
2545
2546#ifdef CONFIG_USB_SUSPEND
2547 cancel_work_sync(&hcd->wakeup_work);
2548#endif
2549
2550 mutex_lock(&usb_bus_list_lock);
2551 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2552 mutex_unlock(&usb_bus_list_lock);
2553
2554 /* Prevent any more root-hub status calls from the timer.
2555 * The HCD might still restart the timer (if a port status change
2556 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2557 * the hub_status_data() callback.
2558 */
2559 hcd->rh_pollable = 0;
2560 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2561 del_timer_sync(&hcd->rh_timer);
2562
2563 hcd->driver->stop(hcd);
2564 hcd->state = HC_STATE_HALT;
2565
2566 /* In case the HCD restarted the timer, stop it again. */
2567 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2568 del_timer_sync(&hcd->rh_timer);
2569
2570 if (usb_hcd_is_primary_hcd(hcd)) {
2571 if (hcd->irq >= 0)
2572 free_irq(hcd->irq, hcd);
2573 }
2574
2575 usb_put_dev(hcd->self.root_hub);
2576 usb_deregister_bus(&hcd->self);
2577 hcd_buffer_destroy(hcd);
2578}
2579EXPORT_SYMBOL_GPL(usb_remove_hcd);
2580
2581void
2582usb_hcd_platform_shutdown(struct platform_device* dev)
2583{
2584 struct usb_hcd *hcd = platform_get_drvdata(dev);
2585
2586 if (hcd->driver->shutdown)
2587 hcd->driver->shutdown(hcd);
2588}
2589EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2590
2591/*-------------------------------------------------------------------------*/
2592
2593#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2594
2595struct usb_mon_operations *mon_ops;
2596
2597/*
2598 * The registration is unlocked.
2599 * We do it this way because we do not want to lock in hot paths.
2600 *
2601 * Notice that the code is minimally error-proof. Because usbmon needs
2602 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2603 */
2604
2605int usb_mon_register (struct usb_mon_operations *ops)
2606{
2607
2608 if (mon_ops)
2609 return -EBUSY;
2610
2611 mon_ops = ops;
2612 mb();
2613 return 0;
2614}
2615EXPORT_SYMBOL_GPL (usb_mon_register);
2616
2617void usb_mon_deregister (void)
2618{
2619
2620 if (mon_ops == NULL) {
2621 printk(KERN_ERR "USB: monitor was not registered\n");
2622 return;
2623 }
2624 mon_ops = NULL;
2625 mb();
2626}
2627EXPORT_SYMBOL_GPL (usb_mon_deregister);
2628
2629#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/module.h>
26#include <linux/version.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/completion.h>
30#include <linux/utsname.h>
31#include <linux/mm.h>
32#include <asm/io.h>
33#include <linux/device.h>
34#include <linux/dma-mapping.h>
35#include <linux/mutex.h>
36#include <asm/irq.h>
37#include <asm/byteorder.h>
38#include <asm/unaligned.h>
39#include <linux/platform_device.h>
40#include <linux/workqueue.h>
41
42#include <linux/usb.h>
43#include <linux/usb/hcd.h>
44
45#include "usb.h"
46
47
48/*-------------------------------------------------------------------------*/
49
50/*
51 * USB Host Controller Driver framework
52 *
53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54 * HCD-specific behaviors/bugs.
55 *
56 * This does error checks, tracks devices and urbs, and delegates to a
57 * "hc_driver" only for code (and data) that really needs to know about
58 * hardware differences. That includes root hub registers, i/o queues,
59 * and so on ... but as little else as possible.
60 *
61 * Shared code includes most of the "root hub" code (these are emulated,
62 * though each HC's hardware works differently) and PCI glue, plus request
63 * tracking overhead. The HCD code should only block on spinlocks or on
64 * hardware handshaking; blocking on software events (such as other kernel
65 * threads releasing resources, or completing actions) is all generic.
66 *
67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69 * only by the hub driver ... and that neither should be seen or used by
70 * usb client device drivers.
71 *
72 * Contributors of ideas or unattributed patches include: David Brownell,
73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74 *
75 * HISTORY:
76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
77 * associated cleanup. "usb_hcd" still != "usb_bus".
78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
79 */
80
81/*-------------------------------------------------------------------------*/
82
83/* Keep track of which host controller drivers are loaded */
84unsigned long usb_hcds_loaded;
85EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87/* host controllers we manage */
88LIST_HEAD (usb_bus_list);
89EXPORT_SYMBOL_GPL (usb_bus_list);
90
91/* used when allocating bus numbers */
92#define USB_MAXBUS 64
93struct usb_busmap {
94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95};
96static struct usb_busmap busmap;
97
98/* used when updating list of hcds */
99DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
100EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102/* used for controlling access to virtual root hubs */
103static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105/* used when updating an endpoint's URB list */
106static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108/* used to protect against unlinking URBs after the device is gone */
109static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111/* wait queue for synchronous unlinks */
112DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114static inline int is_root_hub(struct usb_device *udev)
115{
116 return (udev->parent == NULL);
117}
118
119/*-------------------------------------------------------------------------*/
120
121/*
122 * Sharable chunks of root hub code.
123 */
124
125/*-------------------------------------------------------------------------*/
126
127#define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128#define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130/* usb 3.0 root hub device descriptor */
131static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149};
150
151/* usb 2.0 root hub device descriptor */
152static const u8 usb2_rh_dev_descriptor [18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170};
171
172/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174/* usb 1.1 root hub device descriptor */
175static const u8 usb11_rh_dev_descriptor [18] = {
176 0x12, /* __u8 bLength; */
177 0x01, /* __u8 bDescriptorType; Device */
178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
179
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
184
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
188
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
193};
194
195
196/*-------------------------------------------------------------------------*/
197
198/* Configuration descriptors for our root hubs */
199
200static const u8 fs_rh_config_descriptor [] = {
201
202 /* one configuration */
203 0x09, /* __u8 bLength; */
204 0x02, /* __u8 bDescriptorType; Configuration */
205 0x19, 0x00, /* __le16 wTotalLength; */
206 0x01, /* __u8 bNumInterfaces; (1) */
207 0x01, /* __u8 bConfigurationValue; */
208 0x00, /* __u8 iConfiguration; */
209 0xc0, /* __u8 bmAttributes;
210 Bit 7: must be set,
211 6: Self-powered,
212 5: Remote wakeup,
213 4..0: resvd */
214 0x00, /* __u8 MaxPower; */
215
216 /* USB 1.1:
217 * USB 2.0, single TT organization (mandatory):
218 * one interface, protocol 0
219 *
220 * USB 2.0, multiple TT organization (optional):
221 * two interfaces, protocols 1 (like single TT)
222 * and 2 (multiple TT mode) ... config is
223 * sometimes settable
224 * NOT IMPLEMENTED
225 */
226
227 /* one interface */
228 0x09, /* __u8 if_bLength; */
229 0x04, /* __u8 if_bDescriptorType; Interface */
230 0x00, /* __u8 if_bInterfaceNumber; */
231 0x00, /* __u8 if_bAlternateSetting; */
232 0x01, /* __u8 if_bNumEndpoints; */
233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
234 0x00, /* __u8 if_bInterfaceSubClass; */
235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
236 0x00, /* __u8 if_iInterface; */
237
238 /* one endpoint (status change endpoint) */
239 0x07, /* __u8 ep_bLength; */
240 0x05, /* __u8 ep_bDescriptorType; Endpoint */
241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
242 0x03, /* __u8 ep_bmAttributes; Interrupt */
243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
245};
246
247static const u8 hs_rh_config_descriptor [] = {
248
249 /* one configuration */
250 0x09, /* __u8 bLength; */
251 0x02, /* __u8 bDescriptorType; Configuration */
252 0x19, 0x00, /* __le16 wTotalLength; */
253 0x01, /* __u8 bNumInterfaces; (1) */
254 0x01, /* __u8 bConfigurationValue; */
255 0x00, /* __u8 iConfiguration; */
256 0xc0, /* __u8 bmAttributes;
257 Bit 7: must be set,
258 6: Self-powered,
259 5: Remote wakeup,
260 4..0: resvd */
261 0x00, /* __u8 MaxPower; */
262
263 /* USB 1.1:
264 * USB 2.0, single TT organization (mandatory):
265 * one interface, protocol 0
266 *
267 * USB 2.0, multiple TT organization (optional):
268 * two interfaces, protocols 1 (like single TT)
269 * and 2 (multiple TT mode) ... config is
270 * sometimes settable
271 * NOT IMPLEMENTED
272 */
273
274 /* one interface */
275 0x09, /* __u8 if_bLength; */
276 0x04, /* __u8 if_bDescriptorType; Interface */
277 0x00, /* __u8 if_bInterfaceNumber; */
278 0x00, /* __u8 if_bAlternateSetting; */
279 0x01, /* __u8 if_bNumEndpoints; */
280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
281 0x00, /* __u8 if_bInterfaceSubClass; */
282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
283 0x00, /* __u8 if_iInterface; */
284
285 /* one endpoint (status change endpoint) */
286 0x07, /* __u8 ep_bLength; */
287 0x05, /* __u8 ep_bDescriptorType; Endpoint */
288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
289 0x03, /* __u8 ep_bmAttributes; Interrupt */
290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 * see hub.c:hub_configure() for details. */
292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
294};
295
296static const u8 ss_rh_config_descriptor[] = {
297 /* one configuration */
298 0x09, /* __u8 bLength; */
299 0x02, /* __u8 bDescriptorType; Configuration */
300 0x1f, 0x00, /* __le16 wTotalLength; */
301 0x01, /* __u8 bNumInterfaces; (1) */
302 0x01, /* __u8 bConfigurationValue; */
303 0x00, /* __u8 iConfiguration; */
304 0xc0, /* __u8 bmAttributes;
305 Bit 7: must be set,
306 6: Self-powered,
307 5: Remote wakeup,
308 4..0: resvd */
309 0x00, /* __u8 MaxPower; */
310
311 /* one interface */
312 0x09, /* __u8 if_bLength; */
313 0x04, /* __u8 if_bDescriptorType; Interface */
314 0x00, /* __u8 if_bInterfaceNumber; */
315 0x00, /* __u8 if_bAlternateSetting; */
316 0x01, /* __u8 if_bNumEndpoints; */
317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
318 0x00, /* __u8 if_bInterfaceSubClass; */
319 0x00, /* __u8 if_bInterfaceProtocol; */
320 0x00, /* __u8 if_iInterface; */
321
322 /* one endpoint (status change endpoint) */
323 0x07, /* __u8 ep_bLength; */
324 0x05, /* __u8 ep_bDescriptorType; Endpoint */
325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
326 0x03, /* __u8 ep_bmAttributes; Interrupt */
327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 * see hub.c:hub_configure() for details. */
329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
331
332 /* one SuperSpeed endpoint companion descriptor */
333 0x06, /* __u8 ss_bLength */
334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338};
339
340/* authorized_default behaviour:
341 * -1 is authorized for all devices except wireless (old behaviour)
342 * 0 is unauthorized for all devices
343 * 1 is authorized for all devices
344 */
345static int authorized_default = -1;
346module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347MODULE_PARM_DESC(authorized_default,
348 "Default USB device authorization: 0 is not authorized, 1 is "
349 "authorized, -1 is authorized except for wireless USB (default, "
350 "old behaviour");
351/*-------------------------------------------------------------------------*/
352
353/**
354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355 * @s: Null-terminated ASCII (actually ISO-8859-1) string
356 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357 * @len: Length (in bytes; may be odd) of descriptor buffer.
358 *
359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360 * buflen, whichever is less.
361 *
362 * USB String descriptors can contain at most 126 characters; input
363 * strings longer than that are truncated.
364 */
365static unsigned
366ascii2desc(char const *s, u8 *buf, unsigned len)
367{
368 unsigned n, t = 2 + 2*strlen(s);
369
370 if (t > 254)
371 t = 254; /* Longest possible UTF string descriptor */
372 if (len > t)
373 len = t;
374
375 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
376
377 n = len;
378 while (n--) {
379 *buf++ = t;
380 if (!n--)
381 break;
382 *buf++ = t >> 8;
383 t = (unsigned char)*s++;
384 }
385 return len;
386}
387
388/**
389 * rh_string() - provides string descriptors for root hub
390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391 * @hcd: the host controller for this root hub
392 * @data: buffer for output packet
393 * @len: length of the provided buffer
394 *
395 * Produces either a manufacturer, product or serial number string for the
396 * virtual root hub device.
397 * Returns the number of bytes filled in: the length of the descriptor or
398 * of the provided buffer, whichever is less.
399 */
400static unsigned
401rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402{
403 char buf[100];
404 char const *s;
405 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407 // language ids
408 switch (id) {
409 case 0:
410 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412 if (len > 4)
413 len = 4;
414 memcpy(data, langids, len);
415 return len;
416 case 1:
417 /* Serial number */
418 s = hcd->self.bus_name;
419 break;
420 case 2:
421 /* Product name */
422 s = hcd->product_desc;
423 break;
424 case 3:
425 /* Manufacturer */
426 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427 init_utsname()->release, hcd->driver->description);
428 s = buf;
429 break;
430 default:
431 /* Can't happen; caller guarantees it */
432 return 0;
433 }
434
435 return ascii2desc(s, data, len);
436}
437
438
439/* Root hub control transfers execute synchronously */
440static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441{
442 struct usb_ctrlrequest *cmd;
443 u16 typeReq, wValue, wIndex, wLength;
444 u8 *ubuf = urb->transfer_buffer;
445 /*
446 * tbuf should be as big as the BOS descriptor and
447 * the USB hub descriptor.
448 */
449 u8 tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
450 __attribute__((aligned(4)));
451 const u8 *bufp = tbuf;
452 unsigned len = 0;
453 int status;
454 u8 patch_wakeup = 0;
455 u8 patch_protocol = 0;
456
457 might_sleep();
458
459 spin_lock_irq(&hcd_root_hub_lock);
460 status = usb_hcd_link_urb_to_ep(hcd, urb);
461 spin_unlock_irq(&hcd_root_hub_lock);
462 if (status)
463 return status;
464 urb->hcpriv = hcd; /* Indicate it's queued */
465
466 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
467 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
468 wValue = le16_to_cpu (cmd->wValue);
469 wIndex = le16_to_cpu (cmd->wIndex);
470 wLength = le16_to_cpu (cmd->wLength);
471
472 if (wLength > urb->transfer_buffer_length)
473 goto error;
474
475 urb->actual_length = 0;
476 switch (typeReq) {
477
478 /* DEVICE REQUESTS */
479
480 /* The root hub's remote wakeup enable bit is implemented using
481 * driver model wakeup flags. If this system supports wakeup
482 * through USB, userspace may change the default "allow wakeup"
483 * policy through sysfs or these calls.
484 *
485 * Most root hubs support wakeup from downstream devices, for
486 * runtime power management (disabling USB clocks and reducing
487 * VBUS power usage). However, not all of them do so; silicon,
488 * board, and BIOS bugs here are not uncommon, so these can't
489 * be treated quite like external hubs.
490 *
491 * Likewise, not all root hubs will pass wakeup events upstream,
492 * to wake up the whole system. So don't assume root hub and
493 * controller capabilities are identical.
494 */
495
496 case DeviceRequest | USB_REQ_GET_STATUS:
497 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
498 << USB_DEVICE_REMOTE_WAKEUP)
499 | (1 << USB_DEVICE_SELF_POWERED);
500 tbuf [1] = 0;
501 len = 2;
502 break;
503 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
504 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
505 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
506 else
507 goto error;
508 break;
509 case DeviceOutRequest | USB_REQ_SET_FEATURE:
510 if (device_can_wakeup(&hcd->self.root_hub->dev)
511 && wValue == USB_DEVICE_REMOTE_WAKEUP)
512 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
513 else
514 goto error;
515 break;
516 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
517 tbuf [0] = 1;
518 len = 1;
519 /* FALLTHROUGH */
520 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
521 break;
522 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
523 switch (wValue & 0xff00) {
524 case USB_DT_DEVICE << 8:
525 switch (hcd->speed) {
526 case HCD_USB3:
527 bufp = usb3_rh_dev_descriptor;
528 break;
529 case HCD_USB2:
530 bufp = usb2_rh_dev_descriptor;
531 break;
532 case HCD_USB11:
533 bufp = usb11_rh_dev_descriptor;
534 break;
535 default:
536 goto error;
537 }
538 len = 18;
539 if (hcd->has_tt)
540 patch_protocol = 1;
541 break;
542 case USB_DT_CONFIG << 8:
543 switch (hcd->speed) {
544 case HCD_USB3:
545 bufp = ss_rh_config_descriptor;
546 len = sizeof ss_rh_config_descriptor;
547 break;
548 case HCD_USB2:
549 bufp = hs_rh_config_descriptor;
550 len = sizeof hs_rh_config_descriptor;
551 break;
552 case HCD_USB11:
553 bufp = fs_rh_config_descriptor;
554 len = sizeof fs_rh_config_descriptor;
555 break;
556 default:
557 goto error;
558 }
559 if (device_can_wakeup(&hcd->self.root_hub->dev))
560 patch_wakeup = 1;
561 break;
562 case USB_DT_STRING << 8:
563 if ((wValue & 0xff) < 4)
564 urb->actual_length = rh_string(wValue & 0xff,
565 hcd, ubuf, wLength);
566 else /* unsupported IDs --> "protocol stall" */
567 goto error;
568 break;
569 case USB_DT_BOS << 8:
570 goto nongeneric;
571 default:
572 goto error;
573 }
574 break;
575 case DeviceRequest | USB_REQ_GET_INTERFACE:
576 tbuf [0] = 0;
577 len = 1;
578 /* FALLTHROUGH */
579 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
580 break;
581 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
582 // wValue == urb->dev->devaddr
583 dev_dbg (hcd->self.controller, "root hub device address %d\n",
584 wValue);
585 break;
586
587 /* INTERFACE REQUESTS (no defined feature/status flags) */
588
589 /* ENDPOINT REQUESTS */
590
591 case EndpointRequest | USB_REQ_GET_STATUS:
592 // ENDPOINT_HALT flag
593 tbuf [0] = 0;
594 tbuf [1] = 0;
595 len = 2;
596 /* FALLTHROUGH */
597 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
598 case EndpointOutRequest | USB_REQ_SET_FEATURE:
599 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
600 break;
601
602 /* CLASS REQUESTS (and errors) */
603
604 default:
605nongeneric:
606 /* non-generic request */
607 switch (typeReq) {
608 case GetHubStatus:
609 case GetPortStatus:
610 len = 4;
611 break;
612 case GetHubDescriptor:
613 len = sizeof (struct usb_hub_descriptor);
614 break;
615 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
616 /* len is returned by hub_control */
617 break;
618 }
619 status = hcd->driver->hub_control (hcd,
620 typeReq, wValue, wIndex,
621 tbuf, wLength);
622 break;
623error:
624 /* "protocol stall" on error */
625 status = -EPIPE;
626 }
627
628 if (status < 0) {
629 len = 0;
630 if (status != -EPIPE) {
631 dev_dbg (hcd->self.controller,
632 "CTRL: TypeReq=0x%x val=0x%x "
633 "idx=0x%x len=%d ==> %d\n",
634 typeReq, wValue, wIndex,
635 wLength, status);
636 }
637 } else if (status > 0) {
638 /* hub_control may return the length of data copied. */
639 len = status;
640 status = 0;
641 }
642 if (len) {
643 if (urb->transfer_buffer_length < len)
644 len = urb->transfer_buffer_length;
645 urb->actual_length = len;
646 // always USB_DIR_IN, toward host
647 memcpy (ubuf, bufp, len);
648
649 /* report whether RH hardware supports remote wakeup */
650 if (patch_wakeup &&
651 len > offsetof (struct usb_config_descriptor,
652 bmAttributes))
653 ((struct usb_config_descriptor *)ubuf)->bmAttributes
654 |= USB_CONFIG_ATT_WAKEUP;
655
656 /* report whether RH hardware has an integrated TT */
657 if (patch_protocol &&
658 len > offsetof(struct usb_device_descriptor,
659 bDeviceProtocol))
660 ((struct usb_device_descriptor *) ubuf)->
661 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
662 }
663
664 /* any errors get returned through the urb completion */
665 spin_lock_irq(&hcd_root_hub_lock);
666 usb_hcd_unlink_urb_from_ep(hcd, urb);
667
668 /* This peculiar use of spinlocks echoes what real HC drivers do.
669 * Avoiding calls to local_irq_disable/enable makes the code
670 * RT-friendly.
671 */
672 spin_unlock(&hcd_root_hub_lock);
673 usb_hcd_giveback_urb(hcd, urb, status);
674 spin_lock(&hcd_root_hub_lock);
675
676 spin_unlock_irq(&hcd_root_hub_lock);
677 return 0;
678}
679
680/*-------------------------------------------------------------------------*/
681
682/*
683 * Root Hub interrupt transfers are polled using a timer if the
684 * driver requests it; otherwise the driver is responsible for
685 * calling usb_hcd_poll_rh_status() when an event occurs.
686 *
687 * Completions are called in_interrupt(), but they may or may not
688 * be in_irq().
689 */
690void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
691{
692 struct urb *urb;
693 int length;
694 unsigned long flags;
695 char buffer[6]; /* Any root hubs with > 31 ports? */
696
697 if (unlikely(!hcd->rh_pollable))
698 return;
699 if (!hcd->uses_new_polling && !hcd->status_urb)
700 return;
701
702 length = hcd->driver->hub_status_data(hcd, buffer);
703 if (length > 0) {
704
705 /* try to complete the status urb */
706 spin_lock_irqsave(&hcd_root_hub_lock, flags);
707 urb = hcd->status_urb;
708 if (urb) {
709 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
710 hcd->status_urb = NULL;
711 urb->actual_length = length;
712 memcpy(urb->transfer_buffer, buffer, length);
713
714 usb_hcd_unlink_urb_from_ep(hcd, urb);
715 spin_unlock(&hcd_root_hub_lock);
716 usb_hcd_giveback_urb(hcd, urb, 0);
717 spin_lock(&hcd_root_hub_lock);
718 } else {
719 length = 0;
720 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
721 }
722 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
723 }
724
725 /* The USB 2.0 spec says 256 ms. This is close enough and won't
726 * exceed that limit if HZ is 100. The math is more clunky than
727 * maybe expected, this is to make sure that all timers for USB devices
728 * fire at the same time to give the CPU a break in between */
729 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
730 (length == 0 && hcd->status_urb != NULL))
731 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
732}
733EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
734
735/* timer callback */
736static void rh_timer_func (unsigned long _hcd)
737{
738 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
739}
740
741/*-------------------------------------------------------------------------*/
742
743static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
744{
745 int retval;
746 unsigned long flags;
747 unsigned len = 1 + (urb->dev->maxchild / 8);
748
749 spin_lock_irqsave (&hcd_root_hub_lock, flags);
750 if (hcd->status_urb || urb->transfer_buffer_length < len) {
751 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
752 retval = -EINVAL;
753 goto done;
754 }
755
756 retval = usb_hcd_link_urb_to_ep(hcd, urb);
757 if (retval)
758 goto done;
759
760 hcd->status_urb = urb;
761 urb->hcpriv = hcd; /* indicate it's queued */
762 if (!hcd->uses_new_polling)
763 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764
765 /* If a status change has already occurred, report it ASAP */
766 else if (HCD_POLL_PENDING(hcd))
767 mod_timer(&hcd->rh_timer, jiffies);
768 retval = 0;
769 done:
770 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
771 return retval;
772}
773
774static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
775{
776 if (usb_endpoint_xfer_int(&urb->ep->desc))
777 return rh_queue_status (hcd, urb);
778 if (usb_endpoint_xfer_control(&urb->ep->desc))
779 return rh_call_control (hcd, urb);
780 return -EINVAL;
781}
782
783/*-------------------------------------------------------------------------*/
784
785/* Unlinks of root-hub control URBs are legal, but they don't do anything
786 * since these URBs always execute synchronously.
787 */
788static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
789{
790 unsigned long flags;
791 int rc;
792
793 spin_lock_irqsave(&hcd_root_hub_lock, flags);
794 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
795 if (rc)
796 goto done;
797
798 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
799 ; /* Do nothing */
800
801 } else { /* Status URB */
802 if (!hcd->uses_new_polling)
803 del_timer (&hcd->rh_timer);
804 if (urb == hcd->status_urb) {
805 hcd->status_urb = NULL;
806 usb_hcd_unlink_urb_from_ep(hcd, urb);
807
808 spin_unlock(&hcd_root_hub_lock);
809 usb_hcd_giveback_urb(hcd, urb, status);
810 spin_lock(&hcd_root_hub_lock);
811 }
812 }
813 done:
814 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
815 return rc;
816}
817
818
819
820/*
821 * Show & store the current value of authorized_default
822 */
823static ssize_t usb_host_authorized_default_show(struct device *dev,
824 struct device_attribute *attr,
825 char *buf)
826{
827 struct usb_device *rh_usb_dev = to_usb_device(dev);
828 struct usb_bus *usb_bus = rh_usb_dev->bus;
829 struct usb_hcd *usb_hcd;
830
831 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
832 return -ENODEV;
833 usb_hcd = bus_to_hcd(usb_bus);
834 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
835}
836
837static ssize_t usb_host_authorized_default_store(struct device *dev,
838 struct device_attribute *attr,
839 const char *buf, size_t size)
840{
841 ssize_t result;
842 unsigned val;
843 struct usb_device *rh_usb_dev = to_usb_device(dev);
844 struct usb_bus *usb_bus = rh_usb_dev->bus;
845 struct usb_hcd *usb_hcd;
846
847 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
848 return -ENODEV;
849 usb_hcd = bus_to_hcd(usb_bus);
850 result = sscanf(buf, "%u\n", &val);
851 if (result == 1) {
852 usb_hcd->authorized_default = val? 1 : 0;
853 result = size;
854 }
855 else
856 result = -EINVAL;
857 return result;
858}
859
860static DEVICE_ATTR(authorized_default, 0644,
861 usb_host_authorized_default_show,
862 usb_host_authorized_default_store);
863
864
865/* Group all the USB bus attributes */
866static struct attribute *usb_bus_attrs[] = {
867 &dev_attr_authorized_default.attr,
868 NULL,
869};
870
871static struct attribute_group usb_bus_attr_group = {
872 .name = NULL, /* we want them in the same directory */
873 .attrs = usb_bus_attrs,
874};
875
876
877
878/*-------------------------------------------------------------------------*/
879
880/**
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
883 *
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
886 */
887static void usb_bus_init (struct usb_bus *bus)
888{
889 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891 bus->devnum_next = 1;
892
893 bus->root_hub = NULL;
894 bus->busnum = -1;
895 bus->bandwidth_allocated = 0;
896 bus->bandwidth_int_reqs = 0;
897 bus->bandwidth_isoc_reqs = 0;
898
899 INIT_LIST_HEAD (&bus->bus_list);
900}
901
902/*-------------------------------------------------------------------------*/
903
904/**
905 * usb_register_bus - registers the USB host controller with the usb core
906 * @bus: pointer to the bus to register
907 * Context: !in_interrupt()
908 *
909 * Assigns a bus number, and links the controller into usbcore data
910 * structures so that it can be seen by scanning the bus list.
911 */
912static int usb_register_bus(struct usb_bus *bus)
913{
914 int result = -E2BIG;
915 int busnum;
916
917 mutex_lock(&usb_bus_list_lock);
918 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
919 if (busnum >= USB_MAXBUS) {
920 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
921 goto error_find_busnum;
922 }
923 set_bit (busnum, busmap.busmap);
924 bus->busnum = busnum;
925
926 /* Add it to the local list of buses */
927 list_add (&bus->bus_list, &usb_bus_list);
928 mutex_unlock(&usb_bus_list_lock);
929
930 usb_notify_add_bus(bus);
931
932 dev_info (bus->controller, "new USB bus registered, assigned bus "
933 "number %d\n", bus->busnum);
934 return 0;
935
936error_find_busnum:
937 mutex_unlock(&usb_bus_list_lock);
938 return result;
939}
940
941/**
942 * usb_deregister_bus - deregisters the USB host controller
943 * @bus: pointer to the bus to deregister
944 * Context: !in_interrupt()
945 *
946 * Recycles the bus number, and unlinks the controller from usbcore data
947 * structures so that it won't be seen by scanning the bus list.
948 */
949static void usb_deregister_bus (struct usb_bus *bus)
950{
951 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
952
953 /*
954 * NOTE: make sure that all the devices are removed by the
955 * controller code, as well as having it call this when cleaning
956 * itself up
957 */
958 mutex_lock(&usb_bus_list_lock);
959 list_del (&bus->bus_list);
960 mutex_unlock(&usb_bus_list_lock);
961
962 usb_notify_remove_bus(bus);
963
964 clear_bit (bus->busnum, busmap.busmap);
965}
966
967/**
968 * register_root_hub - called by usb_add_hcd() to register a root hub
969 * @hcd: host controller for this root hub
970 *
971 * This function registers the root hub with the USB subsystem. It sets up
972 * the device properly in the device tree and then calls usb_new_device()
973 * to register the usb device. It also assigns the root hub's USB address
974 * (always 1).
975 */
976static int register_root_hub(struct usb_hcd *hcd)
977{
978 struct device *parent_dev = hcd->self.controller;
979 struct usb_device *usb_dev = hcd->self.root_hub;
980 const int devnum = 1;
981 int retval;
982
983 usb_dev->devnum = devnum;
984 usb_dev->bus->devnum_next = devnum + 1;
985 memset (&usb_dev->bus->devmap.devicemap, 0,
986 sizeof usb_dev->bus->devmap.devicemap);
987 set_bit (devnum, usb_dev->bus->devmap.devicemap);
988 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
989
990 mutex_lock(&usb_bus_list_lock);
991
992 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
993 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
994 if (retval != sizeof usb_dev->descriptor) {
995 mutex_unlock(&usb_bus_list_lock);
996 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
997 dev_name(&usb_dev->dev), retval);
998 return (retval < 0) ? retval : -EMSGSIZE;
999 }
1000 if (usb_dev->speed == USB_SPEED_SUPER) {
1001 retval = usb_get_bos_descriptor(usb_dev);
1002 if (retval < 0) {
1003 mutex_unlock(&usb_bus_list_lock);
1004 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1005 dev_name(&usb_dev->dev), retval);
1006 return retval;
1007 }
1008 }
1009
1010 retval = usb_new_device (usb_dev);
1011 if (retval) {
1012 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1013 dev_name(&usb_dev->dev), retval);
1014 } else {
1015 spin_lock_irq (&hcd_root_hub_lock);
1016 hcd->rh_registered = 1;
1017 spin_unlock_irq (&hcd_root_hub_lock);
1018
1019 /* Did the HC die before the root hub was registered? */
1020 if (HCD_DEAD(hcd))
1021 usb_hc_died (hcd); /* This time clean up */
1022 }
1023 mutex_unlock(&usb_bus_list_lock);
1024
1025 return retval;
1026}
1027
1028
1029/*-------------------------------------------------------------------------*/
1030
1031/**
1032 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1033 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1034 * @is_input: true iff the transaction sends data to the host
1035 * @isoc: true for isochronous transactions, false for interrupt ones
1036 * @bytecount: how many bytes in the transaction.
1037 *
1038 * Returns approximate bus time in nanoseconds for a periodic transaction.
1039 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1040 * scheduled in software, this function is only used for such scheduling.
1041 */
1042long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1043{
1044 unsigned long tmp;
1045
1046 switch (speed) {
1047 case USB_SPEED_LOW: /* INTR only */
1048 if (is_input) {
1049 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1050 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1051 } else {
1052 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1053 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1054 }
1055 case USB_SPEED_FULL: /* ISOC or INTR */
1056 if (isoc) {
1057 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1058 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1059 } else {
1060 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1061 return (9107L + BW_HOST_DELAY + tmp);
1062 }
1063 case USB_SPEED_HIGH: /* ISOC or INTR */
1064 // FIXME adjust for input vs output
1065 if (isoc)
1066 tmp = HS_NSECS_ISO (bytecount);
1067 else
1068 tmp = HS_NSECS (bytecount);
1069 return tmp;
1070 default:
1071 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1072 return -1;
1073 }
1074}
1075EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1076
1077
1078/*-------------------------------------------------------------------------*/
1079
1080/*
1081 * Generic HC operations.
1082 */
1083
1084/*-------------------------------------------------------------------------*/
1085
1086/**
1087 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1088 * @hcd: host controller to which @urb was submitted
1089 * @urb: URB being submitted
1090 *
1091 * Host controller drivers should call this routine in their enqueue()
1092 * method. The HCD's private spinlock must be held and interrupts must
1093 * be disabled. The actions carried out here are required for URB
1094 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1095 *
1096 * Returns 0 for no error, otherwise a negative error code (in which case
1097 * the enqueue() method must fail). If no error occurs but enqueue() fails
1098 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1099 * the private spinlock and returning.
1100 */
1101int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1102{
1103 int rc = 0;
1104
1105 spin_lock(&hcd_urb_list_lock);
1106
1107 /* Check that the URB isn't being killed */
1108 if (unlikely(atomic_read(&urb->reject))) {
1109 rc = -EPERM;
1110 goto done;
1111 }
1112
1113 if (unlikely(!urb->ep->enabled)) {
1114 rc = -ENOENT;
1115 goto done;
1116 }
1117
1118 if (unlikely(!urb->dev->can_submit)) {
1119 rc = -EHOSTUNREACH;
1120 goto done;
1121 }
1122
1123 /*
1124 * Check the host controller's state and add the URB to the
1125 * endpoint's queue.
1126 */
1127 if (HCD_RH_RUNNING(hcd)) {
1128 urb->unlinked = 0;
1129 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1130 } else {
1131 rc = -ESHUTDOWN;
1132 goto done;
1133 }
1134 done:
1135 spin_unlock(&hcd_urb_list_lock);
1136 return rc;
1137}
1138EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1139
1140/**
1141 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1142 * @hcd: host controller to which @urb was submitted
1143 * @urb: URB being checked for unlinkability
1144 * @status: error code to store in @urb if the unlink succeeds
1145 *
1146 * Host controller drivers should call this routine in their dequeue()
1147 * method. The HCD's private spinlock must be held and interrupts must
1148 * be disabled. The actions carried out here are required for making
1149 * sure than an unlink is valid.
1150 *
1151 * Returns 0 for no error, otherwise a negative error code (in which case
1152 * the dequeue() method must fail). The possible error codes are:
1153 *
1154 * -EIDRM: @urb was not submitted or has already completed.
1155 * The completion function may not have been called yet.
1156 *
1157 * -EBUSY: @urb has already been unlinked.
1158 */
1159int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1160 int status)
1161{
1162 struct list_head *tmp;
1163
1164 /* insist the urb is still queued */
1165 list_for_each(tmp, &urb->ep->urb_list) {
1166 if (tmp == &urb->urb_list)
1167 break;
1168 }
1169 if (tmp != &urb->urb_list)
1170 return -EIDRM;
1171
1172 /* Any status except -EINPROGRESS means something already started to
1173 * unlink this URB from the hardware. So there's no more work to do.
1174 */
1175 if (urb->unlinked)
1176 return -EBUSY;
1177 urb->unlinked = status;
1178 return 0;
1179}
1180EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1181
1182/**
1183 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1184 * @hcd: host controller to which @urb was submitted
1185 * @urb: URB being unlinked
1186 *
1187 * Host controller drivers should call this routine before calling
1188 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1189 * interrupts must be disabled. The actions carried out here are required
1190 * for URB completion.
1191 */
1192void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1193{
1194 /* clear all state linking urb to this dev (and hcd) */
1195 spin_lock(&hcd_urb_list_lock);
1196 list_del_init(&urb->urb_list);
1197 spin_unlock(&hcd_urb_list_lock);
1198}
1199EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1200
1201/*
1202 * Some usb host controllers can only perform dma using a small SRAM area.
1203 * The usb core itself is however optimized for host controllers that can dma
1204 * using regular system memory - like pci devices doing bus mastering.
1205 *
1206 * To support host controllers with limited dma capabilites we provide dma
1207 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1208 * For this to work properly the host controller code must first use the
1209 * function dma_declare_coherent_memory() to point out which memory area
1210 * that should be used for dma allocations.
1211 *
1212 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1213 * dma using dma_alloc_coherent() which in turn allocates from the memory
1214 * area pointed out with dma_declare_coherent_memory().
1215 *
1216 * So, to summarize...
1217 *
1218 * - We need "local" memory, canonical example being
1219 * a small SRAM on a discrete controller being the
1220 * only memory that the controller can read ...
1221 * (a) "normal" kernel memory is no good, and
1222 * (b) there's not enough to share
1223 *
1224 * - The only *portable* hook for such stuff in the
1225 * DMA framework is dma_declare_coherent_memory()
1226 *
1227 * - So we use that, even though the primary requirement
1228 * is that the memory be "local" (hence addressible
1229 * by that device), not "coherent".
1230 *
1231 */
1232
1233static int hcd_alloc_coherent(struct usb_bus *bus,
1234 gfp_t mem_flags, dma_addr_t *dma_handle,
1235 void **vaddr_handle, size_t size,
1236 enum dma_data_direction dir)
1237{
1238 unsigned char *vaddr;
1239
1240 if (*vaddr_handle == NULL) {
1241 WARN_ON_ONCE(1);
1242 return -EFAULT;
1243 }
1244
1245 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1246 mem_flags, dma_handle);
1247 if (!vaddr)
1248 return -ENOMEM;
1249
1250 /*
1251 * Store the virtual address of the buffer at the end
1252 * of the allocated dma buffer. The size of the buffer
1253 * may be uneven so use unaligned functions instead
1254 * of just rounding up. It makes sense to optimize for
1255 * memory footprint over access speed since the amount
1256 * of memory available for dma may be limited.
1257 */
1258 put_unaligned((unsigned long)*vaddr_handle,
1259 (unsigned long *)(vaddr + size));
1260
1261 if (dir == DMA_TO_DEVICE)
1262 memcpy(vaddr, *vaddr_handle, size);
1263
1264 *vaddr_handle = vaddr;
1265 return 0;
1266}
1267
1268static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1269 void **vaddr_handle, size_t size,
1270 enum dma_data_direction dir)
1271{
1272 unsigned char *vaddr = *vaddr_handle;
1273
1274 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1275
1276 if (dir == DMA_FROM_DEVICE)
1277 memcpy(vaddr, *vaddr_handle, size);
1278
1279 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1280
1281 *vaddr_handle = vaddr;
1282 *dma_handle = 0;
1283}
1284
1285void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1286{
1287 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1288 dma_unmap_single(hcd->self.controller,
1289 urb->setup_dma,
1290 sizeof(struct usb_ctrlrequest),
1291 DMA_TO_DEVICE);
1292 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1293 hcd_free_coherent(urb->dev->bus,
1294 &urb->setup_dma,
1295 (void **) &urb->setup_packet,
1296 sizeof(struct usb_ctrlrequest),
1297 DMA_TO_DEVICE);
1298
1299 /* Make it safe to call this routine more than once */
1300 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1301}
1302EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1303
1304static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1305{
1306 if (hcd->driver->unmap_urb_for_dma)
1307 hcd->driver->unmap_urb_for_dma(hcd, urb);
1308 else
1309 usb_hcd_unmap_urb_for_dma(hcd, urb);
1310}
1311
1312void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1313{
1314 enum dma_data_direction dir;
1315
1316 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1317
1318 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1319 if (urb->transfer_flags & URB_DMA_MAP_SG)
1320 dma_unmap_sg(hcd->self.controller,
1321 urb->sg,
1322 urb->num_sgs,
1323 dir);
1324 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1325 dma_unmap_page(hcd->self.controller,
1326 urb->transfer_dma,
1327 urb->transfer_buffer_length,
1328 dir);
1329 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1330 dma_unmap_single(hcd->self.controller,
1331 urb->transfer_dma,
1332 urb->transfer_buffer_length,
1333 dir);
1334 else if (urb->transfer_flags & URB_MAP_LOCAL)
1335 hcd_free_coherent(urb->dev->bus,
1336 &urb->transfer_dma,
1337 &urb->transfer_buffer,
1338 urb->transfer_buffer_length,
1339 dir);
1340
1341 /* Make it safe to call this routine more than once */
1342 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1343 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1344}
1345EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1346
1347static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1348 gfp_t mem_flags)
1349{
1350 if (hcd->driver->map_urb_for_dma)
1351 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1352 else
1353 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1354}
1355
1356int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1357 gfp_t mem_flags)
1358{
1359 enum dma_data_direction dir;
1360 int ret = 0;
1361
1362 /* Map the URB's buffers for DMA access.
1363 * Lower level HCD code should use *_dma exclusively,
1364 * unless it uses pio or talks to another transport,
1365 * or uses the provided scatter gather list for bulk.
1366 */
1367
1368 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1369 if (hcd->self.uses_pio_for_control)
1370 return ret;
1371 if (hcd->self.uses_dma) {
1372 urb->setup_dma = dma_map_single(
1373 hcd->self.controller,
1374 urb->setup_packet,
1375 sizeof(struct usb_ctrlrequest),
1376 DMA_TO_DEVICE);
1377 if (dma_mapping_error(hcd->self.controller,
1378 urb->setup_dma))
1379 return -EAGAIN;
1380 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1381 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1382 ret = hcd_alloc_coherent(
1383 urb->dev->bus, mem_flags,
1384 &urb->setup_dma,
1385 (void **)&urb->setup_packet,
1386 sizeof(struct usb_ctrlrequest),
1387 DMA_TO_DEVICE);
1388 if (ret)
1389 return ret;
1390 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1391 }
1392 }
1393
1394 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1395 if (urb->transfer_buffer_length != 0
1396 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1397 if (hcd->self.uses_dma) {
1398 if (urb->num_sgs) {
1399 int n = dma_map_sg(
1400 hcd->self.controller,
1401 urb->sg,
1402 urb->num_sgs,
1403 dir);
1404 if (n <= 0)
1405 ret = -EAGAIN;
1406 else
1407 urb->transfer_flags |= URB_DMA_MAP_SG;
1408 urb->num_mapped_sgs = n;
1409 if (n != urb->num_sgs)
1410 urb->transfer_flags |=
1411 URB_DMA_SG_COMBINED;
1412 } else if (urb->sg) {
1413 struct scatterlist *sg = urb->sg;
1414 urb->transfer_dma = dma_map_page(
1415 hcd->self.controller,
1416 sg_page(sg),
1417 sg->offset,
1418 urb->transfer_buffer_length,
1419 dir);
1420 if (dma_mapping_error(hcd->self.controller,
1421 urb->transfer_dma))
1422 ret = -EAGAIN;
1423 else
1424 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1425 } else {
1426 urb->transfer_dma = dma_map_single(
1427 hcd->self.controller,
1428 urb->transfer_buffer,
1429 urb->transfer_buffer_length,
1430 dir);
1431 if (dma_mapping_error(hcd->self.controller,
1432 urb->transfer_dma))
1433 ret = -EAGAIN;
1434 else
1435 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1436 }
1437 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1438 ret = hcd_alloc_coherent(
1439 urb->dev->bus, mem_flags,
1440 &urb->transfer_dma,
1441 &urb->transfer_buffer,
1442 urb->transfer_buffer_length,
1443 dir);
1444 if (ret == 0)
1445 urb->transfer_flags |= URB_MAP_LOCAL;
1446 }
1447 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1448 URB_SETUP_MAP_LOCAL)))
1449 usb_hcd_unmap_urb_for_dma(hcd, urb);
1450 }
1451 return ret;
1452}
1453EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1454
1455/*-------------------------------------------------------------------------*/
1456
1457/* may be called in any context with a valid urb->dev usecount
1458 * caller surrenders "ownership" of urb
1459 * expects usb_submit_urb() to have sanity checked and conditioned all
1460 * inputs in the urb
1461 */
1462int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1463{
1464 int status;
1465 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1466
1467 /* increment urb's reference count as part of giving it to the HCD
1468 * (which will control it). HCD guarantees that it either returns
1469 * an error or calls giveback(), but not both.
1470 */
1471 usb_get_urb(urb);
1472 atomic_inc(&urb->use_count);
1473 atomic_inc(&urb->dev->urbnum);
1474 usbmon_urb_submit(&hcd->self, urb);
1475
1476 /* NOTE requirements on root-hub callers (usbfs and the hub
1477 * driver, for now): URBs' urb->transfer_buffer must be
1478 * valid and usb_buffer_{sync,unmap}() not be needed, since
1479 * they could clobber root hub response data. Also, control
1480 * URBs must be submitted in process context with interrupts
1481 * enabled.
1482 */
1483
1484 if (is_root_hub(urb->dev)) {
1485 status = rh_urb_enqueue(hcd, urb);
1486 } else {
1487 status = map_urb_for_dma(hcd, urb, mem_flags);
1488 if (likely(status == 0)) {
1489 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1490 if (unlikely(status))
1491 unmap_urb_for_dma(hcd, urb);
1492 }
1493 }
1494
1495 if (unlikely(status)) {
1496 usbmon_urb_submit_error(&hcd->self, urb, status);
1497 urb->hcpriv = NULL;
1498 INIT_LIST_HEAD(&urb->urb_list);
1499 atomic_dec(&urb->use_count);
1500 atomic_dec(&urb->dev->urbnum);
1501 if (atomic_read(&urb->reject))
1502 wake_up(&usb_kill_urb_queue);
1503 usb_put_urb(urb);
1504 }
1505 return status;
1506}
1507
1508/*-------------------------------------------------------------------------*/
1509
1510/* this makes the hcd giveback() the urb more quickly, by kicking it
1511 * off hardware queues (which may take a while) and returning it as
1512 * soon as practical. we've already set up the urb's return status,
1513 * but we can't know if the callback completed already.
1514 */
1515static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1516{
1517 int value;
1518
1519 if (is_root_hub(urb->dev))
1520 value = usb_rh_urb_dequeue(hcd, urb, status);
1521 else {
1522
1523 /* The only reason an HCD might fail this call is if
1524 * it has not yet fully queued the urb to begin with.
1525 * Such failures should be harmless. */
1526 value = hcd->driver->urb_dequeue(hcd, urb, status);
1527 }
1528 return value;
1529}
1530
1531/*
1532 * called in any context
1533 *
1534 * caller guarantees urb won't be recycled till both unlink()
1535 * and the urb's completion function return
1536 */
1537int usb_hcd_unlink_urb (struct urb *urb, int status)
1538{
1539 struct usb_hcd *hcd;
1540 int retval = -EIDRM;
1541 unsigned long flags;
1542
1543 /* Prevent the device and bus from going away while
1544 * the unlink is carried out. If they are already gone
1545 * then urb->use_count must be 0, since disconnected
1546 * devices can't have any active URBs.
1547 */
1548 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1549 if (atomic_read(&urb->use_count) > 0) {
1550 retval = 0;
1551 usb_get_dev(urb->dev);
1552 }
1553 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1554 if (retval == 0) {
1555 hcd = bus_to_hcd(urb->dev->bus);
1556 retval = unlink1(hcd, urb, status);
1557 usb_put_dev(urb->dev);
1558 }
1559
1560 if (retval == 0)
1561 retval = -EINPROGRESS;
1562 else if (retval != -EIDRM && retval != -EBUSY)
1563 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1564 urb, retval);
1565 return retval;
1566}
1567
1568/*-------------------------------------------------------------------------*/
1569
1570/**
1571 * usb_hcd_giveback_urb - return URB from HCD to device driver
1572 * @hcd: host controller returning the URB
1573 * @urb: urb being returned to the USB device driver.
1574 * @status: completion status code for the URB.
1575 * Context: in_interrupt()
1576 *
1577 * This hands the URB from HCD to its USB device driver, using its
1578 * completion function. The HCD has freed all per-urb resources
1579 * (and is done using urb->hcpriv). It also released all HCD locks;
1580 * the device driver won't cause problems if it frees, modifies,
1581 * or resubmits this URB.
1582 *
1583 * If @urb was unlinked, the value of @status will be overridden by
1584 * @urb->unlinked. Erroneous short transfers are detected in case
1585 * the HCD hasn't checked for them.
1586 */
1587void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1588{
1589 urb->hcpriv = NULL;
1590 if (unlikely(urb->unlinked))
1591 status = urb->unlinked;
1592 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1593 urb->actual_length < urb->transfer_buffer_length &&
1594 !status))
1595 status = -EREMOTEIO;
1596
1597 unmap_urb_for_dma(hcd, urb);
1598 usbmon_urb_complete(&hcd->self, urb, status);
1599 usb_unanchor_urb(urb);
1600
1601 /* pass ownership to the completion handler */
1602 urb->status = status;
1603 urb->complete (urb);
1604 atomic_dec (&urb->use_count);
1605 if (unlikely(atomic_read(&urb->reject)))
1606 wake_up (&usb_kill_urb_queue);
1607 usb_put_urb (urb);
1608}
1609EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1610
1611/*-------------------------------------------------------------------------*/
1612
1613/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1614 * queue to drain completely. The caller must first insure that no more
1615 * URBs can be submitted for this endpoint.
1616 */
1617void usb_hcd_flush_endpoint(struct usb_device *udev,
1618 struct usb_host_endpoint *ep)
1619{
1620 struct usb_hcd *hcd;
1621 struct urb *urb;
1622
1623 if (!ep)
1624 return;
1625 might_sleep();
1626 hcd = bus_to_hcd(udev->bus);
1627
1628 /* No more submits can occur */
1629 spin_lock_irq(&hcd_urb_list_lock);
1630rescan:
1631 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1632 int is_in;
1633
1634 if (urb->unlinked)
1635 continue;
1636 usb_get_urb (urb);
1637 is_in = usb_urb_dir_in(urb);
1638 spin_unlock(&hcd_urb_list_lock);
1639
1640 /* kick hcd */
1641 unlink1(hcd, urb, -ESHUTDOWN);
1642 dev_dbg (hcd->self.controller,
1643 "shutdown urb %p ep%d%s%s\n",
1644 urb, usb_endpoint_num(&ep->desc),
1645 is_in ? "in" : "out",
1646 ({ char *s;
1647
1648 switch (usb_endpoint_type(&ep->desc)) {
1649 case USB_ENDPOINT_XFER_CONTROL:
1650 s = ""; break;
1651 case USB_ENDPOINT_XFER_BULK:
1652 s = "-bulk"; break;
1653 case USB_ENDPOINT_XFER_INT:
1654 s = "-intr"; break;
1655 default:
1656 s = "-iso"; break;
1657 };
1658 s;
1659 }));
1660 usb_put_urb (urb);
1661
1662 /* list contents may have changed */
1663 spin_lock(&hcd_urb_list_lock);
1664 goto rescan;
1665 }
1666 spin_unlock_irq(&hcd_urb_list_lock);
1667
1668 /* Wait until the endpoint queue is completely empty */
1669 while (!list_empty (&ep->urb_list)) {
1670 spin_lock_irq(&hcd_urb_list_lock);
1671
1672 /* The list may have changed while we acquired the spinlock */
1673 urb = NULL;
1674 if (!list_empty (&ep->urb_list)) {
1675 urb = list_entry (ep->urb_list.prev, struct urb,
1676 urb_list);
1677 usb_get_urb (urb);
1678 }
1679 spin_unlock_irq(&hcd_urb_list_lock);
1680
1681 if (urb) {
1682 usb_kill_urb (urb);
1683 usb_put_urb (urb);
1684 }
1685 }
1686}
1687
1688/**
1689 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1690 * the bus bandwidth
1691 * @udev: target &usb_device
1692 * @new_config: new configuration to install
1693 * @cur_alt: the current alternate interface setting
1694 * @new_alt: alternate interface setting that is being installed
1695 *
1696 * To change configurations, pass in the new configuration in new_config,
1697 * and pass NULL for cur_alt and new_alt.
1698 *
1699 * To reset a device's configuration (put the device in the ADDRESSED state),
1700 * pass in NULL for new_config, cur_alt, and new_alt.
1701 *
1702 * To change alternate interface settings, pass in NULL for new_config,
1703 * pass in the current alternate interface setting in cur_alt,
1704 * and pass in the new alternate interface setting in new_alt.
1705 *
1706 * Returns an error if the requested bandwidth change exceeds the
1707 * bus bandwidth or host controller internal resources.
1708 */
1709int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1710 struct usb_host_config *new_config,
1711 struct usb_host_interface *cur_alt,
1712 struct usb_host_interface *new_alt)
1713{
1714 int num_intfs, i, j;
1715 struct usb_host_interface *alt = NULL;
1716 int ret = 0;
1717 struct usb_hcd *hcd;
1718 struct usb_host_endpoint *ep;
1719
1720 hcd = bus_to_hcd(udev->bus);
1721 if (!hcd->driver->check_bandwidth)
1722 return 0;
1723
1724 /* Configuration is being removed - set configuration 0 */
1725 if (!new_config && !cur_alt) {
1726 for (i = 1; i < 16; ++i) {
1727 ep = udev->ep_out[i];
1728 if (ep)
1729 hcd->driver->drop_endpoint(hcd, udev, ep);
1730 ep = udev->ep_in[i];
1731 if (ep)
1732 hcd->driver->drop_endpoint(hcd, udev, ep);
1733 }
1734 hcd->driver->check_bandwidth(hcd, udev);
1735 return 0;
1736 }
1737 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1738 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1739 * of the bus. There will always be bandwidth for endpoint 0, so it's
1740 * ok to exclude it.
1741 */
1742 if (new_config) {
1743 num_intfs = new_config->desc.bNumInterfaces;
1744 /* Remove endpoints (except endpoint 0, which is always on the
1745 * schedule) from the old config from the schedule
1746 */
1747 for (i = 1; i < 16; ++i) {
1748 ep = udev->ep_out[i];
1749 if (ep) {
1750 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1751 if (ret < 0)
1752 goto reset;
1753 }
1754 ep = udev->ep_in[i];
1755 if (ep) {
1756 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1757 if (ret < 0)
1758 goto reset;
1759 }
1760 }
1761 for (i = 0; i < num_intfs; ++i) {
1762 struct usb_host_interface *first_alt;
1763 int iface_num;
1764
1765 first_alt = &new_config->intf_cache[i]->altsetting[0];
1766 iface_num = first_alt->desc.bInterfaceNumber;
1767 /* Set up endpoints for alternate interface setting 0 */
1768 alt = usb_find_alt_setting(new_config, iface_num, 0);
1769 if (!alt)
1770 /* No alt setting 0? Pick the first setting. */
1771 alt = first_alt;
1772
1773 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1774 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1775 if (ret < 0)
1776 goto reset;
1777 }
1778 }
1779 }
1780 if (cur_alt && new_alt) {
1781 struct usb_interface *iface = usb_ifnum_to_if(udev,
1782 cur_alt->desc.bInterfaceNumber);
1783
1784 if (!iface)
1785 return -EINVAL;
1786 if (iface->resetting_device) {
1787 /*
1788 * The USB core just reset the device, so the xHCI host
1789 * and the device will think alt setting 0 is installed.
1790 * However, the USB core will pass in the alternate
1791 * setting installed before the reset as cur_alt. Dig
1792 * out the alternate setting 0 structure, or the first
1793 * alternate setting if a broken device doesn't have alt
1794 * setting 0.
1795 */
1796 cur_alt = usb_altnum_to_altsetting(iface, 0);
1797 if (!cur_alt)
1798 cur_alt = &iface->altsetting[0];
1799 }
1800
1801 /* Drop all the endpoints in the current alt setting */
1802 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1803 ret = hcd->driver->drop_endpoint(hcd, udev,
1804 &cur_alt->endpoint[i]);
1805 if (ret < 0)
1806 goto reset;
1807 }
1808 /* Add all the endpoints in the new alt setting */
1809 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1810 ret = hcd->driver->add_endpoint(hcd, udev,
1811 &new_alt->endpoint[i]);
1812 if (ret < 0)
1813 goto reset;
1814 }
1815 }
1816 ret = hcd->driver->check_bandwidth(hcd, udev);
1817reset:
1818 if (ret < 0)
1819 hcd->driver->reset_bandwidth(hcd, udev);
1820 return ret;
1821}
1822
1823/* Disables the endpoint: synchronizes with the hcd to make sure all
1824 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1825 * have been called previously. Use for set_configuration, set_interface,
1826 * driver removal, physical disconnect.
1827 *
1828 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1829 * type, maxpacket size, toggle, halt status, and scheduling.
1830 */
1831void usb_hcd_disable_endpoint(struct usb_device *udev,
1832 struct usb_host_endpoint *ep)
1833{
1834 struct usb_hcd *hcd;
1835
1836 might_sleep();
1837 hcd = bus_to_hcd(udev->bus);
1838 if (hcd->driver->endpoint_disable)
1839 hcd->driver->endpoint_disable(hcd, ep);
1840}
1841
1842/**
1843 * usb_hcd_reset_endpoint - reset host endpoint state
1844 * @udev: USB device.
1845 * @ep: the endpoint to reset.
1846 *
1847 * Resets any host endpoint state such as the toggle bit, sequence
1848 * number and current window.
1849 */
1850void usb_hcd_reset_endpoint(struct usb_device *udev,
1851 struct usb_host_endpoint *ep)
1852{
1853 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1854
1855 if (hcd->driver->endpoint_reset)
1856 hcd->driver->endpoint_reset(hcd, ep);
1857 else {
1858 int epnum = usb_endpoint_num(&ep->desc);
1859 int is_out = usb_endpoint_dir_out(&ep->desc);
1860 int is_control = usb_endpoint_xfer_control(&ep->desc);
1861
1862 usb_settoggle(udev, epnum, is_out, 0);
1863 if (is_control)
1864 usb_settoggle(udev, epnum, !is_out, 0);
1865 }
1866}
1867
1868/**
1869 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1870 * @interface: alternate setting that includes all endpoints.
1871 * @eps: array of endpoints that need streams.
1872 * @num_eps: number of endpoints in the array.
1873 * @num_streams: number of streams to allocate.
1874 * @mem_flags: flags hcd should use to allocate memory.
1875 *
1876 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1877 * Drivers may queue multiple transfers to different stream IDs, which may
1878 * complete in a different order than they were queued.
1879 */
1880int usb_alloc_streams(struct usb_interface *interface,
1881 struct usb_host_endpoint **eps, unsigned int num_eps,
1882 unsigned int num_streams, gfp_t mem_flags)
1883{
1884 struct usb_hcd *hcd;
1885 struct usb_device *dev;
1886 int i;
1887
1888 dev = interface_to_usbdev(interface);
1889 hcd = bus_to_hcd(dev->bus);
1890 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1891 return -EINVAL;
1892 if (dev->speed != USB_SPEED_SUPER)
1893 return -EINVAL;
1894
1895 /* Streams only apply to bulk endpoints. */
1896 for (i = 0; i < num_eps; i++)
1897 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1898 return -EINVAL;
1899
1900 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1901 num_streams, mem_flags);
1902}
1903EXPORT_SYMBOL_GPL(usb_alloc_streams);
1904
1905/**
1906 * usb_free_streams - free bulk endpoint stream IDs.
1907 * @interface: alternate setting that includes all endpoints.
1908 * @eps: array of endpoints to remove streams from.
1909 * @num_eps: number of endpoints in the array.
1910 * @mem_flags: flags hcd should use to allocate memory.
1911 *
1912 * Reverts a group of bulk endpoints back to not using stream IDs.
1913 * Can fail if we are given bad arguments, or HCD is broken.
1914 */
1915void usb_free_streams(struct usb_interface *interface,
1916 struct usb_host_endpoint **eps, unsigned int num_eps,
1917 gfp_t mem_flags)
1918{
1919 struct usb_hcd *hcd;
1920 struct usb_device *dev;
1921 int i;
1922
1923 dev = interface_to_usbdev(interface);
1924 hcd = bus_to_hcd(dev->bus);
1925 if (dev->speed != USB_SPEED_SUPER)
1926 return;
1927
1928 /* Streams only apply to bulk endpoints. */
1929 for (i = 0; i < num_eps; i++)
1930 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1931 return;
1932
1933 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1934}
1935EXPORT_SYMBOL_GPL(usb_free_streams);
1936
1937/* Protect against drivers that try to unlink URBs after the device
1938 * is gone, by waiting until all unlinks for @udev are finished.
1939 * Since we don't currently track URBs by device, simply wait until
1940 * nothing is running in the locked region of usb_hcd_unlink_urb().
1941 */
1942void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1943{
1944 spin_lock_irq(&hcd_urb_unlink_lock);
1945 spin_unlock_irq(&hcd_urb_unlink_lock);
1946}
1947
1948/*-------------------------------------------------------------------------*/
1949
1950/* called in any context */
1951int usb_hcd_get_frame_number (struct usb_device *udev)
1952{
1953 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1954
1955 if (!HCD_RH_RUNNING(hcd))
1956 return -ESHUTDOWN;
1957 return hcd->driver->get_frame_number (hcd);
1958}
1959
1960/*-------------------------------------------------------------------------*/
1961
1962#ifdef CONFIG_PM
1963
1964int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1965{
1966 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1967 int status;
1968 int old_state = hcd->state;
1969
1970 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1971 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
1972 rhdev->do_remote_wakeup);
1973 if (HCD_DEAD(hcd)) {
1974 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1975 return 0;
1976 }
1977
1978 if (!hcd->driver->bus_suspend) {
1979 status = -ENOENT;
1980 } else {
1981 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1982 hcd->state = HC_STATE_QUIESCING;
1983 status = hcd->driver->bus_suspend(hcd);
1984 }
1985 if (status == 0) {
1986 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1987 hcd->state = HC_STATE_SUSPENDED;
1988
1989 /* Did we race with a root-hub wakeup event? */
1990 if (rhdev->do_remote_wakeup) {
1991 char buffer[6];
1992
1993 status = hcd->driver->hub_status_data(hcd, buffer);
1994 if (status != 0) {
1995 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
1996 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
1997 status = -EBUSY;
1998 }
1999 }
2000 } else {
2001 spin_lock_irq(&hcd_root_hub_lock);
2002 if (!HCD_DEAD(hcd)) {
2003 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2004 hcd->state = old_state;
2005 }
2006 spin_unlock_irq(&hcd_root_hub_lock);
2007 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2008 "suspend", status);
2009 }
2010 return status;
2011}
2012
2013int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2014{
2015 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2016 int status;
2017 int old_state = hcd->state;
2018
2019 dev_dbg(&rhdev->dev, "usb %sresume\n",
2020 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2021 if (HCD_DEAD(hcd)) {
2022 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2023 return 0;
2024 }
2025 if (!hcd->driver->bus_resume)
2026 return -ENOENT;
2027 if (HCD_RH_RUNNING(hcd))
2028 return 0;
2029
2030 hcd->state = HC_STATE_RESUMING;
2031 status = hcd->driver->bus_resume(hcd);
2032 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2033 if (status == 0) {
2034 /* TRSMRCY = 10 msec */
2035 msleep(10);
2036 spin_lock_irq(&hcd_root_hub_lock);
2037 if (!HCD_DEAD(hcd)) {
2038 usb_set_device_state(rhdev, rhdev->actconfig
2039 ? USB_STATE_CONFIGURED
2040 : USB_STATE_ADDRESS);
2041 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2042 hcd->state = HC_STATE_RUNNING;
2043 }
2044 spin_unlock_irq(&hcd_root_hub_lock);
2045 } else {
2046 hcd->state = old_state;
2047 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2048 "resume", status);
2049 if (status != -ESHUTDOWN)
2050 usb_hc_died(hcd);
2051 }
2052 return status;
2053}
2054
2055#endif /* CONFIG_PM */
2056
2057#ifdef CONFIG_USB_SUSPEND
2058
2059/* Workqueue routine for root-hub remote wakeup */
2060static void hcd_resume_work(struct work_struct *work)
2061{
2062 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2063 struct usb_device *udev = hcd->self.root_hub;
2064
2065 usb_lock_device(udev);
2066 usb_remote_wakeup(udev);
2067 usb_unlock_device(udev);
2068}
2069
2070/**
2071 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2072 * @hcd: host controller for this root hub
2073 *
2074 * The USB host controller calls this function when its root hub is
2075 * suspended (with the remote wakeup feature enabled) and a remote
2076 * wakeup request is received. The routine submits a workqueue request
2077 * to resume the root hub (that is, manage its downstream ports again).
2078 */
2079void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2080{
2081 unsigned long flags;
2082
2083 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2084 if (hcd->rh_registered) {
2085 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2086 queue_work(pm_wq, &hcd->wakeup_work);
2087 }
2088 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2089}
2090EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2091
2092#endif /* CONFIG_USB_SUSPEND */
2093
2094/*-------------------------------------------------------------------------*/
2095
2096#ifdef CONFIG_USB_OTG
2097
2098/**
2099 * usb_bus_start_enum - start immediate enumeration (for OTG)
2100 * @bus: the bus (must use hcd framework)
2101 * @port_num: 1-based number of port; usually bus->otg_port
2102 * Context: in_interrupt()
2103 *
2104 * Starts enumeration, with an immediate reset followed later by
2105 * khubd identifying and possibly configuring the device.
2106 * This is needed by OTG controller drivers, where it helps meet
2107 * HNP protocol timing requirements for starting a port reset.
2108 */
2109int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2110{
2111 struct usb_hcd *hcd;
2112 int status = -EOPNOTSUPP;
2113
2114 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2115 * boards with root hubs hooked up to internal devices (instead of
2116 * just the OTG port) may need more attention to resetting...
2117 */
2118 hcd = container_of (bus, struct usb_hcd, self);
2119 if (port_num && hcd->driver->start_port_reset)
2120 status = hcd->driver->start_port_reset(hcd, port_num);
2121
2122 /* run khubd shortly after (first) root port reset finishes;
2123 * it may issue others, until at least 50 msecs have passed.
2124 */
2125 if (status == 0)
2126 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2127 return status;
2128}
2129EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2130
2131#endif
2132
2133/*-------------------------------------------------------------------------*/
2134
2135/**
2136 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2137 * @irq: the IRQ being raised
2138 * @__hcd: pointer to the HCD whose IRQ is being signaled
2139 *
2140 * If the controller isn't HALTed, calls the driver's irq handler.
2141 * Checks whether the controller is now dead.
2142 */
2143irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2144{
2145 struct usb_hcd *hcd = __hcd;
2146 unsigned long flags;
2147 irqreturn_t rc;
2148
2149 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2150 * when the first handler doesn't use it. So let's just
2151 * assume it's never used.
2152 */
2153 local_irq_save(flags);
2154
2155 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2156 rc = IRQ_NONE;
2157 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2158 rc = IRQ_NONE;
2159 else
2160 rc = IRQ_HANDLED;
2161
2162 local_irq_restore(flags);
2163 return rc;
2164}
2165EXPORT_SYMBOL_GPL(usb_hcd_irq);
2166
2167/*-------------------------------------------------------------------------*/
2168
2169/**
2170 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2171 * @hcd: pointer to the HCD representing the controller
2172 *
2173 * This is called by bus glue to report a USB host controller that died
2174 * while operations may still have been pending. It's called automatically
2175 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2176 *
2177 * Only call this function with the primary HCD.
2178 */
2179void usb_hc_died (struct usb_hcd *hcd)
2180{
2181 unsigned long flags;
2182
2183 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2184
2185 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2186 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2187 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2188 if (hcd->rh_registered) {
2189 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2190
2191 /* make khubd clean up old urbs and devices */
2192 usb_set_device_state (hcd->self.root_hub,
2193 USB_STATE_NOTATTACHED);
2194 usb_kick_khubd (hcd->self.root_hub);
2195 }
2196 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2197 hcd = hcd->shared_hcd;
2198 if (hcd->rh_registered) {
2199 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2200
2201 /* make khubd clean up old urbs and devices */
2202 usb_set_device_state(hcd->self.root_hub,
2203 USB_STATE_NOTATTACHED);
2204 usb_kick_khubd(hcd->self.root_hub);
2205 }
2206 }
2207 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2208 /* Make sure that the other roothub is also deallocated. */
2209}
2210EXPORT_SYMBOL_GPL (usb_hc_died);
2211
2212/*-------------------------------------------------------------------------*/
2213
2214/**
2215 * usb_create_shared_hcd - create and initialize an HCD structure
2216 * @driver: HC driver that will use this hcd
2217 * @dev: device for this HC, stored in hcd->self.controller
2218 * @bus_name: value to store in hcd->self.bus_name
2219 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2220 * PCI device. Only allocate certain resources for the primary HCD
2221 * Context: !in_interrupt()
2222 *
2223 * Allocate a struct usb_hcd, with extra space at the end for the
2224 * HC driver's private data. Initialize the generic members of the
2225 * hcd structure.
2226 *
2227 * If memory is unavailable, returns NULL.
2228 */
2229struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2230 struct device *dev, const char *bus_name,
2231 struct usb_hcd *primary_hcd)
2232{
2233 struct usb_hcd *hcd;
2234
2235 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2236 if (!hcd) {
2237 dev_dbg (dev, "hcd alloc failed\n");
2238 return NULL;
2239 }
2240 if (primary_hcd == NULL) {
2241 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2242 GFP_KERNEL);
2243 if (!hcd->bandwidth_mutex) {
2244 kfree(hcd);
2245 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2246 return NULL;
2247 }
2248 mutex_init(hcd->bandwidth_mutex);
2249 dev_set_drvdata(dev, hcd);
2250 } else {
2251 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2252 hcd->primary_hcd = primary_hcd;
2253 primary_hcd->primary_hcd = primary_hcd;
2254 hcd->shared_hcd = primary_hcd;
2255 primary_hcd->shared_hcd = hcd;
2256 }
2257
2258 kref_init(&hcd->kref);
2259
2260 usb_bus_init(&hcd->self);
2261 hcd->self.controller = dev;
2262 hcd->self.bus_name = bus_name;
2263 hcd->self.uses_dma = (dev->dma_mask != NULL);
2264
2265 init_timer(&hcd->rh_timer);
2266 hcd->rh_timer.function = rh_timer_func;
2267 hcd->rh_timer.data = (unsigned long) hcd;
2268#ifdef CONFIG_USB_SUSPEND
2269 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2270#endif
2271
2272 hcd->driver = driver;
2273 hcd->speed = driver->flags & HCD_MASK;
2274 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2275 "USB Host Controller";
2276 return hcd;
2277}
2278EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2279
2280/**
2281 * usb_create_hcd - create and initialize an HCD structure
2282 * @driver: HC driver that will use this hcd
2283 * @dev: device for this HC, stored in hcd->self.controller
2284 * @bus_name: value to store in hcd->self.bus_name
2285 * Context: !in_interrupt()
2286 *
2287 * Allocate a struct usb_hcd, with extra space at the end for the
2288 * HC driver's private data. Initialize the generic members of the
2289 * hcd structure.
2290 *
2291 * If memory is unavailable, returns NULL.
2292 */
2293struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2294 struct device *dev, const char *bus_name)
2295{
2296 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2297}
2298EXPORT_SYMBOL_GPL(usb_create_hcd);
2299
2300/*
2301 * Roothubs that share one PCI device must also share the bandwidth mutex.
2302 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2303 * deallocated.
2304 *
2305 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2306 * freed. When hcd_release() is called for the non-primary HCD, set the
2307 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2308 * freed shortly).
2309 */
2310static void hcd_release (struct kref *kref)
2311{
2312 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2313
2314 if (usb_hcd_is_primary_hcd(hcd))
2315 kfree(hcd->bandwidth_mutex);
2316 else
2317 hcd->shared_hcd->shared_hcd = NULL;
2318 kfree(hcd);
2319}
2320
2321struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2322{
2323 if (hcd)
2324 kref_get (&hcd->kref);
2325 return hcd;
2326}
2327EXPORT_SYMBOL_GPL(usb_get_hcd);
2328
2329void usb_put_hcd (struct usb_hcd *hcd)
2330{
2331 if (hcd)
2332 kref_put (&hcd->kref, hcd_release);
2333}
2334EXPORT_SYMBOL_GPL(usb_put_hcd);
2335
2336int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2337{
2338 if (!hcd->primary_hcd)
2339 return 1;
2340 return hcd == hcd->primary_hcd;
2341}
2342EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2343
2344static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2345 unsigned int irqnum, unsigned long irqflags)
2346{
2347 int retval;
2348
2349 if (hcd->driver->irq) {
2350
2351 /* IRQF_DISABLED doesn't work as advertised when used together
2352 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2353 * interrupts we can remove it here.
2354 */
2355 if (irqflags & IRQF_SHARED)
2356 irqflags &= ~IRQF_DISABLED;
2357
2358 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2359 hcd->driver->description, hcd->self.busnum);
2360 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2361 hcd->irq_descr, hcd);
2362 if (retval != 0) {
2363 dev_err(hcd->self.controller,
2364 "request interrupt %d failed\n",
2365 irqnum);
2366 return retval;
2367 }
2368 hcd->irq = irqnum;
2369 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2370 (hcd->driver->flags & HCD_MEMORY) ?
2371 "io mem" : "io base",
2372 (unsigned long long)hcd->rsrc_start);
2373 } else {
2374 hcd->irq = 0;
2375 if (hcd->rsrc_start)
2376 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2377 (hcd->driver->flags & HCD_MEMORY) ?
2378 "io mem" : "io base",
2379 (unsigned long long)hcd->rsrc_start);
2380 }
2381 return 0;
2382}
2383
2384/**
2385 * usb_add_hcd - finish generic HCD structure initialization and register
2386 * @hcd: the usb_hcd structure to initialize
2387 * @irqnum: Interrupt line to allocate
2388 * @irqflags: Interrupt type flags
2389 *
2390 * Finish the remaining parts of generic HCD initialization: allocate the
2391 * buffers of consistent memory, register the bus, request the IRQ line,
2392 * and call the driver's reset() and start() routines.
2393 */
2394int usb_add_hcd(struct usb_hcd *hcd,
2395 unsigned int irqnum, unsigned long irqflags)
2396{
2397 int retval;
2398 struct usb_device *rhdev;
2399
2400 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2401
2402 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2403 if (authorized_default < 0 || authorized_default > 1)
2404 hcd->authorized_default = hcd->wireless? 0 : 1;
2405 else
2406 hcd->authorized_default = authorized_default;
2407 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2408
2409 /* HC is in reset state, but accessible. Now do the one-time init,
2410 * bottom up so that hcds can customize the root hubs before khubd
2411 * starts talking to them. (Note, bus id is assigned early too.)
2412 */
2413 if ((retval = hcd_buffer_create(hcd)) != 0) {
2414 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2415 return retval;
2416 }
2417
2418 if ((retval = usb_register_bus(&hcd->self)) < 0)
2419 goto err_register_bus;
2420
2421 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2422 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2423 retval = -ENOMEM;
2424 goto err_allocate_root_hub;
2425 }
2426 hcd->self.root_hub = rhdev;
2427
2428 switch (hcd->speed) {
2429 case HCD_USB11:
2430 rhdev->speed = USB_SPEED_FULL;
2431 break;
2432 case HCD_USB2:
2433 rhdev->speed = USB_SPEED_HIGH;
2434 break;
2435 case HCD_USB3:
2436 rhdev->speed = USB_SPEED_SUPER;
2437 break;
2438 default:
2439 retval = -EINVAL;
2440 goto err_set_rh_speed;
2441 }
2442
2443 /* wakeup flag init defaults to "everything works" for root hubs,
2444 * but drivers can override it in reset() if needed, along with
2445 * recording the overall controller's system wakeup capability.
2446 */
2447 device_set_wakeup_capable(&rhdev->dev, 1);
2448
2449 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2450 * registered. But since the controller can die at any time,
2451 * let's initialize the flag before touching the hardware.
2452 */
2453 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2454
2455 /* "reset" is misnamed; its role is now one-time init. the controller
2456 * should already have been reset (and boot firmware kicked off etc).
2457 */
2458 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2459 dev_err(hcd->self.controller, "can't setup\n");
2460 goto err_hcd_driver_setup;
2461 }
2462 hcd->rh_pollable = 1;
2463
2464 /* NOTE: root hub and controller capabilities may not be the same */
2465 if (device_can_wakeup(hcd->self.controller)
2466 && device_can_wakeup(&hcd->self.root_hub->dev))
2467 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2468
2469 /* enable irqs just before we start the controller,
2470 * if the BIOS provides legacy PCI irqs.
2471 */
2472 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2473 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2474 if (retval)
2475 goto err_request_irq;
2476 }
2477
2478 hcd->state = HC_STATE_RUNNING;
2479 retval = hcd->driver->start(hcd);
2480 if (retval < 0) {
2481 dev_err(hcd->self.controller, "startup error %d\n", retval);
2482 goto err_hcd_driver_start;
2483 }
2484
2485 /* starting here, usbcore will pay attention to this root hub */
2486 rhdev->bus_mA = min(500u, hcd->power_budget);
2487 if ((retval = register_root_hub(hcd)) != 0)
2488 goto err_register_root_hub;
2489
2490 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2491 if (retval < 0) {
2492 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2493 retval);
2494 goto error_create_attr_group;
2495 }
2496 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2497 usb_hcd_poll_rh_status(hcd);
2498
2499 /*
2500 * Host controllers don't generate their own wakeup requests;
2501 * they only forward requests from the root hub. Therefore
2502 * controllers should always be enabled for remote wakeup.
2503 */
2504 device_wakeup_enable(hcd->self.controller);
2505 return retval;
2506
2507error_create_attr_group:
2508 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2509 if (HC_IS_RUNNING(hcd->state))
2510 hcd->state = HC_STATE_QUIESCING;
2511 spin_lock_irq(&hcd_root_hub_lock);
2512 hcd->rh_registered = 0;
2513 spin_unlock_irq(&hcd_root_hub_lock);
2514
2515#ifdef CONFIG_USB_SUSPEND
2516 cancel_work_sync(&hcd->wakeup_work);
2517#endif
2518 mutex_lock(&usb_bus_list_lock);
2519 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2520 mutex_unlock(&usb_bus_list_lock);
2521err_register_root_hub:
2522 hcd->rh_pollable = 0;
2523 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2524 del_timer_sync(&hcd->rh_timer);
2525 hcd->driver->stop(hcd);
2526 hcd->state = HC_STATE_HALT;
2527 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2528 del_timer_sync(&hcd->rh_timer);
2529err_hcd_driver_start:
2530 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2531 free_irq(irqnum, hcd);
2532err_request_irq:
2533err_hcd_driver_setup:
2534err_set_rh_speed:
2535 usb_put_dev(hcd->self.root_hub);
2536err_allocate_root_hub:
2537 usb_deregister_bus(&hcd->self);
2538err_register_bus:
2539 hcd_buffer_destroy(hcd);
2540 return retval;
2541}
2542EXPORT_SYMBOL_GPL(usb_add_hcd);
2543
2544/**
2545 * usb_remove_hcd - shutdown processing for generic HCDs
2546 * @hcd: the usb_hcd structure to remove
2547 * Context: !in_interrupt()
2548 *
2549 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2550 * invoking the HCD's stop() method.
2551 */
2552void usb_remove_hcd(struct usb_hcd *hcd)
2553{
2554 struct usb_device *rhdev = hcd->self.root_hub;
2555
2556 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2557
2558 usb_get_dev(rhdev);
2559 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2560
2561 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2562 if (HC_IS_RUNNING (hcd->state))
2563 hcd->state = HC_STATE_QUIESCING;
2564
2565 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2566 spin_lock_irq (&hcd_root_hub_lock);
2567 hcd->rh_registered = 0;
2568 spin_unlock_irq (&hcd_root_hub_lock);
2569
2570#ifdef CONFIG_USB_SUSPEND
2571 cancel_work_sync(&hcd->wakeup_work);
2572#endif
2573
2574 mutex_lock(&usb_bus_list_lock);
2575 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2576 mutex_unlock(&usb_bus_list_lock);
2577
2578 /* Prevent any more root-hub status calls from the timer.
2579 * The HCD might still restart the timer (if a port status change
2580 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2581 * the hub_status_data() callback.
2582 */
2583 hcd->rh_pollable = 0;
2584 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2585 del_timer_sync(&hcd->rh_timer);
2586
2587 hcd->driver->stop(hcd);
2588 hcd->state = HC_STATE_HALT;
2589
2590 /* In case the HCD restarted the timer, stop it again. */
2591 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2592 del_timer_sync(&hcd->rh_timer);
2593
2594 if (usb_hcd_is_primary_hcd(hcd)) {
2595 if (hcd->irq > 0)
2596 free_irq(hcd->irq, hcd);
2597 }
2598
2599 usb_put_dev(hcd->self.root_hub);
2600 usb_deregister_bus(&hcd->self);
2601 hcd_buffer_destroy(hcd);
2602}
2603EXPORT_SYMBOL_GPL(usb_remove_hcd);
2604
2605void
2606usb_hcd_platform_shutdown(struct platform_device* dev)
2607{
2608 struct usb_hcd *hcd = platform_get_drvdata(dev);
2609
2610 if (hcd->driver->shutdown)
2611 hcd->driver->shutdown(hcd);
2612}
2613EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2614
2615/*-------------------------------------------------------------------------*/
2616
2617#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2618
2619struct usb_mon_operations *mon_ops;
2620
2621/*
2622 * The registration is unlocked.
2623 * We do it this way because we do not want to lock in hot paths.
2624 *
2625 * Notice that the code is minimally error-proof. Because usbmon needs
2626 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2627 */
2628
2629int usb_mon_register (struct usb_mon_operations *ops)
2630{
2631
2632 if (mon_ops)
2633 return -EBUSY;
2634
2635 mon_ops = ops;
2636 mb();
2637 return 0;
2638}
2639EXPORT_SYMBOL_GPL (usb_mon_register);
2640
2641void usb_mon_deregister (void)
2642{
2643
2644 if (mon_ops == NULL) {
2645 printk(KERN_ERR "USB: monitor was not registered\n");
2646 return;
2647 }
2648 mon_ops = NULL;
2649 mb();
2650}
2651EXPORT_SYMBOL_GPL (usb_mon_deregister);
2652
2653#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */