Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * (C) Copyright Linus Torvalds 1999
   3 * (C) Copyright Johannes Erdfelt 1999-2001
   4 * (C) Copyright Andreas Gal 1999
   5 * (C) Copyright Gregory P. Smith 1999
   6 * (C) Copyright Deti Fliegl 1999
   7 * (C) Copyright Randy Dunlap 2000
   8 * (C) Copyright David Brownell 2000-2002
   9 * 
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of the GNU General Public License as published by the
  12 * Free Software Foundation; either version 2 of the License, or (at your
  13 * option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  18 * for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software Foundation,
  22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/version.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/completion.h>
  30#include <linux/utsname.h>
  31#include <linux/mm.h>
  32#include <asm/io.h>
  33#include <linux/device.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/mutex.h>
  36#include <asm/irq.h>
  37#include <asm/byteorder.h>
  38#include <asm/unaligned.h>
  39#include <linux/platform_device.h>
  40#include <linux/workqueue.h>
  41
  42#include <linux/usb.h>
  43#include <linux/usb/hcd.h>
  44
  45#include "usb.h"
  46
  47
  48/*-------------------------------------------------------------------------*/
  49
  50/*
  51 * USB Host Controller Driver framework
  52 *
  53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  54 * HCD-specific behaviors/bugs.
  55 *
  56 * This does error checks, tracks devices and urbs, and delegates to a
  57 * "hc_driver" only for code (and data) that really needs to know about
  58 * hardware differences.  That includes root hub registers, i/o queues,
  59 * and so on ... but as little else as possible.
  60 *
  61 * Shared code includes most of the "root hub" code (these are emulated,
  62 * though each HC's hardware works differently) and PCI glue, plus request
  63 * tracking overhead.  The HCD code should only block on spinlocks or on
  64 * hardware handshaking; blocking on software events (such as other kernel
  65 * threads releasing resources, or completing actions) is all generic.
  66 *
  67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  69 * only by the hub driver ... and that neither should be seen or used by
  70 * usb client device drivers.
  71 *
  72 * Contributors of ideas or unattributed patches include: David Brownell,
  73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  74 *
  75 * HISTORY:
  76 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  77 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  78 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  79 */
  80
  81/*-------------------------------------------------------------------------*/
  82
  83/* Keep track of which host controller drivers are loaded */
  84unsigned long usb_hcds_loaded;
  85EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  86
  87/* host controllers we manage */
  88LIST_HEAD (usb_bus_list);
  89EXPORT_SYMBOL_GPL (usb_bus_list);
  90
  91/* used when allocating bus numbers */
  92#define USB_MAXBUS		64
  93struct usb_busmap {
  94	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
  95};
  96static struct usb_busmap busmap;
  97
  98/* used when updating list of hcds */
  99DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
 100EXPORT_SYMBOL_GPL (usb_bus_list_lock);
 101
 102/* used for controlling access to virtual root hubs */
 103static DEFINE_SPINLOCK(hcd_root_hub_lock);
 104
 105/* used when updating an endpoint's URB list */
 106static DEFINE_SPINLOCK(hcd_urb_list_lock);
 107
 108/* used to protect against unlinking URBs after the device is gone */
 109static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 110
 111/* wait queue for synchronous unlinks */
 112DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 113
 114static inline int is_root_hub(struct usb_device *udev)
 115{
 116	return (udev->parent == NULL);
 117}
 118
 119/*-------------------------------------------------------------------------*/
 120
 121/*
 122 * Sharable chunks of root hub code.
 123 */
 124
 125/*-------------------------------------------------------------------------*/
 126
 127#define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
 128#define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
 129
 130/* usb 3.0 root hub device descriptor */
 131static const u8 usb3_rh_dev_descriptor[18] = {
 132	0x12,       /*  __u8  bLength; */
 133	0x01,       /*  __u8  bDescriptorType; Device */
 134	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 135
 136	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 137	0x00,	    /*  __u8  bDeviceSubClass; */
 138	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 139	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 140
 141	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
 142	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 143	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 144
 145	0x03,       /*  __u8  iManufacturer; */
 146	0x02,       /*  __u8  iProduct; */
 147	0x01,       /*  __u8  iSerialNumber; */
 148	0x01        /*  __u8  bNumConfigurations; */
 149};
 150
 151/* usb 2.0 root hub device descriptor */
 152static const u8 usb2_rh_dev_descriptor [18] = {
 153	0x12,       /*  __u8  bLength; */
 154	0x01,       /*  __u8  bDescriptorType; Device */
 155	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 156
 157	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 158	0x00,	    /*  __u8  bDeviceSubClass; */
 159	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 160	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 161
 162	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
 163	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 164	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 165
 166	0x03,       /*  __u8  iManufacturer; */
 167	0x02,       /*  __u8  iProduct; */
 168	0x01,       /*  __u8  iSerialNumber; */
 169	0x01        /*  __u8  bNumConfigurations; */
 170};
 171
 172/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 173
 174/* usb 1.1 root hub device descriptor */
 175static const u8 usb11_rh_dev_descriptor [18] = {
 176	0x12,       /*  __u8  bLength; */
 177	0x01,       /*  __u8  bDescriptorType; Device */
 178	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 179
 180	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 181	0x00,	    /*  __u8  bDeviceSubClass; */
 182	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 183	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 184
 185	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
 186	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 187	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 188
 189	0x03,       /*  __u8  iManufacturer; */
 190	0x02,       /*  __u8  iProduct; */
 191	0x01,       /*  __u8  iSerialNumber; */
 192	0x01        /*  __u8  bNumConfigurations; */
 193};
 194
 195
 196/*-------------------------------------------------------------------------*/
 197
 198/* Configuration descriptors for our root hubs */
 199
 200static const u8 fs_rh_config_descriptor [] = {
 201
 202	/* one configuration */
 203	0x09,       /*  __u8  bLength; */
 204	0x02,       /*  __u8  bDescriptorType; Configuration */
 205	0x19, 0x00, /*  __le16 wTotalLength; */
 206	0x01,       /*  __u8  bNumInterfaces; (1) */
 207	0x01,       /*  __u8  bConfigurationValue; */
 208	0x00,       /*  __u8  iConfiguration; */
 209	0xc0,       /*  __u8  bmAttributes; 
 210				 Bit 7: must be set,
 211				     6: Self-powered,
 212				     5: Remote wakeup,
 213				     4..0: resvd */
 214	0x00,       /*  __u8  MaxPower; */
 215      
 216	/* USB 1.1:
 217	 * USB 2.0, single TT organization (mandatory):
 218	 *	one interface, protocol 0
 219	 *
 220	 * USB 2.0, multiple TT organization (optional):
 221	 *	two interfaces, protocols 1 (like single TT)
 222	 *	and 2 (multiple TT mode) ... config is
 223	 *	sometimes settable
 224	 *	NOT IMPLEMENTED
 225	 */
 226
 227	/* one interface */
 228	0x09,       /*  __u8  if_bLength; */
 229	0x04,       /*  __u8  if_bDescriptorType; Interface */
 230	0x00,       /*  __u8  if_bInterfaceNumber; */
 231	0x00,       /*  __u8  if_bAlternateSetting; */
 232	0x01,       /*  __u8  if_bNumEndpoints; */
 233	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 234	0x00,       /*  __u8  if_bInterfaceSubClass; */
 235	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 236	0x00,       /*  __u8  if_iInterface; */
 237     
 238	/* one endpoint (status change endpoint) */
 239	0x07,       /*  __u8  ep_bLength; */
 240	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 241	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 242 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 243 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 244	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 245};
 246
 247static const u8 hs_rh_config_descriptor [] = {
 248
 249	/* one configuration */
 250	0x09,       /*  __u8  bLength; */
 251	0x02,       /*  __u8  bDescriptorType; Configuration */
 252	0x19, 0x00, /*  __le16 wTotalLength; */
 253	0x01,       /*  __u8  bNumInterfaces; (1) */
 254	0x01,       /*  __u8  bConfigurationValue; */
 255	0x00,       /*  __u8  iConfiguration; */
 256	0xc0,       /*  __u8  bmAttributes; 
 257				 Bit 7: must be set,
 258				     6: Self-powered,
 259				     5: Remote wakeup,
 260				     4..0: resvd */
 261	0x00,       /*  __u8  MaxPower; */
 262      
 263	/* USB 1.1:
 264	 * USB 2.0, single TT organization (mandatory):
 265	 *	one interface, protocol 0
 266	 *
 267	 * USB 2.0, multiple TT organization (optional):
 268	 *	two interfaces, protocols 1 (like single TT)
 269	 *	and 2 (multiple TT mode) ... config is
 270	 *	sometimes settable
 271	 *	NOT IMPLEMENTED
 272	 */
 273
 274	/* one interface */
 275	0x09,       /*  __u8  if_bLength; */
 276	0x04,       /*  __u8  if_bDescriptorType; Interface */
 277	0x00,       /*  __u8  if_bInterfaceNumber; */
 278	0x00,       /*  __u8  if_bAlternateSetting; */
 279	0x01,       /*  __u8  if_bNumEndpoints; */
 280	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 281	0x00,       /*  __u8  if_bInterfaceSubClass; */
 282	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 283	0x00,       /*  __u8  if_iInterface; */
 284     
 285	/* one endpoint (status change endpoint) */
 286	0x07,       /*  __u8  ep_bLength; */
 287	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 288	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 289 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 290		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 291		     * see hub.c:hub_configure() for details. */
 292	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 293	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 294};
 295
 296static const u8 ss_rh_config_descriptor[] = {
 297	/* one configuration */
 298	0x09,       /*  __u8  bLength; */
 299	0x02,       /*  __u8  bDescriptorType; Configuration */
 300	0x1f, 0x00, /*  __le16 wTotalLength; */
 301	0x01,       /*  __u8  bNumInterfaces; (1) */
 302	0x01,       /*  __u8  bConfigurationValue; */
 303	0x00,       /*  __u8  iConfiguration; */
 304	0xc0,       /*  __u8  bmAttributes;
 305				 Bit 7: must be set,
 306				     6: Self-powered,
 307				     5: Remote wakeup,
 308				     4..0: resvd */
 309	0x00,       /*  __u8  MaxPower; */
 310
 311	/* one interface */
 312	0x09,       /*  __u8  if_bLength; */
 313	0x04,       /*  __u8  if_bDescriptorType; Interface */
 314	0x00,       /*  __u8  if_bInterfaceNumber; */
 315	0x00,       /*  __u8  if_bAlternateSetting; */
 316	0x01,       /*  __u8  if_bNumEndpoints; */
 317	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 318	0x00,       /*  __u8  if_bInterfaceSubClass; */
 319	0x00,       /*  __u8  if_bInterfaceProtocol; */
 320	0x00,       /*  __u8  if_iInterface; */
 321
 322	/* one endpoint (status change endpoint) */
 323	0x07,       /*  __u8  ep_bLength; */
 324	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 325	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 326	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 327		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 328		     * see hub.c:hub_configure() for details. */
 329	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 330	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 331
 332	/* one SuperSpeed endpoint companion descriptor */
 333	0x06,        /* __u8 ss_bLength */
 334	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
 335	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 336	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 337	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 338};
 339
 340/* authorized_default behaviour:
 341 * -1 is authorized for all devices except wireless (old behaviour)
 342 * 0 is unauthorized for all devices
 343 * 1 is authorized for all devices
 344 */
 345static int authorized_default = -1;
 346module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 347MODULE_PARM_DESC(authorized_default,
 348		"Default USB device authorization: 0 is not authorized, 1 is "
 349		"authorized, -1 is authorized except for wireless USB (default, "
 350		"old behaviour");
 351/*-------------------------------------------------------------------------*/
 352
 353/**
 354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 355 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 356 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 357 * @len: Length (in bytes; may be odd) of descriptor buffer.
 358 *
 359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
 360 * buflen, whichever is less.
 361 *
 362 * USB String descriptors can contain at most 126 characters; input
 363 * strings longer than that are truncated.
 364 */
 365static unsigned
 366ascii2desc(char const *s, u8 *buf, unsigned len)
 367{
 368	unsigned n, t = 2 + 2*strlen(s);
 369
 370	if (t > 254)
 371		t = 254;	/* Longest possible UTF string descriptor */
 372	if (len > t)
 373		len = t;
 374
 375	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 376
 377	n = len;
 378	while (n--) {
 379		*buf++ = t;
 380		if (!n--)
 381			break;
 382		*buf++ = t >> 8;
 383		t = (unsigned char)*s++;
 384	}
 385	return len;
 386}
 387
 388/**
 389 * rh_string() - provides string descriptors for root hub
 390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 391 * @hcd: the host controller for this root hub
 392 * @data: buffer for output packet
 393 * @len: length of the provided buffer
 394 *
 395 * Produces either a manufacturer, product or serial number string for the
 396 * virtual root hub device.
 397 * Returns the number of bytes filled in: the length of the descriptor or
 398 * of the provided buffer, whichever is less.
 399 */
 400static unsigned
 401rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 402{
 403	char buf[100];
 404	char const *s;
 405	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 406
 407	// language ids
 408	switch (id) {
 409	case 0:
 410		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 411		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 412		if (len > 4)
 413			len = 4;
 414		memcpy(data, langids, len);
 415		return len;
 416	case 1:
 417		/* Serial number */
 418		s = hcd->self.bus_name;
 419		break;
 420	case 2:
 421		/* Product name */
 422		s = hcd->product_desc;
 423		break;
 424	case 3:
 425		/* Manufacturer */
 426		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 427			init_utsname()->release, hcd->driver->description);
 428		s = buf;
 429		break;
 430	default:
 431		/* Can't happen; caller guarantees it */
 432		return 0;
 433	}
 434
 435	return ascii2desc(s, data, len);
 436}
 437
 438
 439/* Root hub control transfers execute synchronously */
 440static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 441{
 442	struct usb_ctrlrequest *cmd;
 443 	u16		typeReq, wValue, wIndex, wLength;
 444	u8		*ubuf = urb->transfer_buffer;
 445	u8		tbuf [sizeof (struct usb_hub_descriptor)]
 
 
 
 
 446		__attribute__((aligned(4)));
 447	const u8	*bufp = tbuf;
 448	unsigned	len = 0;
 449	int		status;
 450	u8		patch_wakeup = 0;
 451	u8		patch_protocol = 0;
 452
 453	might_sleep();
 454
 455	spin_lock_irq(&hcd_root_hub_lock);
 456	status = usb_hcd_link_urb_to_ep(hcd, urb);
 457	spin_unlock_irq(&hcd_root_hub_lock);
 458	if (status)
 459		return status;
 460	urb->hcpriv = hcd;	/* Indicate it's queued */
 461
 462	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 463	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 464	wValue   = le16_to_cpu (cmd->wValue);
 465	wIndex   = le16_to_cpu (cmd->wIndex);
 466	wLength  = le16_to_cpu (cmd->wLength);
 467
 468	if (wLength > urb->transfer_buffer_length)
 469		goto error;
 470
 471	urb->actual_length = 0;
 472	switch (typeReq) {
 473
 474	/* DEVICE REQUESTS */
 475
 476	/* The root hub's remote wakeup enable bit is implemented using
 477	 * driver model wakeup flags.  If this system supports wakeup
 478	 * through USB, userspace may change the default "allow wakeup"
 479	 * policy through sysfs or these calls.
 480	 *
 481	 * Most root hubs support wakeup from downstream devices, for
 482	 * runtime power management (disabling USB clocks and reducing
 483	 * VBUS power usage).  However, not all of them do so; silicon,
 484	 * board, and BIOS bugs here are not uncommon, so these can't
 485	 * be treated quite like external hubs.
 486	 *
 487	 * Likewise, not all root hubs will pass wakeup events upstream,
 488	 * to wake up the whole system.  So don't assume root hub and
 489	 * controller capabilities are identical.
 490	 */
 491
 492	case DeviceRequest | USB_REQ_GET_STATUS:
 493		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 494					<< USB_DEVICE_REMOTE_WAKEUP)
 495				| (1 << USB_DEVICE_SELF_POWERED);
 496		tbuf [1] = 0;
 497		len = 2;
 498		break;
 499	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 500		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 501			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 502		else
 503			goto error;
 504		break;
 505	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 506		if (device_can_wakeup(&hcd->self.root_hub->dev)
 507				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 508			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 509		else
 510			goto error;
 511		break;
 512	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 513		tbuf [0] = 1;
 514		len = 1;
 515			/* FALLTHROUGH */
 516	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 517		break;
 518	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 519		switch (wValue & 0xff00) {
 520		case USB_DT_DEVICE << 8:
 521			switch (hcd->speed) {
 522			case HCD_USB3:
 523				bufp = usb3_rh_dev_descriptor;
 524				break;
 525			case HCD_USB2:
 526				bufp = usb2_rh_dev_descriptor;
 527				break;
 528			case HCD_USB11:
 529				bufp = usb11_rh_dev_descriptor;
 530				break;
 531			default:
 532				goto error;
 533			}
 534			len = 18;
 535			if (hcd->has_tt)
 536				patch_protocol = 1;
 537			break;
 538		case USB_DT_CONFIG << 8:
 539			switch (hcd->speed) {
 540			case HCD_USB3:
 541				bufp = ss_rh_config_descriptor;
 542				len = sizeof ss_rh_config_descriptor;
 543				break;
 544			case HCD_USB2:
 545				bufp = hs_rh_config_descriptor;
 546				len = sizeof hs_rh_config_descriptor;
 547				break;
 548			case HCD_USB11:
 549				bufp = fs_rh_config_descriptor;
 550				len = sizeof fs_rh_config_descriptor;
 551				break;
 552			default:
 553				goto error;
 554			}
 555			if (device_can_wakeup(&hcd->self.root_hub->dev))
 556				patch_wakeup = 1;
 557			break;
 558		case USB_DT_STRING << 8:
 559			if ((wValue & 0xff) < 4)
 560				urb->actual_length = rh_string(wValue & 0xff,
 561						hcd, ubuf, wLength);
 562			else /* unsupported IDs --> "protocol stall" */
 563				goto error;
 564			break;
 
 
 565		default:
 566			goto error;
 567		}
 568		break;
 569	case DeviceRequest | USB_REQ_GET_INTERFACE:
 570		tbuf [0] = 0;
 571		len = 1;
 572			/* FALLTHROUGH */
 573	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 574		break;
 575	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 576		// wValue == urb->dev->devaddr
 577		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 578			wValue);
 579		break;
 580
 581	/* INTERFACE REQUESTS (no defined feature/status flags) */
 582
 583	/* ENDPOINT REQUESTS */
 584
 585	case EndpointRequest | USB_REQ_GET_STATUS:
 586		// ENDPOINT_HALT flag
 587		tbuf [0] = 0;
 588		tbuf [1] = 0;
 589		len = 2;
 590			/* FALLTHROUGH */
 591	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 592	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 593		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 594		break;
 595
 596	/* CLASS REQUESTS (and errors) */
 597
 598	default:
 
 599		/* non-generic request */
 600		switch (typeReq) {
 601		case GetHubStatus:
 602		case GetPortStatus:
 603			len = 4;
 604			break;
 605		case GetHubDescriptor:
 606			len = sizeof (struct usb_hub_descriptor);
 607			break;
 
 
 
 608		}
 609		status = hcd->driver->hub_control (hcd,
 610			typeReq, wValue, wIndex,
 611			tbuf, wLength);
 612		break;
 613error:
 614		/* "protocol stall" on error */
 615		status = -EPIPE;
 616	}
 617
 618	if (status) {
 619		len = 0;
 620		if (status != -EPIPE) {
 621			dev_dbg (hcd->self.controller,
 622				"CTRL: TypeReq=0x%x val=0x%x "
 623				"idx=0x%x len=%d ==> %d\n",
 624				typeReq, wValue, wIndex,
 625				wLength, status);
 626		}
 
 
 
 
 627	}
 628	if (len) {
 629		if (urb->transfer_buffer_length < len)
 630			len = urb->transfer_buffer_length;
 631		urb->actual_length = len;
 632		// always USB_DIR_IN, toward host
 633		memcpy (ubuf, bufp, len);
 634
 635		/* report whether RH hardware supports remote wakeup */
 636		if (patch_wakeup &&
 637				len > offsetof (struct usb_config_descriptor,
 638						bmAttributes))
 639			((struct usb_config_descriptor *)ubuf)->bmAttributes
 640				|= USB_CONFIG_ATT_WAKEUP;
 641
 642		/* report whether RH hardware has an integrated TT */
 643		if (patch_protocol &&
 644				len > offsetof(struct usb_device_descriptor,
 645						bDeviceProtocol))
 646			((struct usb_device_descriptor *) ubuf)->
 647					bDeviceProtocol = 1;
 648	}
 649
 650	/* any errors get returned through the urb completion */
 651	spin_lock_irq(&hcd_root_hub_lock);
 652	usb_hcd_unlink_urb_from_ep(hcd, urb);
 653
 654	/* This peculiar use of spinlocks echoes what real HC drivers do.
 655	 * Avoiding calls to local_irq_disable/enable makes the code
 656	 * RT-friendly.
 657	 */
 658	spin_unlock(&hcd_root_hub_lock);
 659	usb_hcd_giveback_urb(hcd, urb, status);
 660	spin_lock(&hcd_root_hub_lock);
 661
 662	spin_unlock_irq(&hcd_root_hub_lock);
 663	return 0;
 664}
 665
 666/*-------------------------------------------------------------------------*/
 667
 668/*
 669 * Root Hub interrupt transfers are polled using a timer if the
 670 * driver requests it; otherwise the driver is responsible for
 671 * calling usb_hcd_poll_rh_status() when an event occurs.
 672 *
 673 * Completions are called in_interrupt(), but they may or may not
 674 * be in_irq().
 675 */
 676void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 677{
 678	struct urb	*urb;
 679	int		length;
 680	unsigned long	flags;
 681	char		buffer[6];	/* Any root hubs with > 31 ports? */
 682
 683	if (unlikely(!hcd->rh_pollable))
 684		return;
 685	if (!hcd->uses_new_polling && !hcd->status_urb)
 686		return;
 687
 688	length = hcd->driver->hub_status_data(hcd, buffer);
 689	if (length > 0) {
 690
 691		/* try to complete the status urb */
 692		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 693		urb = hcd->status_urb;
 694		if (urb) {
 695			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 696			hcd->status_urb = NULL;
 697			urb->actual_length = length;
 698			memcpy(urb->transfer_buffer, buffer, length);
 699
 700			usb_hcd_unlink_urb_from_ep(hcd, urb);
 701			spin_unlock(&hcd_root_hub_lock);
 702			usb_hcd_giveback_urb(hcd, urb, 0);
 703			spin_lock(&hcd_root_hub_lock);
 704		} else {
 705			length = 0;
 706			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 707		}
 708		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 709	}
 710
 711	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 712	 * exceed that limit if HZ is 100. The math is more clunky than
 713	 * maybe expected, this is to make sure that all timers for USB devices
 714	 * fire at the same time to give the CPU a break in between */
 715	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 716			(length == 0 && hcd->status_urb != NULL))
 717		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 718}
 719EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 720
 721/* timer callback */
 722static void rh_timer_func (unsigned long _hcd)
 723{
 724	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
 725}
 726
 727/*-------------------------------------------------------------------------*/
 728
 729static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 730{
 731	int		retval;
 732	unsigned long	flags;
 733	unsigned	len = 1 + (urb->dev->maxchild / 8);
 734
 735	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 736	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 737		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 738		retval = -EINVAL;
 739		goto done;
 740	}
 741
 742	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 743	if (retval)
 744		goto done;
 745
 746	hcd->status_urb = urb;
 747	urb->hcpriv = hcd;	/* indicate it's queued */
 748	if (!hcd->uses_new_polling)
 749		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 750
 751	/* If a status change has already occurred, report it ASAP */
 752	else if (HCD_POLL_PENDING(hcd))
 753		mod_timer(&hcd->rh_timer, jiffies);
 754	retval = 0;
 755 done:
 756	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 757	return retval;
 758}
 759
 760static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 761{
 762	if (usb_endpoint_xfer_int(&urb->ep->desc))
 763		return rh_queue_status (hcd, urb);
 764	if (usb_endpoint_xfer_control(&urb->ep->desc))
 765		return rh_call_control (hcd, urb);
 766	return -EINVAL;
 767}
 768
 769/*-------------------------------------------------------------------------*/
 770
 771/* Unlinks of root-hub control URBs are legal, but they don't do anything
 772 * since these URBs always execute synchronously.
 773 */
 774static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 775{
 776	unsigned long	flags;
 777	int		rc;
 778
 779	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 780	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 781	if (rc)
 782		goto done;
 783
 784	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 785		;	/* Do nothing */
 786
 787	} else {				/* Status URB */
 788		if (!hcd->uses_new_polling)
 789			del_timer (&hcd->rh_timer);
 790		if (urb == hcd->status_urb) {
 791			hcd->status_urb = NULL;
 792			usb_hcd_unlink_urb_from_ep(hcd, urb);
 793
 794			spin_unlock(&hcd_root_hub_lock);
 795			usb_hcd_giveback_urb(hcd, urb, status);
 796			spin_lock(&hcd_root_hub_lock);
 797		}
 798	}
 799 done:
 800	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 801	return rc;
 802}
 803
 804
 805
 806/*
 807 * Show & store the current value of authorized_default
 808 */
 809static ssize_t usb_host_authorized_default_show(struct device *dev,
 810						struct device_attribute *attr,
 811						char *buf)
 812{
 813	struct usb_device *rh_usb_dev = to_usb_device(dev);
 814	struct usb_bus *usb_bus = rh_usb_dev->bus;
 815	struct usb_hcd *usb_hcd;
 816
 817	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
 818		return -ENODEV;
 819	usb_hcd = bus_to_hcd(usb_bus);
 820	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
 821}
 822
 823static ssize_t usb_host_authorized_default_store(struct device *dev,
 824						 struct device_attribute *attr,
 825						 const char *buf, size_t size)
 826{
 827	ssize_t result;
 828	unsigned val;
 829	struct usb_device *rh_usb_dev = to_usb_device(dev);
 830	struct usb_bus *usb_bus = rh_usb_dev->bus;
 831	struct usb_hcd *usb_hcd;
 832
 833	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
 834		return -ENODEV;
 835	usb_hcd = bus_to_hcd(usb_bus);
 836	result = sscanf(buf, "%u\n", &val);
 837	if (result == 1) {
 838		usb_hcd->authorized_default = val? 1 : 0;
 839		result = size;
 840	}
 841	else
 842		result = -EINVAL;
 843	return result;
 844}
 845
 846static DEVICE_ATTR(authorized_default, 0644,
 847	    usb_host_authorized_default_show,
 848	    usb_host_authorized_default_store);
 849
 850
 851/* Group all the USB bus attributes */
 852static struct attribute *usb_bus_attrs[] = {
 853		&dev_attr_authorized_default.attr,
 854		NULL,
 855};
 856
 857static struct attribute_group usb_bus_attr_group = {
 858	.name = NULL,	/* we want them in the same directory */
 859	.attrs = usb_bus_attrs,
 860};
 861
 862
 863
 864/*-------------------------------------------------------------------------*/
 865
 866/**
 867 * usb_bus_init - shared initialization code
 868 * @bus: the bus structure being initialized
 869 *
 870 * This code is used to initialize a usb_bus structure, memory for which is
 871 * separately managed.
 872 */
 873static void usb_bus_init (struct usb_bus *bus)
 874{
 875	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 876
 877	bus->devnum_next = 1;
 878
 879	bus->root_hub = NULL;
 880	bus->busnum = -1;
 881	bus->bandwidth_allocated = 0;
 882	bus->bandwidth_int_reqs  = 0;
 883	bus->bandwidth_isoc_reqs = 0;
 884
 885	INIT_LIST_HEAD (&bus->bus_list);
 886}
 887
 888/*-------------------------------------------------------------------------*/
 889
 890/**
 891 * usb_register_bus - registers the USB host controller with the usb core
 892 * @bus: pointer to the bus to register
 893 * Context: !in_interrupt()
 894 *
 895 * Assigns a bus number, and links the controller into usbcore data
 896 * structures so that it can be seen by scanning the bus list.
 897 */
 898static int usb_register_bus(struct usb_bus *bus)
 899{
 900	int result = -E2BIG;
 901	int busnum;
 902
 903	mutex_lock(&usb_bus_list_lock);
 904	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
 905	if (busnum >= USB_MAXBUS) {
 906		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
 907		goto error_find_busnum;
 908	}
 909	set_bit (busnum, busmap.busmap);
 910	bus->busnum = busnum;
 911
 912	/* Add it to the local list of buses */
 913	list_add (&bus->bus_list, &usb_bus_list);
 914	mutex_unlock(&usb_bus_list_lock);
 915
 916	usb_notify_add_bus(bus);
 917
 918	dev_info (bus->controller, "new USB bus registered, assigned bus "
 919		  "number %d\n", bus->busnum);
 920	return 0;
 921
 922error_find_busnum:
 923	mutex_unlock(&usb_bus_list_lock);
 924	return result;
 925}
 926
 927/**
 928 * usb_deregister_bus - deregisters the USB host controller
 929 * @bus: pointer to the bus to deregister
 930 * Context: !in_interrupt()
 931 *
 932 * Recycles the bus number, and unlinks the controller from usbcore data
 933 * structures so that it won't be seen by scanning the bus list.
 934 */
 935static void usb_deregister_bus (struct usb_bus *bus)
 936{
 937	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 938
 939	/*
 940	 * NOTE: make sure that all the devices are removed by the
 941	 * controller code, as well as having it call this when cleaning
 942	 * itself up
 943	 */
 944	mutex_lock(&usb_bus_list_lock);
 945	list_del (&bus->bus_list);
 946	mutex_unlock(&usb_bus_list_lock);
 947
 948	usb_notify_remove_bus(bus);
 949
 950	clear_bit (bus->busnum, busmap.busmap);
 951}
 952
 953/**
 954 * register_root_hub - called by usb_add_hcd() to register a root hub
 955 * @hcd: host controller for this root hub
 956 *
 957 * This function registers the root hub with the USB subsystem.  It sets up
 958 * the device properly in the device tree and then calls usb_new_device()
 959 * to register the usb device.  It also assigns the root hub's USB address
 960 * (always 1).
 961 */
 962static int register_root_hub(struct usb_hcd *hcd)
 963{
 964	struct device *parent_dev = hcd->self.controller;
 965	struct usb_device *usb_dev = hcd->self.root_hub;
 966	const int devnum = 1;
 967	int retval;
 968
 969	usb_dev->devnum = devnum;
 970	usb_dev->bus->devnum_next = devnum + 1;
 971	memset (&usb_dev->bus->devmap.devicemap, 0,
 972			sizeof usb_dev->bus->devmap.devicemap);
 973	set_bit (devnum, usb_dev->bus->devmap.devicemap);
 974	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
 975
 976	mutex_lock(&usb_bus_list_lock);
 977
 978	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
 979	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
 980	if (retval != sizeof usb_dev->descriptor) {
 981		mutex_unlock(&usb_bus_list_lock);
 982		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
 983				dev_name(&usb_dev->dev), retval);
 984		return (retval < 0) ? retval : -EMSGSIZE;
 985	}
 
 
 
 
 
 
 
 
 
 986
 987	retval = usb_new_device (usb_dev);
 988	if (retval) {
 989		dev_err (parent_dev, "can't register root hub for %s, %d\n",
 990				dev_name(&usb_dev->dev), retval);
 991	}
 992	mutex_unlock(&usb_bus_list_lock);
 993
 994	if (retval == 0) {
 995		spin_lock_irq (&hcd_root_hub_lock);
 996		hcd->rh_registered = 1;
 997		spin_unlock_irq (&hcd_root_hub_lock);
 998
 999		/* Did the HC die before the root hub was registered? */
1000		if (HCD_DEAD(hcd))
1001			usb_hc_died (hcd);	/* This time clean up */
1002	}
 
1003
1004	return retval;
1005}
1006
1007
1008/*-------------------------------------------------------------------------*/
1009
1010/**
1011 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1012 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1013 * @is_input: true iff the transaction sends data to the host
1014 * @isoc: true for isochronous transactions, false for interrupt ones
1015 * @bytecount: how many bytes in the transaction.
1016 *
1017 * Returns approximate bus time in nanoseconds for a periodic transaction.
1018 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1019 * scheduled in software, this function is only used for such scheduling.
1020 */
1021long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1022{
1023	unsigned long	tmp;
1024
1025	switch (speed) {
1026	case USB_SPEED_LOW: 	/* INTR only */
1027		if (is_input) {
1028			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1029			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1030		} else {
1031			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1032			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1033		}
1034	case USB_SPEED_FULL:	/* ISOC or INTR */
1035		if (isoc) {
1036			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1037			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1038		} else {
1039			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1040			return (9107L + BW_HOST_DELAY + tmp);
1041		}
1042	case USB_SPEED_HIGH:	/* ISOC or INTR */
1043		// FIXME adjust for input vs output
1044		if (isoc)
1045			tmp = HS_NSECS_ISO (bytecount);
1046		else
1047			tmp = HS_NSECS (bytecount);
1048		return tmp;
1049	default:
1050		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1051		return -1;
1052	}
1053}
1054EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1055
1056
1057/*-------------------------------------------------------------------------*/
1058
1059/*
1060 * Generic HC operations.
1061 */
1062
1063/*-------------------------------------------------------------------------*/
1064
1065/**
1066 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1067 * @hcd: host controller to which @urb was submitted
1068 * @urb: URB being submitted
1069 *
1070 * Host controller drivers should call this routine in their enqueue()
1071 * method.  The HCD's private spinlock must be held and interrupts must
1072 * be disabled.  The actions carried out here are required for URB
1073 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1074 *
1075 * Returns 0 for no error, otherwise a negative error code (in which case
1076 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1077 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1078 * the private spinlock and returning.
1079 */
1080int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1081{
1082	int		rc = 0;
1083
1084	spin_lock(&hcd_urb_list_lock);
1085
1086	/* Check that the URB isn't being killed */
1087	if (unlikely(atomic_read(&urb->reject))) {
1088		rc = -EPERM;
1089		goto done;
1090	}
1091
1092	if (unlikely(!urb->ep->enabled)) {
1093		rc = -ENOENT;
1094		goto done;
1095	}
1096
1097	if (unlikely(!urb->dev->can_submit)) {
1098		rc = -EHOSTUNREACH;
1099		goto done;
1100	}
1101
1102	/*
1103	 * Check the host controller's state and add the URB to the
1104	 * endpoint's queue.
1105	 */
1106	if (HCD_RH_RUNNING(hcd)) {
1107		urb->unlinked = 0;
1108		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1109	} else {
1110		rc = -ESHUTDOWN;
1111		goto done;
1112	}
1113 done:
1114	spin_unlock(&hcd_urb_list_lock);
1115	return rc;
1116}
1117EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1118
1119/**
1120 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1121 * @hcd: host controller to which @urb was submitted
1122 * @urb: URB being checked for unlinkability
1123 * @status: error code to store in @urb if the unlink succeeds
1124 *
1125 * Host controller drivers should call this routine in their dequeue()
1126 * method.  The HCD's private spinlock must be held and interrupts must
1127 * be disabled.  The actions carried out here are required for making
1128 * sure than an unlink is valid.
1129 *
1130 * Returns 0 for no error, otherwise a negative error code (in which case
1131 * the dequeue() method must fail).  The possible error codes are:
1132 *
1133 *	-EIDRM: @urb was not submitted or has already completed.
1134 *		The completion function may not have been called yet.
1135 *
1136 *	-EBUSY: @urb has already been unlinked.
1137 */
1138int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1139		int status)
1140{
1141	struct list_head	*tmp;
1142
1143	/* insist the urb is still queued */
1144	list_for_each(tmp, &urb->ep->urb_list) {
1145		if (tmp == &urb->urb_list)
1146			break;
1147	}
1148	if (tmp != &urb->urb_list)
1149		return -EIDRM;
1150
1151	/* Any status except -EINPROGRESS means something already started to
1152	 * unlink this URB from the hardware.  So there's no more work to do.
1153	 */
1154	if (urb->unlinked)
1155		return -EBUSY;
1156	urb->unlinked = status;
1157
1158	/* IRQ setup can easily be broken so that USB controllers
1159	 * never get completion IRQs ... maybe even the ones we need to
1160	 * finish unlinking the initial failed usb_set_address()
1161	 * or device descriptor fetch.
1162	 */
1163	if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1164		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1165			"Controller is probably using the wrong IRQ.\n");
1166		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1167		if (hcd->shared_hcd)
1168			set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
1169	}
1170
1171	return 0;
1172}
1173EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1174
1175/**
1176 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1177 * @hcd: host controller to which @urb was submitted
1178 * @urb: URB being unlinked
1179 *
1180 * Host controller drivers should call this routine before calling
1181 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1182 * interrupts must be disabled.  The actions carried out here are required
1183 * for URB completion.
1184 */
1185void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1186{
1187	/* clear all state linking urb to this dev (and hcd) */
1188	spin_lock(&hcd_urb_list_lock);
1189	list_del_init(&urb->urb_list);
1190	spin_unlock(&hcd_urb_list_lock);
1191}
1192EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1193
1194/*
1195 * Some usb host controllers can only perform dma using a small SRAM area.
1196 * The usb core itself is however optimized for host controllers that can dma
1197 * using regular system memory - like pci devices doing bus mastering.
1198 *
1199 * To support host controllers with limited dma capabilites we provide dma
1200 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1201 * For this to work properly the host controller code must first use the
1202 * function dma_declare_coherent_memory() to point out which memory area
1203 * that should be used for dma allocations.
1204 *
1205 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1206 * dma using dma_alloc_coherent() which in turn allocates from the memory
1207 * area pointed out with dma_declare_coherent_memory().
1208 *
1209 * So, to summarize...
1210 *
1211 * - We need "local" memory, canonical example being
1212 *   a small SRAM on a discrete controller being the
1213 *   only memory that the controller can read ...
1214 *   (a) "normal" kernel memory is no good, and
1215 *   (b) there's not enough to share
1216 *
1217 * - The only *portable* hook for such stuff in the
1218 *   DMA framework is dma_declare_coherent_memory()
1219 *
1220 * - So we use that, even though the primary requirement
1221 *   is that the memory be "local" (hence addressible
1222 *   by that device), not "coherent".
1223 *
1224 */
1225
1226static int hcd_alloc_coherent(struct usb_bus *bus,
1227			      gfp_t mem_flags, dma_addr_t *dma_handle,
1228			      void **vaddr_handle, size_t size,
1229			      enum dma_data_direction dir)
1230{
1231	unsigned char *vaddr;
1232
1233	if (*vaddr_handle == NULL) {
1234		WARN_ON_ONCE(1);
1235		return -EFAULT;
1236	}
1237
1238	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1239				 mem_flags, dma_handle);
1240	if (!vaddr)
1241		return -ENOMEM;
1242
1243	/*
1244	 * Store the virtual address of the buffer at the end
1245	 * of the allocated dma buffer. The size of the buffer
1246	 * may be uneven so use unaligned functions instead
1247	 * of just rounding up. It makes sense to optimize for
1248	 * memory footprint over access speed since the amount
1249	 * of memory available for dma may be limited.
1250	 */
1251	put_unaligned((unsigned long)*vaddr_handle,
1252		      (unsigned long *)(vaddr + size));
1253
1254	if (dir == DMA_TO_DEVICE)
1255		memcpy(vaddr, *vaddr_handle, size);
1256
1257	*vaddr_handle = vaddr;
1258	return 0;
1259}
1260
1261static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1262			      void **vaddr_handle, size_t size,
1263			      enum dma_data_direction dir)
1264{
1265	unsigned char *vaddr = *vaddr_handle;
1266
1267	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1268
1269	if (dir == DMA_FROM_DEVICE)
1270		memcpy(vaddr, *vaddr_handle, size);
1271
1272	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1273
1274	*vaddr_handle = vaddr;
1275	*dma_handle = 0;
1276}
1277
1278void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1279{
1280	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1281		dma_unmap_single(hcd->self.controller,
1282				urb->setup_dma,
1283				sizeof(struct usb_ctrlrequest),
1284				DMA_TO_DEVICE);
1285	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1286		hcd_free_coherent(urb->dev->bus,
1287				&urb->setup_dma,
1288				(void **) &urb->setup_packet,
1289				sizeof(struct usb_ctrlrequest),
1290				DMA_TO_DEVICE);
1291
1292	/* Make it safe to call this routine more than once */
1293	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1294}
1295EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1296
1297static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1298{
1299	if (hcd->driver->unmap_urb_for_dma)
1300		hcd->driver->unmap_urb_for_dma(hcd, urb);
1301	else
1302		usb_hcd_unmap_urb_for_dma(hcd, urb);
1303}
1304
1305void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1306{
1307	enum dma_data_direction dir;
1308
1309	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1310
1311	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1312	if (urb->transfer_flags & URB_DMA_MAP_SG)
1313		dma_unmap_sg(hcd->self.controller,
1314				urb->sg,
1315				urb->num_sgs,
1316				dir);
1317	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1318		dma_unmap_page(hcd->self.controller,
1319				urb->transfer_dma,
1320				urb->transfer_buffer_length,
1321				dir);
1322	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1323		dma_unmap_single(hcd->self.controller,
1324				urb->transfer_dma,
1325				urb->transfer_buffer_length,
1326				dir);
1327	else if (urb->transfer_flags & URB_MAP_LOCAL)
1328		hcd_free_coherent(urb->dev->bus,
1329				&urb->transfer_dma,
1330				&urb->transfer_buffer,
1331				urb->transfer_buffer_length,
1332				dir);
1333
1334	/* Make it safe to call this routine more than once */
1335	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1336			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1337}
1338EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1339
1340static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1341			   gfp_t mem_flags)
1342{
1343	if (hcd->driver->map_urb_for_dma)
1344		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1345	else
1346		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1347}
1348
1349int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1350			    gfp_t mem_flags)
1351{
1352	enum dma_data_direction dir;
1353	int ret = 0;
1354
1355	/* Map the URB's buffers for DMA access.
1356	 * Lower level HCD code should use *_dma exclusively,
1357	 * unless it uses pio or talks to another transport,
1358	 * or uses the provided scatter gather list for bulk.
1359	 */
1360
1361	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1362		if (hcd->self.uses_pio_for_control)
1363			return ret;
1364		if (hcd->self.uses_dma) {
1365			urb->setup_dma = dma_map_single(
1366					hcd->self.controller,
1367					urb->setup_packet,
1368					sizeof(struct usb_ctrlrequest),
1369					DMA_TO_DEVICE);
1370			if (dma_mapping_error(hcd->self.controller,
1371						urb->setup_dma))
1372				return -EAGAIN;
1373			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1374		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1375			ret = hcd_alloc_coherent(
1376					urb->dev->bus, mem_flags,
1377					&urb->setup_dma,
1378					(void **)&urb->setup_packet,
1379					sizeof(struct usb_ctrlrequest),
1380					DMA_TO_DEVICE);
1381			if (ret)
1382				return ret;
1383			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1384		}
1385	}
1386
1387	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1388	if (urb->transfer_buffer_length != 0
1389	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1390		if (hcd->self.uses_dma) {
1391			if (urb->num_sgs) {
1392				int n = dma_map_sg(
1393						hcd->self.controller,
1394						urb->sg,
1395						urb->num_sgs,
1396						dir);
1397				if (n <= 0)
1398					ret = -EAGAIN;
1399				else
1400					urb->transfer_flags |= URB_DMA_MAP_SG;
1401				if (n != urb->num_sgs) {
1402					urb->num_sgs = n;
1403					urb->transfer_flags |=
1404							URB_DMA_SG_COMBINED;
1405				}
1406			} else if (urb->sg) {
1407				struct scatterlist *sg = urb->sg;
1408				urb->transfer_dma = dma_map_page(
1409						hcd->self.controller,
1410						sg_page(sg),
1411						sg->offset,
1412						urb->transfer_buffer_length,
1413						dir);
1414				if (dma_mapping_error(hcd->self.controller,
1415						urb->transfer_dma))
1416					ret = -EAGAIN;
1417				else
1418					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1419			} else {
1420				urb->transfer_dma = dma_map_single(
1421						hcd->self.controller,
1422						urb->transfer_buffer,
1423						urb->transfer_buffer_length,
1424						dir);
1425				if (dma_mapping_error(hcd->self.controller,
1426						urb->transfer_dma))
1427					ret = -EAGAIN;
1428				else
1429					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1430			}
1431		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1432			ret = hcd_alloc_coherent(
1433					urb->dev->bus, mem_flags,
1434					&urb->transfer_dma,
1435					&urb->transfer_buffer,
1436					urb->transfer_buffer_length,
1437					dir);
1438			if (ret == 0)
1439				urb->transfer_flags |= URB_MAP_LOCAL;
1440		}
1441		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1442				URB_SETUP_MAP_LOCAL)))
1443			usb_hcd_unmap_urb_for_dma(hcd, urb);
1444	}
1445	return ret;
1446}
1447EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1448
1449/*-------------------------------------------------------------------------*/
1450
1451/* may be called in any context with a valid urb->dev usecount
1452 * caller surrenders "ownership" of urb
1453 * expects usb_submit_urb() to have sanity checked and conditioned all
1454 * inputs in the urb
1455 */
1456int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1457{
1458	int			status;
1459	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1460
1461	/* increment urb's reference count as part of giving it to the HCD
1462	 * (which will control it).  HCD guarantees that it either returns
1463	 * an error or calls giveback(), but not both.
1464	 */
1465	usb_get_urb(urb);
1466	atomic_inc(&urb->use_count);
1467	atomic_inc(&urb->dev->urbnum);
1468	usbmon_urb_submit(&hcd->self, urb);
1469
1470	/* NOTE requirements on root-hub callers (usbfs and the hub
1471	 * driver, for now):  URBs' urb->transfer_buffer must be
1472	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1473	 * they could clobber root hub response data.  Also, control
1474	 * URBs must be submitted in process context with interrupts
1475	 * enabled.
1476	 */
1477
1478	if (is_root_hub(urb->dev)) {
1479		status = rh_urb_enqueue(hcd, urb);
1480	} else {
1481		status = map_urb_for_dma(hcd, urb, mem_flags);
1482		if (likely(status == 0)) {
1483			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1484			if (unlikely(status))
1485				unmap_urb_for_dma(hcd, urb);
1486		}
1487	}
1488
1489	if (unlikely(status)) {
1490		usbmon_urb_submit_error(&hcd->self, urb, status);
1491		urb->hcpriv = NULL;
1492		INIT_LIST_HEAD(&urb->urb_list);
1493		atomic_dec(&urb->use_count);
1494		atomic_dec(&urb->dev->urbnum);
1495		if (atomic_read(&urb->reject))
1496			wake_up(&usb_kill_urb_queue);
1497		usb_put_urb(urb);
1498	}
1499	return status;
1500}
1501
1502/*-------------------------------------------------------------------------*/
1503
1504/* this makes the hcd giveback() the urb more quickly, by kicking it
1505 * off hardware queues (which may take a while) and returning it as
1506 * soon as practical.  we've already set up the urb's return status,
1507 * but we can't know if the callback completed already.
1508 */
1509static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1510{
1511	int		value;
1512
1513	if (is_root_hub(urb->dev))
1514		value = usb_rh_urb_dequeue(hcd, urb, status);
1515	else {
1516
1517		/* The only reason an HCD might fail this call is if
1518		 * it has not yet fully queued the urb to begin with.
1519		 * Such failures should be harmless. */
1520		value = hcd->driver->urb_dequeue(hcd, urb, status);
1521	}
1522	return value;
1523}
1524
1525/*
1526 * called in any context
1527 *
1528 * caller guarantees urb won't be recycled till both unlink()
1529 * and the urb's completion function return
1530 */
1531int usb_hcd_unlink_urb (struct urb *urb, int status)
1532{
1533	struct usb_hcd		*hcd;
1534	int			retval = -EIDRM;
1535	unsigned long		flags;
1536
1537	/* Prevent the device and bus from going away while
1538	 * the unlink is carried out.  If they are already gone
1539	 * then urb->use_count must be 0, since disconnected
1540	 * devices can't have any active URBs.
1541	 */
1542	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1543	if (atomic_read(&urb->use_count) > 0) {
1544		retval = 0;
1545		usb_get_dev(urb->dev);
1546	}
1547	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1548	if (retval == 0) {
1549		hcd = bus_to_hcd(urb->dev->bus);
1550		retval = unlink1(hcd, urb, status);
1551		usb_put_dev(urb->dev);
1552	}
1553
1554	if (retval == 0)
1555		retval = -EINPROGRESS;
1556	else if (retval != -EIDRM && retval != -EBUSY)
1557		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1558				urb, retval);
1559	return retval;
1560}
1561
1562/*-------------------------------------------------------------------------*/
1563
1564/**
1565 * usb_hcd_giveback_urb - return URB from HCD to device driver
1566 * @hcd: host controller returning the URB
1567 * @urb: urb being returned to the USB device driver.
1568 * @status: completion status code for the URB.
1569 * Context: in_interrupt()
1570 *
1571 * This hands the URB from HCD to its USB device driver, using its
1572 * completion function.  The HCD has freed all per-urb resources
1573 * (and is done using urb->hcpriv).  It also released all HCD locks;
1574 * the device driver won't cause problems if it frees, modifies,
1575 * or resubmits this URB.
1576 *
1577 * If @urb was unlinked, the value of @status will be overridden by
1578 * @urb->unlinked.  Erroneous short transfers are detected in case
1579 * the HCD hasn't checked for them.
1580 */
1581void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1582{
1583	urb->hcpriv = NULL;
1584	if (unlikely(urb->unlinked))
1585		status = urb->unlinked;
1586	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1587			urb->actual_length < urb->transfer_buffer_length &&
1588			!status))
1589		status = -EREMOTEIO;
1590
1591	unmap_urb_for_dma(hcd, urb);
1592	usbmon_urb_complete(&hcd->self, urb, status);
1593	usb_unanchor_urb(urb);
1594
1595	/* pass ownership to the completion handler */
1596	urb->status = status;
1597	urb->complete (urb);
1598	atomic_dec (&urb->use_count);
1599	if (unlikely(atomic_read(&urb->reject)))
1600		wake_up (&usb_kill_urb_queue);
1601	usb_put_urb (urb);
1602}
1603EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1604
1605/*-------------------------------------------------------------------------*/
1606
1607/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1608 * queue to drain completely.  The caller must first insure that no more
1609 * URBs can be submitted for this endpoint.
1610 */
1611void usb_hcd_flush_endpoint(struct usb_device *udev,
1612		struct usb_host_endpoint *ep)
1613{
1614	struct usb_hcd		*hcd;
1615	struct urb		*urb;
1616
1617	if (!ep)
1618		return;
1619	might_sleep();
1620	hcd = bus_to_hcd(udev->bus);
1621
1622	/* No more submits can occur */
1623	spin_lock_irq(&hcd_urb_list_lock);
1624rescan:
1625	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1626		int	is_in;
1627
1628		if (urb->unlinked)
1629			continue;
1630		usb_get_urb (urb);
1631		is_in = usb_urb_dir_in(urb);
1632		spin_unlock(&hcd_urb_list_lock);
1633
1634		/* kick hcd */
1635		unlink1(hcd, urb, -ESHUTDOWN);
1636		dev_dbg (hcd->self.controller,
1637			"shutdown urb %p ep%d%s%s\n",
1638			urb, usb_endpoint_num(&ep->desc),
1639			is_in ? "in" : "out",
1640			({	char *s;
1641
1642				 switch (usb_endpoint_type(&ep->desc)) {
1643				 case USB_ENDPOINT_XFER_CONTROL:
1644					s = ""; break;
1645				 case USB_ENDPOINT_XFER_BULK:
1646					s = "-bulk"; break;
1647				 case USB_ENDPOINT_XFER_INT:
1648					s = "-intr"; break;
1649				 default:
1650			 		s = "-iso"; break;
1651				};
1652				s;
1653			}));
1654		usb_put_urb (urb);
1655
1656		/* list contents may have changed */
1657		spin_lock(&hcd_urb_list_lock);
1658		goto rescan;
1659	}
1660	spin_unlock_irq(&hcd_urb_list_lock);
1661
1662	/* Wait until the endpoint queue is completely empty */
1663	while (!list_empty (&ep->urb_list)) {
1664		spin_lock_irq(&hcd_urb_list_lock);
1665
1666		/* The list may have changed while we acquired the spinlock */
1667		urb = NULL;
1668		if (!list_empty (&ep->urb_list)) {
1669			urb = list_entry (ep->urb_list.prev, struct urb,
1670					urb_list);
1671			usb_get_urb (urb);
1672		}
1673		spin_unlock_irq(&hcd_urb_list_lock);
1674
1675		if (urb) {
1676			usb_kill_urb (urb);
1677			usb_put_urb (urb);
1678		}
1679	}
1680}
1681
1682/**
1683 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1684 *				the bus bandwidth
1685 * @udev: target &usb_device
1686 * @new_config: new configuration to install
1687 * @cur_alt: the current alternate interface setting
1688 * @new_alt: alternate interface setting that is being installed
1689 *
1690 * To change configurations, pass in the new configuration in new_config,
1691 * and pass NULL for cur_alt and new_alt.
1692 *
1693 * To reset a device's configuration (put the device in the ADDRESSED state),
1694 * pass in NULL for new_config, cur_alt, and new_alt.
1695 *
1696 * To change alternate interface settings, pass in NULL for new_config,
1697 * pass in the current alternate interface setting in cur_alt,
1698 * and pass in the new alternate interface setting in new_alt.
1699 *
1700 * Returns an error if the requested bandwidth change exceeds the
1701 * bus bandwidth or host controller internal resources.
1702 */
1703int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1704		struct usb_host_config *new_config,
1705		struct usb_host_interface *cur_alt,
1706		struct usb_host_interface *new_alt)
1707{
1708	int num_intfs, i, j;
1709	struct usb_host_interface *alt = NULL;
1710	int ret = 0;
1711	struct usb_hcd *hcd;
1712	struct usb_host_endpoint *ep;
1713
1714	hcd = bus_to_hcd(udev->bus);
1715	if (!hcd->driver->check_bandwidth)
1716		return 0;
1717
1718	/* Configuration is being removed - set configuration 0 */
1719	if (!new_config && !cur_alt) {
1720		for (i = 1; i < 16; ++i) {
1721			ep = udev->ep_out[i];
1722			if (ep)
1723				hcd->driver->drop_endpoint(hcd, udev, ep);
1724			ep = udev->ep_in[i];
1725			if (ep)
1726				hcd->driver->drop_endpoint(hcd, udev, ep);
1727		}
1728		hcd->driver->check_bandwidth(hcd, udev);
1729		return 0;
1730	}
1731	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1732	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1733	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1734	 * ok to exclude it.
1735	 */
1736	if (new_config) {
1737		num_intfs = new_config->desc.bNumInterfaces;
1738		/* Remove endpoints (except endpoint 0, which is always on the
1739		 * schedule) from the old config from the schedule
1740		 */
1741		for (i = 1; i < 16; ++i) {
1742			ep = udev->ep_out[i];
1743			if (ep) {
1744				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1745				if (ret < 0)
1746					goto reset;
1747			}
1748			ep = udev->ep_in[i];
1749			if (ep) {
1750				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1751				if (ret < 0)
1752					goto reset;
1753			}
1754		}
1755		for (i = 0; i < num_intfs; ++i) {
1756			struct usb_host_interface *first_alt;
1757			int iface_num;
1758
1759			first_alt = &new_config->intf_cache[i]->altsetting[0];
1760			iface_num = first_alt->desc.bInterfaceNumber;
1761			/* Set up endpoints for alternate interface setting 0 */
1762			alt = usb_find_alt_setting(new_config, iface_num, 0);
1763			if (!alt)
1764				/* No alt setting 0? Pick the first setting. */
1765				alt = first_alt;
1766
1767			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1768				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1769				if (ret < 0)
1770					goto reset;
1771			}
1772		}
1773	}
1774	if (cur_alt && new_alt) {
1775		struct usb_interface *iface = usb_ifnum_to_if(udev,
1776				cur_alt->desc.bInterfaceNumber);
1777
1778		if (!iface)
1779			return -EINVAL;
1780		if (iface->resetting_device) {
1781			/*
1782			 * The USB core just reset the device, so the xHCI host
1783			 * and the device will think alt setting 0 is installed.
1784			 * However, the USB core will pass in the alternate
1785			 * setting installed before the reset as cur_alt.  Dig
1786			 * out the alternate setting 0 structure, or the first
1787			 * alternate setting if a broken device doesn't have alt
1788			 * setting 0.
1789			 */
1790			cur_alt = usb_altnum_to_altsetting(iface, 0);
1791			if (!cur_alt)
1792				cur_alt = &iface->altsetting[0];
1793		}
1794
1795		/* Drop all the endpoints in the current alt setting */
1796		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1797			ret = hcd->driver->drop_endpoint(hcd, udev,
1798					&cur_alt->endpoint[i]);
1799			if (ret < 0)
1800				goto reset;
1801		}
1802		/* Add all the endpoints in the new alt setting */
1803		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1804			ret = hcd->driver->add_endpoint(hcd, udev,
1805					&new_alt->endpoint[i]);
1806			if (ret < 0)
1807				goto reset;
1808		}
1809	}
1810	ret = hcd->driver->check_bandwidth(hcd, udev);
1811reset:
1812	if (ret < 0)
1813		hcd->driver->reset_bandwidth(hcd, udev);
1814	return ret;
1815}
1816
1817/* Disables the endpoint: synchronizes with the hcd to make sure all
1818 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1819 * have been called previously.  Use for set_configuration, set_interface,
1820 * driver removal, physical disconnect.
1821 *
1822 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1823 * type, maxpacket size, toggle, halt status, and scheduling.
1824 */
1825void usb_hcd_disable_endpoint(struct usb_device *udev,
1826		struct usb_host_endpoint *ep)
1827{
1828	struct usb_hcd		*hcd;
1829
1830	might_sleep();
1831	hcd = bus_to_hcd(udev->bus);
1832	if (hcd->driver->endpoint_disable)
1833		hcd->driver->endpoint_disable(hcd, ep);
1834}
1835
1836/**
1837 * usb_hcd_reset_endpoint - reset host endpoint state
1838 * @udev: USB device.
1839 * @ep:   the endpoint to reset.
1840 *
1841 * Resets any host endpoint state such as the toggle bit, sequence
1842 * number and current window.
1843 */
1844void usb_hcd_reset_endpoint(struct usb_device *udev,
1845			    struct usb_host_endpoint *ep)
1846{
1847	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1848
1849	if (hcd->driver->endpoint_reset)
1850		hcd->driver->endpoint_reset(hcd, ep);
1851	else {
1852		int epnum = usb_endpoint_num(&ep->desc);
1853		int is_out = usb_endpoint_dir_out(&ep->desc);
1854		int is_control = usb_endpoint_xfer_control(&ep->desc);
1855
1856		usb_settoggle(udev, epnum, is_out, 0);
1857		if (is_control)
1858			usb_settoggle(udev, epnum, !is_out, 0);
1859	}
1860}
1861
1862/**
1863 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1864 * @interface:		alternate setting that includes all endpoints.
1865 * @eps:		array of endpoints that need streams.
1866 * @num_eps:		number of endpoints in the array.
1867 * @num_streams:	number of streams to allocate.
1868 * @mem_flags:		flags hcd should use to allocate memory.
1869 *
1870 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1871 * Drivers may queue multiple transfers to different stream IDs, which may
1872 * complete in a different order than they were queued.
1873 */
1874int usb_alloc_streams(struct usb_interface *interface,
1875		struct usb_host_endpoint **eps, unsigned int num_eps,
1876		unsigned int num_streams, gfp_t mem_flags)
1877{
1878	struct usb_hcd *hcd;
1879	struct usb_device *dev;
1880	int i;
1881
1882	dev = interface_to_usbdev(interface);
1883	hcd = bus_to_hcd(dev->bus);
1884	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1885		return -EINVAL;
1886	if (dev->speed != USB_SPEED_SUPER)
1887		return -EINVAL;
1888
1889	/* Streams only apply to bulk endpoints. */
1890	for (i = 0; i < num_eps; i++)
1891		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1892			return -EINVAL;
1893
1894	return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1895			num_streams, mem_flags);
1896}
1897EXPORT_SYMBOL_GPL(usb_alloc_streams);
1898
1899/**
1900 * usb_free_streams - free bulk endpoint stream IDs.
1901 * @interface:	alternate setting that includes all endpoints.
1902 * @eps:	array of endpoints to remove streams from.
1903 * @num_eps:	number of endpoints in the array.
1904 * @mem_flags:	flags hcd should use to allocate memory.
1905 *
1906 * Reverts a group of bulk endpoints back to not using stream IDs.
1907 * Can fail if we are given bad arguments, or HCD is broken.
1908 */
1909void usb_free_streams(struct usb_interface *interface,
1910		struct usb_host_endpoint **eps, unsigned int num_eps,
1911		gfp_t mem_flags)
1912{
1913	struct usb_hcd *hcd;
1914	struct usb_device *dev;
1915	int i;
1916
1917	dev = interface_to_usbdev(interface);
1918	hcd = bus_to_hcd(dev->bus);
1919	if (dev->speed != USB_SPEED_SUPER)
1920		return;
1921
1922	/* Streams only apply to bulk endpoints. */
1923	for (i = 0; i < num_eps; i++)
1924		if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1925			return;
1926
1927	hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1928}
1929EXPORT_SYMBOL_GPL(usb_free_streams);
1930
1931/* Protect against drivers that try to unlink URBs after the device
1932 * is gone, by waiting until all unlinks for @udev are finished.
1933 * Since we don't currently track URBs by device, simply wait until
1934 * nothing is running in the locked region of usb_hcd_unlink_urb().
1935 */
1936void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1937{
1938	spin_lock_irq(&hcd_urb_unlink_lock);
1939	spin_unlock_irq(&hcd_urb_unlink_lock);
1940}
1941
1942/*-------------------------------------------------------------------------*/
1943
1944/* called in any context */
1945int usb_hcd_get_frame_number (struct usb_device *udev)
1946{
1947	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1948
1949	if (!HCD_RH_RUNNING(hcd))
1950		return -ESHUTDOWN;
1951	return hcd->driver->get_frame_number (hcd);
1952}
1953
1954/*-------------------------------------------------------------------------*/
1955
1956#ifdef	CONFIG_PM
1957
1958int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1959{
1960	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1961	int		status;
1962	int		old_state = hcd->state;
1963
1964	dev_dbg(&rhdev->dev, "bus %s%s\n",
1965			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
 
1966	if (HCD_DEAD(hcd)) {
1967		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1968		return 0;
1969	}
1970
1971	if (!hcd->driver->bus_suspend) {
1972		status = -ENOENT;
1973	} else {
1974		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1975		hcd->state = HC_STATE_QUIESCING;
1976		status = hcd->driver->bus_suspend(hcd);
1977	}
1978	if (status == 0) {
1979		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1980		hcd->state = HC_STATE_SUSPENDED;
 
 
 
 
 
 
 
 
 
 
 
 
1981	} else {
1982		spin_lock_irq(&hcd_root_hub_lock);
1983		if (!HCD_DEAD(hcd)) {
1984			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1985			hcd->state = old_state;
1986		}
1987		spin_unlock_irq(&hcd_root_hub_lock);
1988		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1989				"suspend", status);
1990	}
1991	return status;
1992}
1993
1994int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1995{
1996	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1997	int		status;
1998	int		old_state = hcd->state;
1999
2000	dev_dbg(&rhdev->dev, "usb %s%s\n",
2001			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
2002	if (HCD_DEAD(hcd)) {
2003		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2004		return 0;
2005	}
2006	if (!hcd->driver->bus_resume)
2007		return -ENOENT;
2008	if (HCD_RH_RUNNING(hcd))
2009		return 0;
2010
2011	hcd->state = HC_STATE_RESUMING;
2012	status = hcd->driver->bus_resume(hcd);
2013	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2014	if (status == 0) {
2015		/* TRSMRCY = 10 msec */
2016		msleep(10);
2017		spin_lock_irq(&hcd_root_hub_lock);
2018		if (!HCD_DEAD(hcd)) {
2019			usb_set_device_state(rhdev, rhdev->actconfig
2020					? USB_STATE_CONFIGURED
2021					: USB_STATE_ADDRESS);
2022			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2023			hcd->state = HC_STATE_RUNNING;
2024		}
2025		spin_unlock_irq(&hcd_root_hub_lock);
2026	} else {
2027		hcd->state = old_state;
2028		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2029				"resume", status);
2030		if (status != -ESHUTDOWN)
2031			usb_hc_died(hcd);
2032	}
2033	return status;
2034}
2035
2036#endif	/* CONFIG_PM */
2037
2038#ifdef	CONFIG_USB_SUSPEND
2039
2040/* Workqueue routine for root-hub remote wakeup */
2041static void hcd_resume_work(struct work_struct *work)
2042{
2043	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2044	struct usb_device *udev = hcd->self.root_hub;
2045
2046	usb_lock_device(udev);
2047	usb_remote_wakeup(udev);
2048	usb_unlock_device(udev);
2049}
2050
2051/**
2052 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
2053 * @hcd: host controller for this root hub
2054 *
2055 * The USB host controller calls this function when its root hub is
2056 * suspended (with the remote wakeup feature enabled) and a remote
2057 * wakeup request is received.  The routine submits a workqueue request
2058 * to resume the root hub (that is, manage its downstream ports again).
2059 */
2060void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2061{
2062	unsigned long flags;
2063
2064	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2065	if (hcd->rh_registered) {
2066		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2067		queue_work(pm_wq, &hcd->wakeup_work);
2068	}
2069	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2070}
2071EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2072
2073#endif	/* CONFIG_USB_SUSPEND */
2074
2075/*-------------------------------------------------------------------------*/
2076
2077#ifdef	CONFIG_USB_OTG
2078
2079/**
2080 * usb_bus_start_enum - start immediate enumeration (for OTG)
2081 * @bus: the bus (must use hcd framework)
2082 * @port_num: 1-based number of port; usually bus->otg_port
2083 * Context: in_interrupt()
2084 *
2085 * Starts enumeration, with an immediate reset followed later by
2086 * khubd identifying and possibly configuring the device.
2087 * This is needed by OTG controller drivers, where it helps meet
2088 * HNP protocol timing requirements for starting a port reset.
2089 */
2090int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2091{
2092	struct usb_hcd		*hcd;
2093	int			status = -EOPNOTSUPP;
2094
2095	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2096	 * boards with root hubs hooked up to internal devices (instead of
2097	 * just the OTG port) may need more attention to resetting...
2098	 */
2099	hcd = container_of (bus, struct usb_hcd, self);
2100	if (port_num && hcd->driver->start_port_reset)
2101		status = hcd->driver->start_port_reset(hcd, port_num);
2102
2103	/* run khubd shortly after (first) root port reset finishes;
2104	 * it may issue others, until at least 50 msecs have passed.
2105	 */
2106	if (status == 0)
2107		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2108	return status;
2109}
2110EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2111
2112#endif
2113
2114/*-------------------------------------------------------------------------*/
2115
2116/**
2117 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2118 * @irq: the IRQ being raised
2119 * @__hcd: pointer to the HCD whose IRQ is being signaled
2120 *
2121 * If the controller isn't HALTed, calls the driver's irq handler.
2122 * Checks whether the controller is now dead.
2123 */
2124irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2125{
2126	struct usb_hcd		*hcd = __hcd;
2127	unsigned long		flags;
2128	irqreturn_t		rc;
2129
2130	/* IRQF_DISABLED doesn't work correctly with shared IRQs
2131	 * when the first handler doesn't use it.  So let's just
2132	 * assume it's never used.
2133	 */
2134	local_irq_save(flags);
2135
2136	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
2137		rc = IRQ_NONE;
2138	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2139		rc = IRQ_NONE;
2140	} else {
2141		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2142		if (hcd->shared_hcd)
2143			set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
2144		rc = IRQ_HANDLED;
2145	}
2146
2147	local_irq_restore(flags);
2148	return rc;
2149}
2150EXPORT_SYMBOL_GPL(usb_hcd_irq);
2151
2152/*-------------------------------------------------------------------------*/
2153
2154/**
2155 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2156 * @hcd: pointer to the HCD representing the controller
2157 *
2158 * This is called by bus glue to report a USB host controller that died
2159 * while operations may still have been pending.  It's called automatically
2160 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2161 *
2162 * Only call this function with the primary HCD.
2163 */
2164void usb_hc_died (struct usb_hcd *hcd)
2165{
2166	unsigned long flags;
2167
2168	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2169
2170	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2171	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2172	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2173	if (hcd->rh_registered) {
2174		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2175
2176		/* make khubd clean up old urbs and devices */
2177		usb_set_device_state (hcd->self.root_hub,
2178				USB_STATE_NOTATTACHED);
2179		usb_kick_khubd (hcd->self.root_hub);
2180	}
2181	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2182		hcd = hcd->shared_hcd;
2183		if (hcd->rh_registered) {
2184			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2185
2186			/* make khubd clean up old urbs and devices */
2187			usb_set_device_state(hcd->self.root_hub,
2188					USB_STATE_NOTATTACHED);
2189			usb_kick_khubd(hcd->self.root_hub);
2190		}
2191	}
2192	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2193	/* Make sure that the other roothub is also deallocated. */
2194}
2195EXPORT_SYMBOL_GPL (usb_hc_died);
2196
2197/*-------------------------------------------------------------------------*/
2198
2199/**
2200 * usb_create_shared_hcd - create and initialize an HCD structure
2201 * @driver: HC driver that will use this hcd
2202 * @dev: device for this HC, stored in hcd->self.controller
2203 * @bus_name: value to store in hcd->self.bus_name
2204 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2205 *              PCI device.  Only allocate certain resources for the primary HCD
2206 * Context: !in_interrupt()
2207 *
2208 * Allocate a struct usb_hcd, with extra space at the end for the
2209 * HC driver's private data.  Initialize the generic members of the
2210 * hcd structure.
2211 *
2212 * If memory is unavailable, returns NULL.
2213 */
2214struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2215		struct device *dev, const char *bus_name,
2216		struct usb_hcd *primary_hcd)
2217{
2218	struct usb_hcd *hcd;
2219
2220	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2221	if (!hcd) {
2222		dev_dbg (dev, "hcd alloc failed\n");
2223		return NULL;
2224	}
2225	if (primary_hcd == NULL) {
2226		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2227				GFP_KERNEL);
2228		if (!hcd->bandwidth_mutex) {
2229			kfree(hcd);
2230			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2231			return NULL;
2232		}
2233		mutex_init(hcd->bandwidth_mutex);
2234		dev_set_drvdata(dev, hcd);
2235	} else {
2236		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2237		hcd->primary_hcd = primary_hcd;
2238		primary_hcd->primary_hcd = primary_hcd;
2239		hcd->shared_hcd = primary_hcd;
2240		primary_hcd->shared_hcd = hcd;
2241	}
2242
2243	kref_init(&hcd->kref);
2244
2245	usb_bus_init(&hcd->self);
2246	hcd->self.controller = dev;
2247	hcd->self.bus_name = bus_name;
2248	hcd->self.uses_dma = (dev->dma_mask != NULL);
2249
2250	init_timer(&hcd->rh_timer);
2251	hcd->rh_timer.function = rh_timer_func;
2252	hcd->rh_timer.data = (unsigned long) hcd;
2253#ifdef CONFIG_USB_SUSPEND
2254	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2255#endif
2256
2257	hcd->driver = driver;
2258	hcd->speed = driver->flags & HCD_MASK;
2259	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2260			"USB Host Controller";
2261	return hcd;
2262}
2263EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2264
2265/**
2266 * usb_create_hcd - create and initialize an HCD structure
2267 * @driver: HC driver that will use this hcd
2268 * @dev: device for this HC, stored in hcd->self.controller
2269 * @bus_name: value to store in hcd->self.bus_name
2270 * Context: !in_interrupt()
2271 *
2272 * Allocate a struct usb_hcd, with extra space at the end for the
2273 * HC driver's private data.  Initialize the generic members of the
2274 * hcd structure.
2275 *
2276 * If memory is unavailable, returns NULL.
2277 */
2278struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2279		struct device *dev, const char *bus_name)
2280{
2281	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2282}
2283EXPORT_SYMBOL_GPL(usb_create_hcd);
2284
2285/*
2286 * Roothubs that share one PCI device must also share the bandwidth mutex.
2287 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2288 * deallocated.
2289 *
2290 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2291 * freed.  When hcd_release() is called for the non-primary HCD, set the
2292 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2293 * freed shortly).
2294 */
2295static void hcd_release (struct kref *kref)
2296{
2297	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2298
2299	if (usb_hcd_is_primary_hcd(hcd))
2300		kfree(hcd->bandwidth_mutex);
2301	else
2302		hcd->shared_hcd->shared_hcd = NULL;
2303	kfree(hcd);
2304}
2305
2306struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2307{
2308	if (hcd)
2309		kref_get (&hcd->kref);
2310	return hcd;
2311}
2312EXPORT_SYMBOL_GPL(usb_get_hcd);
2313
2314void usb_put_hcd (struct usb_hcd *hcd)
2315{
2316	if (hcd)
2317		kref_put (&hcd->kref, hcd_release);
2318}
2319EXPORT_SYMBOL_GPL(usb_put_hcd);
2320
2321int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2322{
2323	if (!hcd->primary_hcd)
2324		return 1;
2325	return hcd == hcd->primary_hcd;
2326}
2327EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2328
2329static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2330		unsigned int irqnum, unsigned long irqflags)
2331{
2332	int retval;
2333
2334	if (hcd->driver->irq) {
2335
2336		/* IRQF_DISABLED doesn't work as advertised when used together
2337		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2338		 * interrupts we can remove it here.
2339		 */
2340		if (irqflags & IRQF_SHARED)
2341			irqflags &= ~IRQF_DISABLED;
2342
2343		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2344				hcd->driver->description, hcd->self.busnum);
2345		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2346				hcd->irq_descr, hcd);
2347		if (retval != 0) {
2348			dev_err(hcd->self.controller,
2349					"request interrupt %d failed\n",
2350					irqnum);
2351			return retval;
2352		}
2353		hcd->irq = irqnum;
2354		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2355				(hcd->driver->flags & HCD_MEMORY) ?
2356					"io mem" : "io base",
2357					(unsigned long long)hcd->rsrc_start);
2358	} else {
2359		hcd->irq = -1;
2360		if (hcd->rsrc_start)
2361			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2362					(hcd->driver->flags & HCD_MEMORY) ?
2363					"io mem" : "io base",
2364					(unsigned long long)hcd->rsrc_start);
2365	}
2366	return 0;
2367}
2368
2369/**
2370 * usb_add_hcd - finish generic HCD structure initialization and register
2371 * @hcd: the usb_hcd structure to initialize
2372 * @irqnum: Interrupt line to allocate
2373 * @irqflags: Interrupt type flags
2374 *
2375 * Finish the remaining parts of generic HCD initialization: allocate the
2376 * buffers of consistent memory, register the bus, request the IRQ line,
2377 * and call the driver's reset() and start() routines.
2378 */
2379int usb_add_hcd(struct usb_hcd *hcd,
2380		unsigned int irqnum, unsigned long irqflags)
2381{
2382	int retval;
2383	struct usb_device *rhdev;
2384
2385	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2386
2387	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2388	if (authorized_default < 0 || authorized_default > 1)
2389		hcd->authorized_default = hcd->wireless? 0 : 1;
2390	else
2391		hcd->authorized_default = authorized_default;
2392	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2393
2394	/* HC is in reset state, but accessible.  Now do the one-time init,
2395	 * bottom up so that hcds can customize the root hubs before khubd
2396	 * starts talking to them.  (Note, bus id is assigned early too.)
2397	 */
2398	if ((retval = hcd_buffer_create(hcd)) != 0) {
2399		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2400		return retval;
2401	}
2402
2403	if ((retval = usb_register_bus(&hcd->self)) < 0)
2404		goto err_register_bus;
2405
2406	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2407		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2408		retval = -ENOMEM;
2409		goto err_allocate_root_hub;
2410	}
2411	hcd->self.root_hub = rhdev;
2412
2413	switch (hcd->speed) {
2414	case HCD_USB11:
2415		rhdev->speed = USB_SPEED_FULL;
2416		break;
2417	case HCD_USB2:
2418		rhdev->speed = USB_SPEED_HIGH;
2419		break;
2420	case HCD_USB3:
2421		rhdev->speed = USB_SPEED_SUPER;
2422		break;
2423	default:
2424		retval = -EINVAL;
2425		goto err_set_rh_speed;
2426	}
2427
2428	/* wakeup flag init defaults to "everything works" for root hubs,
2429	 * but drivers can override it in reset() if needed, along with
2430	 * recording the overall controller's system wakeup capability.
2431	 */
2432	device_init_wakeup(&rhdev->dev, 1);
2433
2434	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2435	 * registered.  But since the controller can die at any time,
2436	 * let's initialize the flag before touching the hardware.
2437	 */
2438	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2439
2440	/* "reset" is misnamed; its role is now one-time init. the controller
2441	 * should already have been reset (and boot firmware kicked off etc).
2442	 */
2443	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2444		dev_err(hcd->self.controller, "can't setup\n");
2445		goto err_hcd_driver_setup;
2446	}
2447	hcd->rh_pollable = 1;
2448
2449	/* NOTE: root hub and controller capabilities may not be the same */
2450	if (device_can_wakeup(hcd->self.controller)
2451			&& device_can_wakeup(&hcd->self.root_hub->dev))
2452		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2453
2454	/* enable irqs just before we start the controller */
2455	if (usb_hcd_is_primary_hcd(hcd)) {
 
 
2456		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2457		if (retval)
2458			goto err_request_irq;
2459	}
2460
2461	hcd->state = HC_STATE_RUNNING;
2462	retval = hcd->driver->start(hcd);
2463	if (retval < 0) {
2464		dev_err(hcd->self.controller, "startup error %d\n", retval);
2465		goto err_hcd_driver_start;
2466	}
2467
2468	/* starting here, usbcore will pay attention to this root hub */
2469	rhdev->bus_mA = min(500u, hcd->power_budget);
2470	if ((retval = register_root_hub(hcd)) != 0)
2471		goto err_register_root_hub;
2472
2473	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2474	if (retval < 0) {
2475		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2476		       retval);
2477		goto error_create_attr_group;
2478	}
2479	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2480		usb_hcd_poll_rh_status(hcd);
 
 
 
 
 
 
 
2481	return retval;
2482
2483error_create_attr_group:
2484	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2485	if (HC_IS_RUNNING(hcd->state))
2486		hcd->state = HC_STATE_QUIESCING;
2487	spin_lock_irq(&hcd_root_hub_lock);
2488	hcd->rh_registered = 0;
2489	spin_unlock_irq(&hcd_root_hub_lock);
2490
2491#ifdef CONFIG_USB_SUSPEND
2492	cancel_work_sync(&hcd->wakeup_work);
2493#endif
2494	mutex_lock(&usb_bus_list_lock);
2495	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2496	mutex_unlock(&usb_bus_list_lock);
2497err_register_root_hub:
2498	hcd->rh_pollable = 0;
2499	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2500	del_timer_sync(&hcd->rh_timer);
2501	hcd->driver->stop(hcd);
2502	hcd->state = HC_STATE_HALT;
2503	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2504	del_timer_sync(&hcd->rh_timer);
2505err_hcd_driver_start:
2506	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0)
2507		free_irq(irqnum, hcd);
2508err_request_irq:
2509err_hcd_driver_setup:
2510err_set_rh_speed:
2511	usb_put_dev(hcd->self.root_hub);
2512err_allocate_root_hub:
2513	usb_deregister_bus(&hcd->self);
2514err_register_bus:
2515	hcd_buffer_destroy(hcd);
2516	return retval;
2517} 
2518EXPORT_SYMBOL_GPL(usb_add_hcd);
2519
2520/**
2521 * usb_remove_hcd - shutdown processing for generic HCDs
2522 * @hcd: the usb_hcd structure to remove
2523 * Context: !in_interrupt()
2524 *
2525 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2526 * invoking the HCD's stop() method.
2527 */
2528void usb_remove_hcd(struct usb_hcd *hcd)
2529{
2530	struct usb_device *rhdev = hcd->self.root_hub;
2531
2532	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2533
2534	usb_get_dev(rhdev);
2535	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2536
2537	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2538	if (HC_IS_RUNNING (hcd->state))
2539		hcd->state = HC_STATE_QUIESCING;
2540
2541	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2542	spin_lock_irq (&hcd_root_hub_lock);
2543	hcd->rh_registered = 0;
2544	spin_unlock_irq (&hcd_root_hub_lock);
2545
2546#ifdef CONFIG_USB_SUSPEND
2547	cancel_work_sync(&hcd->wakeup_work);
2548#endif
2549
2550	mutex_lock(&usb_bus_list_lock);
2551	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2552	mutex_unlock(&usb_bus_list_lock);
2553
2554	/* Prevent any more root-hub status calls from the timer.
2555	 * The HCD might still restart the timer (if a port status change
2556	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2557	 * the hub_status_data() callback.
2558	 */
2559	hcd->rh_pollable = 0;
2560	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2561	del_timer_sync(&hcd->rh_timer);
2562
2563	hcd->driver->stop(hcd);
2564	hcd->state = HC_STATE_HALT;
2565
2566	/* In case the HCD restarted the timer, stop it again. */
2567	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2568	del_timer_sync(&hcd->rh_timer);
2569
2570	if (usb_hcd_is_primary_hcd(hcd)) {
2571		if (hcd->irq >= 0)
2572			free_irq(hcd->irq, hcd);
2573	}
2574
2575	usb_put_dev(hcd->self.root_hub);
2576	usb_deregister_bus(&hcd->self);
2577	hcd_buffer_destroy(hcd);
2578}
2579EXPORT_SYMBOL_GPL(usb_remove_hcd);
2580
2581void
2582usb_hcd_platform_shutdown(struct platform_device* dev)
2583{
2584	struct usb_hcd *hcd = platform_get_drvdata(dev);
2585
2586	if (hcd->driver->shutdown)
2587		hcd->driver->shutdown(hcd);
2588}
2589EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2590
2591/*-------------------------------------------------------------------------*/
2592
2593#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2594
2595struct usb_mon_operations *mon_ops;
2596
2597/*
2598 * The registration is unlocked.
2599 * We do it this way because we do not want to lock in hot paths.
2600 *
2601 * Notice that the code is minimally error-proof. Because usbmon needs
2602 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2603 */
2604 
2605int usb_mon_register (struct usb_mon_operations *ops)
2606{
2607
2608	if (mon_ops)
2609		return -EBUSY;
2610
2611	mon_ops = ops;
2612	mb();
2613	return 0;
2614}
2615EXPORT_SYMBOL_GPL (usb_mon_register);
2616
2617void usb_mon_deregister (void)
2618{
2619
2620	if (mon_ops == NULL) {
2621		printk(KERN_ERR "USB: monitor was not registered\n");
2622		return;
2623	}
2624	mon_ops = NULL;
2625	mb();
2626}
2627EXPORT_SYMBOL_GPL (usb_mon_deregister);
2628
2629#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
v3.5.6
   1/*
   2 * (C) Copyright Linus Torvalds 1999
   3 * (C) Copyright Johannes Erdfelt 1999-2001
   4 * (C) Copyright Andreas Gal 1999
   5 * (C) Copyright Gregory P. Smith 1999
   6 * (C) Copyright Deti Fliegl 1999
   7 * (C) Copyright Randy Dunlap 2000
   8 * (C) Copyright David Brownell 2000-2002
   9 * 
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of the GNU General Public License as published by the
  12 * Free Software Foundation; either version 2 of the License, or (at your
  13 * option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  18 * for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software Foundation,
  22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/version.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/completion.h>
  30#include <linux/utsname.h>
  31#include <linux/mm.h>
  32#include <asm/io.h>
  33#include <linux/device.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/mutex.h>
  36#include <asm/irq.h>
  37#include <asm/byteorder.h>
  38#include <asm/unaligned.h>
  39#include <linux/platform_device.h>
  40#include <linux/workqueue.h>
  41
  42#include <linux/usb.h>
  43#include <linux/usb/hcd.h>
  44
  45#include "usb.h"
  46
  47
  48/*-------------------------------------------------------------------------*/
  49
  50/*
  51 * USB Host Controller Driver framework
  52 *
  53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  54 * HCD-specific behaviors/bugs.
  55 *
  56 * This does error checks, tracks devices and urbs, and delegates to a
  57 * "hc_driver" only for code (and data) that really needs to know about
  58 * hardware differences.  That includes root hub registers, i/o queues,
  59 * and so on ... but as little else as possible.
  60 *
  61 * Shared code includes most of the "root hub" code (these are emulated,
  62 * though each HC's hardware works differently) and PCI glue, plus request
  63 * tracking overhead.  The HCD code should only block on spinlocks or on
  64 * hardware handshaking; blocking on software events (such as other kernel
  65 * threads releasing resources, or completing actions) is all generic.
  66 *
  67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  69 * only by the hub driver ... and that neither should be seen or used by
  70 * usb client device drivers.
  71 *
  72 * Contributors of ideas or unattributed patches include: David Brownell,
  73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  74 *
  75 * HISTORY:
  76 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  77 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  78 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  79 */
  80
  81/*-------------------------------------------------------------------------*/
  82
  83/* Keep track of which host controller drivers are loaded */
  84unsigned long usb_hcds_loaded;
  85EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  86
  87/* host controllers we manage */
  88LIST_HEAD (usb_bus_list);
  89EXPORT_SYMBOL_GPL (usb_bus_list);
  90
  91/* used when allocating bus numbers */
  92#define USB_MAXBUS		64
  93struct usb_busmap {
  94	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
  95};
  96static struct usb_busmap busmap;
  97
  98/* used when updating list of hcds */
  99DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
 100EXPORT_SYMBOL_GPL (usb_bus_list_lock);
 101
 102/* used for controlling access to virtual root hubs */
 103static DEFINE_SPINLOCK(hcd_root_hub_lock);
 104
 105/* used when updating an endpoint's URB list */
 106static DEFINE_SPINLOCK(hcd_urb_list_lock);
 107
 108/* used to protect against unlinking URBs after the device is gone */
 109static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 110
 111/* wait queue for synchronous unlinks */
 112DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 113
 114static inline int is_root_hub(struct usb_device *udev)
 115{
 116	return (udev->parent == NULL);
 117}
 118
 119/*-------------------------------------------------------------------------*/
 120
 121/*
 122 * Sharable chunks of root hub code.
 123 */
 124
 125/*-------------------------------------------------------------------------*/
 126
 127#define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
 128#define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
 129
 130/* usb 3.0 root hub device descriptor */
 131static const u8 usb3_rh_dev_descriptor[18] = {
 132	0x12,       /*  __u8  bLength; */
 133	0x01,       /*  __u8  bDescriptorType; Device */
 134	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 135
 136	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 137	0x00,	    /*  __u8  bDeviceSubClass; */
 138	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 139	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 140
 141	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 142	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 143	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 144
 145	0x03,       /*  __u8  iManufacturer; */
 146	0x02,       /*  __u8  iProduct; */
 147	0x01,       /*  __u8  iSerialNumber; */
 148	0x01        /*  __u8  bNumConfigurations; */
 149};
 150
 151/* usb 2.0 root hub device descriptor */
 152static const u8 usb2_rh_dev_descriptor [18] = {
 153	0x12,       /*  __u8  bLength; */
 154	0x01,       /*  __u8  bDescriptorType; Device */
 155	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 156
 157	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 158	0x00,	    /*  __u8  bDeviceSubClass; */
 159	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 160	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 161
 162	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 163	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 164	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 165
 166	0x03,       /*  __u8  iManufacturer; */
 167	0x02,       /*  __u8  iProduct; */
 168	0x01,       /*  __u8  iSerialNumber; */
 169	0x01        /*  __u8  bNumConfigurations; */
 170};
 171
 172/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 173
 174/* usb 1.1 root hub device descriptor */
 175static const u8 usb11_rh_dev_descriptor [18] = {
 176	0x12,       /*  __u8  bLength; */
 177	0x01,       /*  __u8  bDescriptorType; Device */
 178	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 179
 180	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 181	0x00,	    /*  __u8  bDeviceSubClass; */
 182	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 183	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 184
 185	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 186	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 187	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 188
 189	0x03,       /*  __u8  iManufacturer; */
 190	0x02,       /*  __u8  iProduct; */
 191	0x01,       /*  __u8  iSerialNumber; */
 192	0x01        /*  __u8  bNumConfigurations; */
 193};
 194
 195
 196/*-------------------------------------------------------------------------*/
 197
 198/* Configuration descriptors for our root hubs */
 199
 200static const u8 fs_rh_config_descriptor [] = {
 201
 202	/* one configuration */
 203	0x09,       /*  __u8  bLength; */
 204	0x02,       /*  __u8  bDescriptorType; Configuration */
 205	0x19, 0x00, /*  __le16 wTotalLength; */
 206	0x01,       /*  __u8  bNumInterfaces; (1) */
 207	0x01,       /*  __u8  bConfigurationValue; */
 208	0x00,       /*  __u8  iConfiguration; */
 209	0xc0,       /*  __u8  bmAttributes; 
 210				 Bit 7: must be set,
 211				     6: Self-powered,
 212				     5: Remote wakeup,
 213				     4..0: resvd */
 214	0x00,       /*  __u8  MaxPower; */
 215      
 216	/* USB 1.1:
 217	 * USB 2.0, single TT organization (mandatory):
 218	 *	one interface, protocol 0
 219	 *
 220	 * USB 2.0, multiple TT organization (optional):
 221	 *	two interfaces, protocols 1 (like single TT)
 222	 *	and 2 (multiple TT mode) ... config is
 223	 *	sometimes settable
 224	 *	NOT IMPLEMENTED
 225	 */
 226
 227	/* one interface */
 228	0x09,       /*  __u8  if_bLength; */
 229	0x04,       /*  __u8  if_bDescriptorType; Interface */
 230	0x00,       /*  __u8  if_bInterfaceNumber; */
 231	0x00,       /*  __u8  if_bAlternateSetting; */
 232	0x01,       /*  __u8  if_bNumEndpoints; */
 233	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 234	0x00,       /*  __u8  if_bInterfaceSubClass; */
 235	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 236	0x00,       /*  __u8  if_iInterface; */
 237     
 238	/* one endpoint (status change endpoint) */
 239	0x07,       /*  __u8  ep_bLength; */
 240	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 241	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 242 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 243 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 244	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 245};
 246
 247static const u8 hs_rh_config_descriptor [] = {
 248
 249	/* one configuration */
 250	0x09,       /*  __u8  bLength; */
 251	0x02,       /*  __u8  bDescriptorType; Configuration */
 252	0x19, 0x00, /*  __le16 wTotalLength; */
 253	0x01,       /*  __u8  bNumInterfaces; (1) */
 254	0x01,       /*  __u8  bConfigurationValue; */
 255	0x00,       /*  __u8  iConfiguration; */
 256	0xc0,       /*  __u8  bmAttributes; 
 257				 Bit 7: must be set,
 258				     6: Self-powered,
 259				     5: Remote wakeup,
 260				     4..0: resvd */
 261	0x00,       /*  __u8  MaxPower; */
 262      
 263	/* USB 1.1:
 264	 * USB 2.0, single TT organization (mandatory):
 265	 *	one interface, protocol 0
 266	 *
 267	 * USB 2.0, multiple TT organization (optional):
 268	 *	two interfaces, protocols 1 (like single TT)
 269	 *	and 2 (multiple TT mode) ... config is
 270	 *	sometimes settable
 271	 *	NOT IMPLEMENTED
 272	 */
 273
 274	/* one interface */
 275	0x09,       /*  __u8  if_bLength; */
 276	0x04,       /*  __u8  if_bDescriptorType; Interface */
 277	0x00,       /*  __u8  if_bInterfaceNumber; */
 278	0x00,       /*  __u8  if_bAlternateSetting; */
 279	0x01,       /*  __u8  if_bNumEndpoints; */
 280	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 281	0x00,       /*  __u8  if_bInterfaceSubClass; */
 282	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 283	0x00,       /*  __u8  if_iInterface; */
 284     
 285	/* one endpoint (status change endpoint) */
 286	0x07,       /*  __u8  ep_bLength; */
 287	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 288	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 289 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 290		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 291		     * see hub.c:hub_configure() for details. */
 292	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 293	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 294};
 295
 296static const u8 ss_rh_config_descriptor[] = {
 297	/* one configuration */
 298	0x09,       /*  __u8  bLength; */
 299	0x02,       /*  __u8  bDescriptorType; Configuration */
 300	0x1f, 0x00, /*  __le16 wTotalLength; */
 301	0x01,       /*  __u8  bNumInterfaces; (1) */
 302	0x01,       /*  __u8  bConfigurationValue; */
 303	0x00,       /*  __u8  iConfiguration; */
 304	0xc0,       /*  __u8  bmAttributes;
 305				 Bit 7: must be set,
 306				     6: Self-powered,
 307				     5: Remote wakeup,
 308				     4..0: resvd */
 309	0x00,       /*  __u8  MaxPower; */
 310
 311	/* one interface */
 312	0x09,       /*  __u8  if_bLength; */
 313	0x04,       /*  __u8  if_bDescriptorType; Interface */
 314	0x00,       /*  __u8  if_bInterfaceNumber; */
 315	0x00,       /*  __u8  if_bAlternateSetting; */
 316	0x01,       /*  __u8  if_bNumEndpoints; */
 317	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 318	0x00,       /*  __u8  if_bInterfaceSubClass; */
 319	0x00,       /*  __u8  if_bInterfaceProtocol; */
 320	0x00,       /*  __u8  if_iInterface; */
 321
 322	/* one endpoint (status change endpoint) */
 323	0x07,       /*  __u8  ep_bLength; */
 324	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 325	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 326	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 327		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 328		     * see hub.c:hub_configure() for details. */
 329	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 330	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 331
 332	/* one SuperSpeed endpoint companion descriptor */
 333	0x06,        /* __u8 ss_bLength */
 334	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
 335	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 336	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 337	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 338};
 339
 340/* authorized_default behaviour:
 341 * -1 is authorized for all devices except wireless (old behaviour)
 342 * 0 is unauthorized for all devices
 343 * 1 is authorized for all devices
 344 */
 345static int authorized_default = -1;
 346module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 347MODULE_PARM_DESC(authorized_default,
 348		"Default USB device authorization: 0 is not authorized, 1 is "
 349		"authorized, -1 is authorized except for wireless USB (default, "
 350		"old behaviour");
 351/*-------------------------------------------------------------------------*/
 352
 353/**
 354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 355 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 356 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 357 * @len: Length (in bytes; may be odd) of descriptor buffer.
 358 *
 359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
 360 * buflen, whichever is less.
 361 *
 362 * USB String descriptors can contain at most 126 characters; input
 363 * strings longer than that are truncated.
 364 */
 365static unsigned
 366ascii2desc(char const *s, u8 *buf, unsigned len)
 367{
 368	unsigned n, t = 2 + 2*strlen(s);
 369
 370	if (t > 254)
 371		t = 254;	/* Longest possible UTF string descriptor */
 372	if (len > t)
 373		len = t;
 374
 375	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 376
 377	n = len;
 378	while (n--) {
 379		*buf++ = t;
 380		if (!n--)
 381			break;
 382		*buf++ = t >> 8;
 383		t = (unsigned char)*s++;
 384	}
 385	return len;
 386}
 387
 388/**
 389 * rh_string() - provides string descriptors for root hub
 390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 391 * @hcd: the host controller for this root hub
 392 * @data: buffer for output packet
 393 * @len: length of the provided buffer
 394 *
 395 * Produces either a manufacturer, product or serial number string for the
 396 * virtual root hub device.
 397 * Returns the number of bytes filled in: the length of the descriptor or
 398 * of the provided buffer, whichever is less.
 399 */
 400static unsigned
 401rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 402{
 403	char buf[100];
 404	char const *s;
 405	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 406
 407	// language ids
 408	switch (id) {
 409	case 0:
 410		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 411		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 412		if (len > 4)
 413			len = 4;
 414		memcpy(data, langids, len);
 415		return len;
 416	case 1:
 417		/* Serial number */
 418		s = hcd->self.bus_name;
 419		break;
 420	case 2:
 421		/* Product name */
 422		s = hcd->product_desc;
 423		break;
 424	case 3:
 425		/* Manufacturer */
 426		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 427			init_utsname()->release, hcd->driver->description);
 428		s = buf;
 429		break;
 430	default:
 431		/* Can't happen; caller guarantees it */
 432		return 0;
 433	}
 434
 435	return ascii2desc(s, data, len);
 436}
 437
 438
 439/* Root hub control transfers execute synchronously */
 440static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 441{
 442	struct usb_ctrlrequest *cmd;
 443 	u16		typeReq, wValue, wIndex, wLength;
 444	u8		*ubuf = urb->transfer_buffer;
 445	/*
 446	 * tbuf should be as big as the BOS descriptor and
 447	 * the USB hub descriptor.
 448	 */
 449	u8		tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
 450		__attribute__((aligned(4)));
 451	const u8	*bufp = tbuf;
 452	unsigned	len = 0;
 453	int		status;
 454	u8		patch_wakeup = 0;
 455	u8		patch_protocol = 0;
 456
 457	might_sleep();
 458
 459	spin_lock_irq(&hcd_root_hub_lock);
 460	status = usb_hcd_link_urb_to_ep(hcd, urb);
 461	spin_unlock_irq(&hcd_root_hub_lock);
 462	if (status)
 463		return status;
 464	urb->hcpriv = hcd;	/* Indicate it's queued */
 465
 466	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 467	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 468	wValue   = le16_to_cpu (cmd->wValue);
 469	wIndex   = le16_to_cpu (cmd->wIndex);
 470	wLength  = le16_to_cpu (cmd->wLength);
 471
 472	if (wLength > urb->transfer_buffer_length)
 473		goto error;
 474
 475	urb->actual_length = 0;
 476	switch (typeReq) {
 477
 478	/* DEVICE REQUESTS */
 479
 480	/* The root hub's remote wakeup enable bit is implemented using
 481	 * driver model wakeup flags.  If this system supports wakeup
 482	 * through USB, userspace may change the default "allow wakeup"
 483	 * policy through sysfs or these calls.
 484	 *
 485	 * Most root hubs support wakeup from downstream devices, for
 486	 * runtime power management (disabling USB clocks and reducing
 487	 * VBUS power usage).  However, not all of them do so; silicon,
 488	 * board, and BIOS bugs here are not uncommon, so these can't
 489	 * be treated quite like external hubs.
 490	 *
 491	 * Likewise, not all root hubs will pass wakeup events upstream,
 492	 * to wake up the whole system.  So don't assume root hub and
 493	 * controller capabilities are identical.
 494	 */
 495
 496	case DeviceRequest | USB_REQ_GET_STATUS:
 497		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 498					<< USB_DEVICE_REMOTE_WAKEUP)
 499				| (1 << USB_DEVICE_SELF_POWERED);
 500		tbuf [1] = 0;
 501		len = 2;
 502		break;
 503	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 504		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 505			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 506		else
 507			goto error;
 508		break;
 509	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 510		if (device_can_wakeup(&hcd->self.root_hub->dev)
 511				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 512			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 513		else
 514			goto error;
 515		break;
 516	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 517		tbuf [0] = 1;
 518		len = 1;
 519			/* FALLTHROUGH */
 520	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 521		break;
 522	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 523		switch (wValue & 0xff00) {
 524		case USB_DT_DEVICE << 8:
 525			switch (hcd->speed) {
 526			case HCD_USB3:
 527				bufp = usb3_rh_dev_descriptor;
 528				break;
 529			case HCD_USB2:
 530				bufp = usb2_rh_dev_descriptor;
 531				break;
 532			case HCD_USB11:
 533				bufp = usb11_rh_dev_descriptor;
 534				break;
 535			default:
 536				goto error;
 537			}
 538			len = 18;
 539			if (hcd->has_tt)
 540				patch_protocol = 1;
 541			break;
 542		case USB_DT_CONFIG << 8:
 543			switch (hcd->speed) {
 544			case HCD_USB3:
 545				bufp = ss_rh_config_descriptor;
 546				len = sizeof ss_rh_config_descriptor;
 547				break;
 548			case HCD_USB2:
 549				bufp = hs_rh_config_descriptor;
 550				len = sizeof hs_rh_config_descriptor;
 551				break;
 552			case HCD_USB11:
 553				bufp = fs_rh_config_descriptor;
 554				len = sizeof fs_rh_config_descriptor;
 555				break;
 556			default:
 557				goto error;
 558			}
 559			if (device_can_wakeup(&hcd->self.root_hub->dev))
 560				patch_wakeup = 1;
 561			break;
 562		case USB_DT_STRING << 8:
 563			if ((wValue & 0xff) < 4)
 564				urb->actual_length = rh_string(wValue & 0xff,
 565						hcd, ubuf, wLength);
 566			else /* unsupported IDs --> "protocol stall" */
 567				goto error;
 568			break;
 569		case USB_DT_BOS << 8:
 570			goto nongeneric;
 571		default:
 572			goto error;
 573		}
 574		break;
 575	case DeviceRequest | USB_REQ_GET_INTERFACE:
 576		tbuf [0] = 0;
 577		len = 1;
 578			/* FALLTHROUGH */
 579	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 580		break;
 581	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 582		// wValue == urb->dev->devaddr
 583		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 584			wValue);
 585		break;
 586
 587	/* INTERFACE REQUESTS (no defined feature/status flags) */
 588
 589	/* ENDPOINT REQUESTS */
 590
 591	case EndpointRequest | USB_REQ_GET_STATUS:
 592		// ENDPOINT_HALT flag
 593		tbuf [0] = 0;
 594		tbuf [1] = 0;
 595		len = 2;
 596			/* FALLTHROUGH */
 597	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 598	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 599		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 600		break;
 601
 602	/* CLASS REQUESTS (and errors) */
 603
 604	default:
 605nongeneric:
 606		/* non-generic request */
 607		switch (typeReq) {
 608		case GetHubStatus:
 609		case GetPortStatus:
 610			len = 4;
 611			break;
 612		case GetHubDescriptor:
 613			len = sizeof (struct usb_hub_descriptor);
 614			break;
 615		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 616			/* len is returned by hub_control */
 617			break;
 618		}
 619		status = hcd->driver->hub_control (hcd,
 620			typeReq, wValue, wIndex,
 621			tbuf, wLength);
 622		break;
 623error:
 624		/* "protocol stall" on error */
 625		status = -EPIPE;
 626	}
 627
 628	if (status < 0) {
 629		len = 0;
 630		if (status != -EPIPE) {
 631			dev_dbg (hcd->self.controller,
 632				"CTRL: TypeReq=0x%x val=0x%x "
 633				"idx=0x%x len=%d ==> %d\n",
 634				typeReq, wValue, wIndex,
 635				wLength, status);
 636		}
 637	} else if (status > 0) {
 638		/* hub_control may return the length of data copied. */
 639		len = status;
 640		status = 0;
 641	}
 642	if (len) {
 643		if (urb->transfer_buffer_length < len)
 644			len = urb->transfer_buffer_length;
 645		urb->actual_length = len;
 646		// always USB_DIR_IN, toward host
 647		memcpy (ubuf, bufp, len);
 648
 649		/* report whether RH hardware supports remote wakeup */
 650		if (patch_wakeup &&
 651				len > offsetof (struct usb_config_descriptor,
 652						bmAttributes))
 653			((struct usb_config_descriptor *)ubuf)->bmAttributes
 654				|= USB_CONFIG_ATT_WAKEUP;
 655
 656		/* report whether RH hardware has an integrated TT */
 657		if (patch_protocol &&
 658				len > offsetof(struct usb_device_descriptor,
 659						bDeviceProtocol))
 660			((struct usb_device_descriptor *) ubuf)->
 661				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 662	}
 663
 664	/* any errors get returned through the urb completion */
 665	spin_lock_irq(&hcd_root_hub_lock);
 666	usb_hcd_unlink_urb_from_ep(hcd, urb);
 667
 668	/* This peculiar use of spinlocks echoes what real HC drivers do.
 669	 * Avoiding calls to local_irq_disable/enable makes the code
 670	 * RT-friendly.
 671	 */
 672	spin_unlock(&hcd_root_hub_lock);
 673	usb_hcd_giveback_urb(hcd, urb, status);
 674	spin_lock(&hcd_root_hub_lock);
 675
 676	spin_unlock_irq(&hcd_root_hub_lock);
 677	return 0;
 678}
 679
 680/*-------------------------------------------------------------------------*/
 681
 682/*
 683 * Root Hub interrupt transfers are polled using a timer if the
 684 * driver requests it; otherwise the driver is responsible for
 685 * calling usb_hcd_poll_rh_status() when an event occurs.
 686 *
 687 * Completions are called in_interrupt(), but they may or may not
 688 * be in_irq().
 689 */
 690void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 691{
 692	struct urb	*urb;
 693	int		length;
 694	unsigned long	flags;
 695	char		buffer[6];	/* Any root hubs with > 31 ports? */
 696
 697	if (unlikely(!hcd->rh_pollable))
 698		return;
 699	if (!hcd->uses_new_polling && !hcd->status_urb)
 700		return;
 701
 702	length = hcd->driver->hub_status_data(hcd, buffer);
 703	if (length > 0) {
 704
 705		/* try to complete the status urb */
 706		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 707		urb = hcd->status_urb;
 708		if (urb) {
 709			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 710			hcd->status_urb = NULL;
 711			urb->actual_length = length;
 712			memcpy(urb->transfer_buffer, buffer, length);
 713
 714			usb_hcd_unlink_urb_from_ep(hcd, urb);
 715			spin_unlock(&hcd_root_hub_lock);
 716			usb_hcd_giveback_urb(hcd, urb, 0);
 717			spin_lock(&hcd_root_hub_lock);
 718		} else {
 719			length = 0;
 720			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 721		}
 722		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 723	}
 724
 725	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 726	 * exceed that limit if HZ is 100. The math is more clunky than
 727	 * maybe expected, this is to make sure that all timers for USB devices
 728	 * fire at the same time to give the CPU a break in between */
 729	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 730			(length == 0 && hcd->status_urb != NULL))
 731		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 732}
 733EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 734
 735/* timer callback */
 736static void rh_timer_func (unsigned long _hcd)
 737{
 738	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
 739}
 740
 741/*-------------------------------------------------------------------------*/
 742
 743static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 744{
 745	int		retval;
 746	unsigned long	flags;
 747	unsigned	len = 1 + (urb->dev->maxchild / 8);
 748
 749	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 750	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 751		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 752		retval = -EINVAL;
 753		goto done;
 754	}
 755
 756	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 757	if (retval)
 758		goto done;
 759
 760	hcd->status_urb = urb;
 761	urb->hcpriv = hcd;	/* indicate it's queued */
 762	if (!hcd->uses_new_polling)
 763		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 764
 765	/* If a status change has already occurred, report it ASAP */
 766	else if (HCD_POLL_PENDING(hcd))
 767		mod_timer(&hcd->rh_timer, jiffies);
 768	retval = 0;
 769 done:
 770	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 771	return retval;
 772}
 773
 774static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 775{
 776	if (usb_endpoint_xfer_int(&urb->ep->desc))
 777		return rh_queue_status (hcd, urb);
 778	if (usb_endpoint_xfer_control(&urb->ep->desc))
 779		return rh_call_control (hcd, urb);
 780	return -EINVAL;
 781}
 782
 783/*-------------------------------------------------------------------------*/
 784
 785/* Unlinks of root-hub control URBs are legal, but they don't do anything
 786 * since these URBs always execute synchronously.
 787 */
 788static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 789{
 790	unsigned long	flags;
 791	int		rc;
 792
 793	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 794	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 795	if (rc)
 796		goto done;
 797
 798	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 799		;	/* Do nothing */
 800
 801	} else {				/* Status URB */
 802		if (!hcd->uses_new_polling)
 803			del_timer (&hcd->rh_timer);
 804		if (urb == hcd->status_urb) {
 805			hcd->status_urb = NULL;
 806			usb_hcd_unlink_urb_from_ep(hcd, urb);
 807
 808			spin_unlock(&hcd_root_hub_lock);
 809			usb_hcd_giveback_urb(hcd, urb, status);
 810			spin_lock(&hcd_root_hub_lock);
 811		}
 812	}
 813 done:
 814	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 815	return rc;
 816}
 817
 818
 819
 820/*
 821 * Show & store the current value of authorized_default
 822 */
 823static ssize_t usb_host_authorized_default_show(struct device *dev,
 824						struct device_attribute *attr,
 825						char *buf)
 826{
 827	struct usb_device *rh_usb_dev = to_usb_device(dev);
 828	struct usb_bus *usb_bus = rh_usb_dev->bus;
 829	struct usb_hcd *usb_hcd;
 830
 831	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
 832		return -ENODEV;
 833	usb_hcd = bus_to_hcd(usb_bus);
 834	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
 835}
 836
 837static ssize_t usb_host_authorized_default_store(struct device *dev,
 838						 struct device_attribute *attr,
 839						 const char *buf, size_t size)
 840{
 841	ssize_t result;
 842	unsigned val;
 843	struct usb_device *rh_usb_dev = to_usb_device(dev);
 844	struct usb_bus *usb_bus = rh_usb_dev->bus;
 845	struct usb_hcd *usb_hcd;
 846
 847	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
 848		return -ENODEV;
 849	usb_hcd = bus_to_hcd(usb_bus);
 850	result = sscanf(buf, "%u\n", &val);
 851	if (result == 1) {
 852		usb_hcd->authorized_default = val? 1 : 0;
 853		result = size;
 854	}
 855	else
 856		result = -EINVAL;
 857	return result;
 858}
 859
 860static DEVICE_ATTR(authorized_default, 0644,
 861	    usb_host_authorized_default_show,
 862	    usb_host_authorized_default_store);
 863
 864
 865/* Group all the USB bus attributes */
 866static struct attribute *usb_bus_attrs[] = {
 867		&dev_attr_authorized_default.attr,
 868		NULL,
 869};
 870
 871static struct attribute_group usb_bus_attr_group = {
 872	.name = NULL,	/* we want them in the same directory */
 873	.attrs = usb_bus_attrs,
 874};
 875
 876
 877
 878/*-------------------------------------------------------------------------*/
 879
 880/**
 881 * usb_bus_init - shared initialization code
 882 * @bus: the bus structure being initialized
 883 *
 884 * This code is used to initialize a usb_bus structure, memory for which is
 885 * separately managed.
 886 */
 887static void usb_bus_init (struct usb_bus *bus)
 888{
 889	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 890
 891	bus->devnum_next = 1;
 892
 893	bus->root_hub = NULL;
 894	bus->busnum = -1;
 895	bus->bandwidth_allocated = 0;
 896	bus->bandwidth_int_reqs  = 0;
 897	bus->bandwidth_isoc_reqs = 0;
 898
 899	INIT_LIST_HEAD (&bus->bus_list);
 900}
 901
 902/*-------------------------------------------------------------------------*/
 903
 904/**
 905 * usb_register_bus - registers the USB host controller with the usb core
 906 * @bus: pointer to the bus to register
 907 * Context: !in_interrupt()
 908 *
 909 * Assigns a bus number, and links the controller into usbcore data
 910 * structures so that it can be seen by scanning the bus list.
 911 */
 912static int usb_register_bus(struct usb_bus *bus)
 913{
 914	int result = -E2BIG;
 915	int busnum;
 916
 917	mutex_lock(&usb_bus_list_lock);
 918	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
 919	if (busnum >= USB_MAXBUS) {
 920		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
 921		goto error_find_busnum;
 922	}
 923	set_bit (busnum, busmap.busmap);
 924	bus->busnum = busnum;
 925
 926	/* Add it to the local list of buses */
 927	list_add (&bus->bus_list, &usb_bus_list);
 928	mutex_unlock(&usb_bus_list_lock);
 929
 930	usb_notify_add_bus(bus);
 931
 932	dev_info (bus->controller, "new USB bus registered, assigned bus "
 933		  "number %d\n", bus->busnum);
 934	return 0;
 935
 936error_find_busnum:
 937	mutex_unlock(&usb_bus_list_lock);
 938	return result;
 939}
 940
 941/**
 942 * usb_deregister_bus - deregisters the USB host controller
 943 * @bus: pointer to the bus to deregister
 944 * Context: !in_interrupt()
 945 *
 946 * Recycles the bus number, and unlinks the controller from usbcore data
 947 * structures so that it won't be seen by scanning the bus list.
 948 */
 949static void usb_deregister_bus (struct usb_bus *bus)
 950{
 951	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 952
 953	/*
 954	 * NOTE: make sure that all the devices are removed by the
 955	 * controller code, as well as having it call this when cleaning
 956	 * itself up
 957	 */
 958	mutex_lock(&usb_bus_list_lock);
 959	list_del (&bus->bus_list);
 960	mutex_unlock(&usb_bus_list_lock);
 961
 962	usb_notify_remove_bus(bus);
 963
 964	clear_bit (bus->busnum, busmap.busmap);
 965}
 966
 967/**
 968 * register_root_hub - called by usb_add_hcd() to register a root hub
 969 * @hcd: host controller for this root hub
 970 *
 971 * This function registers the root hub with the USB subsystem.  It sets up
 972 * the device properly in the device tree and then calls usb_new_device()
 973 * to register the usb device.  It also assigns the root hub's USB address
 974 * (always 1).
 975 */
 976static int register_root_hub(struct usb_hcd *hcd)
 977{
 978	struct device *parent_dev = hcd->self.controller;
 979	struct usb_device *usb_dev = hcd->self.root_hub;
 980	const int devnum = 1;
 981	int retval;
 982
 983	usb_dev->devnum = devnum;
 984	usb_dev->bus->devnum_next = devnum + 1;
 985	memset (&usb_dev->bus->devmap.devicemap, 0,
 986			sizeof usb_dev->bus->devmap.devicemap);
 987	set_bit (devnum, usb_dev->bus->devmap.devicemap);
 988	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
 989
 990	mutex_lock(&usb_bus_list_lock);
 991
 992	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
 993	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
 994	if (retval != sizeof usb_dev->descriptor) {
 995		mutex_unlock(&usb_bus_list_lock);
 996		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
 997				dev_name(&usb_dev->dev), retval);
 998		return (retval < 0) ? retval : -EMSGSIZE;
 999	}
1000	if (usb_dev->speed == USB_SPEED_SUPER) {
1001		retval = usb_get_bos_descriptor(usb_dev);
1002		if (retval < 0) {
1003			mutex_unlock(&usb_bus_list_lock);
1004			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1005					dev_name(&usb_dev->dev), retval);
1006			return retval;
1007		}
1008	}
1009
1010	retval = usb_new_device (usb_dev);
1011	if (retval) {
1012		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1013				dev_name(&usb_dev->dev), retval);
1014	} else {
 
 
 
1015		spin_lock_irq (&hcd_root_hub_lock);
1016		hcd->rh_registered = 1;
1017		spin_unlock_irq (&hcd_root_hub_lock);
1018
1019		/* Did the HC die before the root hub was registered? */
1020		if (HCD_DEAD(hcd))
1021			usb_hc_died (hcd);	/* This time clean up */
1022	}
1023	mutex_unlock(&usb_bus_list_lock);
1024
1025	return retval;
1026}
1027
1028
1029/*-------------------------------------------------------------------------*/
1030
1031/**
1032 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1033 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1034 * @is_input: true iff the transaction sends data to the host
1035 * @isoc: true for isochronous transactions, false for interrupt ones
1036 * @bytecount: how many bytes in the transaction.
1037 *
1038 * Returns approximate bus time in nanoseconds for a periodic transaction.
1039 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1040 * scheduled in software, this function is only used for such scheduling.
1041 */
1042long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1043{
1044	unsigned long	tmp;
1045
1046	switch (speed) {
1047	case USB_SPEED_LOW: 	/* INTR only */
1048		if (is_input) {
1049			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1050			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1051		} else {
1052			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1053			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1054		}
1055	case USB_SPEED_FULL:	/* ISOC or INTR */
1056		if (isoc) {
1057			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1058			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1059		} else {
1060			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1061			return (9107L + BW_HOST_DELAY + tmp);
1062		}
1063	case USB_SPEED_HIGH:	/* ISOC or INTR */
1064		// FIXME adjust for input vs output
1065		if (isoc)
1066			tmp = HS_NSECS_ISO (bytecount);
1067		else
1068			tmp = HS_NSECS (bytecount);
1069		return tmp;
1070	default:
1071		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1072		return -1;
1073	}
1074}
1075EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1076
1077
1078/*-------------------------------------------------------------------------*/
1079
1080/*
1081 * Generic HC operations.
1082 */
1083
1084/*-------------------------------------------------------------------------*/
1085
1086/**
1087 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1088 * @hcd: host controller to which @urb was submitted
1089 * @urb: URB being submitted
1090 *
1091 * Host controller drivers should call this routine in their enqueue()
1092 * method.  The HCD's private spinlock must be held and interrupts must
1093 * be disabled.  The actions carried out here are required for URB
1094 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1095 *
1096 * Returns 0 for no error, otherwise a negative error code (in which case
1097 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1098 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1099 * the private spinlock and returning.
1100 */
1101int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1102{
1103	int		rc = 0;
1104
1105	spin_lock(&hcd_urb_list_lock);
1106
1107	/* Check that the URB isn't being killed */
1108	if (unlikely(atomic_read(&urb->reject))) {
1109		rc = -EPERM;
1110		goto done;
1111	}
1112
1113	if (unlikely(!urb->ep->enabled)) {
1114		rc = -ENOENT;
1115		goto done;
1116	}
1117
1118	if (unlikely(!urb->dev->can_submit)) {
1119		rc = -EHOSTUNREACH;
1120		goto done;
1121	}
1122
1123	/*
1124	 * Check the host controller's state and add the URB to the
1125	 * endpoint's queue.
1126	 */
1127	if (HCD_RH_RUNNING(hcd)) {
1128		urb->unlinked = 0;
1129		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1130	} else {
1131		rc = -ESHUTDOWN;
1132		goto done;
1133	}
1134 done:
1135	spin_unlock(&hcd_urb_list_lock);
1136	return rc;
1137}
1138EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1139
1140/**
1141 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1142 * @hcd: host controller to which @urb was submitted
1143 * @urb: URB being checked for unlinkability
1144 * @status: error code to store in @urb if the unlink succeeds
1145 *
1146 * Host controller drivers should call this routine in their dequeue()
1147 * method.  The HCD's private spinlock must be held and interrupts must
1148 * be disabled.  The actions carried out here are required for making
1149 * sure than an unlink is valid.
1150 *
1151 * Returns 0 for no error, otherwise a negative error code (in which case
1152 * the dequeue() method must fail).  The possible error codes are:
1153 *
1154 *	-EIDRM: @urb was not submitted or has already completed.
1155 *		The completion function may not have been called yet.
1156 *
1157 *	-EBUSY: @urb has already been unlinked.
1158 */
1159int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1160		int status)
1161{
1162	struct list_head	*tmp;
1163
1164	/* insist the urb is still queued */
1165	list_for_each(tmp, &urb->ep->urb_list) {
1166		if (tmp == &urb->urb_list)
1167			break;
1168	}
1169	if (tmp != &urb->urb_list)
1170		return -EIDRM;
1171
1172	/* Any status except -EINPROGRESS means something already started to
1173	 * unlink this URB from the hardware.  So there's no more work to do.
1174	 */
1175	if (urb->unlinked)
1176		return -EBUSY;
1177	urb->unlinked = status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178	return 0;
1179}
1180EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1181
1182/**
1183 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1184 * @hcd: host controller to which @urb was submitted
1185 * @urb: URB being unlinked
1186 *
1187 * Host controller drivers should call this routine before calling
1188 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1189 * interrupts must be disabled.  The actions carried out here are required
1190 * for URB completion.
1191 */
1192void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1193{
1194	/* clear all state linking urb to this dev (and hcd) */
1195	spin_lock(&hcd_urb_list_lock);
1196	list_del_init(&urb->urb_list);
1197	spin_unlock(&hcd_urb_list_lock);
1198}
1199EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1200
1201/*
1202 * Some usb host controllers can only perform dma using a small SRAM area.
1203 * The usb core itself is however optimized for host controllers that can dma
1204 * using regular system memory - like pci devices doing bus mastering.
1205 *
1206 * To support host controllers with limited dma capabilites we provide dma
1207 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1208 * For this to work properly the host controller code must first use the
1209 * function dma_declare_coherent_memory() to point out which memory area
1210 * that should be used for dma allocations.
1211 *
1212 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1213 * dma using dma_alloc_coherent() which in turn allocates from the memory
1214 * area pointed out with dma_declare_coherent_memory().
1215 *
1216 * So, to summarize...
1217 *
1218 * - We need "local" memory, canonical example being
1219 *   a small SRAM on a discrete controller being the
1220 *   only memory that the controller can read ...
1221 *   (a) "normal" kernel memory is no good, and
1222 *   (b) there's not enough to share
1223 *
1224 * - The only *portable* hook for such stuff in the
1225 *   DMA framework is dma_declare_coherent_memory()
1226 *
1227 * - So we use that, even though the primary requirement
1228 *   is that the memory be "local" (hence addressible
1229 *   by that device), not "coherent".
1230 *
1231 */
1232
1233static int hcd_alloc_coherent(struct usb_bus *bus,
1234			      gfp_t mem_flags, dma_addr_t *dma_handle,
1235			      void **vaddr_handle, size_t size,
1236			      enum dma_data_direction dir)
1237{
1238	unsigned char *vaddr;
1239
1240	if (*vaddr_handle == NULL) {
1241		WARN_ON_ONCE(1);
1242		return -EFAULT;
1243	}
1244
1245	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1246				 mem_flags, dma_handle);
1247	if (!vaddr)
1248		return -ENOMEM;
1249
1250	/*
1251	 * Store the virtual address of the buffer at the end
1252	 * of the allocated dma buffer. The size of the buffer
1253	 * may be uneven so use unaligned functions instead
1254	 * of just rounding up. It makes sense to optimize for
1255	 * memory footprint over access speed since the amount
1256	 * of memory available for dma may be limited.
1257	 */
1258	put_unaligned((unsigned long)*vaddr_handle,
1259		      (unsigned long *)(vaddr + size));
1260
1261	if (dir == DMA_TO_DEVICE)
1262		memcpy(vaddr, *vaddr_handle, size);
1263
1264	*vaddr_handle = vaddr;
1265	return 0;
1266}
1267
1268static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1269			      void **vaddr_handle, size_t size,
1270			      enum dma_data_direction dir)
1271{
1272	unsigned char *vaddr = *vaddr_handle;
1273
1274	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1275
1276	if (dir == DMA_FROM_DEVICE)
1277		memcpy(vaddr, *vaddr_handle, size);
1278
1279	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1280
1281	*vaddr_handle = vaddr;
1282	*dma_handle = 0;
1283}
1284
1285void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1286{
1287	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1288		dma_unmap_single(hcd->self.controller,
1289				urb->setup_dma,
1290				sizeof(struct usb_ctrlrequest),
1291				DMA_TO_DEVICE);
1292	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1293		hcd_free_coherent(urb->dev->bus,
1294				&urb->setup_dma,
1295				(void **) &urb->setup_packet,
1296				sizeof(struct usb_ctrlrequest),
1297				DMA_TO_DEVICE);
1298
1299	/* Make it safe to call this routine more than once */
1300	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1301}
1302EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1303
1304static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1305{
1306	if (hcd->driver->unmap_urb_for_dma)
1307		hcd->driver->unmap_urb_for_dma(hcd, urb);
1308	else
1309		usb_hcd_unmap_urb_for_dma(hcd, urb);
1310}
1311
1312void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1313{
1314	enum dma_data_direction dir;
1315
1316	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1317
1318	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1319	if (urb->transfer_flags & URB_DMA_MAP_SG)
1320		dma_unmap_sg(hcd->self.controller,
1321				urb->sg,
1322				urb->num_sgs,
1323				dir);
1324	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1325		dma_unmap_page(hcd->self.controller,
1326				urb->transfer_dma,
1327				urb->transfer_buffer_length,
1328				dir);
1329	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1330		dma_unmap_single(hcd->self.controller,
1331				urb->transfer_dma,
1332				urb->transfer_buffer_length,
1333				dir);
1334	else if (urb->transfer_flags & URB_MAP_LOCAL)
1335		hcd_free_coherent(urb->dev->bus,
1336				&urb->transfer_dma,
1337				&urb->transfer_buffer,
1338				urb->transfer_buffer_length,
1339				dir);
1340
1341	/* Make it safe to call this routine more than once */
1342	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1343			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1344}
1345EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1346
1347static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1348			   gfp_t mem_flags)
1349{
1350	if (hcd->driver->map_urb_for_dma)
1351		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1352	else
1353		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1354}
1355
1356int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1357			    gfp_t mem_flags)
1358{
1359	enum dma_data_direction dir;
1360	int ret = 0;
1361
1362	/* Map the URB's buffers for DMA access.
1363	 * Lower level HCD code should use *_dma exclusively,
1364	 * unless it uses pio or talks to another transport,
1365	 * or uses the provided scatter gather list for bulk.
1366	 */
1367
1368	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1369		if (hcd->self.uses_pio_for_control)
1370			return ret;
1371		if (hcd->self.uses_dma) {
1372			urb->setup_dma = dma_map_single(
1373					hcd->self.controller,
1374					urb->setup_packet,
1375					sizeof(struct usb_ctrlrequest),
1376					DMA_TO_DEVICE);
1377			if (dma_mapping_error(hcd->self.controller,
1378						urb->setup_dma))
1379				return -EAGAIN;
1380			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1381		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1382			ret = hcd_alloc_coherent(
1383					urb->dev->bus, mem_flags,
1384					&urb->setup_dma,
1385					(void **)&urb->setup_packet,
1386					sizeof(struct usb_ctrlrequest),
1387					DMA_TO_DEVICE);
1388			if (ret)
1389				return ret;
1390			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1391		}
1392	}
1393
1394	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1395	if (urb->transfer_buffer_length != 0
1396	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1397		if (hcd->self.uses_dma) {
1398			if (urb->num_sgs) {
1399				int n = dma_map_sg(
1400						hcd->self.controller,
1401						urb->sg,
1402						urb->num_sgs,
1403						dir);
1404				if (n <= 0)
1405					ret = -EAGAIN;
1406				else
1407					urb->transfer_flags |= URB_DMA_MAP_SG;
1408				urb->num_mapped_sgs = n;
1409				if (n != urb->num_sgs)
1410					urb->transfer_flags |=
1411							URB_DMA_SG_COMBINED;
 
1412			} else if (urb->sg) {
1413				struct scatterlist *sg = urb->sg;
1414				urb->transfer_dma = dma_map_page(
1415						hcd->self.controller,
1416						sg_page(sg),
1417						sg->offset,
1418						urb->transfer_buffer_length,
1419						dir);
1420				if (dma_mapping_error(hcd->self.controller,
1421						urb->transfer_dma))
1422					ret = -EAGAIN;
1423				else
1424					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1425			} else {
1426				urb->transfer_dma = dma_map_single(
1427						hcd->self.controller,
1428						urb->transfer_buffer,
1429						urb->transfer_buffer_length,
1430						dir);
1431				if (dma_mapping_error(hcd->self.controller,
1432						urb->transfer_dma))
1433					ret = -EAGAIN;
1434				else
1435					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1436			}
1437		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1438			ret = hcd_alloc_coherent(
1439					urb->dev->bus, mem_flags,
1440					&urb->transfer_dma,
1441					&urb->transfer_buffer,
1442					urb->transfer_buffer_length,
1443					dir);
1444			if (ret == 0)
1445				urb->transfer_flags |= URB_MAP_LOCAL;
1446		}
1447		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1448				URB_SETUP_MAP_LOCAL)))
1449			usb_hcd_unmap_urb_for_dma(hcd, urb);
1450	}
1451	return ret;
1452}
1453EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1454
1455/*-------------------------------------------------------------------------*/
1456
1457/* may be called in any context with a valid urb->dev usecount
1458 * caller surrenders "ownership" of urb
1459 * expects usb_submit_urb() to have sanity checked and conditioned all
1460 * inputs in the urb
1461 */
1462int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1463{
1464	int			status;
1465	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1466
1467	/* increment urb's reference count as part of giving it to the HCD
1468	 * (which will control it).  HCD guarantees that it either returns
1469	 * an error or calls giveback(), but not both.
1470	 */
1471	usb_get_urb(urb);
1472	atomic_inc(&urb->use_count);
1473	atomic_inc(&urb->dev->urbnum);
1474	usbmon_urb_submit(&hcd->self, urb);
1475
1476	/* NOTE requirements on root-hub callers (usbfs and the hub
1477	 * driver, for now):  URBs' urb->transfer_buffer must be
1478	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1479	 * they could clobber root hub response data.  Also, control
1480	 * URBs must be submitted in process context with interrupts
1481	 * enabled.
1482	 */
1483
1484	if (is_root_hub(urb->dev)) {
1485		status = rh_urb_enqueue(hcd, urb);
1486	} else {
1487		status = map_urb_for_dma(hcd, urb, mem_flags);
1488		if (likely(status == 0)) {
1489			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1490			if (unlikely(status))
1491				unmap_urb_for_dma(hcd, urb);
1492		}
1493	}
1494
1495	if (unlikely(status)) {
1496		usbmon_urb_submit_error(&hcd->self, urb, status);
1497		urb->hcpriv = NULL;
1498		INIT_LIST_HEAD(&urb->urb_list);
1499		atomic_dec(&urb->use_count);
1500		atomic_dec(&urb->dev->urbnum);
1501		if (atomic_read(&urb->reject))
1502			wake_up(&usb_kill_urb_queue);
1503		usb_put_urb(urb);
1504	}
1505	return status;
1506}
1507
1508/*-------------------------------------------------------------------------*/
1509
1510/* this makes the hcd giveback() the urb more quickly, by kicking it
1511 * off hardware queues (which may take a while) and returning it as
1512 * soon as practical.  we've already set up the urb's return status,
1513 * but we can't know if the callback completed already.
1514 */
1515static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1516{
1517	int		value;
1518
1519	if (is_root_hub(urb->dev))
1520		value = usb_rh_urb_dequeue(hcd, urb, status);
1521	else {
1522
1523		/* The only reason an HCD might fail this call is if
1524		 * it has not yet fully queued the urb to begin with.
1525		 * Such failures should be harmless. */
1526		value = hcd->driver->urb_dequeue(hcd, urb, status);
1527	}
1528	return value;
1529}
1530
1531/*
1532 * called in any context
1533 *
1534 * caller guarantees urb won't be recycled till both unlink()
1535 * and the urb's completion function return
1536 */
1537int usb_hcd_unlink_urb (struct urb *urb, int status)
1538{
1539	struct usb_hcd		*hcd;
1540	int			retval = -EIDRM;
1541	unsigned long		flags;
1542
1543	/* Prevent the device and bus from going away while
1544	 * the unlink is carried out.  If they are already gone
1545	 * then urb->use_count must be 0, since disconnected
1546	 * devices can't have any active URBs.
1547	 */
1548	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1549	if (atomic_read(&urb->use_count) > 0) {
1550		retval = 0;
1551		usb_get_dev(urb->dev);
1552	}
1553	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1554	if (retval == 0) {
1555		hcd = bus_to_hcd(urb->dev->bus);
1556		retval = unlink1(hcd, urb, status);
1557		usb_put_dev(urb->dev);
1558	}
1559
1560	if (retval == 0)
1561		retval = -EINPROGRESS;
1562	else if (retval != -EIDRM && retval != -EBUSY)
1563		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1564				urb, retval);
1565	return retval;
1566}
1567
1568/*-------------------------------------------------------------------------*/
1569
1570/**
1571 * usb_hcd_giveback_urb - return URB from HCD to device driver
1572 * @hcd: host controller returning the URB
1573 * @urb: urb being returned to the USB device driver.
1574 * @status: completion status code for the URB.
1575 * Context: in_interrupt()
1576 *
1577 * This hands the URB from HCD to its USB device driver, using its
1578 * completion function.  The HCD has freed all per-urb resources
1579 * (and is done using urb->hcpriv).  It also released all HCD locks;
1580 * the device driver won't cause problems if it frees, modifies,
1581 * or resubmits this URB.
1582 *
1583 * If @urb was unlinked, the value of @status will be overridden by
1584 * @urb->unlinked.  Erroneous short transfers are detected in case
1585 * the HCD hasn't checked for them.
1586 */
1587void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1588{
1589	urb->hcpriv = NULL;
1590	if (unlikely(urb->unlinked))
1591		status = urb->unlinked;
1592	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1593			urb->actual_length < urb->transfer_buffer_length &&
1594			!status))
1595		status = -EREMOTEIO;
1596
1597	unmap_urb_for_dma(hcd, urb);
1598	usbmon_urb_complete(&hcd->self, urb, status);
1599	usb_unanchor_urb(urb);
1600
1601	/* pass ownership to the completion handler */
1602	urb->status = status;
1603	urb->complete (urb);
1604	atomic_dec (&urb->use_count);
1605	if (unlikely(atomic_read(&urb->reject)))
1606		wake_up (&usb_kill_urb_queue);
1607	usb_put_urb (urb);
1608}
1609EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1610
1611/*-------------------------------------------------------------------------*/
1612
1613/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1614 * queue to drain completely.  The caller must first insure that no more
1615 * URBs can be submitted for this endpoint.
1616 */
1617void usb_hcd_flush_endpoint(struct usb_device *udev,
1618		struct usb_host_endpoint *ep)
1619{
1620	struct usb_hcd		*hcd;
1621	struct urb		*urb;
1622
1623	if (!ep)
1624		return;
1625	might_sleep();
1626	hcd = bus_to_hcd(udev->bus);
1627
1628	/* No more submits can occur */
1629	spin_lock_irq(&hcd_urb_list_lock);
1630rescan:
1631	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1632		int	is_in;
1633
1634		if (urb->unlinked)
1635			continue;
1636		usb_get_urb (urb);
1637		is_in = usb_urb_dir_in(urb);
1638		spin_unlock(&hcd_urb_list_lock);
1639
1640		/* kick hcd */
1641		unlink1(hcd, urb, -ESHUTDOWN);
1642		dev_dbg (hcd->self.controller,
1643			"shutdown urb %p ep%d%s%s\n",
1644			urb, usb_endpoint_num(&ep->desc),
1645			is_in ? "in" : "out",
1646			({	char *s;
1647
1648				 switch (usb_endpoint_type(&ep->desc)) {
1649				 case USB_ENDPOINT_XFER_CONTROL:
1650					s = ""; break;
1651				 case USB_ENDPOINT_XFER_BULK:
1652					s = "-bulk"; break;
1653				 case USB_ENDPOINT_XFER_INT:
1654					s = "-intr"; break;
1655				 default:
1656			 		s = "-iso"; break;
1657				};
1658				s;
1659			}));
1660		usb_put_urb (urb);
1661
1662		/* list contents may have changed */
1663		spin_lock(&hcd_urb_list_lock);
1664		goto rescan;
1665	}
1666	spin_unlock_irq(&hcd_urb_list_lock);
1667
1668	/* Wait until the endpoint queue is completely empty */
1669	while (!list_empty (&ep->urb_list)) {
1670		spin_lock_irq(&hcd_urb_list_lock);
1671
1672		/* The list may have changed while we acquired the spinlock */
1673		urb = NULL;
1674		if (!list_empty (&ep->urb_list)) {
1675			urb = list_entry (ep->urb_list.prev, struct urb,
1676					urb_list);
1677			usb_get_urb (urb);
1678		}
1679		spin_unlock_irq(&hcd_urb_list_lock);
1680
1681		if (urb) {
1682			usb_kill_urb (urb);
1683			usb_put_urb (urb);
1684		}
1685	}
1686}
1687
1688/**
1689 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1690 *				the bus bandwidth
1691 * @udev: target &usb_device
1692 * @new_config: new configuration to install
1693 * @cur_alt: the current alternate interface setting
1694 * @new_alt: alternate interface setting that is being installed
1695 *
1696 * To change configurations, pass in the new configuration in new_config,
1697 * and pass NULL for cur_alt and new_alt.
1698 *
1699 * To reset a device's configuration (put the device in the ADDRESSED state),
1700 * pass in NULL for new_config, cur_alt, and new_alt.
1701 *
1702 * To change alternate interface settings, pass in NULL for new_config,
1703 * pass in the current alternate interface setting in cur_alt,
1704 * and pass in the new alternate interface setting in new_alt.
1705 *
1706 * Returns an error if the requested bandwidth change exceeds the
1707 * bus bandwidth or host controller internal resources.
1708 */
1709int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1710		struct usb_host_config *new_config,
1711		struct usb_host_interface *cur_alt,
1712		struct usb_host_interface *new_alt)
1713{
1714	int num_intfs, i, j;
1715	struct usb_host_interface *alt = NULL;
1716	int ret = 0;
1717	struct usb_hcd *hcd;
1718	struct usb_host_endpoint *ep;
1719
1720	hcd = bus_to_hcd(udev->bus);
1721	if (!hcd->driver->check_bandwidth)
1722		return 0;
1723
1724	/* Configuration is being removed - set configuration 0 */
1725	if (!new_config && !cur_alt) {
1726		for (i = 1; i < 16; ++i) {
1727			ep = udev->ep_out[i];
1728			if (ep)
1729				hcd->driver->drop_endpoint(hcd, udev, ep);
1730			ep = udev->ep_in[i];
1731			if (ep)
1732				hcd->driver->drop_endpoint(hcd, udev, ep);
1733		}
1734		hcd->driver->check_bandwidth(hcd, udev);
1735		return 0;
1736	}
1737	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1738	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1739	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1740	 * ok to exclude it.
1741	 */
1742	if (new_config) {
1743		num_intfs = new_config->desc.bNumInterfaces;
1744		/* Remove endpoints (except endpoint 0, which is always on the
1745		 * schedule) from the old config from the schedule
1746		 */
1747		for (i = 1; i < 16; ++i) {
1748			ep = udev->ep_out[i];
1749			if (ep) {
1750				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1751				if (ret < 0)
1752					goto reset;
1753			}
1754			ep = udev->ep_in[i];
1755			if (ep) {
1756				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1757				if (ret < 0)
1758					goto reset;
1759			}
1760		}
1761		for (i = 0; i < num_intfs; ++i) {
1762			struct usb_host_interface *first_alt;
1763			int iface_num;
1764
1765			first_alt = &new_config->intf_cache[i]->altsetting[0];
1766			iface_num = first_alt->desc.bInterfaceNumber;
1767			/* Set up endpoints for alternate interface setting 0 */
1768			alt = usb_find_alt_setting(new_config, iface_num, 0);
1769			if (!alt)
1770				/* No alt setting 0? Pick the first setting. */
1771				alt = first_alt;
1772
1773			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1774				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1775				if (ret < 0)
1776					goto reset;
1777			}
1778		}
1779	}
1780	if (cur_alt && new_alt) {
1781		struct usb_interface *iface = usb_ifnum_to_if(udev,
1782				cur_alt->desc.bInterfaceNumber);
1783
1784		if (!iface)
1785			return -EINVAL;
1786		if (iface->resetting_device) {
1787			/*
1788			 * The USB core just reset the device, so the xHCI host
1789			 * and the device will think alt setting 0 is installed.
1790			 * However, the USB core will pass in the alternate
1791			 * setting installed before the reset as cur_alt.  Dig
1792			 * out the alternate setting 0 structure, or the first
1793			 * alternate setting if a broken device doesn't have alt
1794			 * setting 0.
1795			 */
1796			cur_alt = usb_altnum_to_altsetting(iface, 0);
1797			if (!cur_alt)
1798				cur_alt = &iface->altsetting[0];
1799		}
1800
1801		/* Drop all the endpoints in the current alt setting */
1802		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1803			ret = hcd->driver->drop_endpoint(hcd, udev,
1804					&cur_alt->endpoint[i]);
1805			if (ret < 0)
1806				goto reset;
1807		}
1808		/* Add all the endpoints in the new alt setting */
1809		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1810			ret = hcd->driver->add_endpoint(hcd, udev,
1811					&new_alt->endpoint[i]);
1812			if (ret < 0)
1813				goto reset;
1814		}
1815	}
1816	ret = hcd->driver->check_bandwidth(hcd, udev);
1817reset:
1818	if (ret < 0)
1819		hcd->driver->reset_bandwidth(hcd, udev);
1820	return ret;
1821}
1822
1823/* Disables the endpoint: synchronizes with the hcd to make sure all
1824 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1825 * have been called previously.  Use for set_configuration, set_interface,
1826 * driver removal, physical disconnect.
1827 *
1828 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1829 * type, maxpacket size, toggle, halt status, and scheduling.
1830 */
1831void usb_hcd_disable_endpoint(struct usb_device *udev,
1832		struct usb_host_endpoint *ep)
1833{
1834	struct usb_hcd		*hcd;
1835
1836	might_sleep();
1837	hcd = bus_to_hcd(udev->bus);
1838	if (hcd->driver->endpoint_disable)
1839		hcd->driver->endpoint_disable(hcd, ep);
1840}
1841
1842/**
1843 * usb_hcd_reset_endpoint - reset host endpoint state
1844 * @udev: USB device.
1845 * @ep:   the endpoint to reset.
1846 *
1847 * Resets any host endpoint state such as the toggle bit, sequence
1848 * number and current window.
1849 */
1850void usb_hcd_reset_endpoint(struct usb_device *udev,
1851			    struct usb_host_endpoint *ep)
1852{
1853	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1854
1855	if (hcd->driver->endpoint_reset)
1856		hcd->driver->endpoint_reset(hcd, ep);
1857	else {
1858		int epnum = usb_endpoint_num(&ep->desc);
1859		int is_out = usb_endpoint_dir_out(&ep->desc);
1860		int is_control = usb_endpoint_xfer_control(&ep->desc);
1861
1862		usb_settoggle(udev, epnum, is_out, 0);
1863		if (is_control)
1864			usb_settoggle(udev, epnum, !is_out, 0);
1865	}
1866}
1867
1868/**
1869 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1870 * @interface:		alternate setting that includes all endpoints.
1871 * @eps:		array of endpoints that need streams.
1872 * @num_eps:		number of endpoints in the array.
1873 * @num_streams:	number of streams to allocate.
1874 * @mem_flags:		flags hcd should use to allocate memory.
1875 *
1876 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1877 * Drivers may queue multiple transfers to different stream IDs, which may
1878 * complete in a different order than they were queued.
1879 */
1880int usb_alloc_streams(struct usb_interface *interface,
1881		struct usb_host_endpoint **eps, unsigned int num_eps,
1882		unsigned int num_streams, gfp_t mem_flags)
1883{
1884	struct usb_hcd *hcd;
1885	struct usb_device *dev;
1886	int i;
1887
1888	dev = interface_to_usbdev(interface);
1889	hcd = bus_to_hcd(dev->bus);
1890	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1891		return -EINVAL;
1892	if (dev->speed != USB_SPEED_SUPER)
1893		return -EINVAL;
1894
1895	/* Streams only apply to bulk endpoints. */
1896	for (i = 0; i < num_eps; i++)
1897		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1898			return -EINVAL;
1899
1900	return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1901			num_streams, mem_flags);
1902}
1903EXPORT_SYMBOL_GPL(usb_alloc_streams);
1904
1905/**
1906 * usb_free_streams - free bulk endpoint stream IDs.
1907 * @interface:	alternate setting that includes all endpoints.
1908 * @eps:	array of endpoints to remove streams from.
1909 * @num_eps:	number of endpoints in the array.
1910 * @mem_flags:	flags hcd should use to allocate memory.
1911 *
1912 * Reverts a group of bulk endpoints back to not using stream IDs.
1913 * Can fail if we are given bad arguments, or HCD is broken.
1914 */
1915void usb_free_streams(struct usb_interface *interface,
1916		struct usb_host_endpoint **eps, unsigned int num_eps,
1917		gfp_t mem_flags)
1918{
1919	struct usb_hcd *hcd;
1920	struct usb_device *dev;
1921	int i;
1922
1923	dev = interface_to_usbdev(interface);
1924	hcd = bus_to_hcd(dev->bus);
1925	if (dev->speed != USB_SPEED_SUPER)
1926		return;
1927
1928	/* Streams only apply to bulk endpoints. */
1929	for (i = 0; i < num_eps; i++)
1930		if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1931			return;
1932
1933	hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1934}
1935EXPORT_SYMBOL_GPL(usb_free_streams);
1936
1937/* Protect against drivers that try to unlink URBs after the device
1938 * is gone, by waiting until all unlinks for @udev are finished.
1939 * Since we don't currently track URBs by device, simply wait until
1940 * nothing is running in the locked region of usb_hcd_unlink_urb().
1941 */
1942void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1943{
1944	spin_lock_irq(&hcd_urb_unlink_lock);
1945	spin_unlock_irq(&hcd_urb_unlink_lock);
1946}
1947
1948/*-------------------------------------------------------------------------*/
1949
1950/* called in any context */
1951int usb_hcd_get_frame_number (struct usb_device *udev)
1952{
1953	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1954
1955	if (!HCD_RH_RUNNING(hcd))
1956		return -ESHUTDOWN;
1957	return hcd->driver->get_frame_number (hcd);
1958}
1959
1960/*-------------------------------------------------------------------------*/
1961
1962#ifdef	CONFIG_PM
1963
1964int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1965{
1966	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1967	int		status;
1968	int		old_state = hcd->state;
1969
1970	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1971			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
1972			rhdev->do_remote_wakeup);
1973	if (HCD_DEAD(hcd)) {
1974		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1975		return 0;
1976	}
1977
1978	if (!hcd->driver->bus_suspend) {
1979		status = -ENOENT;
1980	} else {
1981		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1982		hcd->state = HC_STATE_QUIESCING;
1983		status = hcd->driver->bus_suspend(hcd);
1984	}
1985	if (status == 0) {
1986		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1987		hcd->state = HC_STATE_SUSPENDED;
1988
1989		/* Did we race with a root-hub wakeup event? */
1990		if (rhdev->do_remote_wakeup) {
1991			char	buffer[6];
1992
1993			status = hcd->driver->hub_status_data(hcd, buffer);
1994			if (status != 0) {
1995				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
1996				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
1997				status = -EBUSY;
1998			}
1999		}
2000	} else {
2001		spin_lock_irq(&hcd_root_hub_lock);
2002		if (!HCD_DEAD(hcd)) {
2003			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2004			hcd->state = old_state;
2005		}
2006		spin_unlock_irq(&hcd_root_hub_lock);
2007		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2008				"suspend", status);
2009	}
2010	return status;
2011}
2012
2013int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2014{
2015	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2016	int		status;
2017	int		old_state = hcd->state;
2018
2019	dev_dbg(&rhdev->dev, "usb %sresume\n",
2020			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2021	if (HCD_DEAD(hcd)) {
2022		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2023		return 0;
2024	}
2025	if (!hcd->driver->bus_resume)
2026		return -ENOENT;
2027	if (HCD_RH_RUNNING(hcd))
2028		return 0;
2029
2030	hcd->state = HC_STATE_RESUMING;
2031	status = hcd->driver->bus_resume(hcd);
2032	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2033	if (status == 0) {
2034		/* TRSMRCY = 10 msec */
2035		msleep(10);
2036		spin_lock_irq(&hcd_root_hub_lock);
2037		if (!HCD_DEAD(hcd)) {
2038			usb_set_device_state(rhdev, rhdev->actconfig
2039					? USB_STATE_CONFIGURED
2040					: USB_STATE_ADDRESS);
2041			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2042			hcd->state = HC_STATE_RUNNING;
2043		}
2044		spin_unlock_irq(&hcd_root_hub_lock);
2045	} else {
2046		hcd->state = old_state;
2047		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2048				"resume", status);
2049		if (status != -ESHUTDOWN)
2050			usb_hc_died(hcd);
2051	}
2052	return status;
2053}
2054
2055#endif	/* CONFIG_PM */
2056
2057#ifdef	CONFIG_USB_SUSPEND
2058
2059/* Workqueue routine for root-hub remote wakeup */
2060static void hcd_resume_work(struct work_struct *work)
2061{
2062	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2063	struct usb_device *udev = hcd->self.root_hub;
2064
2065	usb_lock_device(udev);
2066	usb_remote_wakeup(udev);
2067	usb_unlock_device(udev);
2068}
2069
2070/**
2071 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
2072 * @hcd: host controller for this root hub
2073 *
2074 * The USB host controller calls this function when its root hub is
2075 * suspended (with the remote wakeup feature enabled) and a remote
2076 * wakeup request is received.  The routine submits a workqueue request
2077 * to resume the root hub (that is, manage its downstream ports again).
2078 */
2079void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2080{
2081	unsigned long flags;
2082
2083	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2084	if (hcd->rh_registered) {
2085		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2086		queue_work(pm_wq, &hcd->wakeup_work);
2087	}
2088	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2089}
2090EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2091
2092#endif	/* CONFIG_USB_SUSPEND */
2093
2094/*-------------------------------------------------------------------------*/
2095
2096#ifdef	CONFIG_USB_OTG
2097
2098/**
2099 * usb_bus_start_enum - start immediate enumeration (for OTG)
2100 * @bus: the bus (must use hcd framework)
2101 * @port_num: 1-based number of port; usually bus->otg_port
2102 * Context: in_interrupt()
2103 *
2104 * Starts enumeration, with an immediate reset followed later by
2105 * khubd identifying and possibly configuring the device.
2106 * This is needed by OTG controller drivers, where it helps meet
2107 * HNP protocol timing requirements for starting a port reset.
2108 */
2109int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2110{
2111	struct usb_hcd		*hcd;
2112	int			status = -EOPNOTSUPP;
2113
2114	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2115	 * boards with root hubs hooked up to internal devices (instead of
2116	 * just the OTG port) may need more attention to resetting...
2117	 */
2118	hcd = container_of (bus, struct usb_hcd, self);
2119	if (port_num && hcd->driver->start_port_reset)
2120		status = hcd->driver->start_port_reset(hcd, port_num);
2121
2122	/* run khubd shortly after (first) root port reset finishes;
2123	 * it may issue others, until at least 50 msecs have passed.
2124	 */
2125	if (status == 0)
2126		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2127	return status;
2128}
2129EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2130
2131#endif
2132
2133/*-------------------------------------------------------------------------*/
2134
2135/**
2136 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2137 * @irq: the IRQ being raised
2138 * @__hcd: pointer to the HCD whose IRQ is being signaled
2139 *
2140 * If the controller isn't HALTed, calls the driver's irq handler.
2141 * Checks whether the controller is now dead.
2142 */
2143irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2144{
2145	struct usb_hcd		*hcd = __hcd;
2146	unsigned long		flags;
2147	irqreturn_t		rc;
2148
2149	/* IRQF_DISABLED doesn't work correctly with shared IRQs
2150	 * when the first handler doesn't use it.  So let's just
2151	 * assume it's never used.
2152	 */
2153	local_irq_save(flags);
2154
2155	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2156		rc = IRQ_NONE;
2157	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2158		rc = IRQ_NONE;
2159	else
 
 
 
2160		rc = IRQ_HANDLED;
 
2161
2162	local_irq_restore(flags);
2163	return rc;
2164}
2165EXPORT_SYMBOL_GPL(usb_hcd_irq);
2166
2167/*-------------------------------------------------------------------------*/
2168
2169/**
2170 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2171 * @hcd: pointer to the HCD representing the controller
2172 *
2173 * This is called by bus glue to report a USB host controller that died
2174 * while operations may still have been pending.  It's called automatically
2175 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2176 *
2177 * Only call this function with the primary HCD.
2178 */
2179void usb_hc_died (struct usb_hcd *hcd)
2180{
2181	unsigned long flags;
2182
2183	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2184
2185	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2186	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2187	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2188	if (hcd->rh_registered) {
2189		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2190
2191		/* make khubd clean up old urbs and devices */
2192		usb_set_device_state (hcd->self.root_hub,
2193				USB_STATE_NOTATTACHED);
2194		usb_kick_khubd (hcd->self.root_hub);
2195	}
2196	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2197		hcd = hcd->shared_hcd;
2198		if (hcd->rh_registered) {
2199			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2200
2201			/* make khubd clean up old urbs and devices */
2202			usb_set_device_state(hcd->self.root_hub,
2203					USB_STATE_NOTATTACHED);
2204			usb_kick_khubd(hcd->self.root_hub);
2205		}
2206	}
2207	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2208	/* Make sure that the other roothub is also deallocated. */
2209}
2210EXPORT_SYMBOL_GPL (usb_hc_died);
2211
2212/*-------------------------------------------------------------------------*/
2213
2214/**
2215 * usb_create_shared_hcd - create and initialize an HCD structure
2216 * @driver: HC driver that will use this hcd
2217 * @dev: device for this HC, stored in hcd->self.controller
2218 * @bus_name: value to store in hcd->self.bus_name
2219 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2220 *              PCI device.  Only allocate certain resources for the primary HCD
2221 * Context: !in_interrupt()
2222 *
2223 * Allocate a struct usb_hcd, with extra space at the end for the
2224 * HC driver's private data.  Initialize the generic members of the
2225 * hcd structure.
2226 *
2227 * If memory is unavailable, returns NULL.
2228 */
2229struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2230		struct device *dev, const char *bus_name,
2231		struct usb_hcd *primary_hcd)
2232{
2233	struct usb_hcd *hcd;
2234
2235	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2236	if (!hcd) {
2237		dev_dbg (dev, "hcd alloc failed\n");
2238		return NULL;
2239	}
2240	if (primary_hcd == NULL) {
2241		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2242				GFP_KERNEL);
2243		if (!hcd->bandwidth_mutex) {
2244			kfree(hcd);
2245			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2246			return NULL;
2247		}
2248		mutex_init(hcd->bandwidth_mutex);
2249		dev_set_drvdata(dev, hcd);
2250	} else {
2251		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2252		hcd->primary_hcd = primary_hcd;
2253		primary_hcd->primary_hcd = primary_hcd;
2254		hcd->shared_hcd = primary_hcd;
2255		primary_hcd->shared_hcd = hcd;
2256	}
2257
2258	kref_init(&hcd->kref);
2259
2260	usb_bus_init(&hcd->self);
2261	hcd->self.controller = dev;
2262	hcd->self.bus_name = bus_name;
2263	hcd->self.uses_dma = (dev->dma_mask != NULL);
2264
2265	init_timer(&hcd->rh_timer);
2266	hcd->rh_timer.function = rh_timer_func;
2267	hcd->rh_timer.data = (unsigned long) hcd;
2268#ifdef CONFIG_USB_SUSPEND
2269	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2270#endif
2271
2272	hcd->driver = driver;
2273	hcd->speed = driver->flags & HCD_MASK;
2274	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2275			"USB Host Controller";
2276	return hcd;
2277}
2278EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2279
2280/**
2281 * usb_create_hcd - create and initialize an HCD structure
2282 * @driver: HC driver that will use this hcd
2283 * @dev: device for this HC, stored in hcd->self.controller
2284 * @bus_name: value to store in hcd->self.bus_name
2285 * Context: !in_interrupt()
2286 *
2287 * Allocate a struct usb_hcd, with extra space at the end for the
2288 * HC driver's private data.  Initialize the generic members of the
2289 * hcd structure.
2290 *
2291 * If memory is unavailable, returns NULL.
2292 */
2293struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2294		struct device *dev, const char *bus_name)
2295{
2296	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2297}
2298EXPORT_SYMBOL_GPL(usb_create_hcd);
2299
2300/*
2301 * Roothubs that share one PCI device must also share the bandwidth mutex.
2302 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2303 * deallocated.
2304 *
2305 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2306 * freed.  When hcd_release() is called for the non-primary HCD, set the
2307 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2308 * freed shortly).
2309 */
2310static void hcd_release (struct kref *kref)
2311{
2312	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2313
2314	if (usb_hcd_is_primary_hcd(hcd))
2315		kfree(hcd->bandwidth_mutex);
2316	else
2317		hcd->shared_hcd->shared_hcd = NULL;
2318	kfree(hcd);
2319}
2320
2321struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2322{
2323	if (hcd)
2324		kref_get (&hcd->kref);
2325	return hcd;
2326}
2327EXPORT_SYMBOL_GPL(usb_get_hcd);
2328
2329void usb_put_hcd (struct usb_hcd *hcd)
2330{
2331	if (hcd)
2332		kref_put (&hcd->kref, hcd_release);
2333}
2334EXPORT_SYMBOL_GPL(usb_put_hcd);
2335
2336int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2337{
2338	if (!hcd->primary_hcd)
2339		return 1;
2340	return hcd == hcd->primary_hcd;
2341}
2342EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2343
2344static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2345		unsigned int irqnum, unsigned long irqflags)
2346{
2347	int retval;
2348
2349	if (hcd->driver->irq) {
2350
2351		/* IRQF_DISABLED doesn't work as advertised when used together
2352		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2353		 * interrupts we can remove it here.
2354		 */
2355		if (irqflags & IRQF_SHARED)
2356			irqflags &= ~IRQF_DISABLED;
2357
2358		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2359				hcd->driver->description, hcd->self.busnum);
2360		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2361				hcd->irq_descr, hcd);
2362		if (retval != 0) {
2363			dev_err(hcd->self.controller,
2364					"request interrupt %d failed\n",
2365					irqnum);
2366			return retval;
2367		}
2368		hcd->irq = irqnum;
2369		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2370				(hcd->driver->flags & HCD_MEMORY) ?
2371					"io mem" : "io base",
2372					(unsigned long long)hcd->rsrc_start);
2373	} else {
2374		hcd->irq = 0;
2375		if (hcd->rsrc_start)
2376			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2377					(hcd->driver->flags & HCD_MEMORY) ?
2378					"io mem" : "io base",
2379					(unsigned long long)hcd->rsrc_start);
2380	}
2381	return 0;
2382}
2383
2384/**
2385 * usb_add_hcd - finish generic HCD structure initialization and register
2386 * @hcd: the usb_hcd structure to initialize
2387 * @irqnum: Interrupt line to allocate
2388 * @irqflags: Interrupt type flags
2389 *
2390 * Finish the remaining parts of generic HCD initialization: allocate the
2391 * buffers of consistent memory, register the bus, request the IRQ line,
2392 * and call the driver's reset() and start() routines.
2393 */
2394int usb_add_hcd(struct usb_hcd *hcd,
2395		unsigned int irqnum, unsigned long irqflags)
2396{
2397	int retval;
2398	struct usb_device *rhdev;
2399
2400	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2401
2402	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2403	if (authorized_default < 0 || authorized_default > 1)
2404		hcd->authorized_default = hcd->wireless? 0 : 1;
2405	else
2406		hcd->authorized_default = authorized_default;
2407	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2408
2409	/* HC is in reset state, but accessible.  Now do the one-time init,
2410	 * bottom up so that hcds can customize the root hubs before khubd
2411	 * starts talking to them.  (Note, bus id is assigned early too.)
2412	 */
2413	if ((retval = hcd_buffer_create(hcd)) != 0) {
2414		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2415		return retval;
2416	}
2417
2418	if ((retval = usb_register_bus(&hcd->self)) < 0)
2419		goto err_register_bus;
2420
2421	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2422		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2423		retval = -ENOMEM;
2424		goto err_allocate_root_hub;
2425	}
2426	hcd->self.root_hub = rhdev;
2427
2428	switch (hcd->speed) {
2429	case HCD_USB11:
2430		rhdev->speed = USB_SPEED_FULL;
2431		break;
2432	case HCD_USB2:
2433		rhdev->speed = USB_SPEED_HIGH;
2434		break;
2435	case HCD_USB3:
2436		rhdev->speed = USB_SPEED_SUPER;
2437		break;
2438	default:
2439		retval = -EINVAL;
2440		goto err_set_rh_speed;
2441	}
2442
2443	/* wakeup flag init defaults to "everything works" for root hubs,
2444	 * but drivers can override it in reset() if needed, along with
2445	 * recording the overall controller's system wakeup capability.
2446	 */
2447	device_set_wakeup_capable(&rhdev->dev, 1);
2448
2449	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2450	 * registered.  But since the controller can die at any time,
2451	 * let's initialize the flag before touching the hardware.
2452	 */
2453	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2454
2455	/* "reset" is misnamed; its role is now one-time init. the controller
2456	 * should already have been reset (and boot firmware kicked off etc).
2457	 */
2458	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2459		dev_err(hcd->self.controller, "can't setup\n");
2460		goto err_hcd_driver_setup;
2461	}
2462	hcd->rh_pollable = 1;
2463
2464	/* NOTE: root hub and controller capabilities may not be the same */
2465	if (device_can_wakeup(hcd->self.controller)
2466			&& device_can_wakeup(&hcd->self.root_hub->dev))
2467		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2468
2469	/* enable irqs just before we start the controller,
2470	 * if the BIOS provides legacy PCI irqs.
2471	 */
2472	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2473		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2474		if (retval)
2475			goto err_request_irq;
2476	}
2477
2478	hcd->state = HC_STATE_RUNNING;
2479	retval = hcd->driver->start(hcd);
2480	if (retval < 0) {
2481		dev_err(hcd->self.controller, "startup error %d\n", retval);
2482		goto err_hcd_driver_start;
2483	}
2484
2485	/* starting here, usbcore will pay attention to this root hub */
2486	rhdev->bus_mA = min(500u, hcd->power_budget);
2487	if ((retval = register_root_hub(hcd)) != 0)
2488		goto err_register_root_hub;
2489
2490	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2491	if (retval < 0) {
2492		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2493		       retval);
2494		goto error_create_attr_group;
2495	}
2496	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2497		usb_hcd_poll_rh_status(hcd);
2498
2499	/*
2500	 * Host controllers don't generate their own wakeup requests;
2501	 * they only forward requests from the root hub.  Therefore
2502	 * controllers should always be enabled for remote wakeup.
2503	 */
2504	device_wakeup_enable(hcd->self.controller);
2505	return retval;
2506
2507error_create_attr_group:
2508	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2509	if (HC_IS_RUNNING(hcd->state))
2510		hcd->state = HC_STATE_QUIESCING;
2511	spin_lock_irq(&hcd_root_hub_lock);
2512	hcd->rh_registered = 0;
2513	spin_unlock_irq(&hcd_root_hub_lock);
2514
2515#ifdef CONFIG_USB_SUSPEND
2516	cancel_work_sync(&hcd->wakeup_work);
2517#endif
2518	mutex_lock(&usb_bus_list_lock);
2519	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2520	mutex_unlock(&usb_bus_list_lock);
2521err_register_root_hub:
2522	hcd->rh_pollable = 0;
2523	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2524	del_timer_sync(&hcd->rh_timer);
2525	hcd->driver->stop(hcd);
2526	hcd->state = HC_STATE_HALT;
2527	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2528	del_timer_sync(&hcd->rh_timer);
2529err_hcd_driver_start:
2530	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2531		free_irq(irqnum, hcd);
2532err_request_irq:
2533err_hcd_driver_setup:
2534err_set_rh_speed:
2535	usb_put_dev(hcd->self.root_hub);
2536err_allocate_root_hub:
2537	usb_deregister_bus(&hcd->self);
2538err_register_bus:
2539	hcd_buffer_destroy(hcd);
2540	return retval;
2541} 
2542EXPORT_SYMBOL_GPL(usb_add_hcd);
2543
2544/**
2545 * usb_remove_hcd - shutdown processing for generic HCDs
2546 * @hcd: the usb_hcd structure to remove
2547 * Context: !in_interrupt()
2548 *
2549 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2550 * invoking the HCD's stop() method.
2551 */
2552void usb_remove_hcd(struct usb_hcd *hcd)
2553{
2554	struct usb_device *rhdev = hcd->self.root_hub;
2555
2556	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2557
2558	usb_get_dev(rhdev);
2559	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2560
2561	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2562	if (HC_IS_RUNNING (hcd->state))
2563		hcd->state = HC_STATE_QUIESCING;
2564
2565	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2566	spin_lock_irq (&hcd_root_hub_lock);
2567	hcd->rh_registered = 0;
2568	spin_unlock_irq (&hcd_root_hub_lock);
2569
2570#ifdef CONFIG_USB_SUSPEND
2571	cancel_work_sync(&hcd->wakeup_work);
2572#endif
2573
2574	mutex_lock(&usb_bus_list_lock);
2575	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2576	mutex_unlock(&usb_bus_list_lock);
2577
2578	/* Prevent any more root-hub status calls from the timer.
2579	 * The HCD might still restart the timer (if a port status change
2580	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2581	 * the hub_status_data() callback.
2582	 */
2583	hcd->rh_pollable = 0;
2584	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2585	del_timer_sync(&hcd->rh_timer);
2586
2587	hcd->driver->stop(hcd);
2588	hcd->state = HC_STATE_HALT;
2589
2590	/* In case the HCD restarted the timer, stop it again. */
2591	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2592	del_timer_sync(&hcd->rh_timer);
2593
2594	if (usb_hcd_is_primary_hcd(hcd)) {
2595		if (hcd->irq > 0)
2596			free_irq(hcd->irq, hcd);
2597	}
2598
2599	usb_put_dev(hcd->self.root_hub);
2600	usb_deregister_bus(&hcd->self);
2601	hcd_buffer_destroy(hcd);
2602}
2603EXPORT_SYMBOL_GPL(usb_remove_hcd);
2604
2605void
2606usb_hcd_platform_shutdown(struct platform_device* dev)
2607{
2608	struct usb_hcd *hcd = platform_get_drvdata(dev);
2609
2610	if (hcd->driver->shutdown)
2611		hcd->driver->shutdown(hcd);
2612}
2613EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2614
2615/*-------------------------------------------------------------------------*/
2616
2617#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2618
2619struct usb_mon_operations *mon_ops;
2620
2621/*
2622 * The registration is unlocked.
2623 * We do it this way because we do not want to lock in hot paths.
2624 *
2625 * Notice that the code is minimally error-proof. Because usbmon needs
2626 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2627 */
2628 
2629int usb_mon_register (struct usb_mon_operations *ops)
2630{
2631
2632	if (mon_ops)
2633		return -EBUSY;
2634
2635	mon_ops = ops;
2636	mb();
2637	return 0;
2638}
2639EXPORT_SYMBOL_GPL (usb_mon_register);
2640
2641void usb_mon_deregister (void)
2642{
2643
2644	if (mon_ops == NULL) {
2645		printk(KERN_ERR "USB: monitor was not registered\n");
2646		return;
2647	}
2648	mon_ops = NULL;
2649	mb();
2650}
2651EXPORT_SYMBOL_GPL (usb_mon_deregister);
2652
2653#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */