Loading...
1/*
2 * Copyright (C) 1992 obz under the linux copyright
3 *
4 * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
5 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
6 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
7 * Some code moved for less code duplication - Andi Kleen - Mar 1997
8 * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
9 */
10
11#include <linux/types.h>
12#include <linux/errno.h>
13#include <linux/sched.h>
14#include <linux/tty.h>
15#include <linux/timer.h>
16#include <linux/kernel.h>
17#include <linux/compat.h>
18#include <linux/module.h>
19#include <linux/kd.h>
20#include <linux/vt.h>
21#include <linux/string.h>
22#include <linux/slab.h>
23#include <linux/major.h>
24#include <linux/fs.h>
25#include <linux/console.h>
26#include <linux/consolemap.h>
27#include <linux/signal.h>
28#include <linux/timex.h>
29
30#include <asm/io.h>
31#include <asm/uaccess.h>
32
33#include <linux/kbd_kern.h>
34#include <linux/vt_kern.h>
35#include <linux/kbd_diacr.h>
36#include <linux/selection.h>
37
38char vt_dont_switch;
39extern struct tty_driver *console_driver;
40
41#define VT_IS_IN_USE(i) (console_driver->ttys[i] && console_driver->ttys[i]->count)
42#define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons)
43
44/*
45 * Console (vt and kd) routines, as defined by USL SVR4 manual, and by
46 * experimentation and study of X386 SYSV handling.
47 *
48 * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
49 * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
50 * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
51 * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
52 * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
53 * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
54 * to the current console is done by the main ioctl code.
55 */
56
57#ifdef CONFIG_X86
58#include <linux/syscalls.h>
59#endif
60
61static void complete_change_console(struct vc_data *vc);
62
63/*
64 * User space VT_EVENT handlers
65 */
66
67struct vt_event_wait {
68 struct list_head list;
69 struct vt_event event;
70 int done;
71};
72
73static LIST_HEAD(vt_events);
74static DEFINE_SPINLOCK(vt_event_lock);
75static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue);
76
77/**
78 * vt_event_post
79 * @event: the event that occurred
80 * @old: old console
81 * @new: new console
82 *
83 * Post an VT event to interested VT handlers
84 */
85
86void vt_event_post(unsigned int event, unsigned int old, unsigned int new)
87{
88 struct list_head *pos, *head;
89 unsigned long flags;
90 int wake = 0;
91
92 spin_lock_irqsave(&vt_event_lock, flags);
93 head = &vt_events;
94
95 list_for_each(pos, head) {
96 struct vt_event_wait *ve = list_entry(pos,
97 struct vt_event_wait, list);
98 if (!(ve->event.event & event))
99 continue;
100 ve->event.event = event;
101 /* kernel view is consoles 0..n-1, user space view is
102 console 1..n with 0 meaning current, so we must bias */
103 ve->event.oldev = old + 1;
104 ve->event.newev = new + 1;
105 wake = 1;
106 ve->done = 1;
107 }
108 spin_unlock_irqrestore(&vt_event_lock, flags);
109 if (wake)
110 wake_up_interruptible(&vt_event_waitqueue);
111}
112
113/**
114 * vt_event_wait - wait for an event
115 * @vw: our event
116 *
117 * Waits for an event to occur which completes our vt_event_wait
118 * structure. On return the structure has wv->done set to 1 for success
119 * or 0 if some event such as a signal ended the wait.
120 */
121
122static void vt_event_wait(struct vt_event_wait *vw)
123{
124 unsigned long flags;
125 /* Prepare the event */
126 INIT_LIST_HEAD(&vw->list);
127 vw->done = 0;
128 /* Queue our event */
129 spin_lock_irqsave(&vt_event_lock, flags);
130 list_add(&vw->list, &vt_events);
131 spin_unlock_irqrestore(&vt_event_lock, flags);
132 /* Wait for it to pass */
133 wait_event_interruptible_tty(vt_event_waitqueue, vw->done);
134 /* Dequeue it */
135 spin_lock_irqsave(&vt_event_lock, flags);
136 list_del(&vw->list);
137 spin_unlock_irqrestore(&vt_event_lock, flags);
138}
139
140/**
141 * vt_event_wait_ioctl - event ioctl handler
142 * @arg: argument to ioctl
143 *
144 * Implement the VT_WAITEVENT ioctl using the VT event interface
145 */
146
147static int vt_event_wait_ioctl(struct vt_event __user *event)
148{
149 struct vt_event_wait vw;
150
151 if (copy_from_user(&vw.event, event, sizeof(struct vt_event)))
152 return -EFAULT;
153 /* Highest supported event for now */
154 if (vw.event.event & ~VT_MAX_EVENT)
155 return -EINVAL;
156
157 vt_event_wait(&vw);
158 /* If it occurred report it */
159 if (vw.done) {
160 if (copy_to_user(event, &vw.event, sizeof(struct vt_event)))
161 return -EFAULT;
162 return 0;
163 }
164 return -EINTR;
165}
166
167/**
168 * vt_waitactive - active console wait
169 * @event: event code
170 * @n: new console
171 *
172 * Helper for event waits. Used to implement the legacy
173 * event waiting ioctls in terms of events
174 */
175
176int vt_waitactive(int n)
177{
178 struct vt_event_wait vw;
179 do {
180 if (n == fg_console + 1)
181 break;
182 vw.event.event = VT_EVENT_SWITCH;
183 vt_event_wait(&vw);
184 if (vw.done == 0)
185 return -EINTR;
186 } while (vw.event.newev != n);
187 return 0;
188}
189
190/*
191 * these are the valid i/o ports we're allowed to change. they map all the
192 * video ports
193 */
194#define GPFIRST 0x3b4
195#define GPLAST 0x3df
196#define GPNUM (GPLAST - GPFIRST + 1)
197
198#define i (tmp.kb_index)
199#define s (tmp.kb_table)
200#define v (tmp.kb_value)
201static inline int
202do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd)
203{
204 struct kbentry tmp;
205 ushort *key_map, val, ov;
206
207 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
208 return -EFAULT;
209
210 if (!capable(CAP_SYS_TTY_CONFIG))
211 perm = 0;
212
213 switch (cmd) {
214 case KDGKBENT:
215 key_map = key_maps[s];
216 if (key_map) {
217 val = U(key_map[i]);
218 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
219 val = K_HOLE;
220 } else
221 val = (i ? K_HOLE : K_NOSUCHMAP);
222 return put_user(val, &user_kbe->kb_value);
223 case KDSKBENT:
224 if (!perm)
225 return -EPERM;
226 if (!i && v == K_NOSUCHMAP) {
227 /* deallocate map */
228 key_map = key_maps[s];
229 if (s && key_map) {
230 key_maps[s] = NULL;
231 if (key_map[0] == U(K_ALLOCATED)) {
232 kfree(key_map);
233 keymap_count--;
234 }
235 }
236 break;
237 }
238
239 if (KTYP(v) < NR_TYPES) {
240 if (KVAL(v) > max_vals[KTYP(v)])
241 return -EINVAL;
242 } else
243 if (kbd->kbdmode != VC_UNICODE)
244 return -EINVAL;
245
246 /* ++Geert: non-PC keyboards may generate keycode zero */
247#if !defined(__mc68000__) && !defined(__powerpc__)
248 /* assignment to entry 0 only tests validity of args */
249 if (!i)
250 break;
251#endif
252
253 if (!(key_map = key_maps[s])) {
254 int j;
255
256 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
257 !capable(CAP_SYS_RESOURCE))
258 return -EPERM;
259
260 key_map = kmalloc(sizeof(plain_map),
261 GFP_KERNEL);
262 if (!key_map)
263 return -ENOMEM;
264 key_maps[s] = key_map;
265 key_map[0] = U(K_ALLOCATED);
266 for (j = 1; j < NR_KEYS; j++)
267 key_map[j] = U(K_HOLE);
268 keymap_count++;
269 }
270 ov = U(key_map[i]);
271 if (v == ov)
272 break; /* nothing to do */
273 /*
274 * Attention Key.
275 */
276 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN))
277 return -EPERM;
278 key_map[i] = U(v);
279 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
280 compute_shiftstate();
281 break;
282 }
283 return 0;
284}
285#undef i
286#undef s
287#undef v
288
289static inline int
290do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm)
291{
292 struct kbkeycode tmp;
293 int kc = 0;
294
295 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
296 return -EFAULT;
297 switch (cmd) {
298 case KDGETKEYCODE:
299 kc = getkeycode(tmp.scancode);
300 if (kc >= 0)
301 kc = put_user(kc, &user_kbkc->keycode);
302 break;
303 case KDSETKEYCODE:
304 if (!perm)
305 return -EPERM;
306 kc = setkeycode(tmp.scancode, tmp.keycode);
307 break;
308 }
309 return kc;
310}
311
312static inline int
313do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
314{
315 struct kbsentry *kbs;
316 char *p;
317 u_char *q;
318 u_char __user *up;
319 int sz;
320 int delta;
321 char *first_free, *fj, *fnw;
322 int i, j, k;
323 int ret;
324
325 if (!capable(CAP_SYS_TTY_CONFIG))
326 perm = 0;
327
328 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
329 if (!kbs) {
330 ret = -ENOMEM;
331 goto reterr;
332 }
333
334 /* we mostly copy too much here (512bytes), but who cares ;) */
335 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
336 ret = -EFAULT;
337 goto reterr;
338 }
339 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
340 i = kbs->kb_func;
341
342 switch (cmd) {
343 case KDGKBSENT:
344 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
345 a struct member */
346 up = user_kdgkb->kb_string;
347 p = func_table[i];
348 if(p)
349 for ( ; *p && sz; p++, sz--)
350 if (put_user(*p, up++)) {
351 ret = -EFAULT;
352 goto reterr;
353 }
354 if (put_user('\0', up)) {
355 ret = -EFAULT;
356 goto reterr;
357 }
358 kfree(kbs);
359 return ((p && *p) ? -EOVERFLOW : 0);
360 case KDSKBSENT:
361 if (!perm) {
362 ret = -EPERM;
363 goto reterr;
364 }
365
366 q = func_table[i];
367 first_free = funcbufptr + (funcbufsize - funcbufleft);
368 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
369 ;
370 if (j < MAX_NR_FUNC)
371 fj = func_table[j];
372 else
373 fj = first_free;
374
375 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
376 if (delta <= funcbufleft) { /* it fits in current buf */
377 if (j < MAX_NR_FUNC) {
378 memmove(fj + delta, fj, first_free - fj);
379 for (k = j; k < MAX_NR_FUNC; k++)
380 if (func_table[k])
381 func_table[k] += delta;
382 }
383 if (!q)
384 func_table[i] = fj;
385 funcbufleft -= delta;
386 } else { /* allocate a larger buffer */
387 sz = 256;
388 while (sz < funcbufsize - funcbufleft + delta)
389 sz <<= 1;
390 fnw = kmalloc(sz, GFP_KERNEL);
391 if(!fnw) {
392 ret = -ENOMEM;
393 goto reterr;
394 }
395
396 if (!q)
397 func_table[i] = fj;
398 if (fj > funcbufptr)
399 memmove(fnw, funcbufptr, fj - funcbufptr);
400 for (k = 0; k < j; k++)
401 if (func_table[k])
402 func_table[k] = fnw + (func_table[k] - funcbufptr);
403
404 if (first_free > fj) {
405 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
406 for (k = j; k < MAX_NR_FUNC; k++)
407 if (func_table[k])
408 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
409 }
410 if (funcbufptr != func_buf)
411 kfree(funcbufptr);
412 funcbufptr = fnw;
413 funcbufleft = funcbufleft - delta + sz - funcbufsize;
414 funcbufsize = sz;
415 }
416 strcpy(func_table[i], kbs->kb_string);
417 break;
418 }
419 ret = 0;
420reterr:
421 kfree(kbs);
422 return ret;
423}
424
425static inline int
426do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op)
427{
428 struct consolefontdesc cfdarg;
429 int i;
430
431 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc)))
432 return -EFAULT;
433
434 switch (cmd) {
435 case PIO_FONTX:
436 if (!perm)
437 return -EPERM;
438 op->op = KD_FONT_OP_SET;
439 op->flags = KD_FONT_FLAG_OLD;
440 op->width = 8;
441 op->height = cfdarg.charheight;
442 op->charcount = cfdarg.charcount;
443 op->data = cfdarg.chardata;
444 return con_font_op(vc_cons[fg_console].d, op);
445 case GIO_FONTX: {
446 op->op = KD_FONT_OP_GET;
447 op->flags = KD_FONT_FLAG_OLD;
448 op->width = 8;
449 op->height = cfdarg.charheight;
450 op->charcount = cfdarg.charcount;
451 op->data = cfdarg.chardata;
452 i = con_font_op(vc_cons[fg_console].d, op);
453 if (i)
454 return i;
455 cfdarg.charheight = op->height;
456 cfdarg.charcount = op->charcount;
457 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc)))
458 return -EFAULT;
459 return 0;
460 }
461 }
462 return -EINVAL;
463}
464
465static inline int
466do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc)
467{
468 struct unimapdesc tmp;
469
470 if (copy_from_user(&tmp, user_ud, sizeof tmp))
471 return -EFAULT;
472 if (tmp.entries)
473 if (!access_ok(VERIFY_WRITE, tmp.entries,
474 tmp.entry_ct*sizeof(struct unipair)))
475 return -EFAULT;
476 switch (cmd) {
477 case PIO_UNIMAP:
478 if (!perm)
479 return -EPERM;
480 return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
481 case GIO_UNIMAP:
482 if (!perm && fg_console != vc->vc_num)
483 return -EPERM;
484 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries);
485 }
486 return 0;
487}
488
489
490
491/*
492 * We handle the console-specific ioctl's here. We allow the
493 * capability to modify any console, not just the fg_console.
494 */
495int vt_ioctl(struct tty_struct *tty,
496 unsigned int cmd, unsigned long arg)
497{
498 struct vc_data *vc = tty->driver_data;
499 struct console_font_op op; /* used in multiple places here */
500 struct kbd_struct * kbd;
501 unsigned int console;
502 unsigned char ucval;
503 unsigned int uival;
504 void __user *up = (void __user *)arg;
505 int i, perm;
506 int ret = 0;
507
508 console = vc->vc_num;
509
510 tty_lock();
511
512 if (!vc_cons_allocated(console)) { /* impossible? */
513 ret = -ENOIOCTLCMD;
514 goto out;
515 }
516
517
518 /*
519 * To have permissions to do most of the vt ioctls, we either have
520 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
521 */
522 perm = 0;
523 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
524 perm = 1;
525
526 kbd = kbd_table + console;
527 switch (cmd) {
528 case TIOCLINUX:
529 ret = tioclinux(tty, arg);
530 break;
531 case KIOCSOUND:
532 if (!perm)
533 goto eperm;
534 /*
535 * The use of PIT_TICK_RATE is historic, it used to be
536 * the platform-dependent CLOCK_TICK_RATE between 2.6.12
537 * and 2.6.36, which was a minor but unfortunate ABI
538 * change.
539 */
540 if (arg)
541 arg = PIT_TICK_RATE / arg;
542 kd_mksound(arg, 0);
543 break;
544
545 case KDMKTONE:
546 if (!perm)
547 goto eperm;
548 {
549 unsigned int ticks, count;
550
551 /*
552 * Generate the tone for the appropriate number of ticks.
553 * If the time is zero, turn off sound ourselves.
554 */
555 ticks = HZ * ((arg >> 16) & 0xffff) / 1000;
556 count = ticks ? (arg & 0xffff) : 0;
557 if (count)
558 count = PIT_TICK_RATE / count;
559 kd_mksound(count, ticks);
560 break;
561 }
562
563 case KDGKBTYPE:
564 /*
565 * this is naive.
566 */
567 ucval = KB_101;
568 goto setchar;
569
570 /*
571 * These cannot be implemented on any machine that implements
572 * ioperm() in user level (such as Alpha PCs) or not at all.
573 *
574 * XXX: you should never use these, just call ioperm directly..
575 */
576#ifdef CONFIG_X86
577 case KDADDIO:
578 case KDDELIO:
579 /*
580 * KDADDIO and KDDELIO may be able to add ports beyond what
581 * we reject here, but to be safe...
582 */
583 if (arg < GPFIRST || arg > GPLAST) {
584 ret = -EINVAL;
585 break;
586 }
587 ret = sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
588 break;
589
590 case KDENABIO:
591 case KDDISABIO:
592 ret = sys_ioperm(GPFIRST, GPNUM,
593 (cmd == KDENABIO)) ? -ENXIO : 0;
594 break;
595#endif
596
597 /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
598
599 case KDKBDREP:
600 {
601 struct kbd_repeat kbrep;
602
603 if (!capable(CAP_SYS_TTY_CONFIG))
604 goto eperm;
605
606 if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) {
607 ret = -EFAULT;
608 break;
609 }
610 ret = kbd_rate(&kbrep);
611 if (ret)
612 break;
613 if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
614 ret = -EFAULT;
615 break;
616 }
617
618 case KDSETMODE:
619 /*
620 * currently, setting the mode from KD_TEXT to KD_GRAPHICS
621 * doesn't do a whole lot. i'm not sure if it should do any
622 * restoration of modes or what...
623 *
624 * XXX It should at least call into the driver, fbdev's definitely
625 * need to restore their engine state. --BenH
626 */
627 if (!perm)
628 goto eperm;
629 switch (arg) {
630 case KD_GRAPHICS:
631 break;
632 case KD_TEXT0:
633 case KD_TEXT1:
634 arg = KD_TEXT;
635 case KD_TEXT:
636 break;
637 default:
638 ret = -EINVAL;
639 goto out;
640 }
641 if (vc->vc_mode == (unsigned char) arg)
642 break;
643 vc->vc_mode = (unsigned char) arg;
644 if (console != fg_console)
645 break;
646 /*
647 * explicitly blank/unblank the screen if switching modes
648 */
649 console_lock();
650 if (arg == KD_TEXT)
651 do_unblank_screen(1);
652 else
653 do_blank_screen(1);
654 console_unlock();
655 break;
656
657 case KDGETMODE:
658 uival = vc->vc_mode;
659 goto setint;
660
661 case KDMAPDISP:
662 case KDUNMAPDISP:
663 /*
664 * these work like a combination of mmap and KDENABIO.
665 * this could be easily finished.
666 */
667 ret = -EINVAL;
668 break;
669
670 case KDSKBMODE:
671 if (!perm)
672 goto eperm;
673 switch(arg) {
674 case K_RAW:
675 kbd->kbdmode = VC_RAW;
676 break;
677 case K_MEDIUMRAW:
678 kbd->kbdmode = VC_MEDIUMRAW;
679 break;
680 case K_XLATE:
681 kbd->kbdmode = VC_XLATE;
682 compute_shiftstate();
683 break;
684 case K_UNICODE:
685 kbd->kbdmode = VC_UNICODE;
686 compute_shiftstate();
687 break;
688 case K_OFF:
689 kbd->kbdmode = VC_OFF;
690 break;
691 default:
692 ret = -EINVAL;
693 goto out;
694 }
695 tty_ldisc_flush(tty);
696 break;
697
698 case KDGKBMODE:
699 switch (kbd->kbdmode) {
700 case VC_RAW:
701 uival = K_RAW;
702 break;
703 case VC_MEDIUMRAW:
704 uival = K_MEDIUMRAW;
705 break;
706 case VC_UNICODE:
707 uival = K_UNICODE;
708 break;
709 case VC_OFF:
710 uival = K_OFF;
711 break;
712 default:
713 uival = K_XLATE;
714 break;
715 }
716 goto setint;
717
718 /* this could be folded into KDSKBMODE, but for compatibility
719 reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
720 case KDSKBMETA:
721 switch(arg) {
722 case K_METABIT:
723 clr_vc_kbd_mode(kbd, VC_META);
724 break;
725 case K_ESCPREFIX:
726 set_vc_kbd_mode(kbd, VC_META);
727 break;
728 default:
729 ret = -EINVAL;
730 }
731 break;
732
733 case KDGKBMETA:
734 uival = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT);
735 setint:
736 ret = put_user(uival, (int __user *)arg);
737 break;
738
739 case KDGETKEYCODE:
740 case KDSETKEYCODE:
741 if(!capable(CAP_SYS_TTY_CONFIG))
742 perm = 0;
743 ret = do_kbkeycode_ioctl(cmd, up, perm);
744 break;
745
746 case KDGKBENT:
747 case KDSKBENT:
748 ret = do_kdsk_ioctl(cmd, up, perm, kbd);
749 break;
750
751 case KDGKBSENT:
752 case KDSKBSENT:
753 ret = do_kdgkb_ioctl(cmd, up, perm);
754 break;
755
756 case KDGKBDIACR:
757 {
758 struct kbdiacrs __user *a = up;
759 struct kbdiacr diacr;
760 int i;
761
762 if (put_user(accent_table_size, &a->kb_cnt)) {
763 ret = -EFAULT;
764 break;
765 }
766 for (i = 0; i < accent_table_size; i++) {
767 diacr.diacr = conv_uni_to_8bit(accent_table[i].diacr);
768 diacr.base = conv_uni_to_8bit(accent_table[i].base);
769 diacr.result = conv_uni_to_8bit(accent_table[i].result);
770 if (copy_to_user(a->kbdiacr + i, &diacr, sizeof(struct kbdiacr))) {
771 ret = -EFAULT;
772 break;
773 }
774 }
775 break;
776 }
777 case KDGKBDIACRUC:
778 {
779 struct kbdiacrsuc __user *a = up;
780
781 if (put_user(accent_table_size, &a->kb_cnt))
782 ret = -EFAULT;
783 else if (copy_to_user(a->kbdiacruc, accent_table,
784 accent_table_size*sizeof(struct kbdiacruc)))
785 ret = -EFAULT;
786 break;
787 }
788
789 case KDSKBDIACR:
790 {
791 struct kbdiacrs __user *a = up;
792 struct kbdiacr diacr;
793 unsigned int ct;
794 int i;
795
796 if (!perm)
797 goto eperm;
798 if (get_user(ct,&a->kb_cnt)) {
799 ret = -EFAULT;
800 break;
801 }
802 if (ct >= MAX_DIACR) {
803 ret = -EINVAL;
804 break;
805 }
806 accent_table_size = ct;
807 for (i = 0; i < ct; i++) {
808 if (copy_from_user(&diacr, a->kbdiacr + i, sizeof(struct kbdiacr))) {
809 ret = -EFAULT;
810 break;
811 }
812 accent_table[i].diacr = conv_8bit_to_uni(diacr.diacr);
813 accent_table[i].base = conv_8bit_to_uni(diacr.base);
814 accent_table[i].result = conv_8bit_to_uni(diacr.result);
815 }
816 break;
817 }
818
819 case KDSKBDIACRUC:
820 {
821 struct kbdiacrsuc __user *a = up;
822 unsigned int ct;
823
824 if (!perm)
825 goto eperm;
826 if (get_user(ct,&a->kb_cnt)) {
827 ret = -EFAULT;
828 break;
829 }
830 if (ct >= MAX_DIACR) {
831 ret = -EINVAL;
832 break;
833 }
834 accent_table_size = ct;
835 if (copy_from_user(accent_table, a->kbdiacruc, ct*sizeof(struct kbdiacruc)))
836 ret = -EFAULT;
837 break;
838 }
839
840 /* the ioctls below read/set the flags usually shown in the leds */
841 /* don't use them - they will go away without warning */
842 case KDGKBLED:
843 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
844 goto setchar;
845
846 case KDSKBLED:
847 if (!perm)
848 goto eperm;
849 if (arg & ~0x77) {
850 ret = -EINVAL;
851 break;
852 }
853 kbd->ledflagstate = (arg & 7);
854 kbd->default_ledflagstate = ((arg >> 4) & 7);
855 set_leds();
856 break;
857
858 /* the ioctls below only set the lights, not the functions */
859 /* for those, see KDGKBLED and KDSKBLED above */
860 case KDGETLED:
861 ucval = getledstate();
862 setchar:
863 ret = put_user(ucval, (char __user *)arg);
864 break;
865
866 case KDSETLED:
867 if (!perm)
868 goto eperm;
869 setledstate(kbd, arg);
870 break;
871
872 /*
873 * A process can indicate its willingness to accept signals
874 * generated by pressing an appropriate key combination.
875 * Thus, one can have a daemon that e.g. spawns a new console
876 * upon a keypress and then changes to it.
877 * See also the kbrequest field of inittab(5).
878 */
879 case KDSIGACCEPT:
880 {
881 if (!perm || !capable(CAP_KILL))
882 goto eperm;
883 if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
884 ret = -EINVAL;
885 else {
886 spin_lock_irq(&vt_spawn_con.lock);
887 put_pid(vt_spawn_con.pid);
888 vt_spawn_con.pid = get_pid(task_pid(current));
889 vt_spawn_con.sig = arg;
890 spin_unlock_irq(&vt_spawn_con.lock);
891 }
892 break;
893 }
894
895 case VT_SETMODE:
896 {
897 struct vt_mode tmp;
898
899 if (!perm)
900 goto eperm;
901 if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) {
902 ret = -EFAULT;
903 goto out;
904 }
905 if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) {
906 ret = -EINVAL;
907 goto out;
908 }
909 console_lock();
910 vc->vt_mode = tmp;
911 /* the frsig is ignored, so we set it to 0 */
912 vc->vt_mode.frsig = 0;
913 put_pid(vc->vt_pid);
914 vc->vt_pid = get_pid(task_pid(current));
915 /* no switch is required -- saw@shade.msu.ru */
916 vc->vt_newvt = -1;
917 console_unlock();
918 break;
919 }
920
921 case VT_GETMODE:
922 {
923 struct vt_mode tmp;
924 int rc;
925
926 console_lock();
927 memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
928 console_unlock();
929
930 rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
931 if (rc)
932 ret = -EFAULT;
933 break;
934 }
935
936 /*
937 * Returns global vt state. Note that VT 0 is always open, since
938 * it's an alias for the current VT, and people can't use it here.
939 * We cannot return state for more than 16 VTs, since v_state is short.
940 */
941 case VT_GETSTATE:
942 {
943 struct vt_stat __user *vtstat = up;
944 unsigned short state, mask;
945
946 if (put_user(fg_console + 1, &vtstat->v_active))
947 ret = -EFAULT;
948 else {
949 state = 1; /* /dev/tty0 is always open */
950 for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask;
951 ++i, mask <<= 1)
952 if (VT_IS_IN_USE(i))
953 state |= mask;
954 ret = put_user(state, &vtstat->v_state);
955 }
956 break;
957 }
958
959 /*
960 * Returns the first available (non-opened) console.
961 */
962 case VT_OPENQRY:
963 for (i = 0; i < MAX_NR_CONSOLES; ++i)
964 if (! VT_IS_IN_USE(i))
965 break;
966 uival = i < MAX_NR_CONSOLES ? (i+1) : -1;
967 goto setint;
968
969 /*
970 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
971 * with num >= 1 (switches to vt 0, our console, are not allowed, just
972 * to preserve sanity).
973 */
974 case VT_ACTIVATE:
975 if (!perm)
976 goto eperm;
977 if (arg == 0 || arg > MAX_NR_CONSOLES)
978 ret = -ENXIO;
979 else {
980 arg--;
981 console_lock();
982 ret = vc_allocate(arg);
983 console_unlock();
984 if (ret)
985 break;
986 set_console(arg);
987 }
988 break;
989
990 case VT_SETACTIVATE:
991 {
992 struct vt_setactivate vsa;
993
994 if (!perm)
995 goto eperm;
996
997 if (copy_from_user(&vsa, (struct vt_setactivate __user *)arg,
998 sizeof(struct vt_setactivate))) {
999 ret = -EFAULT;
1000 goto out;
1001 }
1002 if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES)
1003 ret = -ENXIO;
1004 else {
1005 vsa.console--;
1006 console_lock();
1007 ret = vc_allocate(vsa.console);
1008 if (ret == 0) {
1009 struct vc_data *nvc;
1010 /* This is safe providing we don't drop the
1011 console sem between vc_allocate and
1012 finishing referencing nvc */
1013 nvc = vc_cons[vsa.console].d;
1014 nvc->vt_mode = vsa.mode;
1015 nvc->vt_mode.frsig = 0;
1016 put_pid(nvc->vt_pid);
1017 nvc->vt_pid = get_pid(task_pid(current));
1018 }
1019 console_unlock();
1020 if (ret)
1021 break;
1022 /* Commence switch and lock */
1023 set_console(vsa.console);
1024 }
1025 break;
1026 }
1027
1028 /*
1029 * wait until the specified VT has been activated
1030 */
1031 case VT_WAITACTIVE:
1032 if (!perm)
1033 goto eperm;
1034 if (arg == 0 || arg > MAX_NR_CONSOLES)
1035 ret = -ENXIO;
1036 else
1037 ret = vt_waitactive(arg);
1038 break;
1039
1040 /*
1041 * If a vt is under process control, the kernel will not switch to it
1042 * immediately, but postpone the operation until the process calls this
1043 * ioctl, allowing the switch to complete.
1044 *
1045 * According to the X sources this is the behavior:
1046 * 0: pending switch-from not OK
1047 * 1: pending switch-from OK
1048 * 2: completed switch-to OK
1049 */
1050 case VT_RELDISP:
1051 if (!perm)
1052 goto eperm;
1053
1054 if (vc->vt_mode.mode != VT_PROCESS) {
1055 ret = -EINVAL;
1056 break;
1057 }
1058 /*
1059 * Switching-from response
1060 */
1061 console_lock();
1062 if (vc->vt_newvt >= 0) {
1063 if (arg == 0)
1064 /*
1065 * Switch disallowed, so forget we were trying
1066 * to do it.
1067 */
1068 vc->vt_newvt = -1;
1069
1070 else {
1071 /*
1072 * The current vt has been released, so
1073 * complete the switch.
1074 */
1075 int newvt;
1076 newvt = vc->vt_newvt;
1077 vc->vt_newvt = -1;
1078 ret = vc_allocate(newvt);
1079 if (ret) {
1080 console_unlock();
1081 break;
1082 }
1083 /*
1084 * When we actually do the console switch,
1085 * make sure we are atomic with respect to
1086 * other console switches..
1087 */
1088 complete_change_console(vc_cons[newvt].d);
1089 }
1090 } else {
1091 /*
1092 * Switched-to response
1093 */
1094 /*
1095 * If it's just an ACK, ignore it
1096 */
1097 if (arg != VT_ACKACQ)
1098 ret = -EINVAL;
1099 }
1100 console_unlock();
1101 break;
1102
1103 /*
1104 * Disallocate memory associated to VT (but leave VT1)
1105 */
1106 case VT_DISALLOCATE:
1107 if (arg > MAX_NR_CONSOLES) {
1108 ret = -ENXIO;
1109 break;
1110 }
1111 if (arg == 0) {
1112 /* deallocate all unused consoles, but leave 0 */
1113 console_lock();
1114 for (i=1; i<MAX_NR_CONSOLES; i++)
1115 if (! VT_BUSY(i))
1116 vc_deallocate(i);
1117 console_unlock();
1118 } else {
1119 /* deallocate a single console, if possible */
1120 arg--;
1121 if (VT_BUSY(arg))
1122 ret = -EBUSY;
1123 else if (arg) { /* leave 0 */
1124 console_lock();
1125 vc_deallocate(arg);
1126 console_unlock();
1127 }
1128 }
1129 break;
1130
1131 case VT_RESIZE:
1132 {
1133 struct vt_sizes __user *vtsizes = up;
1134 struct vc_data *vc;
1135
1136 ushort ll,cc;
1137 if (!perm)
1138 goto eperm;
1139 if (get_user(ll, &vtsizes->v_rows) ||
1140 get_user(cc, &vtsizes->v_cols))
1141 ret = -EFAULT;
1142 else {
1143 console_lock();
1144 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1145 vc = vc_cons[i].d;
1146
1147 if (vc) {
1148 vc->vc_resize_user = 1;
1149 vc_resize(vc_cons[i].d, cc, ll);
1150 }
1151 }
1152 console_unlock();
1153 }
1154 break;
1155 }
1156
1157 case VT_RESIZEX:
1158 {
1159 struct vt_consize __user *vtconsize = up;
1160 ushort ll,cc,vlin,clin,vcol,ccol;
1161 if (!perm)
1162 goto eperm;
1163 if (!access_ok(VERIFY_READ, vtconsize,
1164 sizeof(struct vt_consize))) {
1165 ret = -EFAULT;
1166 break;
1167 }
1168 /* FIXME: Should check the copies properly */
1169 __get_user(ll, &vtconsize->v_rows);
1170 __get_user(cc, &vtconsize->v_cols);
1171 __get_user(vlin, &vtconsize->v_vlin);
1172 __get_user(clin, &vtconsize->v_clin);
1173 __get_user(vcol, &vtconsize->v_vcol);
1174 __get_user(ccol, &vtconsize->v_ccol);
1175 vlin = vlin ? vlin : vc->vc_scan_lines;
1176 if (clin) {
1177 if (ll) {
1178 if (ll != vlin/clin) {
1179 /* Parameters don't add up */
1180 ret = -EINVAL;
1181 break;
1182 }
1183 } else
1184 ll = vlin/clin;
1185 }
1186 if (vcol && ccol) {
1187 if (cc) {
1188 if (cc != vcol/ccol) {
1189 ret = -EINVAL;
1190 break;
1191 }
1192 } else
1193 cc = vcol/ccol;
1194 }
1195
1196 if (clin > 32) {
1197 ret = -EINVAL;
1198 break;
1199 }
1200
1201 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1202 if (!vc_cons[i].d)
1203 continue;
1204 console_lock();
1205 if (vlin)
1206 vc_cons[i].d->vc_scan_lines = vlin;
1207 if (clin)
1208 vc_cons[i].d->vc_font.height = clin;
1209 vc_cons[i].d->vc_resize_user = 1;
1210 vc_resize(vc_cons[i].d, cc, ll);
1211 console_unlock();
1212 }
1213 break;
1214 }
1215
1216 case PIO_FONT: {
1217 if (!perm)
1218 goto eperm;
1219 op.op = KD_FONT_OP_SET;
1220 op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */
1221 op.width = 8;
1222 op.height = 0;
1223 op.charcount = 256;
1224 op.data = up;
1225 ret = con_font_op(vc_cons[fg_console].d, &op);
1226 break;
1227 }
1228
1229 case GIO_FONT: {
1230 op.op = KD_FONT_OP_GET;
1231 op.flags = KD_FONT_FLAG_OLD;
1232 op.width = 8;
1233 op.height = 32;
1234 op.charcount = 256;
1235 op.data = up;
1236 ret = con_font_op(vc_cons[fg_console].d, &op);
1237 break;
1238 }
1239
1240 case PIO_CMAP:
1241 if (!perm)
1242 ret = -EPERM;
1243 else
1244 ret = con_set_cmap(up);
1245 break;
1246
1247 case GIO_CMAP:
1248 ret = con_get_cmap(up);
1249 break;
1250
1251 case PIO_FONTX:
1252 case GIO_FONTX:
1253 ret = do_fontx_ioctl(cmd, up, perm, &op);
1254 break;
1255
1256 case PIO_FONTRESET:
1257 {
1258 if (!perm)
1259 goto eperm;
1260
1261#ifdef BROKEN_GRAPHICS_PROGRAMS
1262 /* With BROKEN_GRAPHICS_PROGRAMS defined, the default
1263 font is not saved. */
1264 ret = -ENOSYS;
1265 break;
1266#else
1267 {
1268 op.op = KD_FONT_OP_SET_DEFAULT;
1269 op.data = NULL;
1270 ret = con_font_op(vc_cons[fg_console].d, &op);
1271 if (ret)
1272 break;
1273 con_set_default_unimap(vc_cons[fg_console].d);
1274 break;
1275 }
1276#endif
1277 }
1278
1279 case KDFONTOP: {
1280 if (copy_from_user(&op, up, sizeof(op))) {
1281 ret = -EFAULT;
1282 break;
1283 }
1284 if (!perm && op.op != KD_FONT_OP_GET)
1285 goto eperm;
1286 ret = con_font_op(vc, &op);
1287 if (ret)
1288 break;
1289 if (copy_to_user(up, &op, sizeof(op)))
1290 ret = -EFAULT;
1291 break;
1292 }
1293
1294 case PIO_SCRNMAP:
1295 if (!perm)
1296 ret = -EPERM;
1297 else
1298 ret = con_set_trans_old(up);
1299 break;
1300
1301 case GIO_SCRNMAP:
1302 ret = con_get_trans_old(up);
1303 break;
1304
1305 case PIO_UNISCRNMAP:
1306 if (!perm)
1307 ret = -EPERM;
1308 else
1309 ret = con_set_trans_new(up);
1310 break;
1311
1312 case GIO_UNISCRNMAP:
1313 ret = con_get_trans_new(up);
1314 break;
1315
1316 case PIO_UNIMAPCLR:
1317 { struct unimapinit ui;
1318 if (!perm)
1319 goto eperm;
1320 ret = copy_from_user(&ui, up, sizeof(struct unimapinit));
1321 if (ret)
1322 ret = -EFAULT;
1323 else
1324 con_clear_unimap(vc, &ui);
1325 break;
1326 }
1327
1328 case PIO_UNIMAP:
1329 case GIO_UNIMAP:
1330 ret = do_unimap_ioctl(cmd, up, perm, vc);
1331 break;
1332
1333 case VT_LOCKSWITCH:
1334 if (!capable(CAP_SYS_TTY_CONFIG))
1335 goto eperm;
1336 vt_dont_switch = 1;
1337 break;
1338 case VT_UNLOCKSWITCH:
1339 if (!capable(CAP_SYS_TTY_CONFIG))
1340 goto eperm;
1341 vt_dont_switch = 0;
1342 break;
1343 case VT_GETHIFONTMASK:
1344 ret = put_user(vc->vc_hi_font_mask,
1345 (unsigned short __user *)arg);
1346 break;
1347 case VT_WAITEVENT:
1348 ret = vt_event_wait_ioctl((struct vt_event __user *)arg);
1349 break;
1350 default:
1351 ret = -ENOIOCTLCMD;
1352 }
1353out:
1354 tty_unlock();
1355 return ret;
1356eperm:
1357 ret = -EPERM;
1358 goto out;
1359}
1360
1361void reset_vc(struct vc_data *vc)
1362{
1363 vc->vc_mode = KD_TEXT;
1364 kbd_table[vc->vc_num].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1365 vc->vt_mode.mode = VT_AUTO;
1366 vc->vt_mode.waitv = 0;
1367 vc->vt_mode.relsig = 0;
1368 vc->vt_mode.acqsig = 0;
1369 vc->vt_mode.frsig = 0;
1370 put_pid(vc->vt_pid);
1371 vc->vt_pid = NULL;
1372 vc->vt_newvt = -1;
1373 if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */
1374 reset_palette(vc);
1375}
1376
1377void vc_SAK(struct work_struct *work)
1378{
1379 struct vc *vc_con =
1380 container_of(work, struct vc, SAK_work);
1381 struct vc_data *vc;
1382 struct tty_struct *tty;
1383
1384 console_lock();
1385 vc = vc_con->d;
1386 if (vc) {
1387 tty = vc->port.tty;
1388 /*
1389 * SAK should also work in all raw modes and reset
1390 * them properly.
1391 */
1392 if (tty)
1393 __do_SAK(tty);
1394 reset_vc(vc);
1395 }
1396 console_unlock();
1397}
1398
1399#ifdef CONFIG_COMPAT
1400
1401struct compat_consolefontdesc {
1402 unsigned short charcount; /* characters in font (256 or 512) */
1403 unsigned short charheight; /* scan lines per character (1-32) */
1404 compat_caddr_t chardata; /* font data in expanded form */
1405};
1406
1407static inline int
1408compat_fontx_ioctl(int cmd, struct compat_consolefontdesc __user *user_cfd,
1409 int perm, struct console_font_op *op)
1410{
1411 struct compat_consolefontdesc cfdarg;
1412 int i;
1413
1414 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct compat_consolefontdesc)))
1415 return -EFAULT;
1416
1417 switch (cmd) {
1418 case PIO_FONTX:
1419 if (!perm)
1420 return -EPERM;
1421 op->op = KD_FONT_OP_SET;
1422 op->flags = KD_FONT_FLAG_OLD;
1423 op->width = 8;
1424 op->height = cfdarg.charheight;
1425 op->charcount = cfdarg.charcount;
1426 op->data = compat_ptr(cfdarg.chardata);
1427 return con_font_op(vc_cons[fg_console].d, op);
1428 case GIO_FONTX:
1429 op->op = KD_FONT_OP_GET;
1430 op->flags = KD_FONT_FLAG_OLD;
1431 op->width = 8;
1432 op->height = cfdarg.charheight;
1433 op->charcount = cfdarg.charcount;
1434 op->data = compat_ptr(cfdarg.chardata);
1435 i = con_font_op(vc_cons[fg_console].d, op);
1436 if (i)
1437 return i;
1438 cfdarg.charheight = op->height;
1439 cfdarg.charcount = op->charcount;
1440 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct compat_consolefontdesc)))
1441 return -EFAULT;
1442 return 0;
1443 }
1444 return -EINVAL;
1445}
1446
1447struct compat_console_font_op {
1448 compat_uint_t op; /* operation code KD_FONT_OP_* */
1449 compat_uint_t flags; /* KD_FONT_FLAG_* */
1450 compat_uint_t width, height; /* font size */
1451 compat_uint_t charcount;
1452 compat_caddr_t data; /* font data with height fixed to 32 */
1453};
1454
1455static inline int
1456compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop,
1457 int perm, struct console_font_op *op, struct vc_data *vc)
1458{
1459 int i;
1460
1461 if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op)))
1462 return -EFAULT;
1463 if (!perm && op->op != KD_FONT_OP_GET)
1464 return -EPERM;
1465 op->data = compat_ptr(((struct compat_console_font_op *)op)->data);
1466 op->flags |= KD_FONT_FLAG_OLD;
1467 i = con_font_op(vc, op);
1468 if (i)
1469 return i;
1470 ((struct compat_console_font_op *)op)->data = (unsigned long)op->data;
1471 if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op)))
1472 return -EFAULT;
1473 return 0;
1474}
1475
1476struct compat_unimapdesc {
1477 unsigned short entry_ct;
1478 compat_caddr_t entries;
1479};
1480
1481static inline int
1482compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud,
1483 int perm, struct vc_data *vc)
1484{
1485 struct compat_unimapdesc tmp;
1486 struct unipair __user *tmp_entries;
1487
1488 if (copy_from_user(&tmp, user_ud, sizeof tmp))
1489 return -EFAULT;
1490 tmp_entries = compat_ptr(tmp.entries);
1491 if (tmp_entries)
1492 if (!access_ok(VERIFY_WRITE, tmp_entries,
1493 tmp.entry_ct*sizeof(struct unipair)))
1494 return -EFAULT;
1495 switch (cmd) {
1496 case PIO_UNIMAP:
1497 if (!perm)
1498 return -EPERM;
1499 return con_set_unimap(vc, tmp.entry_ct, tmp_entries);
1500 case GIO_UNIMAP:
1501 if (!perm && fg_console != vc->vc_num)
1502 return -EPERM;
1503 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries);
1504 }
1505 return 0;
1506}
1507
1508long vt_compat_ioctl(struct tty_struct *tty,
1509 unsigned int cmd, unsigned long arg)
1510{
1511 struct vc_data *vc = tty->driver_data;
1512 struct console_font_op op; /* used in multiple places here */
1513 unsigned int console;
1514 void __user *up = (void __user *)arg;
1515 int perm;
1516 int ret = 0;
1517
1518 console = vc->vc_num;
1519
1520 tty_lock();
1521
1522 if (!vc_cons_allocated(console)) { /* impossible? */
1523 ret = -ENOIOCTLCMD;
1524 goto out;
1525 }
1526
1527 /*
1528 * To have permissions to do most of the vt ioctls, we either have
1529 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
1530 */
1531 perm = 0;
1532 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
1533 perm = 1;
1534
1535 switch (cmd) {
1536 /*
1537 * these need special handlers for incompatible data structures
1538 */
1539 case PIO_FONTX:
1540 case GIO_FONTX:
1541 ret = compat_fontx_ioctl(cmd, up, perm, &op);
1542 break;
1543
1544 case KDFONTOP:
1545 ret = compat_kdfontop_ioctl(up, perm, &op, vc);
1546 break;
1547
1548 case PIO_UNIMAP:
1549 case GIO_UNIMAP:
1550 ret = compat_unimap_ioctl(cmd, up, perm, vc);
1551 break;
1552
1553 /*
1554 * all these treat 'arg' as an integer
1555 */
1556 case KIOCSOUND:
1557 case KDMKTONE:
1558#ifdef CONFIG_X86
1559 case KDADDIO:
1560 case KDDELIO:
1561#endif
1562 case KDSETMODE:
1563 case KDMAPDISP:
1564 case KDUNMAPDISP:
1565 case KDSKBMODE:
1566 case KDSKBMETA:
1567 case KDSKBLED:
1568 case KDSETLED:
1569 case KDSIGACCEPT:
1570 case VT_ACTIVATE:
1571 case VT_WAITACTIVE:
1572 case VT_RELDISP:
1573 case VT_DISALLOCATE:
1574 case VT_RESIZE:
1575 case VT_RESIZEX:
1576 goto fallback;
1577
1578 /*
1579 * the rest has a compatible data structure behind arg,
1580 * but we have to convert it to a proper 64 bit pointer.
1581 */
1582 default:
1583 arg = (unsigned long)compat_ptr(arg);
1584 goto fallback;
1585 }
1586out:
1587 tty_unlock();
1588 return ret;
1589
1590fallback:
1591 tty_unlock();
1592 return vt_ioctl(tty, cmd, arg);
1593}
1594
1595
1596#endif /* CONFIG_COMPAT */
1597
1598
1599/*
1600 * Performs the back end of a vt switch. Called under the console
1601 * semaphore.
1602 */
1603static void complete_change_console(struct vc_data *vc)
1604{
1605 unsigned char old_vc_mode;
1606 int old = fg_console;
1607
1608 last_console = fg_console;
1609
1610 /*
1611 * If we're switching, we could be going from KD_GRAPHICS to
1612 * KD_TEXT mode or vice versa, which means we need to blank or
1613 * unblank the screen later.
1614 */
1615 old_vc_mode = vc_cons[fg_console].d->vc_mode;
1616 switch_screen(vc);
1617
1618 /*
1619 * This can't appear below a successful kill_pid(). If it did,
1620 * then the *blank_screen operation could occur while X, having
1621 * received acqsig, is waking up on another processor. This
1622 * condition can lead to overlapping accesses to the VGA range
1623 * and the framebuffer (causing system lockups).
1624 *
1625 * To account for this we duplicate this code below only if the
1626 * controlling process is gone and we've called reset_vc.
1627 */
1628 if (old_vc_mode != vc->vc_mode) {
1629 if (vc->vc_mode == KD_TEXT)
1630 do_unblank_screen(1);
1631 else
1632 do_blank_screen(1);
1633 }
1634
1635 /*
1636 * If this new console is under process control, send it a signal
1637 * telling it that it has acquired. Also check if it has died and
1638 * clean up (similar to logic employed in change_console())
1639 */
1640 if (vc->vt_mode.mode == VT_PROCESS) {
1641 /*
1642 * Send the signal as privileged - kill_pid() will
1643 * tell us if the process has gone or something else
1644 * is awry
1645 */
1646 if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
1647 /*
1648 * The controlling process has died, so we revert back to
1649 * normal operation. In this case, we'll also change back
1650 * to KD_TEXT mode. I'm not sure if this is strictly correct
1651 * but it saves the agony when the X server dies and the screen
1652 * remains blanked due to KD_GRAPHICS! It would be nice to do
1653 * this outside of VT_PROCESS but there is no single process
1654 * to account for and tracking tty count may be undesirable.
1655 */
1656 reset_vc(vc);
1657
1658 if (old_vc_mode != vc->vc_mode) {
1659 if (vc->vc_mode == KD_TEXT)
1660 do_unblank_screen(1);
1661 else
1662 do_blank_screen(1);
1663 }
1664 }
1665 }
1666
1667 /*
1668 * Wake anyone waiting for their VT to activate
1669 */
1670 vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num);
1671 return;
1672}
1673
1674/*
1675 * Performs the front-end of a vt switch
1676 */
1677void change_console(struct vc_data *new_vc)
1678{
1679 struct vc_data *vc;
1680
1681 if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
1682 return;
1683
1684 /*
1685 * If this vt is in process mode, then we need to handshake with
1686 * that process before switching. Essentially, we store where that
1687 * vt wants to switch to and wait for it to tell us when it's done
1688 * (via VT_RELDISP ioctl).
1689 *
1690 * We also check to see if the controlling process still exists.
1691 * If it doesn't, we reset this vt to auto mode and continue.
1692 * This is a cheap way to track process control. The worst thing
1693 * that can happen is: we send a signal to a process, it dies, and
1694 * the switch gets "lost" waiting for a response; hopefully, the
1695 * user will try again, we'll detect the process is gone (unless
1696 * the user waits just the right amount of time :-) and revert the
1697 * vt to auto control.
1698 */
1699 vc = vc_cons[fg_console].d;
1700 if (vc->vt_mode.mode == VT_PROCESS) {
1701 /*
1702 * Send the signal as privileged - kill_pid() will
1703 * tell us if the process has gone or something else
1704 * is awry.
1705 *
1706 * We need to set vt_newvt *before* sending the signal or we
1707 * have a race.
1708 */
1709 vc->vt_newvt = new_vc->vc_num;
1710 if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
1711 /*
1712 * It worked. Mark the vt to switch to and
1713 * return. The process needs to send us a
1714 * VT_RELDISP ioctl to complete the switch.
1715 */
1716 return;
1717 }
1718
1719 /*
1720 * The controlling process has died, so we revert back to
1721 * normal operation. In this case, we'll also change back
1722 * to KD_TEXT mode. I'm not sure if this is strictly correct
1723 * but it saves the agony when the X server dies and the screen
1724 * remains blanked due to KD_GRAPHICS! It would be nice to do
1725 * this outside of VT_PROCESS but there is no single process
1726 * to account for and tracking tty count may be undesirable.
1727 */
1728 reset_vc(vc);
1729
1730 /*
1731 * Fall through to normal (VT_AUTO) handling of the switch...
1732 */
1733 }
1734
1735 /*
1736 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode
1737 */
1738 if (vc->vc_mode == KD_GRAPHICS)
1739 return;
1740
1741 complete_change_console(new_vc);
1742}
1743
1744/* Perform a kernel triggered VT switch for suspend/resume */
1745
1746static int disable_vt_switch;
1747
1748int vt_move_to_console(unsigned int vt, int alloc)
1749{
1750 int prev;
1751
1752 console_lock();
1753 /* Graphics mode - up to X */
1754 if (disable_vt_switch) {
1755 console_unlock();
1756 return 0;
1757 }
1758 prev = fg_console;
1759
1760 if (alloc && vc_allocate(vt)) {
1761 /* we can't have a free VC for now. Too bad,
1762 * we don't want to mess the screen for now. */
1763 console_unlock();
1764 return -ENOSPC;
1765 }
1766
1767 if (set_console(vt)) {
1768 /*
1769 * We're unable to switch to the SUSPEND_CONSOLE.
1770 * Let the calling function know so it can decide
1771 * what to do.
1772 */
1773 console_unlock();
1774 return -EIO;
1775 }
1776 console_unlock();
1777 tty_lock();
1778 if (vt_waitactive(vt + 1)) {
1779 pr_debug("Suspend: Can't switch VCs.");
1780 tty_unlock();
1781 return -EINTR;
1782 }
1783 tty_unlock();
1784 return prev;
1785}
1786
1787/*
1788 * Normally during a suspend, we allocate a new console and switch to it.
1789 * When we resume, we switch back to the original console. This switch
1790 * can be slow, so on systems where the framebuffer can handle restoration
1791 * of video registers anyways, there's little point in doing the console
1792 * switch. This function allows you to disable it by passing it '0'.
1793 */
1794void pm_set_vt_switch(int do_switch)
1795{
1796 console_lock();
1797 disable_vt_switch = !do_switch;
1798 console_unlock();
1799}
1800EXPORT_SYMBOL(pm_set_vt_switch);
1/*
2 * Copyright (C) 1992 obz under the linux copyright
3 *
4 * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
5 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
6 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
7 * Some code moved for less code duplication - Andi Kleen - Mar 1997
8 * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
9 */
10
11#include <linux/types.h>
12#include <linux/errno.h>
13#include <linux/sched.h>
14#include <linux/tty.h>
15#include <linux/timer.h>
16#include <linux/kernel.h>
17#include <linux/compat.h>
18#include <linux/module.h>
19#include <linux/kd.h>
20#include <linux/vt.h>
21#include <linux/string.h>
22#include <linux/slab.h>
23#include <linux/major.h>
24#include <linux/fs.h>
25#include <linux/console.h>
26#include <linux/consolemap.h>
27#include <linux/signal.h>
28#include <linux/timex.h>
29
30#include <asm/io.h>
31#include <asm/uaccess.h>
32
33#include <linux/kbd_kern.h>
34#include <linux/vt_kern.h>
35#include <linux/kbd_diacr.h>
36#include <linux/selection.h>
37
38char vt_dont_switch;
39extern struct tty_driver *console_driver;
40
41#define VT_IS_IN_USE(i) (console_driver->ttys[i] && console_driver->ttys[i]->count)
42#define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons)
43
44/*
45 * Console (vt and kd) routines, as defined by USL SVR4 manual, and by
46 * experimentation and study of X386 SYSV handling.
47 *
48 * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
49 * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
50 * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
51 * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
52 * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
53 * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
54 * to the current console is done by the main ioctl code.
55 */
56
57#ifdef CONFIG_X86
58#include <linux/syscalls.h>
59#endif
60
61static void complete_change_console(struct vc_data *vc);
62
63/*
64 * User space VT_EVENT handlers
65 */
66
67struct vt_event_wait {
68 struct list_head list;
69 struct vt_event event;
70 int done;
71};
72
73static LIST_HEAD(vt_events);
74static DEFINE_SPINLOCK(vt_event_lock);
75static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue);
76
77/**
78 * vt_event_post
79 * @event: the event that occurred
80 * @old: old console
81 * @new: new console
82 *
83 * Post an VT event to interested VT handlers
84 */
85
86void vt_event_post(unsigned int event, unsigned int old, unsigned int new)
87{
88 struct list_head *pos, *head;
89 unsigned long flags;
90 int wake = 0;
91
92 spin_lock_irqsave(&vt_event_lock, flags);
93 head = &vt_events;
94
95 list_for_each(pos, head) {
96 struct vt_event_wait *ve = list_entry(pos,
97 struct vt_event_wait, list);
98 if (!(ve->event.event & event))
99 continue;
100 ve->event.event = event;
101 /* kernel view is consoles 0..n-1, user space view is
102 console 1..n with 0 meaning current, so we must bias */
103 ve->event.oldev = old + 1;
104 ve->event.newev = new + 1;
105 wake = 1;
106 ve->done = 1;
107 }
108 spin_unlock_irqrestore(&vt_event_lock, flags);
109 if (wake)
110 wake_up_interruptible(&vt_event_waitqueue);
111}
112
113/**
114 * vt_event_wait - wait for an event
115 * @vw: our event
116 *
117 * Waits for an event to occur which completes our vt_event_wait
118 * structure. On return the structure has wv->done set to 1 for success
119 * or 0 if some event such as a signal ended the wait.
120 */
121
122static void vt_event_wait(struct vt_event_wait *vw)
123{
124 unsigned long flags;
125 /* Prepare the event */
126 INIT_LIST_HEAD(&vw->list);
127 vw->done = 0;
128 /* Queue our event */
129 spin_lock_irqsave(&vt_event_lock, flags);
130 list_add(&vw->list, &vt_events);
131 spin_unlock_irqrestore(&vt_event_lock, flags);
132 /* Wait for it to pass */
133 wait_event_interruptible(vt_event_waitqueue, vw->done);
134 /* Dequeue it */
135 spin_lock_irqsave(&vt_event_lock, flags);
136 list_del(&vw->list);
137 spin_unlock_irqrestore(&vt_event_lock, flags);
138}
139
140/**
141 * vt_event_wait_ioctl - event ioctl handler
142 * @arg: argument to ioctl
143 *
144 * Implement the VT_WAITEVENT ioctl using the VT event interface
145 */
146
147static int vt_event_wait_ioctl(struct vt_event __user *event)
148{
149 struct vt_event_wait vw;
150
151 if (copy_from_user(&vw.event, event, sizeof(struct vt_event)))
152 return -EFAULT;
153 /* Highest supported event for now */
154 if (vw.event.event & ~VT_MAX_EVENT)
155 return -EINVAL;
156
157 vt_event_wait(&vw);
158 /* If it occurred report it */
159 if (vw.done) {
160 if (copy_to_user(event, &vw.event, sizeof(struct vt_event)))
161 return -EFAULT;
162 return 0;
163 }
164 return -EINTR;
165}
166
167/**
168 * vt_waitactive - active console wait
169 * @event: event code
170 * @n: new console
171 *
172 * Helper for event waits. Used to implement the legacy
173 * event waiting ioctls in terms of events
174 */
175
176int vt_waitactive(int n)
177{
178 struct vt_event_wait vw;
179 do {
180 if (n == fg_console + 1)
181 break;
182 vw.event.event = VT_EVENT_SWITCH;
183 vt_event_wait(&vw);
184 if (vw.done == 0)
185 return -EINTR;
186 } while (vw.event.newev != n);
187 return 0;
188}
189
190/*
191 * these are the valid i/o ports we're allowed to change. they map all the
192 * video ports
193 */
194#define GPFIRST 0x3b4
195#define GPLAST 0x3df
196#define GPNUM (GPLAST - GPFIRST + 1)
197
198
199
200static inline int
201do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op)
202{
203 struct consolefontdesc cfdarg;
204 int i;
205
206 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc)))
207 return -EFAULT;
208
209 switch (cmd) {
210 case PIO_FONTX:
211 if (!perm)
212 return -EPERM;
213 op->op = KD_FONT_OP_SET;
214 op->flags = KD_FONT_FLAG_OLD;
215 op->width = 8;
216 op->height = cfdarg.charheight;
217 op->charcount = cfdarg.charcount;
218 op->data = cfdarg.chardata;
219 return con_font_op(vc_cons[fg_console].d, op);
220 case GIO_FONTX: {
221 op->op = KD_FONT_OP_GET;
222 op->flags = KD_FONT_FLAG_OLD;
223 op->width = 8;
224 op->height = cfdarg.charheight;
225 op->charcount = cfdarg.charcount;
226 op->data = cfdarg.chardata;
227 i = con_font_op(vc_cons[fg_console].d, op);
228 if (i)
229 return i;
230 cfdarg.charheight = op->height;
231 cfdarg.charcount = op->charcount;
232 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc)))
233 return -EFAULT;
234 return 0;
235 }
236 }
237 return -EINVAL;
238}
239
240static inline int
241do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc)
242{
243 struct unimapdesc tmp;
244
245 if (copy_from_user(&tmp, user_ud, sizeof tmp))
246 return -EFAULT;
247 if (tmp.entries)
248 if (!access_ok(VERIFY_WRITE, tmp.entries,
249 tmp.entry_ct*sizeof(struct unipair)))
250 return -EFAULT;
251 switch (cmd) {
252 case PIO_UNIMAP:
253 if (!perm)
254 return -EPERM;
255 return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
256 case GIO_UNIMAP:
257 if (!perm && fg_console != vc->vc_num)
258 return -EPERM;
259 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries);
260 }
261 return 0;
262}
263
264
265
266/*
267 * We handle the console-specific ioctl's here. We allow the
268 * capability to modify any console, not just the fg_console.
269 */
270int vt_ioctl(struct tty_struct *tty,
271 unsigned int cmd, unsigned long arg)
272{
273 struct vc_data *vc = tty->driver_data;
274 struct console_font_op op; /* used in multiple places here */
275 unsigned int console;
276 unsigned char ucval;
277 unsigned int uival;
278 void __user *up = (void __user *)arg;
279 int i, perm;
280 int ret = 0;
281
282 console = vc->vc_num;
283
284
285 if (!vc_cons_allocated(console)) { /* impossible? */
286 ret = -ENOIOCTLCMD;
287 goto out;
288 }
289
290
291 /*
292 * To have permissions to do most of the vt ioctls, we either have
293 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
294 */
295 perm = 0;
296 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
297 perm = 1;
298
299 switch (cmd) {
300 case TIOCLINUX:
301 ret = tioclinux(tty, arg);
302 break;
303 case KIOCSOUND:
304 if (!perm)
305 return -EPERM;
306 /*
307 * The use of PIT_TICK_RATE is historic, it used to be
308 * the platform-dependent CLOCK_TICK_RATE between 2.6.12
309 * and 2.6.36, which was a minor but unfortunate ABI
310 * change. kd_mksound is locked by the input layer.
311 */
312 if (arg)
313 arg = PIT_TICK_RATE / arg;
314 kd_mksound(arg, 0);
315 break;
316
317 case KDMKTONE:
318 if (!perm)
319 return -EPERM;
320 {
321 unsigned int ticks, count;
322
323 /*
324 * Generate the tone for the appropriate number of ticks.
325 * If the time is zero, turn off sound ourselves.
326 */
327 ticks = HZ * ((arg >> 16) & 0xffff) / 1000;
328 count = ticks ? (arg & 0xffff) : 0;
329 if (count)
330 count = PIT_TICK_RATE / count;
331 kd_mksound(count, ticks);
332 break;
333 }
334
335 case KDGKBTYPE:
336 /*
337 * this is naïve.
338 */
339 ucval = KB_101;
340 ret = put_user(ucval, (char __user *)arg);
341 break;
342
343 /*
344 * These cannot be implemented on any machine that implements
345 * ioperm() in user level (such as Alpha PCs) or not at all.
346 *
347 * XXX: you should never use these, just call ioperm directly..
348 */
349#ifdef CONFIG_X86
350 case KDADDIO:
351 case KDDELIO:
352 /*
353 * KDADDIO and KDDELIO may be able to add ports beyond what
354 * we reject here, but to be safe...
355 *
356 * These are locked internally via sys_ioperm
357 */
358 if (arg < GPFIRST || arg > GPLAST) {
359 ret = -EINVAL;
360 break;
361 }
362 ret = sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
363 break;
364
365 case KDENABIO:
366 case KDDISABIO:
367 ret = sys_ioperm(GPFIRST, GPNUM,
368 (cmd == KDENABIO)) ? -ENXIO : 0;
369 break;
370#endif
371
372 /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
373
374 case KDKBDREP:
375 {
376 struct kbd_repeat kbrep;
377
378 if (!capable(CAP_SYS_TTY_CONFIG))
379 return -EPERM;
380
381 if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) {
382 ret = -EFAULT;
383 break;
384 }
385 ret = kbd_rate(&kbrep);
386 if (ret)
387 break;
388 if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
389 ret = -EFAULT;
390 break;
391 }
392
393 case KDSETMODE:
394 /*
395 * currently, setting the mode from KD_TEXT to KD_GRAPHICS
396 * doesn't do a whole lot. i'm not sure if it should do any
397 * restoration of modes or what...
398 *
399 * XXX It should at least call into the driver, fbdev's definitely
400 * need to restore their engine state. --BenH
401 */
402 if (!perm)
403 return -EPERM;
404 switch (arg) {
405 case KD_GRAPHICS:
406 break;
407 case KD_TEXT0:
408 case KD_TEXT1:
409 arg = KD_TEXT;
410 case KD_TEXT:
411 break;
412 default:
413 ret = -EINVAL;
414 goto out;
415 }
416 /* FIXME: this needs the console lock extending */
417 if (vc->vc_mode == (unsigned char) arg)
418 break;
419 vc->vc_mode = (unsigned char) arg;
420 if (console != fg_console)
421 break;
422 /*
423 * explicitly blank/unblank the screen if switching modes
424 */
425 console_lock();
426 if (arg == KD_TEXT)
427 do_unblank_screen(1);
428 else
429 do_blank_screen(1);
430 console_unlock();
431 break;
432
433 case KDGETMODE:
434 uival = vc->vc_mode;
435 goto setint;
436
437 case KDMAPDISP:
438 case KDUNMAPDISP:
439 /*
440 * these work like a combination of mmap and KDENABIO.
441 * this could be easily finished.
442 */
443 ret = -EINVAL;
444 break;
445
446 case KDSKBMODE:
447 if (!perm)
448 return -EPERM;
449 ret = vt_do_kdskbmode(console, arg);
450 if (ret == 0)
451 tty_ldisc_flush(tty);
452 break;
453
454 case KDGKBMODE:
455 uival = vt_do_kdgkbmode(console);
456 ret = put_user(uival, (int __user *)arg);
457 break;
458
459 /* this could be folded into KDSKBMODE, but for compatibility
460 reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
461 case KDSKBMETA:
462 ret = vt_do_kdskbmeta(console, arg);
463 break;
464
465 case KDGKBMETA:
466 /* FIXME: should review whether this is worth locking */
467 uival = vt_do_kdgkbmeta(console);
468 setint:
469 ret = put_user(uival, (int __user *)arg);
470 break;
471
472 case KDGETKEYCODE:
473 case KDSETKEYCODE:
474 if(!capable(CAP_SYS_TTY_CONFIG))
475 perm = 0;
476 ret = vt_do_kbkeycode_ioctl(cmd, up, perm);
477 break;
478
479 case KDGKBENT:
480 case KDSKBENT:
481 ret = vt_do_kdsk_ioctl(cmd, up, perm, console);
482 break;
483
484 case KDGKBSENT:
485 case KDSKBSENT:
486 ret = vt_do_kdgkb_ioctl(cmd, up, perm);
487 break;
488
489 /* Diacritical processing. Handled in keyboard.c as it has
490 to operate on the keyboard locks and structures */
491 case KDGKBDIACR:
492 case KDGKBDIACRUC:
493 case KDSKBDIACR:
494 case KDSKBDIACRUC:
495 ret = vt_do_diacrit(cmd, up, perm);
496 break;
497
498 /* the ioctls below read/set the flags usually shown in the leds */
499 /* don't use them - they will go away without warning */
500 case KDGKBLED:
501 case KDSKBLED:
502 case KDGETLED:
503 case KDSETLED:
504 ret = vt_do_kdskled(console, cmd, arg, perm);
505 break;
506
507 /*
508 * A process can indicate its willingness to accept signals
509 * generated by pressing an appropriate key combination.
510 * Thus, one can have a daemon that e.g. spawns a new console
511 * upon a keypress and then changes to it.
512 * See also the kbrequest field of inittab(5).
513 */
514 case KDSIGACCEPT:
515 {
516 if (!perm || !capable(CAP_KILL))
517 return -EPERM;
518 if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
519 ret = -EINVAL;
520 else {
521 spin_lock_irq(&vt_spawn_con.lock);
522 put_pid(vt_spawn_con.pid);
523 vt_spawn_con.pid = get_pid(task_pid(current));
524 vt_spawn_con.sig = arg;
525 spin_unlock_irq(&vt_spawn_con.lock);
526 }
527 break;
528 }
529
530 case VT_SETMODE:
531 {
532 struct vt_mode tmp;
533
534 if (!perm)
535 return -EPERM;
536 if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) {
537 ret = -EFAULT;
538 goto out;
539 }
540 if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) {
541 ret = -EINVAL;
542 goto out;
543 }
544 console_lock();
545 vc->vt_mode = tmp;
546 /* the frsig is ignored, so we set it to 0 */
547 vc->vt_mode.frsig = 0;
548 put_pid(vc->vt_pid);
549 vc->vt_pid = get_pid(task_pid(current));
550 /* no switch is required -- saw@shade.msu.ru */
551 vc->vt_newvt = -1;
552 console_unlock();
553 break;
554 }
555
556 case VT_GETMODE:
557 {
558 struct vt_mode tmp;
559 int rc;
560
561 console_lock();
562 memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
563 console_unlock();
564
565 rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
566 if (rc)
567 ret = -EFAULT;
568 break;
569 }
570
571 /*
572 * Returns global vt state. Note that VT 0 is always open, since
573 * it's an alias for the current VT, and people can't use it here.
574 * We cannot return state for more than 16 VTs, since v_state is short.
575 */
576 case VT_GETSTATE:
577 {
578 struct vt_stat __user *vtstat = up;
579 unsigned short state, mask;
580
581 /* Review: FIXME: Console lock ? */
582 if (put_user(fg_console + 1, &vtstat->v_active))
583 ret = -EFAULT;
584 else {
585 state = 1; /* /dev/tty0 is always open */
586 for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask;
587 ++i, mask <<= 1)
588 if (VT_IS_IN_USE(i))
589 state |= mask;
590 ret = put_user(state, &vtstat->v_state);
591 }
592 break;
593 }
594
595 /*
596 * Returns the first available (non-opened) console.
597 */
598 case VT_OPENQRY:
599 /* FIXME: locking ? - but then this is a stupid API */
600 for (i = 0; i < MAX_NR_CONSOLES; ++i)
601 if (! VT_IS_IN_USE(i))
602 break;
603 uival = i < MAX_NR_CONSOLES ? (i+1) : -1;
604 goto setint;
605
606 /*
607 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
608 * with num >= 1 (switches to vt 0, our console, are not allowed, just
609 * to preserve sanity).
610 */
611 case VT_ACTIVATE:
612 if (!perm)
613 return -EPERM;
614 if (arg == 0 || arg > MAX_NR_CONSOLES)
615 ret = -ENXIO;
616 else {
617 arg--;
618 console_lock();
619 ret = vc_allocate(arg);
620 console_unlock();
621 if (ret)
622 break;
623 set_console(arg);
624 }
625 break;
626
627 case VT_SETACTIVATE:
628 {
629 struct vt_setactivate vsa;
630
631 if (!perm)
632 return -EPERM;
633
634 if (copy_from_user(&vsa, (struct vt_setactivate __user *)arg,
635 sizeof(struct vt_setactivate))) {
636 ret = -EFAULT;
637 goto out;
638 }
639 if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES)
640 ret = -ENXIO;
641 else {
642 vsa.console--;
643 console_lock();
644 ret = vc_allocate(vsa.console);
645 if (ret == 0) {
646 struct vc_data *nvc;
647 /* This is safe providing we don't drop the
648 console sem between vc_allocate and
649 finishing referencing nvc */
650 nvc = vc_cons[vsa.console].d;
651 nvc->vt_mode = vsa.mode;
652 nvc->vt_mode.frsig = 0;
653 put_pid(nvc->vt_pid);
654 nvc->vt_pid = get_pid(task_pid(current));
655 }
656 console_unlock();
657 if (ret)
658 break;
659 /* Commence switch and lock */
660 /* Review set_console locks */
661 set_console(vsa.console);
662 }
663 break;
664 }
665
666 /*
667 * wait until the specified VT has been activated
668 */
669 case VT_WAITACTIVE:
670 if (!perm)
671 return -EPERM;
672 if (arg == 0 || arg > MAX_NR_CONSOLES)
673 ret = -ENXIO;
674 else
675 ret = vt_waitactive(arg);
676 break;
677
678 /*
679 * If a vt is under process control, the kernel will not switch to it
680 * immediately, but postpone the operation until the process calls this
681 * ioctl, allowing the switch to complete.
682 *
683 * According to the X sources this is the behavior:
684 * 0: pending switch-from not OK
685 * 1: pending switch-from OK
686 * 2: completed switch-to OK
687 */
688 case VT_RELDISP:
689 if (!perm)
690 return -EPERM;
691
692 console_lock();
693 if (vc->vt_mode.mode != VT_PROCESS) {
694 console_unlock();
695 ret = -EINVAL;
696 break;
697 }
698 /*
699 * Switching-from response
700 */
701 if (vc->vt_newvt >= 0) {
702 if (arg == 0)
703 /*
704 * Switch disallowed, so forget we were trying
705 * to do it.
706 */
707 vc->vt_newvt = -1;
708
709 else {
710 /*
711 * The current vt has been released, so
712 * complete the switch.
713 */
714 int newvt;
715 newvt = vc->vt_newvt;
716 vc->vt_newvt = -1;
717 ret = vc_allocate(newvt);
718 if (ret) {
719 console_unlock();
720 break;
721 }
722 /*
723 * When we actually do the console switch,
724 * make sure we are atomic with respect to
725 * other console switches..
726 */
727 complete_change_console(vc_cons[newvt].d);
728 }
729 } else {
730 /*
731 * Switched-to response
732 */
733 /*
734 * If it's just an ACK, ignore it
735 */
736 if (arg != VT_ACKACQ)
737 ret = -EINVAL;
738 }
739 console_unlock();
740 break;
741
742 /*
743 * Disallocate memory associated to VT (but leave VT1)
744 */
745 case VT_DISALLOCATE:
746 if (arg > MAX_NR_CONSOLES) {
747 ret = -ENXIO;
748 break;
749 }
750 if (arg == 0) {
751 /* deallocate all unused consoles, but leave 0 */
752 console_lock();
753 for (i=1; i<MAX_NR_CONSOLES; i++)
754 if (! VT_BUSY(i))
755 vc_deallocate(i);
756 console_unlock();
757 } else {
758 /* deallocate a single console, if possible */
759 arg--;
760 if (VT_BUSY(arg))
761 ret = -EBUSY;
762 else if (arg) { /* leave 0 */
763 console_lock();
764 vc_deallocate(arg);
765 console_unlock();
766 }
767 }
768 break;
769
770 case VT_RESIZE:
771 {
772 struct vt_sizes __user *vtsizes = up;
773 struct vc_data *vc;
774
775 ushort ll,cc;
776 if (!perm)
777 return -EPERM;
778 if (get_user(ll, &vtsizes->v_rows) ||
779 get_user(cc, &vtsizes->v_cols))
780 ret = -EFAULT;
781 else {
782 console_lock();
783 for (i = 0; i < MAX_NR_CONSOLES; i++) {
784 vc = vc_cons[i].d;
785
786 if (vc) {
787 vc->vc_resize_user = 1;
788 /* FIXME: review v tty lock */
789 vc_resize(vc_cons[i].d, cc, ll);
790 }
791 }
792 console_unlock();
793 }
794 break;
795 }
796
797 case VT_RESIZEX:
798 {
799 struct vt_consize __user *vtconsize = up;
800 ushort ll,cc,vlin,clin,vcol,ccol;
801 if (!perm)
802 return -EPERM;
803 if (!access_ok(VERIFY_READ, vtconsize,
804 sizeof(struct vt_consize))) {
805 ret = -EFAULT;
806 break;
807 }
808 /* FIXME: Should check the copies properly */
809 __get_user(ll, &vtconsize->v_rows);
810 __get_user(cc, &vtconsize->v_cols);
811 __get_user(vlin, &vtconsize->v_vlin);
812 __get_user(clin, &vtconsize->v_clin);
813 __get_user(vcol, &vtconsize->v_vcol);
814 __get_user(ccol, &vtconsize->v_ccol);
815 vlin = vlin ? vlin : vc->vc_scan_lines;
816 if (clin) {
817 if (ll) {
818 if (ll != vlin/clin) {
819 /* Parameters don't add up */
820 ret = -EINVAL;
821 break;
822 }
823 } else
824 ll = vlin/clin;
825 }
826 if (vcol && ccol) {
827 if (cc) {
828 if (cc != vcol/ccol) {
829 ret = -EINVAL;
830 break;
831 }
832 } else
833 cc = vcol/ccol;
834 }
835
836 if (clin > 32) {
837 ret = -EINVAL;
838 break;
839 }
840
841 for (i = 0; i < MAX_NR_CONSOLES; i++) {
842 if (!vc_cons[i].d)
843 continue;
844 console_lock();
845 if (vlin)
846 vc_cons[i].d->vc_scan_lines = vlin;
847 if (clin)
848 vc_cons[i].d->vc_font.height = clin;
849 vc_cons[i].d->vc_resize_user = 1;
850 vc_resize(vc_cons[i].d, cc, ll);
851 console_unlock();
852 }
853 break;
854 }
855
856 case PIO_FONT: {
857 if (!perm)
858 return -EPERM;
859 op.op = KD_FONT_OP_SET;
860 op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */
861 op.width = 8;
862 op.height = 0;
863 op.charcount = 256;
864 op.data = up;
865 ret = con_font_op(vc_cons[fg_console].d, &op);
866 break;
867 }
868
869 case GIO_FONT: {
870 op.op = KD_FONT_OP_GET;
871 op.flags = KD_FONT_FLAG_OLD;
872 op.width = 8;
873 op.height = 32;
874 op.charcount = 256;
875 op.data = up;
876 ret = con_font_op(vc_cons[fg_console].d, &op);
877 break;
878 }
879
880 case PIO_CMAP:
881 if (!perm)
882 ret = -EPERM;
883 else
884 ret = con_set_cmap(up);
885 break;
886
887 case GIO_CMAP:
888 ret = con_get_cmap(up);
889 break;
890
891 case PIO_FONTX:
892 case GIO_FONTX:
893 ret = do_fontx_ioctl(cmd, up, perm, &op);
894 break;
895
896 case PIO_FONTRESET:
897 {
898 if (!perm)
899 return -EPERM;
900
901#ifdef BROKEN_GRAPHICS_PROGRAMS
902 /* With BROKEN_GRAPHICS_PROGRAMS defined, the default
903 font is not saved. */
904 ret = -ENOSYS;
905 break;
906#else
907 {
908 op.op = KD_FONT_OP_SET_DEFAULT;
909 op.data = NULL;
910 ret = con_font_op(vc_cons[fg_console].d, &op);
911 if (ret)
912 break;
913 console_lock();
914 con_set_default_unimap(vc_cons[fg_console].d);
915 console_unlock();
916 break;
917 }
918#endif
919 }
920
921 case KDFONTOP: {
922 if (copy_from_user(&op, up, sizeof(op))) {
923 ret = -EFAULT;
924 break;
925 }
926 if (!perm && op.op != KD_FONT_OP_GET)
927 return -EPERM;
928 ret = con_font_op(vc, &op);
929 if (ret)
930 break;
931 if (copy_to_user(up, &op, sizeof(op)))
932 ret = -EFAULT;
933 break;
934 }
935
936 case PIO_SCRNMAP:
937 if (!perm)
938 ret = -EPERM;
939 else
940 ret = con_set_trans_old(up);
941 break;
942
943 case GIO_SCRNMAP:
944 ret = con_get_trans_old(up);
945 break;
946
947 case PIO_UNISCRNMAP:
948 if (!perm)
949 ret = -EPERM;
950 else
951 ret = con_set_trans_new(up);
952 break;
953
954 case GIO_UNISCRNMAP:
955 ret = con_get_trans_new(up);
956 break;
957
958 case PIO_UNIMAPCLR:
959 { struct unimapinit ui;
960 if (!perm)
961 return -EPERM;
962 ret = copy_from_user(&ui, up, sizeof(struct unimapinit));
963 if (ret)
964 ret = -EFAULT;
965 else
966 con_clear_unimap(vc, &ui);
967 break;
968 }
969
970 case PIO_UNIMAP:
971 case GIO_UNIMAP:
972 ret = do_unimap_ioctl(cmd, up, perm, vc);
973 break;
974
975 case VT_LOCKSWITCH:
976 if (!capable(CAP_SYS_TTY_CONFIG))
977 return -EPERM;
978 vt_dont_switch = 1;
979 break;
980 case VT_UNLOCKSWITCH:
981 if (!capable(CAP_SYS_TTY_CONFIG))
982 return -EPERM;
983 vt_dont_switch = 0;
984 break;
985 case VT_GETHIFONTMASK:
986 ret = put_user(vc->vc_hi_font_mask,
987 (unsigned short __user *)arg);
988 break;
989 case VT_WAITEVENT:
990 ret = vt_event_wait_ioctl((struct vt_event __user *)arg);
991 break;
992 default:
993 ret = -ENOIOCTLCMD;
994 }
995out:
996 return ret;
997}
998
999void reset_vc(struct vc_data *vc)
1000{
1001 vc->vc_mode = KD_TEXT;
1002 vt_reset_unicode(vc->vc_num);
1003 vc->vt_mode.mode = VT_AUTO;
1004 vc->vt_mode.waitv = 0;
1005 vc->vt_mode.relsig = 0;
1006 vc->vt_mode.acqsig = 0;
1007 vc->vt_mode.frsig = 0;
1008 put_pid(vc->vt_pid);
1009 vc->vt_pid = NULL;
1010 vc->vt_newvt = -1;
1011 if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */
1012 reset_palette(vc);
1013}
1014
1015void vc_SAK(struct work_struct *work)
1016{
1017 struct vc *vc_con =
1018 container_of(work, struct vc, SAK_work);
1019 struct vc_data *vc;
1020 struct tty_struct *tty;
1021
1022 console_lock();
1023 vc = vc_con->d;
1024 if (vc) {
1025 /* FIXME: review tty ref counting */
1026 tty = vc->port.tty;
1027 /*
1028 * SAK should also work in all raw modes and reset
1029 * them properly.
1030 */
1031 if (tty)
1032 __do_SAK(tty);
1033 reset_vc(vc);
1034 }
1035 console_unlock();
1036}
1037
1038#ifdef CONFIG_COMPAT
1039
1040struct compat_consolefontdesc {
1041 unsigned short charcount; /* characters in font (256 or 512) */
1042 unsigned short charheight; /* scan lines per character (1-32) */
1043 compat_caddr_t chardata; /* font data in expanded form */
1044};
1045
1046static inline int
1047compat_fontx_ioctl(int cmd, struct compat_consolefontdesc __user *user_cfd,
1048 int perm, struct console_font_op *op)
1049{
1050 struct compat_consolefontdesc cfdarg;
1051 int i;
1052
1053 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct compat_consolefontdesc)))
1054 return -EFAULT;
1055
1056 switch (cmd) {
1057 case PIO_FONTX:
1058 if (!perm)
1059 return -EPERM;
1060 op->op = KD_FONT_OP_SET;
1061 op->flags = KD_FONT_FLAG_OLD;
1062 op->width = 8;
1063 op->height = cfdarg.charheight;
1064 op->charcount = cfdarg.charcount;
1065 op->data = compat_ptr(cfdarg.chardata);
1066 return con_font_op(vc_cons[fg_console].d, op);
1067 case GIO_FONTX:
1068 op->op = KD_FONT_OP_GET;
1069 op->flags = KD_FONT_FLAG_OLD;
1070 op->width = 8;
1071 op->height = cfdarg.charheight;
1072 op->charcount = cfdarg.charcount;
1073 op->data = compat_ptr(cfdarg.chardata);
1074 i = con_font_op(vc_cons[fg_console].d, op);
1075 if (i)
1076 return i;
1077 cfdarg.charheight = op->height;
1078 cfdarg.charcount = op->charcount;
1079 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct compat_consolefontdesc)))
1080 return -EFAULT;
1081 return 0;
1082 }
1083 return -EINVAL;
1084}
1085
1086struct compat_console_font_op {
1087 compat_uint_t op; /* operation code KD_FONT_OP_* */
1088 compat_uint_t flags; /* KD_FONT_FLAG_* */
1089 compat_uint_t width, height; /* font size */
1090 compat_uint_t charcount;
1091 compat_caddr_t data; /* font data with height fixed to 32 */
1092};
1093
1094static inline int
1095compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop,
1096 int perm, struct console_font_op *op, struct vc_data *vc)
1097{
1098 int i;
1099
1100 if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op)))
1101 return -EFAULT;
1102 if (!perm && op->op != KD_FONT_OP_GET)
1103 return -EPERM;
1104 op->data = compat_ptr(((struct compat_console_font_op *)op)->data);
1105 i = con_font_op(vc, op);
1106 if (i)
1107 return i;
1108 ((struct compat_console_font_op *)op)->data = (unsigned long)op->data;
1109 if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op)))
1110 return -EFAULT;
1111 return 0;
1112}
1113
1114struct compat_unimapdesc {
1115 unsigned short entry_ct;
1116 compat_caddr_t entries;
1117};
1118
1119static inline int
1120compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud,
1121 int perm, struct vc_data *vc)
1122{
1123 struct compat_unimapdesc tmp;
1124 struct unipair __user *tmp_entries;
1125
1126 if (copy_from_user(&tmp, user_ud, sizeof tmp))
1127 return -EFAULT;
1128 tmp_entries = compat_ptr(tmp.entries);
1129 if (tmp_entries)
1130 if (!access_ok(VERIFY_WRITE, tmp_entries,
1131 tmp.entry_ct*sizeof(struct unipair)))
1132 return -EFAULT;
1133 switch (cmd) {
1134 case PIO_UNIMAP:
1135 if (!perm)
1136 return -EPERM;
1137 return con_set_unimap(vc, tmp.entry_ct, tmp_entries);
1138 case GIO_UNIMAP:
1139 if (!perm && fg_console != vc->vc_num)
1140 return -EPERM;
1141 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries);
1142 }
1143 return 0;
1144}
1145
1146long vt_compat_ioctl(struct tty_struct *tty,
1147 unsigned int cmd, unsigned long arg)
1148{
1149 struct vc_data *vc = tty->driver_data;
1150 struct console_font_op op; /* used in multiple places here */
1151 unsigned int console;
1152 void __user *up = (void __user *)arg;
1153 int perm;
1154 int ret = 0;
1155
1156 console = vc->vc_num;
1157
1158 if (!vc_cons_allocated(console)) { /* impossible? */
1159 ret = -ENOIOCTLCMD;
1160 goto out;
1161 }
1162
1163 /*
1164 * To have permissions to do most of the vt ioctls, we either have
1165 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
1166 */
1167 perm = 0;
1168 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
1169 perm = 1;
1170
1171 switch (cmd) {
1172 /*
1173 * these need special handlers for incompatible data structures
1174 */
1175 case PIO_FONTX:
1176 case GIO_FONTX:
1177 ret = compat_fontx_ioctl(cmd, up, perm, &op);
1178 break;
1179
1180 case KDFONTOP:
1181 ret = compat_kdfontop_ioctl(up, perm, &op, vc);
1182 break;
1183
1184 case PIO_UNIMAP:
1185 case GIO_UNIMAP:
1186 ret = compat_unimap_ioctl(cmd, up, perm, vc);
1187 break;
1188
1189 /*
1190 * all these treat 'arg' as an integer
1191 */
1192 case KIOCSOUND:
1193 case KDMKTONE:
1194#ifdef CONFIG_X86
1195 case KDADDIO:
1196 case KDDELIO:
1197#endif
1198 case KDSETMODE:
1199 case KDMAPDISP:
1200 case KDUNMAPDISP:
1201 case KDSKBMODE:
1202 case KDSKBMETA:
1203 case KDSKBLED:
1204 case KDSETLED:
1205 case KDSIGACCEPT:
1206 case VT_ACTIVATE:
1207 case VT_WAITACTIVE:
1208 case VT_RELDISP:
1209 case VT_DISALLOCATE:
1210 case VT_RESIZE:
1211 case VT_RESIZEX:
1212 goto fallback;
1213
1214 /*
1215 * the rest has a compatible data structure behind arg,
1216 * but we have to convert it to a proper 64 bit pointer.
1217 */
1218 default:
1219 arg = (unsigned long)compat_ptr(arg);
1220 goto fallback;
1221 }
1222out:
1223 return ret;
1224
1225fallback:
1226 return vt_ioctl(tty, cmd, arg);
1227}
1228
1229
1230#endif /* CONFIG_COMPAT */
1231
1232
1233/*
1234 * Performs the back end of a vt switch. Called under the console
1235 * semaphore.
1236 */
1237static void complete_change_console(struct vc_data *vc)
1238{
1239 unsigned char old_vc_mode;
1240 int old = fg_console;
1241
1242 last_console = fg_console;
1243
1244 /*
1245 * If we're switching, we could be going from KD_GRAPHICS to
1246 * KD_TEXT mode or vice versa, which means we need to blank or
1247 * unblank the screen later.
1248 */
1249 old_vc_mode = vc_cons[fg_console].d->vc_mode;
1250 switch_screen(vc);
1251
1252 /*
1253 * This can't appear below a successful kill_pid(). If it did,
1254 * then the *blank_screen operation could occur while X, having
1255 * received acqsig, is waking up on another processor. This
1256 * condition can lead to overlapping accesses to the VGA range
1257 * and the framebuffer (causing system lockups).
1258 *
1259 * To account for this we duplicate this code below only if the
1260 * controlling process is gone and we've called reset_vc.
1261 */
1262 if (old_vc_mode != vc->vc_mode) {
1263 if (vc->vc_mode == KD_TEXT)
1264 do_unblank_screen(1);
1265 else
1266 do_blank_screen(1);
1267 }
1268
1269 /*
1270 * If this new console is under process control, send it a signal
1271 * telling it that it has acquired. Also check if it has died and
1272 * clean up (similar to logic employed in change_console())
1273 */
1274 if (vc->vt_mode.mode == VT_PROCESS) {
1275 /*
1276 * Send the signal as privileged - kill_pid() will
1277 * tell us if the process has gone or something else
1278 * is awry
1279 */
1280 if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
1281 /*
1282 * The controlling process has died, so we revert back to
1283 * normal operation. In this case, we'll also change back
1284 * to KD_TEXT mode. I'm not sure if this is strictly correct
1285 * but it saves the agony when the X server dies and the screen
1286 * remains blanked due to KD_GRAPHICS! It would be nice to do
1287 * this outside of VT_PROCESS but there is no single process
1288 * to account for and tracking tty count may be undesirable.
1289 */
1290 reset_vc(vc);
1291
1292 if (old_vc_mode != vc->vc_mode) {
1293 if (vc->vc_mode == KD_TEXT)
1294 do_unblank_screen(1);
1295 else
1296 do_blank_screen(1);
1297 }
1298 }
1299 }
1300
1301 /*
1302 * Wake anyone waiting for their VT to activate
1303 */
1304 vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num);
1305 return;
1306}
1307
1308/*
1309 * Performs the front-end of a vt switch
1310 */
1311void change_console(struct vc_data *new_vc)
1312{
1313 struct vc_data *vc;
1314
1315 if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
1316 return;
1317
1318 /*
1319 * If this vt is in process mode, then we need to handshake with
1320 * that process before switching. Essentially, we store where that
1321 * vt wants to switch to and wait for it to tell us when it's done
1322 * (via VT_RELDISP ioctl).
1323 *
1324 * We also check to see if the controlling process still exists.
1325 * If it doesn't, we reset this vt to auto mode and continue.
1326 * This is a cheap way to track process control. The worst thing
1327 * that can happen is: we send a signal to a process, it dies, and
1328 * the switch gets "lost" waiting for a response; hopefully, the
1329 * user will try again, we'll detect the process is gone (unless
1330 * the user waits just the right amount of time :-) and revert the
1331 * vt to auto control.
1332 */
1333 vc = vc_cons[fg_console].d;
1334 if (vc->vt_mode.mode == VT_PROCESS) {
1335 /*
1336 * Send the signal as privileged - kill_pid() will
1337 * tell us if the process has gone or something else
1338 * is awry.
1339 *
1340 * We need to set vt_newvt *before* sending the signal or we
1341 * have a race.
1342 */
1343 vc->vt_newvt = new_vc->vc_num;
1344 if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
1345 /*
1346 * It worked. Mark the vt to switch to and
1347 * return. The process needs to send us a
1348 * VT_RELDISP ioctl to complete the switch.
1349 */
1350 return;
1351 }
1352
1353 /*
1354 * The controlling process has died, so we revert back to
1355 * normal operation. In this case, we'll also change back
1356 * to KD_TEXT mode. I'm not sure if this is strictly correct
1357 * but it saves the agony when the X server dies and the screen
1358 * remains blanked due to KD_GRAPHICS! It would be nice to do
1359 * this outside of VT_PROCESS but there is no single process
1360 * to account for and tracking tty count may be undesirable.
1361 */
1362 reset_vc(vc);
1363
1364 /*
1365 * Fall through to normal (VT_AUTO) handling of the switch...
1366 */
1367 }
1368
1369 /*
1370 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode
1371 */
1372 if (vc->vc_mode == KD_GRAPHICS)
1373 return;
1374
1375 complete_change_console(new_vc);
1376}
1377
1378/* Perform a kernel triggered VT switch for suspend/resume */
1379
1380static int disable_vt_switch;
1381
1382int vt_move_to_console(unsigned int vt, int alloc)
1383{
1384 int prev;
1385
1386 console_lock();
1387 /* Graphics mode - up to X */
1388 if (disable_vt_switch) {
1389 console_unlock();
1390 return 0;
1391 }
1392 prev = fg_console;
1393
1394 if (alloc && vc_allocate(vt)) {
1395 /* we can't have a free VC for now. Too bad,
1396 * we don't want to mess the screen for now. */
1397 console_unlock();
1398 return -ENOSPC;
1399 }
1400
1401 if (set_console(vt)) {
1402 /*
1403 * We're unable to switch to the SUSPEND_CONSOLE.
1404 * Let the calling function know so it can decide
1405 * what to do.
1406 */
1407 console_unlock();
1408 return -EIO;
1409 }
1410 console_unlock();
1411 if (vt_waitactive(vt + 1)) {
1412 pr_debug("Suspend: Can't switch VCs.");
1413 return -EINTR;
1414 }
1415 return prev;
1416}
1417
1418/*
1419 * Normally during a suspend, we allocate a new console and switch to it.
1420 * When we resume, we switch back to the original console. This switch
1421 * can be slow, so on systems where the framebuffer can handle restoration
1422 * of video registers anyways, there's little point in doing the console
1423 * switch. This function allows you to disable it by passing it '0'.
1424 */
1425void pm_set_vt_switch(int do_switch)
1426{
1427 console_lock();
1428 disable_vt_switch = !do_switch;
1429 console_unlock();
1430}
1431EXPORT_SYMBOL(pm_set_vt_switch);