Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * zs.c: Serial port driver for IOASIC DECstations.
   3 *
   4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
   5 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
   6 *
   7 * DECstation changes
   8 * Copyright (C) 1998-2000 Harald Koerfgen
   9 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  10 *
  11 * For the rest of the code the original Copyright applies:
  12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
  13 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  14 *
  15 *
  16 * Note: for IOASIC systems the wiring is as follows:
  17 *
  18 * mouse/keyboard:
  19 * DIN-7 MJ-4  signal        SCC
  20 * 2     1     TxD       <-  A.TxD
  21 * 3     4     RxD       ->  A.RxD
  22 *
  23 * EIA-232/EIA-423:
  24 * DB-25 MMJ-6 signal        SCC
  25 * 2     2     TxD       <-  B.TxD
  26 * 3     5     RxD       ->  B.RxD
  27 * 4           RTS       <- ~A.RTS
  28 * 5           CTS       -> ~B.CTS
  29 * 6     6     DSR       -> ~A.SYNC
  30 * 8           CD        -> ~B.DCD
  31 * 12          DSRS(DCE) -> ~A.CTS  (*)
  32 * 15          TxC       ->  B.TxC
  33 * 17          RxC       ->  B.RxC
  34 * 20    1     DTR       <- ~A.DTR
  35 * 22          RI        -> ~A.DCD
  36 * 23          DSRS(DTE) <- ~B.RTS
  37 *
  38 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
  39 *     is shared with DSRS(DTE) at pin 23.
  40 *
  41 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
  42 * is a bit odd.  This makes the handling of port B unnecessarily
  43 * complicated and prevents the use of some automatic modes of operation.
  44 */
  45
  46#if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  47#define SUPPORT_SYSRQ
  48#endif
  49
  50#include <linux/bug.h>
  51#include <linux/console.h>
  52#include <linux/delay.h>
  53#include <linux/errno.h>
  54#include <linux/init.h>
  55#include <linux/interrupt.h>
  56#include <linux/io.h>
  57#include <linux/ioport.h>
  58#include <linux/irqflags.h>
  59#include <linux/kernel.h>
 
  60#include <linux/major.h>
  61#include <linux/serial.h>
  62#include <linux/serial_core.h>
  63#include <linux/spinlock.h>
  64#include <linux/sysrq.h>
  65#include <linux/tty.h>
 
  66#include <linux/types.h>
  67
  68#include <linux/atomic.h>
  69#include <asm/system.h>
  70
  71#include <asm/dec/interrupts.h>
  72#include <asm/dec/ioasic_addrs.h>
  73#include <asm/dec/system.h>
  74
  75#include "zs.h"
  76
  77
  78MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
  79MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
  80MODULE_LICENSE("GPL");
  81
  82
  83static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
  84static char zs_version[] __initdata = "0.10";
  85
  86/*
  87 * It would be nice to dynamically allocate everything that
  88 * depends on ZS_NUM_SCCS, so we could support any number of
  89 * Z85C30s, but for now...
  90 */
  91#define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
  92#define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
  93#define ZS_CHAN_A	0		/* Index of the channel A.  */
  94#define ZS_CHAN_B	1		/* Index of the channel B.  */
  95#define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
  96#define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
  97#define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
  98					   of the 16-bit IOBUS.  */
  99#define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
 100
 101#define to_zport(uport) container_of(uport, struct zs_port, port)
 102
 103struct zs_parms {
 104	resource_size_t scc[ZS_NUM_SCCS];
 105	int irq[ZS_NUM_SCCS];
 106};
 107
 108static struct zs_scc zs_sccs[ZS_NUM_SCCS];
 109
 110static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
 111	0,				/* write 0 */
 112	PAR_SPEC,			/* write 1 */
 113	0,				/* write 2 */
 114	0,				/* write 3 */
 115	X16CLK | SB1,			/* write 4 */
 116	0,				/* write 5 */
 117	0, 0, 0,			/* write 6, 7, 8 */
 118	MIE | DLC | NV,			/* write 9 */
 119	NRZ,				/* write 10 */
 120	TCBR | RCBR,			/* write 11 */
 121	0, 0,				/* BRG time constant, write 12 + 13 */
 122	BRSRC | BRENABL,		/* write 14 */
 123	0,				/* write 15 */
 124};
 125
 126/*
 127 * Debugging.
 128 */
 129#undef ZS_DEBUG_REGS
 130
 131
 132/*
 133 * Reading and writing Z85C30 registers.
 134 */
 135static void recovery_delay(void)
 136{
 137	udelay(2);
 138}
 139
 140static u8 read_zsreg(struct zs_port *zport, int reg)
 141{
 142	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 143	u8 retval;
 144
 145	if (reg != 0) {
 146		writeb(reg & 0xf, control);
 147		fast_iob();
 148		recovery_delay();
 149	}
 150	retval = readb(control);
 151	recovery_delay();
 152	return retval;
 153}
 154
 155static void write_zsreg(struct zs_port *zport, int reg, u8 value)
 156{
 157	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 158
 159	if (reg != 0) {
 160		writeb(reg & 0xf, control);
 161		fast_iob(); recovery_delay();
 162	}
 163	writeb(value, control);
 164	fast_iob();
 165	recovery_delay();
 166	return;
 167}
 168
 169static u8 read_zsdata(struct zs_port *zport)
 170{
 171	void __iomem *data = zport->port.membase +
 172			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 173	u8 retval;
 174
 175	retval = readb(data);
 176	recovery_delay();
 177	return retval;
 178}
 179
 180static void write_zsdata(struct zs_port *zport, u8 value)
 181{
 182	void __iomem *data = zport->port.membase +
 183			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 184
 185	writeb(value, data);
 186	fast_iob();
 187	recovery_delay();
 188	return;
 189}
 190
 191#ifdef ZS_DEBUG_REGS
 192void zs_dump(void)
 193{
 194	struct zs_port *zport;
 195	int i, j;
 196
 197	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
 198		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
 199
 200		if (!zport->scc)
 201			continue;
 202
 203		for (j = 0; j < 16; j++)
 204			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
 205		printk("\n");
 206		for (j = 0; j < 16; j++)
 207			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
 208		printk("\n\n");
 209	}
 210}
 211#endif
 212
 213
 214static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
 215{
 216	if (irq)
 217		spin_lock_irq(lock);
 218	else
 219		spin_lock(lock);
 220}
 221
 222static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
 223{
 224	if (irq)
 225		spin_unlock_irq(lock);
 226	else
 227		spin_unlock(lock);
 228}
 229
 230static int zs_receive_drain(struct zs_port *zport)
 231{
 232	int loops = 10000;
 233
 234	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
 235		read_zsdata(zport);
 236	return loops;
 237}
 238
 239static int zs_transmit_drain(struct zs_port *zport, int irq)
 240{
 241	struct zs_scc *scc = zport->scc;
 242	int loops = 10000;
 243
 244	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
 245		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 246		udelay(2);
 247		zs_spin_lock_cond_irq(&scc->zlock, irq);
 248	}
 249	return loops;
 250}
 251
 252static int zs_line_drain(struct zs_port *zport, int irq)
 253{
 254	struct zs_scc *scc = zport->scc;
 255	int loops = 10000;
 256
 257	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
 258		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 259		udelay(2);
 260		zs_spin_lock_cond_irq(&scc->zlock, irq);
 261	}
 262	return loops;
 263}
 264
 265
 266static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
 267{
 268	/* Let the current transmission finish.  */
 269	zs_line_drain(zport, irq);
 270	/* Load 'em up.  */
 271	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
 272	write_zsreg(zport, R5, regs[5] & ~TxENAB);
 273	write_zsreg(zport, R4, regs[4]);
 274	write_zsreg(zport, R9, regs[9]);
 275	write_zsreg(zport, R1, regs[1]);
 276	write_zsreg(zport, R2, regs[2]);
 277	write_zsreg(zport, R10, regs[10]);
 278	write_zsreg(zport, R14, regs[14] & ~BRENABL);
 279	write_zsreg(zport, R11, regs[11]);
 280	write_zsreg(zport, R12, regs[12]);
 281	write_zsreg(zport, R13, regs[13]);
 282	write_zsreg(zport, R14, regs[14]);
 283	write_zsreg(zport, R15, regs[15]);
 284	if (regs[3] & RxENABLE)
 285		write_zsreg(zport, R3, regs[3]);
 286	if (regs[5] & TxENAB)
 287		write_zsreg(zport, R5, regs[5]);
 288	return;
 289}
 290
 291
 292/*
 293 * Status handling routines.
 294 */
 295
 296/*
 297 * zs_tx_empty() -- get the transmitter empty status
 298 *
 299 * Purpose: Let user call ioctl() to get info when the UART physically
 300 * 	    is emptied.  On bus types like RS485, the transmitter must
 301 * 	    release the bus after transmitting.  This must be done when
 302 * 	    the transmit shift register is empty, not be done when the
 303 * 	    transmit holding register is empty.  This functionality
 304 * 	    allows an RS485 driver to be written in user space.
 305 */
 306static unsigned int zs_tx_empty(struct uart_port *uport)
 307{
 308	struct zs_port *zport = to_zport(uport);
 309	struct zs_scc *scc = zport->scc;
 310	unsigned long flags;
 311	u8 status;
 312
 313	spin_lock_irqsave(&scc->zlock, flags);
 314	status = read_zsreg(zport, R1);
 315	spin_unlock_irqrestore(&scc->zlock, flags);
 316
 317	return status & ALL_SNT ? TIOCSER_TEMT : 0;
 318}
 319
 320static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
 321					struct zs_port *zport_b)
 322{
 323	u8 status_a, status_b;
 324	unsigned int mctrl;
 325
 326	status_a = read_zsreg(zport_a, R0);
 327	status_b = read_zsreg(zport_b, R0);
 328
 329	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
 330		((status_b & DCD) ? TIOCM_CAR : 0) |
 331		((status_a & DCD) ? TIOCM_RNG : 0) |
 332		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
 333
 334	return mctrl;
 335}
 336
 337static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
 338{
 339	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 340
 341	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
 342}
 343
 344static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
 345{
 346	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 347	unsigned int mmask, mctrl, delta;
 348	u8 mask_a, mask_b;
 349
 350	if (zport == zport_a)
 351		return 0;
 352
 353	mask_a = zport_a->regs[15];
 354	mask_b = zport->regs[15];
 355
 356	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
 357		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
 358		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
 359		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
 360
 361	mctrl = zport->mctrl;
 362	if (mmask) {
 363		mctrl &= ~mmask;
 364		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
 365	}
 366
 367	delta = mctrl ^ zport->mctrl;
 368	if (delta)
 369		zport->mctrl = mctrl;
 370
 371	return delta;
 372}
 373
 374static unsigned int zs_get_mctrl(struct uart_port *uport)
 375{
 376	struct zs_port *zport = to_zport(uport);
 377	struct zs_scc *scc = zport->scc;
 378	unsigned int mctrl;
 379
 380	spin_lock(&scc->zlock);
 381	mctrl = zs_raw_get_mctrl(zport);
 382	spin_unlock(&scc->zlock);
 383
 384	return mctrl;
 385}
 386
 387static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
 388{
 389	struct zs_port *zport = to_zport(uport);
 390	struct zs_scc *scc = zport->scc;
 391	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 392	u8 oldloop, newloop;
 393
 394	spin_lock(&scc->zlock);
 395	if (zport != zport_a) {
 396		if (mctrl & TIOCM_DTR)
 397			zport_a->regs[5] |= DTR;
 398		else
 399			zport_a->regs[5] &= ~DTR;
 400		if (mctrl & TIOCM_RTS)
 401			zport_a->regs[5] |= RTS;
 402		else
 403			zport_a->regs[5] &= ~RTS;
 404		write_zsreg(zport_a, R5, zport_a->regs[5]);
 405	}
 406
 407	/* Rarely modified, so don't poke at hardware unless necessary. */
 408	oldloop = zport->regs[14];
 409	newloop = oldloop;
 410	if (mctrl & TIOCM_LOOP)
 411		newloop |= LOOPBAK;
 412	else
 413		newloop &= ~LOOPBAK;
 414	if (newloop != oldloop) {
 415		zport->regs[14] = newloop;
 416		write_zsreg(zport, R14, zport->regs[14]);
 417	}
 418	spin_unlock(&scc->zlock);
 419}
 420
 421static void zs_raw_stop_tx(struct zs_port *zport)
 422{
 423	write_zsreg(zport, R0, RES_Tx_P);
 424	zport->tx_stopped = 1;
 425}
 426
 427static void zs_stop_tx(struct uart_port *uport)
 428{
 429	struct zs_port *zport = to_zport(uport);
 430	struct zs_scc *scc = zport->scc;
 431
 432	spin_lock(&scc->zlock);
 433	zs_raw_stop_tx(zport);
 434	spin_unlock(&scc->zlock);
 435}
 436
 437static void zs_raw_transmit_chars(struct zs_port *);
 438
 439static void zs_start_tx(struct uart_port *uport)
 440{
 441	struct zs_port *zport = to_zport(uport);
 442	struct zs_scc *scc = zport->scc;
 443
 444	spin_lock(&scc->zlock);
 445	if (zport->tx_stopped) {
 446		zs_transmit_drain(zport, 0);
 447		zport->tx_stopped = 0;
 448		zs_raw_transmit_chars(zport);
 449	}
 450	spin_unlock(&scc->zlock);
 451}
 452
 453static void zs_stop_rx(struct uart_port *uport)
 454{
 455	struct zs_port *zport = to_zport(uport);
 456	struct zs_scc *scc = zport->scc;
 457	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 458
 459	spin_lock(&scc->zlock);
 460	zport->regs[15] &= ~BRKIE;
 461	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
 462	zport->regs[1] |= RxINT_DISAB;
 463
 464	if (zport != zport_a) {
 465		/* A-side DCD tracks RI and SYNC tracks DSR.  */
 466		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
 467		write_zsreg(zport_a, R15, zport_a->regs[15]);
 468		if (!(zport_a->regs[15] & BRKIE)) {
 469			zport_a->regs[1] &= ~EXT_INT_ENAB;
 470			write_zsreg(zport_a, R1, zport_a->regs[1]);
 471		}
 472
 473		/* This-side DCD tracks DCD and CTS tracks CTS.  */
 474		zport->regs[15] &= ~(DCDIE | CTSIE);
 475		zport->regs[1] &= ~EXT_INT_ENAB;
 476	} else {
 477		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
 478		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
 479			zport->regs[1] &= ~EXT_INT_ENAB;
 480	}
 481
 482	write_zsreg(zport, R15, zport->regs[15]);
 483	write_zsreg(zport, R1, zport->regs[1]);
 484	spin_unlock(&scc->zlock);
 485}
 486
 487static void zs_enable_ms(struct uart_port *uport)
 488{
 489	struct zs_port *zport = to_zport(uport);
 490	struct zs_scc *scc = zport->scc;
 491	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 492
 493	if (zport == zport_a)
 494		return;
 495
 496	spin_lock(&scc->zlock);
 497
 498	/* Clear Ext interrupts if not being handled already.  */
 499	if (!(zport_a->regs[1] & EXT_INT_ENAB))
 500		write_zsreg(zport_a, R0, RES_EXT_INT);
 501
 502	/* A-side DCD tracks RI and SYNC tracks DSR.  */
 503	zport_a->regs[1] |= EXT_INT_ENAB;
 504	zport_a->regs[15] |= DCDIE | SYNCIE;
 505
 506	/* This-side DCD tracks DCD and CTS tracks CTS.  */
 507	zport->regs[15] |= DCDIE | CTSIE;
 508
 509	zs_raw_xor_mctrl(zport);
 510
 511	write_zsreg(zport_a, R1, zport_a->regs[1]);
 512	write_zsreg(zport_a, R15, zport_a->regs[15]);
 513	write_zsreg(zport, R15, zport->regs[15]);
 514	spin_unlock(&scc->zlock);
 515}
 516
 517static void zs_break_ctl(struct uart_port *uport, int break_state)
 518{
 519	struct zs_port *zport = to_zport(uport);
 520	struct zs_scc *scc = zport->scc;
 521	unsigned long flags;
 522
 523	spin_lock_irqsave(&scc->zlock, flags);
 524	if (break_state == -1)
 525		zport->regs[5] |= SND_BRK;
 526	else
 527		zport->regs[5] &= ~SND_BRK;
 528	write_zsreg(zport, R5, zport->regs[5]);
 529	spin_unlock_irqrestore(&scc->zlock, flags);
 530}
 531
 532
 533/*
 534 * Interrupt handling routines.
 535 */
 536#define Rx_BRK 0x0100			/* BREAK event software flag.  */
 537#define Rx_SYS 0x0200			/* SysRq event software flag.  */
 538
 539static void zs_receive_chars(struct zs_port *zport)
 540{
 541	struct uart_port *uport = &zport->port;
 542	struct zs_scc *scc = zport->scc;
 543	struct uart_icount *icount;
 544	unsigned int avail, status, ch, flag;
 545	int count;
 546
 547	for (count = 16; count; count--) {
 548		spin_lock(&scc->zlock);
 549		avail = read_zsreg(zport, R0) & Rx_CH_AV;
 550		spin_unlock(&scc->zlock);
 551		if (!avail)
 552			break;
 553
 554		spin_lock(&scc->zlock);
 555		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
 556		ch = read_zsdata(zport);
 557		spin_unlock(&scc->zlock);
 558
 559		flag = TTY_NORMAL;
 560
 561		icount = &uport->icount;
 562		icount->rx++;
 563
 564		/* Handle the null char got when BREAK is removed.  */
 565		if (!ch)
 566			status |= zport->tty_break;
 567		if (unlikely(status &
 568			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
 569			zport->tty_break = 0;
 570
 571			/* Reset the error indication.  */
 572			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
 573				spin_lock(&scc->zlock);
 574				write_zsreg(zport, R0, ERR_RES);
 575				spin_unlock(&scc->zlock);
 576			}
 577
 578			if (status & (Rx_SYS | Rx_BRK)) {
 579				icount->brk++;
 580				/* SysRq discards the null char.  */
 581				if (status & Rx_SYS)
 582					continue;
 583			} else if (status & FRM_ERR)
 584				icount->frame++;
 585			else if (status & PAR_ERR)
 586				icount->parity++;
 587			if (status & Rx_OVR)
 588				icount->overrun++;
 589
 590			status &= uport->read_status_mask;
 591			if (status & Rx_BRK)
 592				flag = TTY_BREAK;
 593			else if (status & FRM_ERR)
 594				flag = TTY_FRAME;
 595			else if (status & PAR_ERR)
 596				flag = TTY_PARITY;
 597		}
 598
 599		if (uart_handle_sysrq_char(uport, ch))
 600			continue;
 601
 602		uart_insert_char(uport, status, Rx_OVR, ch, flag);
 603	}
 604
 605	tty_flip_buffer_push(uport->state->port.tty);
 606}
 607
 608static void zs_raw_transmit_chars(struct zs_port *zport)
 609{
 610	struct circ_buf *xmit = &zport->port.state->xmit;
 611
 612	/* XON/XOFF chars.  */
 613	if (zport->port.x_char) {
 614		write_zsdata(zport, zport->port.x_char);
 615		zport->port.icount.tx++;
 616		zport->port.x_char = 0;
 617		return;
 618	}
 619
 620	/* If nothing to do or stopped or hardware stopped.  */
 621	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
 622		zs_raw_stop_tx(zport);
 623		return;
 624	}
 625
 626	/* Send char.  */
 627	write_zsdata(zport, xmit->buf[xmit->tail]);
 628	xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 629	zport->port.icount.tx++;
 630
 631	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 632		uart_write_wakeup(&zport->port);
 633
 634	/* Are we are done?  */
 635	if (uart_circ_empty(xmit))
 636		zs_raw_stop_tx(zport);
 637}
 638
 639static void zs_transmit_chars(struct zs_port *zport)
 640{
 641	struct zs_scc *scc = zport->scc;
 642
 643	spin_lock(&scc->zlock);
 644	zs_raw_transmit_chars(zport);
 645	spin_unlock(&scc->zlock);
 646}
 647
 648static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
 649{
 650	struct uart_port *uport = &zport->port;
 651	struct zs_scc *scc = zport->scc;
 652	unsigned int delta;
 653	u8 status, brk;
 654
 655	spin_lock(&scc->zlock);
 656
 657	/* Get status from Read Register 0.  */
 658	status = read_zsreg(zport, R0);
 659
 660	if (zport->regs[15] & BRKIE) {
 661		brk = status & BRK_ABRT;
 662		if (brk && !zport->brk) {
 663			spin_unlock(&scc->zlock);
 664			if (uart_handle_break(uport))
 665				zport->tty_break = Rx_SYS;
 666			else
 667				zport->tty_break = Rx_BRK;
 668			spin_lock(&scc->zlock);
 669		}
 670		zport->brk = brk;
 671	}
 672
 673	if (zport != zport_a) {
 674		delta = zs_raw_xor_mctrl(zport);
 675		spin_unlock(&scc->zlock);
 676
 677		if (delta & TIOCM_CTS)
 678			uart_handle_cts_change(uport,
 679					       zport->mctrl & TIOCM_CTS);
 680		if (delta & TIOCM_CAR)
 681			uart_handle_dcd_change(uport,
 682					       zport->mctrl & TIOCM_CAR);
 683		if (delta & TIOCM_RNG)
 684			uport->icount.dsr++;
 685		if (delta & TIOCM_DSR)
 686			uport->icount.rng++;
 687
 688		if (delta)
 689			wake_up_interruptible(&uport->state->port.delta_msr_wait);
 690
 691		spin_lock(&scc->zlock);
 692	}
 693
 694	/* Clear the status condition...  */
 695	write_zsreg(zport, R0, RES_EXT_INT);
 696
 697	spin_unlock(&scc->zlock);
 698}
 699
 700/*
 701 * This is the Z85C30 driver's generic interrupt routine.
 702 */
 703static irqreturn_t zs_interrupt(int irq, void *dev_id)
 704{
 705	struct zs_scc *scc = dev_id;
 706	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 707	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
 708	irqreturn_t status = IRQ_NONE;
 709	u8 zs_intreg;
 710	int count;
 711
 712	/*
 713	 * NOTE: The read register 3, which holds the irq status,
 714	 *       does so for both channels on each chip.  Although
 715	 *       the status value itself must be read from the A
 716	 *       channel and is only valid when read from channel A.
 717	 *       Yes... broken hardware...
 718	 */
 719	for (count = 16; count; count--) {
 720		spin_lock(&scc->zlock);
 721		zs_intreg = read_zsreg(zport_a, R3);
 722		spin_unlock(&scc->zlock);
 723		if (!zs_intreg)
 724			break;
 725
 726		/*
 727		 * We do not like losing characters, so we prioritise
 728		 * interrupt sources a little bit differently than
 729		 * the SCC would, was it allowed to.
 730		 */
 731		if (zs_intreg & CHBRxIP)
 732			zs_receive_chars(zport_b);
 733		if (zs_intreg & CHARxIP)
 734			zs_receive_chars(zport_a);
 735		if (zs_intreg & CHBEXT)
 736			zs_status_handle(zport_b, zport_a);
 737		if (zs_intreg & CHAEXT)
 738			zs_status_handle(zport_a, zport_a);
 739		if (zs_intreg & CHBTxIP)
 740			zs_transmit_chars(zport_b);
 741		if (zs_intreg & CHATxIP)
 742			zs_transmit_chars(zport_a);
 743
 744		status = IRQ_HANDLED;
 745	}
 746
 747	return status;
 748}
 749
 750
 751/*
 752 * Finally, routines used to initialize the serial port.
 753 */
 754static int zs_startup(struct uart_port *uport)
 755{
 756	struct zs_port *zport = to_zport(uport);
 757	struct zs_scc *scc = zport->scc;
 758	unsigned long flags;
 759	int irq_guard;
 760	int ret;
 761
 762	irq_guard = atomic_add_return(1, &scc->irq_guard);
 763	if (irq_guard == 1) {
 764		ret = request_irq(zport->port.irq, zs_interrupt,
 765				  IRQF_SHARED, "scc", scc);
 766		if (ret) {
 767			atomic_add(-1, &scc->irq_guard);
 768			printk(KERN_ERR "zs: can't get irq %d\n",
 769			       zport->port.irq);
 770			return ret;
 771		}
 772	}
 773
 774	spin_lock_irqsave(&scc->zlock, flags);
 775
 776	/* Clear the receive FIFO.  */
 777	zs_receive_drain(zport);
 778
 779	/* Clear the interrupt registers.  */
 780	write_zsreg(zport, R0, ERR_RES);
 781	write_zsreg(zport, R0, RES_Tx_P);
 782	/* But Ext only if not being handled already.  */
 783	if (!(zport->regs[1] & EXT_INT_ENAB))
 784		write_zsreg(zport, R0, RES_EXT_INT);
 785
 786	/* Finally, enable sequencing and interrupts.  */
 787	zport->regs[1] &= ~RxINT_MASK;
 788	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
 789	zport->regs[3] |= RxENABLE;
 790	zport->regs[15] |= BRKIE;
 791	write_zsreg(zport, R1, zport->regs[1]);
 792	write_zsreg(zport, R3, zport->regs[3]);
 793	write_zsreg(zport, R5, zport->regs[5]);
 794	write_zsreg(zport, R15, zport->regs[15]);
 795
 796	/* Record the current state of RR0.  */
 797	zport->mctrl = zs_raw_get_mctrl(zport);
 798	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
 799
 800	zport->tx_stopped = 1;
 801
 802	spin_unlock_irqrestore(&scc->zlock, flags);
 803
 804	return 0;
 805}
 806
 807static void zs_shutdown(struct uart_port *uport)
 808{
 809	struct zs_port *zport = to_zport(uport);
 810	struct zs_scc *scc = zport->scc;
 811	unsigned long flags;
 812	int irq_guard;
 813
 814	spin_lock_irqsave(&scc->zlock, flags);
 815
 816	zport->regs[3] &= ~RxENABLE;
 817	write_zsreg(zport, R5, zport->regs[5]);
 818	write_zsreg(zport, R3, zport->regs[3]);
 819
 820	spin_unlock_irqrestore(&scc->zlock, flags);
 821
 822	irq_guard = atomic_add_return(-1, &scc->irq_guard);
 823	if (!irq_guard)
 824		free_irq(zport->port.irq, scc);
 825}
 826
 827
 828static void zs_reset(struct zs_port *zport)
 829{
 830	struct zs_scc *scc = zport->scc;
 831	int irq;
 832	unsigned long flags;
 833
 834	spin_lock_irqsave(&scc->zlock, flags);
 835	irq = !irqs_disabled_flags(flags);
 836	if (!scc->initialised) {
 837		/* Reset the pointer first, just in case...  */
 838		read_zsreg(zport, R0);
 839		/* And let the current transmission finish.  */
 840		zs_line_drain(zport, irq);
 841		write_zsreg(zport, R9, FHWRES);
 842		udelay(10);
 843		write_zsreg(zport, R9, 0);
 844		scc->initialised = 1;
 845	}
 846	load_zsregs(zport, zport->regs, irq);
 847	spin_unlock_irqrestore(&scc->zlock, flags);
 848}
 849
 850static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
 851			   struct ktermios *old_termios)
 852{
 853	struct zs_port *zport = to_zport(uport);
 854	struct zs_scc *scc = zport->scc;
 855	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 856	int irq;
 857	unsigned int baud, brg;
 858	unsigned long flags;
 859
 860	spin_lock_irqsave(&scc->zlock, flags);
 861	irq = !irqs_disabled_flags(flags);
 862
 863	/* Byte size.  */
 864	zport->regs[3] &= ~RxNBITS_MASK;
 865	zport->regs[5] &= ~TxNBITS_MASK;
 866	switch (termios->c_cflag & CSIZE) {
 867	case CS5:
 868		zport->regs[3] |= Rx5;
 869		zport->regs[5] |= Tx5;
 870		break;
 871	case CS6:
 872		zport->regs[3] |= Rx6;
 873		zport->regs[5] |= Tx6;
 874		break;
 875	case CS7:
 876		zport->regs[3] |= Rx7;
 877		zport->regs[5] |= Tx7;
 878		break;
 879	case CS8:
 880	default:
 881		zport->regs[3] |= Rx8;
 882		zport->regs[5] |= Tx8;
 883		break;
 884	}
 885
 886	/* Parity and stop bits.  */
 887	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
 888	if (termios->c_cflag & CSTOPB)
 889		zport->regs[4] |= SB2;
 890	else
 891		zport->regs[4] |= SB1;
 892	if (termios->c_cflag & PARENB)
 893		zport->regs[4] |= PAR_ENA;
 894	if (!(termios->c_cflag & PARODD))
 895		zport->regs[4] |= PAR_EVEN;
 896	switch (zport->clk_mode) {
 897	case 64:
 898		zport->regs[4] |= X64CLK;
 899		break;
 900	case 32:
 901		zport->regs[4] |= X32CLK;
 902		break;
 903	case 16:
 904		zport->regs[4] |= X16CLK;
 905		break;
 906	case 1:
 907		zport->regs[4] |= X1CLK;
 908		break;
 909	default:
 910		BUG();
 911	}
 912
 913	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
 914				  uport->uartclk / zport->clk_mode / 4);
 915
 916	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
 917	zport->regs[12] = brg & 0xff;
 918	zport->regs[13] = (brg >> 8) & 0xff;
 919
 920	uart_update_timeout(uport, termios->c_cflag, baud);
 921
 922	uport->read_status_mask = Rx_OVR;
 923	if (termios->c_iflag & INPCK)
 924		uport->read_status_mask |= FRM_ERR | PAR_ERR;
 925	if (termios->c_iflag & (BRKINT | PARMRK))
 926		uport->read_status_mask |= Rx_BRK;
 927
 928	uport->ignore_status_mask = 0;
 929	if (termios->c_iflag & IGNPAR)
 930		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
 931	if (termios->c_iflag & IGNBRK) {
 932		uport->ignore_status_mask |= Rx_BRK;
 933		if (termios->c_iflag & IGNPAR)
 934			uport->ignore_status_mask |= Rx_OVR;
 935	}
 936
 937	if (termios->c_cflag & CREAD)
 938		zport->regs[3] |= RxENABLE;
 939	else
 940		zport->regs[3] &= ~RxENABLE;
 941
 942	if (zport != zport_a) {
 943		if (!(termios->c_cflag & CLOCAL)) {
 944			zport->regs[15] |= DCDIE;
 945		} else
 946			zport->regs[15] &= ~DCDIE;
 947		if (termios->c_cflag & CRTSCTS) {
 948			zport->regs[15] |= CTSIE;
 949		} else
 950			zport->regs[15] &= ~CTSIE;
 951		zs_raw_xor_mctrl(zport);
 952	}
 953
 954	/* Load up the new values.  */
 955	load_zsregs(zport, zport->regs, irq);
 956
 957	spin_unlock_irqrestore(&scc->zlock, flags);
 958}
 959
 960/*
 961 * Hack alert!
 962 * Required solely so that the initial PROM-based console
 963 * works undisturbed in parallel with this one.
 964 */
 965static void zs_pm(struct uart_port *uport, unsigned int state,
 966		  unsigned int oldstate)
 967{
 968	struct zs_port *zport = to_zport(uport);
 969
 970	if (state < 3)
 971		zport->regs[5] |= TxENAB;
 972	else
 973		zport->regs[5] &= ~TxENAB;
 974	write_zsreg(zport, R5, zport->regs[5]);
 975}
 976
 977
 978static const char *zs_type(struct uart_port *uport)
 979{
 980	return "Z85C30 SCC";
 981}
 982
 983static void zs_release_port(struct uart_port *uport)
 984{
 985	iounmap(uport->membase);
 986	uport->membase = 0;
 987	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
 988}
 989
 990static int zs_map_port(struct uart_port *uport)
 991{
 992	if (!uport->membase)
 993		uport->membase = ioremap_nocache(uport->mapbase,
 994						 ZS_CHAN_IO_SIZE);
 995	if (!uport->membase) {
 996		printk(KERN_ERR "zs: Cannot map MMIO\n");
 997		return -ENOMEM;
 998	}
 999	return 0;
1000}
1001
1002static int zs_request_port(struct uart_port *uport)
1003{
1004	int ret;
1005
1006	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1007		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1008		return -EBUSY;
1009	}
1010	ret = zs_map_port(uport);
1011	if (ret) {
1012		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1013		return ret;
1014	}
1015	return 0;
1016}
1017
1018static void zs_config_port(struct uart_port *uport, int flags)
1019{
1020	struct zs_port *zport = to_zport(uport);
1021
1022	if (flags & UART_CONFIG_TYPE) {
1023		if (zs_request_port(uport))
1024			return;
1025
1026		uport->type = PORT_ZS;
1027
1028		zs_reset(zport);
1029	}
1030}
1031
1032static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1033{
1034	struct zs_port *zport = to_zport(uport);
1035	int ret = 0;
1036
1037	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1038		ret = -EINVAL;
1039	if (ser->irq != uport->irq)
1040		ret = -EINVAL;
1041	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1042		ret = -EINVAL;
1043	return ret;
1044}
1045
1046
1047static struct uart_ops zs_ops = {
1048	.tx_empty	= zs_tx_empty,
1049	.set_mctrl	= zs_set_mctrl,
1050	.get_mctrl	= zs_get_mctrl,
1051	.stop_tx	= zs_stop_tx,
1052	.start_tx	= zs_start_tx,
1053	.stop_rx	= zs_stop_rx,
1054	.enable_ms	= zs_enable_ms,
1055	.break_ctl	= zs_break_ctl,
1056	.startup	= zs_startup,
1057	.shutdown	= zs_shutdown,
1058	.set_termios	= zs_set_termios,
1059	.pm		= zs_pm,
1060	.type		= zs_type,
1061	.release_port	= zs_release_port,
1062	.request_port	= zs_request_port,
1063	.config_port	= zs_config_port,
1064	.verify_port	= zs_verify_port,
1065};
1066
1067/*
1068 * Initialize Z85C30 port structures.
1069 */
1070static int __init zs_probe_sccs(void)
1071{
1072	static int probed;
1073	struct zs_parms zs_parms;
1074	int chip, side, irq;
1075	int n_chips = 0;
1076	int i;
1077
1078	if (probed)
1079		return 0;
1080
1081	irq = dec_interrupt[DEC_IRQ_SCC0];
1082	if (irq >= 0) {
1083		zs_parms.scc[n_chips] = IOASIC_SCC0;
1084		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1085		n_chips++;
1086	}
1087	irq = dec_interrupt[DEC_IRQ_SCC1];
1088	if (irq >= 0) {
1089		zs_parms.scc[n_chips] = IOASIC_SCC1;
1090		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1091		n_chips++;
1092	}
1093	if (!n_chips)
1094		return -ENXIO;
1095
1096	probed = 1;
1097
1098	for (chip = 0; chip < n_chips; chip++) {
1099		spin_lock_init(&zs_sccs[chip].zlock);
1100		for (side = 0; side < ZS_NUM_CHAN; side++) {
1101			struct zs_port *zport = &zs_sccs[chip].zport[side];
1102			struct uart_port *uport = &zport->port;
1103
1104			zport->scc	= &zs_sccs[chip];
1105			zport->clk_mode	= 16;
1106
1107			uport->irq	= zs_parms.irq[chip];
1108			uport->uartclk	= ZS_CLOCK;
1109			uport->fifosize	= 1;
1110			uport->iotype	= UPIO_MEM;
1111			uport->flags	= UPF_BOOT_AUTOCONF;
1112			uport->ops	= &zs_ops;
1113			uport->line	= chip * ZS_NUM_CHAN + side;
1114			uport->mapbase	= dec_kn_slot_base +
1115					  zs_parms.scc[chip] +
1116					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1117
1118			for (i = 0; i < ZS_NUM_REGS; i++)
1119				zport->regs[i] = zs_init_regs[i];
1120		}
1121	}
1122
1123	return 0;
1124}
1125
1126
1127#ifdef CONFIG_SERIAL_ZS_CONSOLE
1128static void zs_console_putchar(struct uart_port *uport, int ch)
1129{
1130	struct zs_port *zport = to_zport(uport);
1131	struct zs_scc *scc = zport->scc;
1132	int irq;
1133	unsigned long flags;
1134
1135	spin_lock_irqsave(&scc->zlock, flags);
1136	irq = !irqs_disabled_flags(flags);
1137	if (zs_transmit_drain(zport, irq))
1138		write_zsdata(zport, ch);
1139	spin_unlock_irqrestore(&scc->zlock, flags);
1140}
1141
1142/*
1143 * Print a string to the serial port trying not to disturb
1144 * any possible real use of the port...
1145 */
1146static void zs_console_write(struct console *co, const char *s,
1147			     unsigned int count)
1148{
1149	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1150	struct zs_port *zport = &zs_sccs[chip].zport[side];
1151	struct zs_scc *scc = zport->scc;
1152	unsigned long flags;
1153	u8 txint, txenb;
1154	int irq;
1155
1156	/* Disable transmit interrupts and enable the transmitter. */
1157	spin_lock_irqsave(&scc->zlock, flags);
1158	txint = zport->regs[1];
1159	txenb = zport->regs[5];
1160	if (txint & TxINT_ENAB) {
1161		zport->regs[1] = txint & ~TxINT_ENAB;
1162		write_zsreg(zport, R1, zport->regs[1]);
1163	}
1164	if (!(txenb & TxENAB)) {
1165		zport->regs[5] = txenb | TxENAB;
1166		write_zsreg(zport, R5, zport->regs[5]);
1167	}
1168	spin_unlock_irqrestore(&scc->zlock, flags);
1169
1170	uart_console_write(&zport->port, s, count, zs_console_putchar);
1171
1172	/* Restore transmit interrupts and the transmitter enable. */
1173	spin_lock_irqsave(&scc->zlock, flags);
1174	irq = !irqs_disabled_flags(flags);
1175	zs_line_drain(zport, irq);
1176	if (!(txenb & TxENAB)) {
1177		zport->regs[5] &= ~TxENAB;
1178		write_zsreg(zport, R5, zport->regs[5]);
1179	}
1180	if (txint & TxINT_ENAB) {
1181		zport->regs[1] |= TxINT_ENAB;
1182		write_zsreg(zport, R1, zport->regs[1]);
1183	}
1184	spin_unlock_irqrestore(&scc->zlock, flags);
1185}
1186
1187/*
1188 * Setup serial console baud/bits/parity.  We do two things here:
1189 * - construct a cflag setting for the first uart_open()
1190 * - initialise the serial port
1191 * Return non-zero if we didn't find a serial port.
1192 */
1193static int __init zs_console_setup(struct console *co, char *options)
1194{
1195	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1196	struct zs_port *zport = &zs_sccs[chip].zport[side];
1197	struct uart_port *uport = &zport->port;
1198	int baud = 9600;
1199	int bits = 8;
1200	int parity = 'n';
1201	int flow = 'n';
1202	int ret;
1203
1204	ret = zs_map_port(uport);
1205	if (ret)
1206		return ret;
1207
1208	zs_reset(zport);
1209	zs_pm(uport, 0, -1);
1210
1211	if (options)
1212		uart_parse_options(options, &baud, &parity, &bits, &flow);
1213	return uart_set_options(uport, co, baud, parity, bits, flow);
1214}
1215
1216static struct uart_driver zs_reg;
1217static struct console zs_console = {
1218	.name	= "ttyS",
1219	.write	= zs_console_write,
1220	.device	= uart_console_device,
1221	.setup	= zs_console_setup,
1222	.flags	= CON_PRINTBUFFER,
1223	.index	= -1,
1224	.data	= &zs_reg,
1225};
1226
1227/*
1228 *	Register console.
1229 */
1230static int __init zs_serial_console_init(void)
1231{
1232	int ret;
1233
1234	ret = zs_probe_sccs();
1235	if (ret)
1236		return ret;
1237	register_console(&zs_console);
1238
1239	return 0;
1240}
1241
1242console_initcall(zs_serial_console_init);
1243
1244#define SERIAL_ZS_CONSOLE	&zs_console
1245#else
1246#define SERIAL_ZS_CONSOLE	NULL
1247#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1248
1249static struct uart_driver zs_reg = {
1250	.owner			= THIS_MODULE,
1251	.driver_name		= "serial",
1252	.dev_name		= "ttyS",
1253	.major			= TTY_MAJOR,
1254	.minor			= 64,
1255	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1256	.cons			= SERIAL_ZS_CONSOLE,
1257};
1258
1259/* zs_init inits the driver. */
1260static int __init zs_init(void)
1261{
1262	int i, ret;
1263
1264	pr_info("%s%s\n", zs_name, zs_version);
1265
1266	/* Find out how many Z85C30 SCCs we have.  */
1267	ret = zs_probe_sccs();
1268	if (ret)
1269		return ret;
1270
1271	ret = uart_register_driver(&zs_reg);
1272	if (ret)
1273		return ret;
1274
1275	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1276		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1277		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1278		struct uart_port *uport = &zport->port;
1279
1280		if (zport->scc)
1281			uart_add_one_port(&zs_reg, uport);
1282	}
1283
1284	return 0;
1285}
1286
1287static void __exit zs_exit(void)
1288{
1289	int i;
1290
1291	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1292		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1293		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1294		struct uart_port *uport = &zport->port;
1295
1296		if (zport->scc)
1297			uart_remove_one_port(&zs_reg, uport);
1298	}
1299
1300	uart_unregister_driver(&zs_reg);
1301}
1302
1303module_init(zs_init);
1304module_exit(zs_exit);
v3.5.6
   1/*
   2 * zs.c: Serial port driver for IOASIC DECstations.
   3 *
   4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
   5 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
   6 *
   7 * DECstation changes
   8 * Copyright (C) 1998-2000 Harald Koerfgen
   9 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  10 *
  11 * For the rest of the code the original Copyright applies:
  12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
  13 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  14 *
  15 *
  16 * Note: for IOASIC systems the wiring is as follows:
  17 *
  18 * mouse/keyboard:
  19 * DIN-7 MJ-4  signal        SCC
  20 * 2     1     TxD       <-  A.TxD
  21 * 3     4     RxD       ->  A.RxD
  22 *
  23 * EIA-232/EIA-423:
  24 * DB-25 MMJ-6 signal        SCC
  25 * 2     2     TxD       <-  B.TxD
  26 * 3     5     RxD       ->  B.RxD
  27 * 4           RTS       <- ~A.RTS
  28 * 5           CTS       -> ~B.CTS
  29 * 6     6     DSR       -> ~A.SYNC
  30 * 8           CD        -> ~B.DCD
  31 * 12          DSRS(DCE) -> ~A.CTS  (*)
  32 * 15          TxC       ->  B.TxC
  33 * 17          RxC       ->  B.RxC
  34 * 20    1     DTR       <- ~A.DTR
  35 * 22          RI        -> ~A.DCD
  36 * 23          DSRS(DTE) <- ~B.RTS
  37 *
  38 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
  39 *     is shared with DSRS(DTE) at pin 23.
  40 *
  41 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
  42 * is a bit odd.  This makes the handling of port B unnecessarily
  43 * complicated and prevents the use of some automatic modes of operation.
  44 */
  45
  46#if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  47#define SUPPORT_SYSRQ
  48#endif
  49
  50#include <linux/bug.h>
  51#include <linux/console.h>
  52#include <linux/delay.h>
  53#include <linux/errno.h>
  54#include <linux/init.h>
  55#include <linux/interrupt.h>
  56#include <linux/io.h>
  57#include <linux/ioport.h>
  58#include <linux/irqflags.h>
  59#include <linux/kernel.h>
  60#include <linux/module.h>
  61#include <linux/major.h>
  62#include <linux/serial.h>
  63#include <linux/serial_core.h>
  64#include <linux/spinlock.h>
  65#include <linux/sysrq.h>
  66#include <linux/tty.h>
  67#include <linux/tty_flip.h>
  68#include <linux/types.h>
  69
  70#include <linux/atomic.h>
 
  71
  72#include <asm/dec/interrupts.h>
  73#include <asm/dec/ioasic_addrs.h>
  74#include <asm/dec/system.h>
  75
  76#include "zs.h"
  77
  78
  79MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
  80MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
  81MODULE_LICENSE("GPL");
  82
  83
  84static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
  85static char zs_version[] __initdata = "0.10";
  86
  87/*
  88 * It would be nice to dynamically allocate everything that
  89 * depends on ZS_NUM_SCCS, so we could support any number of
  90 * Z85C30s, but for now...
  91 */
  92#define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
  93#define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
  94#define ZS_CHAN_A	0		/* Index of the channel A.  */
  95#define ZS_CHAN_B	1		/* Index of the channel B.  */
  96#define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
  97#define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
  98#define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
  99					   of the 16-bit IOBUS.  */
 100#define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
 101
 102#define to_zport(uport) container_of(uport, struct zs_port, port)
 103
 104struct zs_parms {
 105	resource_size_t scc[ZS_NUM_SCCS];
 106	int irq[ZS_NUM_SCCS];
 107};
 108
 109static struct zs_scc zs_sccs[ZS_NUM_SCCS];
 110
 111static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
 112	0,				/* write 0 */
 113	PAR_SPEC,			/* write 1 */
 114	0,				/* write 2 */
 115	0,				/* write 3 */
 116	X16CLK | SB1,			/* write 4 */
 117	0,				/* write 5 */
 118	0, 0, 0,			/* write 6, 7, 8 */
 119	MIE | DLC | NV,			/* write 9 */
 120	NRZ,				/* write 10 */
 121	TCBR | RCBR,			/* write 11 */
 122	0, 0,				/* BRG time constant, write 12 + 13 */
 123	BRSRC | BRENABL,		/* write 14 */
 124	0,				/* write 15 */
 125};
 126
 127/*
 128 * Debugging.
 129 */
 130#undef ZS_DEBUG_REGS
 131
 132
 133/*
 134 * Reading and writing Z85C30 registers.
 135 */
 136static void recovery_delay(void)
 137{
 138	udelay(2);
 139}
 140
 141static u8 read_zsreg(struct zs_port *zport, int reg)
 142{
 143	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 144	u8 retval;
 145
 146	if (reg != 0) {
 147		writeb(reg & 0xf, control);
 148		fast_iob();
 149		recovery_delay();
 150	}
 151	retval = readb(control);
 152	recovery_delay();
 153	return retval;
 154}
 155
 156static void write_zsreg(struct zs_port *zport, int reg, u8 value)
 157{
 158	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 159
 160	if (reg != 0) {
 161		writeb(reg & 0xf, control);
 162		fast_iob(); recovery_delay();
 163	}
 164	writeb(value, control);
 165	fast_iob();
 166	recovery_delay();
 167	return;
 168}
 169
 170static u8 read_zsdata(struct zs_port *zport)
 171{
 172	void __iomem *data = zport->port.membase +
 173			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 174	u8 retval;
 175
 176	retval = readb(data);
 177	recovery_delay();
 178	return retval;
 179}
 180
 181static void write_zsdata(struct zs_port *zport, u8 value)
 182{
 183	void __iomem *data = zport->port.membase +
 184			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 185
 186	writeb(value, data);
 187	fast_iob();
 188	recovery_delay();
 189	return;
 190}
 191
 192#ifdef ZS_DEBUG_REGS
 193void zs_dump(void)
 194{
 195	struct zs_port *zport;
 196	int i, j;
 197
 198	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
 199		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
 200
 201		if (!zport->scc)
 202			continue;
 203
 204		for (j = 0; j < 16; j++)
 205			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
 206		printk("\n");
 207		for (j = 0; j < 16; j++)
 208			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
 209		printk("\n\n");
 210	}
 211}
 212#endif
 213
 214
 215static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
 216{
 217	if (irq)
 218		spin_lock_irq(lock);
 219	else
 220		spin_lock(lock);
 221}
 222
 223static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
 224{
 225	if (irq)
 226		spin_unlock_irq(lock);
 227	else
 228		spin_unlock(lock);
 229}
 230
 231static int zs_receive_drain(struct zs_port *zport)
 232{
 233	int loops = 10000;
 234
 235	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
 236		read_zsdata(zport);
 237	return loops;
 238}
 239
 240static int zs_transmit_drain(struct zs_port *zport, int irq)
 241{
 242	struct zs_scc *scc = zport->scc;
 243	int loops = 10000;
 244
 245	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
 246		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 247		udelay(2);
 248		zs_spin_lock_cond_irq(&scc->zlock, irq);
 249	}
 250	return loops;
 251}
 252
 253static int zs_line_drain(struct zs_port *zport, int irq)
 254{
 255	struct zs_scc *scc = zport->scc;
 256	int loops = 10000;
 257
 258	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
 259		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 260		udelay(2);
 261		zs_spin_lock_cond_irq(&scc->zlock, irq);
 262	}
 263	return loops;
 264}
 265
 266
 267static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
 268{
 269	/* Let the current transmission finish.  */
 270	zs_line_drain(zport, irq);
 271	/* Load 'em up.  */
 272	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
 273	write_zsreg(zport, R5, regs[5] & ~TxENAB);
 274	write_zsreg(zport, R4, regs[4]);
 275	write_zsreg(zport, R9, regs[9]);
 276	write_zsreg(zport, R1, regs[1]);
 277	write_zsreg(zport, R2, regs[2]);
 278	write_zsreg(zport, R10, regs[10]);
 279	write_zsreg(zport, R14, regs[14] & ~BRENABL);
 280	write_zsreg(zport, R11, regs[11]);
 281	write_zsreg(zport, R12, regs[12]);
 282	write_zsreg(zport, R13, regs[13]);
 283	write_zsreg(zport, R14, regs[14]);
 284	write_zsreg(zport, R15, regs[15]);
 285	if (regs[3] & RxENABLE)
 286		write_zsreg(zport, R3, regs[3]);
 287	if (regs[5] & TxENAB)
 288		write_zsreg(zport, R5, regs[5]);
 289	return;
 290}
 291
 292
 293/*
 294 * Status handling routines.
 295 */
 296
 297/*
 298 * zs_tx_empty() -- get the transmitter empty status
 299 *
 300 * Purpose: Let user call ioctl() to get info when the UART physically
 301 * 	    is emptied.  On bus types like RS485, the transmitter must
 302 * 	    release the bus after transmitting.  This must be done when
 303 * 	    the transmit shift register is empty, not be done when the
 304 * 	    transmit holding register is empty.  This functionality
 305 * 	    allows an RS485 driver to be written in user space.
 306 */
 307static unsigned int zs_tx_empty(struct uart_port *uport)
 308{
 309	struct zs_port *zport = to_zport(uport);
 310	struct zs_scc *scc = zport->scc;
 311	unsigned long flags;
 312	u8 status;
 313
 314	spin_lock_irqsave(&scc->zlock, flags);
 315	status = read_zsreg(zport, R1);
 316	spin_unlock_irqrestore(&scc->zlock, flags);
 317
 318	return status & ALL_SNT ? TIOCSER_TEMT : 0;
 319}
 320
 321static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
 322					struct zs_port *zport_b)
 323{
 324	u8 status_a, status_b;
 325	unsigned int mctrl;
 326
 327	status_a = read_zsreg(zport_a, R0);
 328	status_b = read_zsreg(zport_b, R0);
 329
 330	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
 331		((status_b & DCD) ? TIOCM_CAR : 0) |
 332		((status_a & DCD) ? TIOCM_RNG : 0) |
 333		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
 334
 335	return mctrl;
 336}
 337
 338static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
 339{
 340	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 341
 342	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
 343}
 344
 345static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
 346{
 347	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 348	unsigned int mmask, mctrl, delta;
 349	u8 mask_a, mask_b;
 350
 351	if (zport == zport_a)
 352		return 0;
 353
 354	mask_a = zport_a->regs[15];
 355	mask_b = zport->regs[15];
 356
 357	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
 358		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
 359		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
 360		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
 361
 362	mctrl = zport->mctrl;
 363	if (mmask) {
 364		mctrl &= ~mmask;
 365		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
 366	}
 367
 368	delta = mctrl ^ zport->mctrl;
 369	if (delta)
 370		zport->mctrl = mctrl;
 371
 372	return delta;
 373}
 374
 375static unsigned int zs_get_mctrl(struct uart_port *uport)
 376{
 377	struct zs_port *zport = to_zport(uport);
 378	struct zs_scc *scc = zport->scc;
 379	unsigned int mctrl;
 380
 381	spin_lock(&scc->zlock);
 382	mctrl = zs_raw_get_mctrl(zport);
 383	spin_unlock(&scc->zlock);
 384
 385	return mctrl;
 386}
 387
 388static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
 389{
 390	struct zs_port *zport = to_zport(uport);
 391	struct zs_scc *scc = zport->scc;
 392	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 393	u8 oldloop, newloop;
 394
 395	spin_lock(&scc->zlock);
 396	if (zport != zport_a) {
 397		if (mctrl & TIOCM_DTR)
 398			zport_a->regs[5] |= DTR;
 399		else
 400			zport_a->regs[5] &= ~DTR;
 401		if (mctrl & TIOCM_RTS)
 402			zport_a->regs[5] |= RTS;
 403		else
 404			zport_a->regs[5] &= ~RTS;
 405		write_zsreg(zport_a, R5, zport_a->regs[5]);
 406	}
 407
 408	/* Rarely modified, so don't poke at hardware unless necessary. */
 409	oldloop = zport->regs[14];
 410	newloop = oldloop;
 411	if (mctrl & TIOCM_LOOP)
 412		newloop |= LOOPBAK;
 413	else
 414		newloop &= ~LOOPBAK;
 415	if (newloop != oldloop) {
 416		zport->regs[14] = newloop;
 417		write_zsreg(zport, R14, zport->regs[14]);
 418	}
 419	spin_unlock(&scc->zlock);
 420}
 421
 422static void zs_raw_stop_tx(struct zs_port *zport)
 423{
 424	write_zsreg(zport, R0, RES_Tx_P);
 425	zport->tx_stopped = 1;
 426}
 427
 428static void zs_stop_tx(struct uart_port *uport)
 429{
 430	struct zs_port *zport = to_zport(uport);
 431	struct zs_scc *scc = zport->scc;
 432
 433	spin_lock(&scc->zlock);
 434	zs_raw_stop_tx(zport);
 435	spin_unlock(&scc->zlock);
 436}
 437
 438static void zs_raw_transmit_chars(struct zs_port *);
 439
 440static void zs_start_tx(struct uart_port *uport)
 441{
 442	struct zs_port *zport = to_zport(uport);
 443	struct zs_scc *scc = zport->scc;
 444
 445	spin_lock(&scc->zlock);
 446	if (zport->tx_stopped) {
 447		zs_transmit_drain(zport, 0);
 448		zport->tx_stopped = 0;
 449		zs_raw_transmit_chars(zport);
 450	}
 451	spin_unlock(&scc->zlock);
 452}
 453
 454static void zs_stop_rx(struct uart_port *uport)
 455{
 456	struct zs_port *zport = to_zport(uport);
 457	struct zs_scc *scc = zport->scc;
 458	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 459
 460	spin_lock(&scc->zlock);
 461	zport->regs[15] &= ~BRKIE;
 462	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
 463	zport->regs[1] |= RxINT_DISAB;
 464
 465	if (zport != zport_a) {
 466		/* A-side DCD tracks RI and SYNC tracks DSR.  */
 467		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
 468		write_zsreg(zport_a, R15, zport_a->regs[15]);
 469		if (!(zport_a->regs[15] & BRKIE)) {
 470			zport_a->regs[1] &= ~EXT_INT_ENAB;
 471			write_zsreg(zport_a, R1, zport_a->regs[1]);
 472		}
 473
 474		/* This-side DCD tracks DCD and CTS tracks CTS.  */
 475		zport->regs[15] &= ~(DCDIE | CTSIE);
 476		zport->regs[1] &= ~EXT_INT_ENAB;
 477	} else {
 478		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
 479		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
 480			zport->regs[1] &= ~EXT_INT_ENAB;
 481	}
 482
 483	write_zsreg(zport, R15, zport->regs[15]);
 484	write_zsreg(zport, R1, zport->regs[1]);
 485	spin_unlock(&scc->zlock);
 486}
 487
 488static void zs_enable_ms(struct uart_port *uport)
 489{
 490	struct zs_port *zport = to_zport(uport);
 491	struct zs_scc *scc = zport->scc;
 492	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 493
 494	if (zport == zport_a)
 495		return;
 496
 497	spin_lock(&scc->zlock);
 498
 499	/* Clear Ext interrupts if not being handled already.  */
 500	if (!(zport_a->regs[1] & EXT_INT_ENAB))
 501		write_zsreg(zport_a, R0, RES_EXT_INT);
 502
 503	/* A-side DCD tracks RI and SYNC tracks DSR.  */
 504	zport_a->regs[1] |= EXT_INT_ENAB;
 505	zport_a->regs[15] |= DCDIE | SYNCIE;
 506
 507	/* This-side DCD tracks DCD and CTS tracks CTS.  */
 508	zport->regs[15] |= DCDIE | CTSIE;
 509
 510	zs_raw_xor_mctrl(zport);
 511
 512	write_zsreg(zport_a, R1, zport_a->regs[1]);
 513	write_zsreg(zport_a, R15, zport_a->regs[15]);
 514	write_zsreg(zport, R15, zport->regs[15]);
 515	spin_unlock(&scc->zlock);
 516}
 517
 518static void zs_break_ctl(struct uart_port *uport, int break_state)
 519{
 520	struct zs_port *zport = to_zport(uport);
 521	struct zs_scc *scc = zport->scc;
 522	unsigned long flags;
 523
 524	spin_lock_irqsave(&scc->zlock, flags);
 525	if (break_state == -1)
 526		zport->regs[5] |= SND_BRK;
 527	else
 528		zport->regs[5] &= ~SND_BRK;
 529	write_zsreg(zport, R5, zport->regs[5]);
 530	spin_unlock_irqrestore(&scc->zlock, flags);
 531}
 532
 533
 534/*
 535 * Interrupt handling routines.
 536 */
 537#define Rx_BRK 0x0100			/* BREAK event software flag.  */
 538#define Rx_SYS 0x0200			/* SysRq event software flag.  */
 539
 540static void zs_receive_chars(struct zs_port *zport)
 541{
 542	struct uart_port *uport = &zport->port;
 543	struct zs_scc *scc = zport->scc;
 544	struct uart_icount *icount;
 545	unsigned int avail, status, ch, flag;
 546	int count;
 547
 548	for (count = 16; count; count--) {
 549		spin_lock(&scc->zlock);
 550		avail = read_zsreg(zport, R0) & Rx_CH_AV;
 551		spin_unlock(&scc->zlock);
 552		if (!avail)
 553			break;
 554
 555		spin_lock(&scc->zlock);
 556		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
 557		ch = read_zsdata(zport);
 558		spin_unlock(&scc->zlock);
 559
 560		flag = TTY_NORMAL;
 561
 562		icount = &uport->icount;
 563		icount->rx++;
 564
 565		/* Handle the null char got when BREAK is removed.  */
 566		if (!ch)
 567			status |= zport->tty_break;
 568		if (unlikely(status &
 569			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
 570			zport->tty_break = 0;
 571
 572			/* Reset the error indication.  */
 573			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
 574				spin_lock(&scc->zlock);
 575				write_zsreg(zport, R0, ERR_RES);
 576				spin_unlock(&scc->zlock);
 577			}
 578
 579			if (status & (Rx_SYS | Rx_BRK)) {
 580				icount->brk++;
 581				/* SysRq discards the null char.  */
 582				if (status & Rx_SYS)
 583					continue;
 584			} else if (status & FRM_ERR)
 585				icount->frame++;
 586			else if (status & PAR_ERR)
 587				icount->parity++;
 588			if (status & Rx_OVR)
 589				icount->overrun++;
 590
 591			status &= uport->read_status_mask;
 592			if (status & Rx_BRK)
 593				flag = TTY_BREAK;
 594			else if (status & FRM_ERR)
 595				flag = TTY_FRAME;
 596			else if (status & PAR_ERR)
 597				flag = TTY_PARITY;
 598		}
 599
 600		if (uart_handle_sysrq_char(uport, ch))
 601			continue;
 602
 603		uart_insert_char(uport, status, Rx_OVR, ch, flag);
 604	}
 605
 606	tty_flip_buffer_push(uport->state->port.tty);
 607}
 608
 609static void zs_raw_transmit_chars(struct zs_port *zport)
 610{
 611	struct circ_buf *xmit = &zport->port.state->xmit;
 612
 613	/* XON/XOFF chars.  */
 614	if (zport->port.x_char) {
 615		write_zsdata(zport, zport->port.x_char);
 616		zport->port.icount.tx++;
 617		zport->port.x_char = 0;
 618		return;
 619	}
 620
 621	/* If nothing to do or stopped or hardware stopped.  */
 622	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
 623		zs_raw_stop_tx(zport);
 624		return;
 625	}
 626
 627	/* Send char.  */
 628	write_zsdata(zport, xmit->buf[xmit->tail]);
 629	xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 630	zport->port.icount.tx++;
 631
 632	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 633		uart_write_wakeup(&zport->port);
 634
 635	/* Are we are done?  */
 636	if (uart_circ_empty(xmit))
 637		zs_raw_stop_tx(zport);
 638}
 639
 640static void zs_transmit_chars(struct zs_port *zport)
 641{
 642	struct zs_scc *scc = zport->scc;
 643
 644	spin_lock(&scc->zlock);
 645	zs_raw_transmit_chars(zport);
 646	spin_unlock(&scc->zlock);
 647}
 648
 649static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
 650{
 651	struct uart_port *uport = &zport->port;
 652	struct zs_scc *scc = zport->scc;
 653	unsigned int delta;
 654	u8 status, brk;
 655
 656	spin_lock(&scc->zlock);
 657
 658	/* Get status from Read Register 0.  */
 659	status = read_zsreg(zport, R0);
 660
 661	if (zport->regs[15] & BRKIE) {
 662		brk = status & BRK_ABRT;
 663		if (brk && !zport->brk) {
 664			spin_unlock(&scc->zlock);
 665			if (uart_handle_break(uport))
 666				zport->tty_break = Rx_SYS;
 667			else
 668				zport->tty_break = Rx_BRK;
 669			spin_lock(&scc->zlock);
 670		}
 671		zport->brk = brk;
 672	}
 673
 674	if (zport != zport_a) {
 675		delta = zs_raw_xor_mctrl(zport);
 676		spin_unlock(&scc->zlock);
 677
 678		if (delta & TIOCM_CTS)
 679			uart_handle_cts_change(uport,
 680					       zport->mctrl & TIOCM_CTS);
 681		if (delta & TIOCM_CAR)
 682			uart_handle_dcd_change(uport,
 683					       zport->mctrl & TIOCM_CAR);
 684		if (delta & TIOCM_RNG)
 685			uport->icount.dsr++;
 686		if (delta & TIOCM_DSR)
 687			uport->icount.rng++;
 688
 689		if (delta)
 690			wake_up_interruptible(&uport->state->port.delta_msr_wait);
 691
 692		spin_lock(&scc->zlock);
 693	}
 694
 695	/* Clear the status condition...  */
 696	write_zsreg(zport, R0, RES_EXT_INT);
 697
 698	spin_unlock(&scc->zlock);
 699}
 700
 701/*
 702 * This is the Z85C30 driver's generic interrupt routine.
 703 */
 704static irqreturn_t zs_interrupt(int irq, void *dev_id)
 705{
 706	struct zs_scc *scc = dev_id;
 707	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 708	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
 709	irqreturn_t status = IRQ_NONE;
 710	u8 zs_intreg;
 711	int count;
 712
 713	/*
 714	 * NOTE: The read register 3, which holds the irq status,
 715	 *       does so for both channels on each chip.  Although
 716	 *       the status value itself must be read from the A
 717	 *       channel and is only valid when read from channel A.
 718	 *       Yes... broken hardware...
 719	 */
 720	for (count = 16; count; count--) {
 721		spin_lock(&scc->zlock);
 722		zs_intreg = read_zsreg(zport_a, R3);
 723		spin_unlock(&scc->zlock);
 724		if (!zs_intreg)
 725			break;
 726
 727		/*
 728		 * We do not like losing characters, so we prioritise
 729		 * interrupt sources a little bit differently than
 730		 * the SCC would, was it allowed to.
 731		 */
 732		if (zs_intreg & CHBRxIP)
 733			zs_receive_chars(zport_b);
 734		if (zs_intreg & CHARxIP)
 735			zs_receive_chars(zport_a);
 736		if (zs_intreg & CHBEXT)
 737			zs_status_handle(zport_b, zport_a);
 738		if (zs_intreg & CHAEXT)
 739			zs_status_handle(zport_a, zport_a);
 740		if (zs_intreg & CHBTxIP)
 741			zs_transmit_chars(zport_b);
 742		if (zs_intreg & CHATxIP)
 743			zs_transmit_chars(zport_a);
 744
 745		status = IRQ_HANDLED;
 746	}
 747
 748	return status;
 749}
 750
 751
 752/*
 753 * Finally, routines used to initialize the serial port.
 754 */
 755static int zs_startup(struct uart_port *uport)
 756{
 757	struct zs_port *zport = to_zport(uport);
 758	struct zs_scc *scc = zport->scc;
 759	unsigned long flags;
 760	int irq_guard;
 761	int ret;
 762
 763	irq_guard = atomic_add_return(1, &scc->irq_guard);
 764	if (irq_guard == 1) {
 765		ret = request_irq(zport->port.irq, zs_interrupt,
 766				  IRQF_SHARED, "scc", scc);
 767		if (ret) {
 768			atomic_add(-1, &scc->irq_guard);
 769			printk(KERN_ERR "zs: can't get irq %d\n",
 770			       zport->port.irq);
 771			return ret;
 772		}
 773	}
 774
 775	spin_lock_irqsave(&scc->zlock, flags);
 776
 777	/* Clear the receive FIFO.  */
 778	zs_receive_drain(zport);
 779
 780	/* Clear the interrupt registers.  */
 781	write_zsreg(zport, R0, ERR_RES);
 782	write_zsreg(zport, R0, RES_Tx_P);
 783	/* But Ext only if not being handled already.  */
 784	if (!(zport->regs[1] & EXT_INT_ENAB))
 785		write_zsreg(zport, R0, RES_EXT_INT);
 786
 787	/* Finally, enable sequencing and interrupts.  */
 788	zport->regs[1] &= ~RxINT_MASK;
 789	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
 790	zport->regs[3] |= RxENABLE;
 791	zport->regs[15] |= BRKIE;
 792	write_zsreg(zport, R1, zport->regs[1]);
 793	write_zsreg(zport, R3, zport->regs[3]);
 794	write_zsreg(zport, R5, zport->regs[5]);
 795	write_zsreg(zport, R15, zport->regs[15]);
 796
 797	/* Record the current state of RR0.  */
 798	zport->mctrl = zs_raw_get_mctrl(zport);
 799	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
 800
 801	zport->tx_stopped = 1;
 802
 803	spin_unlock_irqrestore(&scc->zlock, flags);
 804
 805	return 0;
 806}
 807
 808static void zs_shutdown(struct uart_port *uport)
 809{
 810	struct zs_port *zport = to_zport(uport);
 811	struct zs_scc *scc = zport->scc;
 812	unsigned long flags;
 813	int irq_guard;
 814
 815	spin_lock_irqsave(&scc->zlock, flags);
 816
 817	zport->regs[3] &= ~RxENABLE;
 818	write_zsreg(zport, R5, zport->regs[5]);
 819	write_zsreg(zport, R3, zport->regs[3]);
 820
 821	spin_unlock_irqrestore(&scc->zlock, flags);
 822
 823	irq_guard = atomic_add_return(-1, &scc->irq_guard);
 824	if (!irq_guard)
 825		free_irq(zport->port.irq, scc);
 826}
 827
 828
 829static void zs_reset(struct zs_port *zport)
 830{
 831	struct zs_scc *scc = zport->scc;
 832	int irq;
 833	unsigned long flags;
 834
 835	spin_lock_irqsave(&scc->zlock, flags);
 836	irq = !irqs_disabled_flags(flags);
 837	if (!scc->initialised) {
 838		/* Reset the pointer first, just in case...  */
 839		read_zsreg(zport, R0);
 840		/* And let the current transmission finish.  */
 841		zs_line_drain(zport, irq);
 842		write_zsreg(zport, R9, FHWRES);
 843		udelay(10);
 844		write_zsreg(zport, R9, 0);
 845		scc->initialised = 1;
 846	}
 847	load_zsregs(zport, zport->regs, irq);
 848	spin_unlock_irqrestore(&scc->zlock, flags);
 849}
 850
 851static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
 852			   struct ktermios *old_termios)
 853{
 854	struct zs_port *zport = to_zport(uport);
 855	struct zs_scc *scc = zport->scc;
 856	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 857	int irq;
 858	unsigned int baud, brg;
 859	unsigned long flags;
 860
 861	spin_lock_irqsave(&scc->zlock, flags);
 862	irq = !irqs_disabled_flags(flags);
 863
 864	/* Byte size.  */
 865	zport->regs[3] &= ~RxNBITS_MASK;
 866	zport->regs[5] &= ~TxNBITS_MASK;
 867	switch (termios->c_cflag & CSIZE) {
 868	case CS5:
 869		zport->regs[3] |= Rx5;
 870		zport->regs[5] |= Tx5;
 871		break;
 872	case CS6:
 873		zport->regs[3] |= Rx6;
 874		zport->regs[5] |= Tx6;
 875		break;
 876	case CS7:
 877		zport->regs[3] |= Rx7;
 878		zport->regs[5] |= Tx7;
 879		break;
 880	case CS8:
 881	default:
 882		zport->regs[3] |= Rx8;
 883		zport->regs[5] |= Tx8;
 884		break;
 885	}
 886
 887	/* Parity and stop bits.  */
 888	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
 889	if (termios->c_cflag & CSTOPB)
 890		zport->regs[4] |= SB2;
 891	else
 892		zport->regs[4] |= SB1;
 893	if (termios->c_cflag & PARENB)
 894		zport->regs[4] |= PAR_ENA;
 895	if (!(termios->c_cflag & PARODD))
 896		zport->regs[4] |= PAR_EVEN;
 897	switch (zport->clk_mode) {
 898	case 64:
 899		zport->regs[4] |= X64CLK;
 900		break;
 901	case 32:
 902		zport->regs[4] |= X32CLK;
 903		break;
 904	case 16:
 905		zport->regs[4] |= X16CLK;
 906		break;
 907	case 1:
 908		zport->regs[4] |= X1CLK;
 909		break;
 910	default:
 911		BUG();
 912	}
 913
 914	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
 915				  uport->uartclk / zport->clk_mode / 4);
 916
 917	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
 918	zport->regs[12] = brg & 0xff;
 919	zport->regs[13] = (brg >> 8) & 0xff;
 920
 921	uart_update_timeout(uport, termios->c_cflag, baud);
 922
 923	uport->read_status_mask = Rx_OVR;
 924	if (termios->c_iflag & INPCK)
 925		uport->read_status_mask |= FRM_ERR | PAR_ERR;
 926	if (termios->c_iflag & (BRKINT | PARMRK))
 927		uport->read_status_mask |= Rx_BRK;
 928
 929	uport->ignore_status_mask = 0;
 930	if (termios->c_iflag & IGNPAR)
 931		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
 932	if (termios->c_iflag & IGNBRK) {
 933		uport->ignore_status_mask |= Rx_BRK;
 934		if (termios->c_iflag & IGNPAR)
 935			uport->ignore_status_mask |= Rx_OVR;
 936	}
 937
 938	if (termios->c_cflag & CREAD)
 939		zport->regs[3] |= RxENABLE;
 940	else
 941		zport->regs[3] &= ~RxENABLE;
 942
 943	if (zport != zport_a) {
 944		if (!(termios->c_cflag & CLOCAL)) {
 945			zport->regs[15] |= DCDIE;
 946		} else
 947			zport->regs[15] &= ~DCDIE;
 948		if (termios->c_cflag & CRTSCTS) {
 949			zport->regs[15] |= CTSIE;
 950		} else
 951			zport->regs[15] &= ~CTSIE;
 952		zs_raw_xor_mctrl(zport);
 953	}
 954
 955	/* Load up the new values.  */
 956	load_zsregs(zport, zport->regs, irq);
 957
 958	spin_unlock_irqrestore(&scc->zlock, flags);
 959}
 960
 961/*
 962 * Hack alert!
 963 * Required solely so that the initial PROM-based console
 964 * works undisturbed in parallel with this one.
 965 */
 966static void zs_pm(struct uart_port *uport, unsigned int state,
 967		  unsigned int oldstate)
 968{
 969	struct zs_port *zport = to_zport(uport);
 970
 971	if (state < 3)
 972		zport->regs[5] |= TxENAB;
 973	else
 974		zport->regs[5] &= ~TxENAB;
 975	write_zsreg(zport, R5, zport->regs[5]);
 976}
 977
 978
 979static const char *zs_type(struct uart_port *uport)
 980{
 981	return "Z85C30 SCC";
 982}
 983
 984static void zs_release_port(struct uart_port *uport)
 985{
 986	iounmap(uport->membase);
 987	uport->membase = 0;
 988	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
 989}
 990
 991static int zs_map_port(struct uart_port *uport)
 992{
 993	if (!uport->membase)
 994		uport->membase = ioremap_nocache(uport->mapbase,
 995						 ZS_CHAN_IO_SIZE);
 996	if (!uport->membase) {
 997		printk(KERN_ERR "zs: Cannot map MMIO\n");
 998		return -ENOMEM;
 999	}
1000	return 0;
1001}
1002
1003static int zs_request_port(struct uart_port *uport)
1004{
1005	int ret;
1006
1007	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1008		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1009		return -EBUSY;
1010	}
1011	ret = zs_map_port(uport);
1012	if (ret) {
1013		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1014		return ret;
1015	}
1016	return 0;
1017}
1018
1019static void zs_config_port(struct uart_port *uport, int flags)
1020{
1021	struct zs_port *zport = to_zport(uport);
1022
1023	if (flags & UART_CONFIG_TYPE) {
1024		if (zs_request_port(uport))
1025			return;
1026
1027		uport->type = PORT_ZS;
1028
1029		zs_reset(zport);
1030	}
1031}
1032
1033static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1034{
1035	struct zs_port *zport = to_zport(uport);
1036	int ret = 0;
1037
1038	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1039		ret = -EINVAL;
1040	if (ser->irq != uport->irq)
1041		ret = -EINVAL;
1042	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1043		ret = -EINVAL;
1044	return ret;
1045}
1046
1047
1048static struct uart_ops zs_ops = {
1049	.tx_empty	= zs_tx_empty,
1050	.set_mctrl	= zs_set_mctrl,
1051	.get_mctrl	= zs_get_mctrl,
1052	.stop_tx	= zs_stop_tx,
1053	.start_tx	= zs_start_tx,
1054	.stop_rx	= zs_stop_rx,
1055	.enable_ms	= zs_enable_ms,
1056	.break_ctl	= zs_break_ctl,
1057	.startup	= zs_startup,
1058	.shutdown	= zs_shutdown,
1059	.set_termios	= zs_set_termios,
1060	.pm		= zs_pm,
1061	.type		= zs_type,
1062	.release_port	= zs_release_port,
1063	.request_port	= zs_request_port,
1064	.config_port	= zs_config_port,
1065	.verify_port	= zs_verify_port,
1066};
1067
1068/*
1069 * Initialize Z85C30 port structures.
1070 */
1071static int __init zs_probe_sccs(void)
1072{
1073	static int probed;
1074	struct zs_parms zs_parms;
1075	int chip, side, irq;
1076	int n_chips = 0;
1077	int i;
1078
1079	if (probed)
1080		return 0;
1081
1082	irq = dec_interrupt[DEC_IRQ_SCC0];
1083	if (irq >= 0) {
1084		zs_parms.scc[n_chips] = IOASIC_SCC0;
1085		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1086		n_chips++;
1087	}
1088	irq = dec_interrupt[DEC_IRQ_SCC1];
1089	if (irq >= 0) {
1090		zs_parms.scc[n_chips] = IOASIC_SCC1;
1091		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1092		n_chips++;
1093	}
1094	if (!n_chips)
1095		return -ENXIO;
1096
1097	probed = 1;
1098
1099	for (chip = 0; chip < n_chips; chip++) {
1100		spin_lock_init(&zs_sccs[chip].zlock);
1101		for (side = 0; side < ZS_NUM_CHAN; side++) {
1102			struct zs_port *zport = &zs_sccs[chip].zport[side];
1103			struct uart_port *uport = &zport->port;
1104
1105			zport->scc	= &zs_sccs[chip];
1106			zport->clk_mode	= 16;
1107
1108			uport->irq	= zs_parms.irq[chip];
1109			uport->uartclk	= ZS_CLOCK;
1110			uport->fifosize	= 1;
1111			uport->iotype	= UPIO_MEM;
1112			uport->flags	= UPF_BOOT_AUTOCONF;
1113			uport->ops	= &zs_ops;
1114			uport->line	= chip * ZS_NUM_CHAN + side;
1115			uport->mapbase	= dec_kn_slot_base +
1116					  zs_parms.scc[chip] +
1117					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1118
1119			for (i = 0; i < ZS_NUM_REGS; i++)
1120				zport->regs[i] = zs_init_regs[i];
1121		}
1122	}
1123
1124	return 0;
1125}
1126
1127
1128#ifdef CONFIG_SERIAL_ZS_CONSOLE
1129static void zs_console_putchar(struct uart_port *uport, int ch)
1130{
1131	struct zs_port *zport = to_zport(uport);
1132	struct zs_scc *scc = zport->scc;
1133	int irq;
1134	unsigned long flags;
1135
1136	spin_lock_irqsave(&scc->zlock, flags);
1137	irq = !irqs_disabled_flags(flags);
1138	if (zs_transmit_drain(zport, irq))
1139		write_zsdata(zport, ch);
1140	spin_unlock_irqrestore(&scc->zlock, flags);
1141}
1142
1143/*
1144 * Print a string to the serial port trying not to disturb
1145 * any possible real use of the port...
1146 */
1147static void zs_console_write(struct console *co, const char *s,
1148			     unsigned int count)
1149{
1150	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1151	struct zs_port *zport = &zs_sccs[chip].zport[side];
1152	struct zs_scc *scc = zport->scc;
1153	unsigned long flags;
1154	u8 txint, txenb;
1155	int irq;
1156
1157	/* Disable transmit interrupts and enable the transmitter. */
1158	spin_lock_irqsave(&scc->zlock, flags);
1159	txint = zport->regs[1];
1160	txenb = zport->regs[5];
1161	if (txint & TxINT_ENAB) {
1162		zport->regs[1] = txint & ~TxINT_ENAB;
1163		write_zsreg(zport, R1, zport->regs[1]);
1164	}
1165	if (!(txenb & TxENAB)) {
1166		zport->regs[5] = txenb | TxENAB;
1167		write_zsreg(zport, R5, zport->regs[5]);
1168	}
1169	spin_unlock_irqrestore(&scc->zlock, flags);
1170
1171	uart_console_write(&zport->port, s, count, zs_console_putchar);
1172
1173	/* Restore transmit interrupts and the transmitter enable. */
1174	spin_lock_irqsave(&scc->zlock, flags);
1175	irq = !irqs_disabled_flags(flags);
1176	zs_line_drain(zport, irq);
1177	if (!(txenb & TxENAB)) {
1178		zport->regs[5] &= ~TxENAB;
1179		write_zsreg(zport, R5, zport->regs[5]);
1180	}
1181	if (txint & TxINT_ENAB) {
1182		zport->regs[1] |= TxINT_ENAB;
1183		write_zsreg(zport, R1, zport->regs[1]);
1184	}
1185	spin_unlock_irqrestore(&scc->zlock, flags);
1186}
1187
1188/*
1189 * Setup serial console baud/bits/parity.  We do two things here:
1190 * - construct a cflag setting for the first uart_open()
1191 * - initialise the serial port
1192 * Return non-zero if we didn't find a serial port.
1193 */
1194static int __init zs_console_setup(struct console *co, char *options)
1195{
1196	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1197	struct zs_port *zport = &zs_sccs[chip].zport[side];
1198	struct uart_port *uport = &zport->port;
1199	int baud = 9600;
1200	int bits = 8;
1201	int parity = 'n';
1202	int flow = 'n';
1203	int ret;
1204
1205	ret = zs_map_port(uport);
1206	if (ret)
1207		return ret;
1208
1209	zs_reset(zport);
1210	zs_pm(uport, 0, -1);
1211
1212	if (options)
1213		uart_parse_options(options, &baud, &parity, &bits, &flow);
1214	return uart_set_options(uport, co, baud, parity, bits, flow);
1215}
1216
1217static struct uart_driver zs_reg;
1218static struct console zs_console = {
1219	.name	= "ttyS",
1220	.write	= zs_console_write,
1221	.device	= uart_console_device,
1222	.setup	= zs_console_setup,
1223	.flags	= CON_PRINTBUFFER,
1224	.index	= -1,
1225	.data	= &zs_reg,
1226};
1227
1228/*
1229 *	Register console.
1230 */
1231static int __init zs_serial_console_init(void)
1232{
1233	int ret;
1234
1235	ret = zs_probe_sccs();
1236	if (ret)
1237		return ret;
1238	register_console(&zs_console);
1239
1240	return 0;
1241}
1242
1243console_initcall(zs_serial_console_init);
1244
1245#define SERIAL_ZS_CONSOLE	&zs_console
1246#else
1247#define SERIAL_ZS_CONSOLE	NULL
1248#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1249
1250static struct uart_driver zs_reg = {
1251	.owner			= THIS_MODULE,
1252	.driver_name		= "serial",
1253	.dev_name		= "ttyS",
1254	.major			= TTY_MAJOR,
1255	.minor			= 64,
1256	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1257	.cons			= SERIAL_ZS_CONSOLE,
1258};
1259
1260/* zs_init inits the driver. */
1261static int __init zs_init(void)
1262{
1263	int i, ret;
1264
1265	pr_info("%s%s\n", zs_name, zs_version);
1266
1267	/* Find out how many Z85C30 SCCs we have.  */
1268	ret = zs_probe_sccs();
1269	if (ret)
1270		return ret;
1271
1272	ret = uart_register_driver(&zs_reg);
1273	if (ret)
1274		return ret;
1275
1276	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1277		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1278		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1279		struct uart_port *uport = &zport->port;
1280
1281		if (zport->scc)
1282			uart_add_one_port(&zs_reg, uport);
1283	}
1284
1285	return 0;
1286}
1287
1288static void __exit zs_exit(void)
1289{
1290	int i;
1291
1292	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1293		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1294		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1295		struct uart_port *uport = &zport->port;
1296
1297		if (zport->scc)
1298			uart_remove_one_port(&zs_reg, uport);
1299	}
1300
1301	uart_unregister_driver(&zs_reg);
1302}
1303
1304module_init(zs_init);
1305module_exit(zs_exit);