Linux Audio

Check our new training course

Loading...
v3.1
   1/************************************************************************
   2 * Copyright 2003 Digi International (www.digi.com)
   3 *
   4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2, or (at your option)
   9 * any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
  13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
  14 * PURPOSE.  See the GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
  19 * MA  02111-1307, USA.
  20 *
  21 * Contact Information:
  22 * Scott H Kilau <Scott_Kilau@digi.com>
  23 * Wendy Xiong   <wendyx@us.ibm.com>
  24 *
  25 ***********************************************************************/
  26#include <linux/delay.h>	/* For udelay */
  27#include <linux/serial_reg.h>	/* For the various UART offsets */
  28#include <linux/tty.h>
  29#include <linux/pci.h>
  30#include <asm/io.h>
  31
  32#include "jsm.h"		/* Driver main header file */
  33
  34static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
  35
  36/*
  37 * This function allows calls to ensure that all outstanding
  38 * PCI writes have been completed, by doing a PCI read against
  39 * a non-destructive, read-only location on the Neo card.
  40 *
  41 * In this case, we are reading the DVID (Read-only Device Identification)
  42 * value of the Neo card.
  43 */
  44static inline void neo_pci_posting_flush(struct jsm_board *bd)
  45{
  46      readb(bd->re_map_membase + 0x8D);
  47}
  48
  49static void neo_set_cts_flow_control(struct jsm_channel *ch)
  50{
  51	u8 ier, efr;
  52	ier = readb(&ch->ch_neo_uart->ier);
  53	efr = readb(&ch->ch_neo_uart->efr);
  54
  55	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
  56
  57	/* Turn on auto CTS flow control */
  58	ier |= (UART_17158_IER_CTSDSR);
  59	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
  60
  61	/* Turn off auto Xon flow control */
  62	efr &= ~(UART_17158_EFR_IXON);
  63
  64	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
  65	writeb(0, &ch->ch_neo_uart->efr);
  66
  67	/* Turn on UART enhanced bits */
  68	writeb(efr, &ch->ch_neo_uart->efr);
  69
  70	/* Turn on table D, with 8 char hi/low watermarks */
  71	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
  72
  73	/* Feed the UART our trigger levels */
  74	writeb(8, &ch->ch_neo_uart->tfifo);
  75	ch->ch_t_tlevel = 8;
  76
  77	writeb(ier, &ch->ch_neo_uart->ier);
  78}
  79
  80static void neo_set_rts_flow_control(struct jsm_channel *ch)
  81{
  82	u8 ier, efr;
  83	ier = readb(&ch->ch_neo_uart->ier);
  84	efr = readb(&ch->ch_neo_uart->efr);
  85
  86	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
  87
  88	/* Turn on auto RTS flow control */
  89	ier |= (UART_17158_IER_RTSDTR);
  90	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
  91
  92	/* Turn off auto Xoff flow control */
  93	ier &= ~(UART_17158_IER_XOFF);
  94	efr &= ~(UART_17158_EFR_IXOFF);
  95
  96	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
  97	writeb(0, &ch->ch_neo_uart->efr);
  98
  99	/* Turn on UART enhanced bits */
 100	writeb(efr, &ch->ch_neo_uart->efr);
 101
 102	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
 103	ch->ch_r_watermark = 4;
 104
 105	writeb(56, &ch->ch_neo_uart->rfifo);
 106	ch->ch_r_tlevel = 56;
 107
 108	writeb(ier, &ch->ch_neo_uart->ier);
 109
 110	/*
 111	 * From the Neo UART spec sheet:
 112	 * The auto RTS/DTR function must be started by asserting
 113	 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
 114	 * it is enabled.
 115	 */
 116	ch->ch_mostat |= (UART_MCR_RTS);
 117}
 118
 119
 120static void neo_set_ixon_flow_control(struct jsm_channel *ch)
 121{
 122	u8 ier, efr;
 123	ier = readb(&ch->ch_neo_uart->ier);
 124	efr = readb(&ch->ch_neo_uart->efr);
 125
 126	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
 127
 128	/* Turn off auto CTS flow control */
 129	ier &= ~(UART_17158_IER_CTSDSR);
 130	efr &= ~(UART_17158_EFR_CTSDSR);
 131
 132	/* Turn on auto Xon flow control */
 133	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
 134
 135	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 136	writeb(0, &ch->ch_neo_uart->efr);
 137
 138	/* Turn on UART enhanced bits */
 139	writeb(efr, &ch->ch_neo_uart->efr);
 140
 141	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 142	ch->ch_r_watermark = 4;
 143
 144	writeb(32, &ch->ch_neo_uart->rfifo);
 145	ch->ch_r_tlevel = 32;
 146
 147	/* Tell UART what start/stop chars it should be looking for */
 148	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
 149	writeb(0, &ch->ch_neo_uart->xonchar2);
 150
 151	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
 152	writeb(0, &ch->ch_neo_uart->xoffchar2);
 153
 154	writeb(ier, &ch->ch_neo_uart->ier);
 155}
 156
 157static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
 158{
 159	u8 ier, efr;
 160	ier = readb(&ch->ch_neo_uart->ier);
 161	efr = readb(&ch->ch_neo_uart->efr);
 162
 163	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
 164
 165	/* Turn off auto RTS flow control */
 166	ier &= ~(UART_17158_IER_RTSDTR);
 167	efr &= ~(UART_17158_EFR_RTSDTR);
 168
 169	/* Turn on auto Xoff flow control */
 170	ier |= (UART_17158_IER_XOFF);
 171	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
 172
 173	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 174	writeb(0, &ch->ch_neo_uart->efr);
 175
 176	/* Turn on UART enhanced bits */
 177	writeb(efr, &ch->ch_neo_uart->efr);
 178
 179	/* Turn on table D, with 8 char hi/low watermarks */
 180	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 181
 182	writeb(8, &ch->ch_neo_uart->tfifo);
 183	ch->ch_t_tlevel = 8;
 184
 185	/* Tell UART what start/stop chars it should be looking for */
 186	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
 187	writeb(0, &ch->ch_neo_uart->xonchar2);
 188
 189	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
 190	writeb(0, &ch->ch_neo_uart->xoffchar2);
 191
 192	writeb(ier, &ch->ch_neo_uart->ier);
 193}
 194
 195static void neo_set_no_input_flow_control(struct jsm_channel *ch)
 196{
 197	u8 ier, efr;
 198	ier = readb(&ch->ch_neo_uart->ier);
 199	efr = readb(&ch->ch_neo_uart->efr);
 200
 201	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
 202
 203	/* Turn off auto RTS flow control */
 204	ier &= ~(UART_17158_IER_RTSDTR);
 205	efr &= ~(UART_17158_EFR_RTSDTR);
 206
 207	/* Turn off auto Xoff flow control */
 208	ier &= ~(UART_17158_IER_XOFF);
 209	if (ch->ch_c_iflag & IXON)
 210		efr &= ~(UART_17158_EFR_IXOFF);
 211	else
 212		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
 213
 214	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 215	writeb(0, &ch->ch_neo_uart->efr);
 216
 217	/* Turn on UART enhanced bits */
 218	writeb(efr, &ch->ch_neo_uart->efr);
 219
 220	/* Turn on table D, with 8 char hi/low watermarks */
 221	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 222
 223	ch->ch_r_watermark = 0;
 224
 225	writeb(16, &ch->ch_neo_uart->tfifo);
 226	ch->ch_t_tlevel = 16;
 227
 228	writeb(16, &ch->ch_neo_uart->rfifo);
 229	ch->ch_r_tlevel = 16;
 230
 231	writeb(ier, &ch->ch_neo_uart->ier);
 232}
 233
 234static void neo_set_no_output_flow_control(struct jsm_channel *ch)
 235{
 236	u8 ier, efr;
 237	ier = readb(&ch->ch_neo_uart->ier);
 238	efr = readb(&ch->ch_neo_uart->efr);
 239
 240	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
 241
 242	/* Turn off auto CTS flow control */
 243	ier &= ~(UART_17158_IER_CTSDSR);
 244	efr &= ~(UART_17158_EFR_CTSDSR);
 245
 246	/* Turn off auto Xon flow control */
 247	if (ch->ch_c_iflag & IXOFF)
 248		efr &= ~(UART_17158_EFR_IXON);
 249	else
 250		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
 251
 252	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 253	writeb(0, &ch->ch_neo_uart->efr);
 254
 255	/* Turn on UART enhanced bits */
 256	writeb(efr, &ch->ch_neo_uart->efr);
 257
 258	/* Turn on table D, with 8 char hi/low watermarks */
 259	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 260
 261	ch->ch_r_watermark = 0;
 262
 263	writeb(16, &ch->ch_neo_uart->tfifo);
 264	ch->ch_t_tlevel = 16;
 265
 266	writeb(16, &ch->ch_neo_uart->rfifo);
 267	ch->ch_r_tlevel = 16;
 268
 269	writeb(ier, &ch->ch_neo_uart->ier);
 270}
 271
 272static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
 273{
 274
 275	/* if hardware flow control is set, then skip this whole thing */
 276	if (ch->ch_c_cflag & CRTSCTS)
 277		return;
 278
 279	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n");
 280
 281	/* Tell UART what start/stop chars it should be looking for */
 282	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
 283	writeb(0, &ch->ch_neo_uart->xonchar2);
 284
 285	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
 286	writeb(0, &ch->ch_neo_uart->xoffchar2);
 287}
 288
 289static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
 290{
 291	int qleft = 0;
 292	u8 linestatus = 0;
 293	u8 error_mask = 0;
 294	int n = 0;
 295	int total = 0;
 296	u16 head;
 297	u16 tail;
 298
 299	if (!ch)
 300		return;
 301
 302	/* cache head and tail of queue */
 303	head = ch->ch_r_head & RQUEUEMASK;
 304	tail = ch->ch_r_tail & RQUEUEMASK;
 305
 306	/* Get our cached LSR */
 307	linestatus = ch->ch_cached_lsr;
 308	ch->ch_cached_lsr = 0;
 309
 310	/* Store how much space we have left in the queue */
 311	if ((qleft = tail - head - 1) < 0)
 312		qleft += RQUEUEMASK + 1;
 313
 314	/*
 315	 * If the UART is not in FIFO mode, force the FIFO copy to
 316	 * NOT be run, by setting total to 0.
 317	 *
 318	 * On the other hand, if the UART IS in FIFO mode, then ask
 319	 * the UART to give us an approximation of data it has RX'ed.
 320	 */
 321	if (!(ch->ch_flags & CH_FIFO_ENABLED))
 322		total = 0;
 323	else {
 324		total = readb(&ch->ch_neo_uart->rfifo);
 325
 326		/*
 327		 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
 328		 *
 329		 * This resolves a problem/bug with the Exar chip that sometimes
 330		 * returns a bogus value in the rfifo register.
 331		 * The count can be any where from 0-3 bytes "off".
 332		 * Bizarre, but true.
 333		 */
 334		total -= 3;
 335	}
 336
 337	/*
 338	 * Finally, bound the copy to make sure we don't overflow
 339	 * our own queue...
 340	 * The byte by byte copy loop below this loop this will
 341	 * deal with the queue overflow possibility.
 342	 */
 343	total = min(total, qleft);
 344
 345	while (total > 0) {
 346		/*
 347		 * Grab the linestatus register, we need to check
 348		 * to see if there are any errors in the FIFO.
 349		 */
 350		linestatus = readb(&ch->ch_neo_uart->lsr);
 351
 352		/*
 353		 * Break out if there is a FIFO error somewhere.
 354		 * This will allow us to go byte by byte down below,
 355		 * finding the exact location of the error.
 356		 */
 357		if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
 358			break;
 359
 360		/* Make sure we don't go over the end of our queue */
 361		n = min(((u32) total), (RQUEUESIZE - (u32) head));
 362
 363		/*
 364		 * Cut down n even further if needed, this is to fix
 365		 * a problem with memcpy_fromio() with the Neo on the
 366		 * IBM pSeries platform.
 367		 * 15 bytes max appears to be the magic number.
 368		 */
 369		n = min((u32) n, (u32) 12);
 370
 371		/*
 372		 * Since we are grabbing the linestatus register, which
 373		 * will reset some bits after our read, we need to ensure
 374		 * we don't miss our TX FIFO emptys.
 375		 */
 376		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
 377			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 378
 379		linestatus = 0;
 380
 381		/* Copy data from uart to the queue */
 382		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
 383		/*
 384		 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed
 385		 * that all the data currently in the FIFO is free of
 386		 * breaks and parity/frame/orun errors.
 387		 */
 388		memset(ch->ch_equeue + head, 0, n);
 389
 390		/* Add to and flip head if needed */
 391		head = (head + n) & RQUEUEMASK;
 392		total -= n;
 393		qleft -= n;
 394		ch->ch_rxcount += n;
 395	}
 396
 397	/*
 398	 * Create a mask to determine whether we should
 399	 * insert the character (if any) into our queue.
 400	 */
 401	if (ch->ch_c_iflag & IGNBRK)
 402		error_mask |= UART_LSR_BI;
 403
 404	/*
 405	 * Now cleanup any leftover bytes still in the UART.
 406	 * Also deal with any possible queue overflow here as well.
 407	 */
 408	while (1) {
 409
 410		/*
 411		 * Its possible we have a linestatus from the loop above
 412		 * this, so we "OR" on any extra bits.
 413		 */
 414		linestatus |= readb(&ch->ch_neo_uart->lsr);
 415
 416		/*
 417		 * If the chip tells us there is no more data pending to
 418		 * be read, we can then leave.
 419		 * But before we do, cache the linestatus, just in case.
 420		 */
 421		if (!(linestatus & UART_LSR_DR)) {
 422			ch->ch_cached_lsr = linestatus;
 423			break;
 424		}
 425
 426		/* No need to store this bit */
 427		linestatus &= ~UART_LSR_DR;
 428
 429		/*
 430		 * Since we are grabbing the linestatus register, which
 431		 * will reset some bits after our read, we need to ensure
 432		 * we don't miss our TX FIFO emptys.
 433		 */
 434		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
 435			linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
 436			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 437		}
 438
 439		/*
 440		 * Discard character if we are ignoring the error mask.
 441		 */
 442		if (linestatus & error_mask) {
 443			u8 discard;
 444			linestatus = 0;
 445			memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
 446			continue;
 447		}
 448
 449		/*
 450		 * If our queue is full, we have no choice but to drop some data.
 451		 * The assumption is that HWFLOW or SWFLOW should have stopped
 452		 * things way way before we got to this point.
 453		 *
 454		 * I decided that I wanted to ditch the oldest data first,
 455		 * I hope thats okay with everyone? Yes? Good.
 456		 */
 457		while (qleft < 1) {
 458			jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
 459				"Queue full, dropping DATA:%x LSR:%x\n",
 460				ch->ch_rqueue[tail], ch->ch_equeue[tail]);
 461
 462			ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
 463			ch->ch_err_overrun++;
 464			qleft++;
 465		}
 466
 467		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
 468		ch->ch_equeue[head] = (u8) linestatus;
 469
 470		jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
 471				"DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]);
 472
 473		/* Ditch any remaining linestatus value. */
 474		linestatus = 0;
 475
 476		/* Add to and flip head if needed */
 477		head = (head + 1) & RQUEUEMASK;
 478
 479		qleft--;
 480		ch->ch_rxcount++;
 481	}
 482
 483	/*
 484	 * Write new final heads to channel structure.
 485	 */
 486	ch->ch_r_head = head & RQUEUEMASK;
 487	ch->ch_e_head = head & EQUEUEMASK;
 488	jsm_input(ch);
 489}
 490
 491static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
 492{
 493	u16 head;
 494	u16 tail;
 495	int n;
 496	int s;
 497	int qlen;
 498	u32 len_written = 0;
 
 499
 500	if (!ch)
 501		return;
 502
 
 
 503	/* No data to write to the UART */
 504	if (ch->ch_w_tail == ch->ch_w_head)
 505		return;
 506
 507	/* If port is "stopped", don't send any data to the UART */
 508	if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
 509		return;
 510	/*
 511	 * If FIFOs are disabled. Send data directly to txrx register
 512	 */
 513	if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
 514		u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
 515
 516		ch->ch_cached_lsr |= lsrbits;
 517		if (ch->ch_cached_lsr & UART_LSR_THRE) {
 518			ch->ch_cached_lsr &= ~(UART_LSR_THRE);
 519
 520			writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx);
 521			jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev,
 522					"Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]);
 523			ch->ch_w_tail++;
 524			ch->ch_w_tail &= WQUEUEMASK;
 525			ch->ch_txcount++;
 526		}
 527		return;
 528	}
 529
 530	/*
 531	 * We have to do it this way, because of the EXAR TXFIFO count bug.
 532	 */
 533	if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
 534		return;
 535
 536	n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
 537
 538	/* cache head and tail of queue */
 539	head = ch->ch_w_head & WQUEUEMASK;
 540	tail = ch->ch_w_tail & WQUEUEMASK;
 541	qlen = (head - tail) & WQUEUEMASK;
 542
 543	/* Find minimum of the FIFO space, versus queue length */
 544	n = min(n, qlen);
 545
 546	while (n > 0) {
 547
 548		s = ((head >= tail) ? head : WQUEUESIZE) - tail;
 549		s = min(s, n);
 550
 551		if (s <= 0)
 552			break;
 553
 554		memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s);
 555		/* Add and flip queue if needed */
 556		tail = (tail + s) & WQUEUEMASK;
 557		n -= s;
 558		ch->ch_txcount += s;
 559		len_written += s;
 560	}
 561
 562	/* Update the final tail */
 563	ch->ch_w_tail = tail & WQUEUEMASK;
 564
 565	if (len_written >= ch->ch_t_tlevel)
 566		ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 567
 568	if (!jsm_tty_write(&ch->uart_port))
 569		uart_write_wakeup(&ch->uart_port);
 570}
 571
 572static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
 573{
 574	u8 msignals = signals;
 575
 576	jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
 577			"neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals);
 578
 579	/* Scrub off lower bits. They signify delta's, which I don't care about */
 580	/* Keep DDCD and DDSR though */
 581	msignals &= 0xf8;
 582
 583	if (msignals & UART_MSR_DDCD)
 584		uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
 585	if (msignals & UART_MSR_DDSR)
 586		uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
 587	if (msignals & UART_MSR_DCD)
 588		ch->ch_mistat |= UART_MSR_DCD;
 589	else
 590		ch->ch_mistat &= ~UART_MSR_DCD;
 591
 592	if (msignals & UART_MSR_DSR)
 593		ch->ch_mistat |= UART_MSR_DSR;
 594	else
 595		ch->ch_mistat &= ~UART_MSR_DSR;
 596
 597	if (msignals & UART_MSR_RI)
 598		ch->ch_mistat |= UART_MSR_RI;
 599	else
 600		ch->ch_mistat &= ~UART_MSR_RI;
 601
 602	if (msignals & UART_MSR_CTS)
 603		ch->ch_mistat |= UART_MSR_CTS;
 604	else
 605		ch->ch_mistat &= ~UART_MSR_CTS;
 606
 607	jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
 608			"Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
 609		ch->ch_portnum,
 610		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
 611		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
 612		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
 613		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
 614		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
 615		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
 616}
 617
 618/* Make the UART raise any of the output signals we want up */
 619static void neo_assert_modem_signals(struct jsm_channel *ch)
 620{
 621	if (!ch)
 622		return;
 623
 624	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
 625
 626	/* flush write operation */
 627	neo_pci_posting_flush(ch->ch_bd);
 628}
 629
 630/*
 631 * Flush the WRITE FIFO on the Neo.
 632 *
 633 * NOTE: Channel lock MUST be held before calling this function!
 634 */
 635static void neo_flush_uart_write(struct jsm_channel *ch)
 636{
 637	u8 tmp = 0;
 638	int i = 0;
 639
 640	if (!ch)
 641		return;
 642
 643	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
 644
 645	for (i = 0; i < 10; i++) {
 646
 647		/* Check to see if the UART feels it completely flushed the FIFO. */
 648		tmp = readb(&ch->ch_neo_uart->isr_fcr);
 649		if (tmp & 4) {
 650			jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
 651					"Still flushing TX UART... i: %d\n", i);
 652			udelay(10);
 653		}
 654		else
 655			break;
 656	}
 657
 658	ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 659}
 660
 661
 662/*
 663 * Flush the READ FIFO on the Neo.
 664 *
 665 * NOTE: Channel lock MUST be held before calling this function!
 666 */
 667static void neo_flush_uart_read(struct jsm_channel *ch)
 668{
 669	u8 tmp = 0;
 670	int i = 0;
 671
 672	if (!ch)
 673		return;
 674
 675	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
 676
 677	for (i = 0; i < 10; i++) {
 678
 679		/* Check to see if the UART feels it completely flushed the FIFO. */
 680		tmp = readb(&ch->ch_neo_uart->isr_fcr);
 681		if (tmp & 2) {
 682			jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
 683					"Still flushing RX UART... i: %d\n", i);
 684			udelay(10);
 685		}
 686		else
 687			break;
 688	}
 689}
 690
 691/*
 692 * No locks are assumed to be held when calling this function.
 693 */
 694static void neo_clear_break(struct jsm_channel *ch, int force)
 695{
 696	unsigned long lock_flags;
 697
 698	spin_lock_irqsave(&ch->ch_lock, lock_flags);
 699
 700	/* Turn break off, and unset some variables */
 701	if (ch->ch_flags & CH_BREAK_SENDING) {
 702		u8 temp = readb(&ch->ch_neo_uart->lcr);
 703		writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
 704
 705		ch->ch_flags &= ~(CH_BREAK_SENDING);
 706		jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
 707				"clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies);
 708
 709		/* flush write operation */
 710		neo_pci_posting_flush(ch->ch_bd);
 711	}
 712	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 713}
 714
 715/*
 716 * Parse the ISR register.
 717 */
 718static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
 719{
 720	struct jsm_channel *ch;
 721	u8 isr;
 722	u8 cause;
 723	unsigned long lock_flags;
 724
 725	if (!brd)
 726		return;
 727
 728	if (port > brd->maxports)
 729		return;
 730
 731	ch = brd->channels[port];
 732	if (!ch)
 733		return;
 734
 735	/* Here we try to figure out what caused the interrupt to happen */
 736	while (1) {
 737
 738		isr = readb(&ch->ch_neo_uart->isr_fcr);
 739
 740		/* Bail if no pending interrupt */
 741		if (isr & UART_IIR_NO_INT)
 742			break;
 743
 744		/*
 745		 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
 746		 */
 747		isr &= ~(UART_17158_IIR_FIFO_ENABLED);
 748
 749		jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 750				"%s:%d isr: %x\n", __FILE__, __LINE__, isr);
 751
 752		if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
 753			/* Read data from uart -> queue */
 754			neo_copy_data_from_uart_to_queue(ch);
 755
 756			/* Call our tty layer to enforce queue flow control if needed. */
 757			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 758			jsm_check_queue_flow_control(ch);
 759			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 760		}
 761
 762		if (isr & UART_IIR_THRI) {
 763			/* Transfer data (if any) from Write Queue -> UART. */
 764			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 765			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 766			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 767			neo_copy_data_from_queue_to_uart(ch);
 768		}
 769
 770		if (isr & UART_17158_IIR_XONXOFF) {
 771			cause = readb(&ch->ch_neo_uart->xoffchar1);
 772
 773			jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 774					"Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause);
 775
 776			/*
 777			 * Since the UART detected either an XON or
 778			 * XOFF match, we need to figure out which
 779			 * one it was, so we can suspend or resume data flow.
 780			 */
 781			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 782			if (cause == UART_17158_XON_DETECT) {
 783				/* Is output stopped right now, if so, resume it */
 784				if (brd->channels[port]->ch_flags & CH_STOP) {
 785					ch->ch_flags &= ~(CH_STOP);
 786				}
 787				jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 788						"Port %d. XON detected in incoming data\n", port);
 789			}
 790			else if (cause == UART_17158_XOFF_DETECT) {
 791				if (!(brd->channels[port]->ch_flags & CH_STOP)) {
 792					ch->ch_flags |= CH_STOP;
 793					jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 794							"Setting CH_STOP\n");
 795				}
 796				jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 797						"Port: %d. XOFF detected in incoming data\n", port);
 798			}
 799			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 800		}
 801
 802		if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
 803			/*
 804			 * If we get here, this means the hardware is doing auto flow control.
 805			 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
 806			 */
 807			cause = readb(&ch->ch_neo_uart->mcr);
 808
 809			/* Which pin is doing auto flow? RTS or DTR? */
 810			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 811			if ((cause & 0x4) == 0) {
 812				if (cause & UART_MCR_RTS)
 813					ch->ch_mostat |= UART_MCR_RTS;
 814				else
 815					ch->ch_mostat &= ~(UART_MCR_RTS);
 816			} else {
 817				if (cause & UART_MCR_DTR)
 818					ch->ch_mostat |= UART_MCR_DTR;
 819				else
 820					ch->ch_mostat &= ~(UART_MCR_DTR);
 821			}
 822			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 823		}
 824
 825		/* Parse any modem signal changes */
 826		jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 827				"MOD_STAT: sending to parse_modem_sigs\n");
 828		neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
 829	}
 830}
 831
 832static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
 833{
 834	struct jsm_channel *ch;
 835	int linestatus;
 836	unsigned long lock_flags;
 837
 838	if (!brd)
 839		return;
 840
 841	if (port > brd->maxports)
 842		return;
 843
 844	ch = brd->channels[port];
 845	if (!ch)
 846		return;
 847
 848	linestatus = readb(&ch->ch_neo_uart->lsr);
 849
 850	jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 851			"%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus);
 852
 853	ch->ch_cached_lsr |= linestatus;
 854
 855	if (ch->ch_cached_lsr & UART_LSR_DR) {
 856		/* Read data from uart -> queue */
 857		neo_copy_data_from_uart_to_queue(ch);
 858		spin_lock_irqsave(&ch->ch_lock, lock_flags);
 859		jsm_check_queue_flow_control(ch);
 860		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 861	}
 862
 863	/*
 864	 * This is a special flag. It indicates that at least 1
 865	 * RX error (parity, framing, or break) has happened.
 866	 * Mark this in our struct, which will tell me that I have
 867	 *to do the special RX+LSR read for this FIFO load.
 868	 */
 869	if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
 870		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
 871			"%s:%d Port: %d Got an RX error, need to parse LSR\n",
 872			__FILE__, __LINE__, port);
 873
 874	/*
 875	 * The next 3 tests should *NOT* happen, as the above test
 876	 * should encapsulate all 3... At least, thats what Exar says.
 877	 */
 878
 879	if (linestatus & UART_LSR_PE) {
 880		ch->ch_err_parity++;
 881		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
 882			"%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port);
 883	}
 884
 885	if (linestatus & UART_LSR_FE) {
 886		ch->ch_err_frame++;
 887		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
 888			"%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port);
 889	}
 890
 891	if (linestatus & UART_LSR_BI) {
 892		ch->ch_err_break++;
 893		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
 894			"%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port);
 895	}
 896
 897	if (linestatus & UART_LSR_OE) {
 898		/*
 899		 * Rx Oruns. Exar says that an orun will NOT corrupt
 900		 * the FIFO. It will just replace the holding register
 901		 * with this new data byte. So basically just ignore this.
 902		 * Probably we should eventually have an orun stat in our driver...
 903		 */
 904		ch->ch_err_overrun++;
 905		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
 906			"%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port);
 907	}
 908
 909	if (linestatus & UART_LSR_THRE) {
 910		spin_lock_irqsave(&ch->ch_lock, lock_flags);
 911		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 912		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 913
 914		/* Transfer data (if any) from Write Queue -> UART. */
 915		neo_copy_data_from_queue_to_uart(ch);
 916	}
 917	else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
 918		spin_lock_irqsave(&ch->ch_lock, lock_flags);
 919		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 920		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 921
 922		/* Transfer data (if any) from Write Queue -> UART. */
 923		neo_copy_data_from_queue_to_uart(ch);
 924	}
 925}
 926
 927/*
 928 * neo_param()
 929 * Send any/all changes to the line to the UART.
 930 */
 931static void neo_param(struct jsm_channel *ch)
 932{
 933	u8 lcr = 0;
 934	u8 uart_lcr, ier;
 935	u32 baud;
 936	int quot;
 937	struct jsm_board *bd;
 938
 939	bd = ch->ch_bd;
 940	if (!bd)
 941		return;
 942
 943	/*
 944	 * If baud rate is zero, flush queues, and set mval to drop DTR.
 945	 */
 946	if ((ch->ch_c_cflag & (CBAUD)) == 0) {
 947		ch->ch_r_head = ch->ch_r_tail = 0;
 948		ch->ch_e_head = ch->ch_e_tail = 0;
 949		ch->ch_w_head = ch->ch_w_tail = 0;
 950
 951		neo_flush_uart_write(ch);
 952		neo_flush_uart_read(ch);
 953
 954		ch->ch_flags |= (CH_BAUD0);
 955		ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
 956		neo_assert_modem_signals(ch);
 957		return;
 958
 959	} else {
 960		int i;
 961		unsigned int cflag;
 962		static struct {
 963			unsigned int rate;
 964			unsigned int cflag;
 965		} baud_rates[] = {
 966			{ 921600, B921600 },
 967			{ 460800, B460800 },
 968			{ 230400, B230400 },
 969			{ 115200, B115200 },
 970			{  57600, B57600  },
 971			{  38400, B38400  },
 972			{  19200, B19200  },
 973			{   9600, B9600   },
 974			{   4800, B4800   },
 975			{   2400, B2400   },
 976			{   1200, B1200   },
 977			{    600, B600    },
 978			{    300, B300    },
 979			{    200, B200    },
 980			{    150, B150    },
 981			{    134, B134    },
 982			{    110, B110    },
 983			{     75, B75     },
 984			{     50, B50     },
 985		};
 986
 987		cflag = C_BAUD(ch->uart_port.state->port.tty);
 988		baud = 9600;
 989		for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
 990			if (baud_rates[i].cflag == cflag) {
 991				baud = baud_rates[i].rate;
 992				break;
 993			}
 994		}
 995
 996		if (ch->ch_flags & CH_BAUD0)
 997			ch->ch_flags &= ~(CH_BAUD0);
 998	}
 999
1000	if (ch->ch_c_cflag & PARENB)
1001		lcr |= UART_LCR_PARITY;
1002
1003	if (!(ch->ch_c_cflag & PARODD))
1004		lcr |= UART_LCR_EPAR;
1005
1006	/*
1007	 * Not all platforms support mark/space parity,
1008	 * so this will hide behind an ifdef.
1009	 */
1010#ifdef CMSPAR
1011	if (ch->ch_c_cflag & CMSPAR)
1012		lcr |= UART_LCR_SPAR;
1013#endif
1014
1015	if (ch->ch_c_cflag & CSTOPB)
1016		lcr |= UART_LCR_STOP;
1017
1018	switch (ch->ch_c_cflag & CSIZE) {
1019		case CS5:
1020			lcr |= UART_LCR_WLEN5;
1021			break;
1022		case CS6:
1023			lcr |= UART_LCR_WLEN6;
1024			break;
1025		case CS7:
1026			lcr |= UART_LCR_WLEN7;
1027			break;
1028		case CS8:
1029		default:
1030			lcr |= UART_LCR_WLEN8;
1031		break;
1032	}
1033
1034	ier = readb(&ch->ch_neo_uart->ier);
1035	uart_lcr = readb(&ch->ch_neo_uart->lcr);
1036
1037	if (baud == 0)
1038		baud = 9600;
1039
1040	quot = ch->ch_bd->bd_dividend / baud;
1041
1042	if (quot != 0) {
1043		writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1044		writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1045		writeb((quot >> 8), &ch->ch_neo_uart->ier);
1046		writeb(lcr, &ch->ch_neo_uart->lcr);
1047	}
1048
1049	if (uart_lcr != lcr)
1050		writeb(lcr, &ch->ch_neo_uart->lcr);
1051
1052	if (ch->ch_c_cflag & CREAD)
1053		ier |= (UART_IER_RDI | UART_IER_RLSI);
1054
1055	ier |= (UART_IER_THRI | UART_IER_MSI);
1056
1057	writeb(ier, &ch->ch_neo_uart->ier);
1058
1059	/* Set new start/stop chars */
1060	neo_set_new_start_stop_chars(ch);
1061
1062	if (ch->ch_c_cflag & CRTSCTS)
1063		neo_set_cts_flow_control(ch);
1064	else if (ch->ch_c_iflag & IXON) {
1065		/* If start/stop is set to disable, then we should disable flow control */
1066		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1067			neo_set_no_output_flow_control(ch);
1068		else
1069			neo_set_ixon_flow_control(ch);
1070	}
1071	else
1072		neo_set_no_output_flow_control(ch);
1073
1074	if (ch->ch_c_cflag & CRTSCTS)
1075		neo_set_rts_flow_control(ch);
1076	else if (ch->ch_c_iflag & IXOFF) {
1077		/* If start/stop is set to disable, then we should disable flow control */
1078		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1079			neo_set_no_input_flow_control(ch);
1080		else
1081			neo_set_ixoff_flow_control(ch);
1082	}
1083	else
1084		neo_set_no_input_flow_control(ch);
1085	/*
1086	 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1087	 * Not exactly elegant, but this is needed because of the Exar chip's
1088	 * delay on firing off the RX FIFO interrupt on slower baud rates.
1089	 */
1090	if (baud < 9600) {
1091		writeb(1, &ch->ch_neo_uart->rfifo);
1092		ch->ch_r_tlevel = 1;
1093	}
1094
1095	neo_assert_modem_signals(ch);
1096
1097	/* Get current status of the modem signals now */
1098	neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1099	return;
1100}
1101
1102/*
1103 * jsm_neo_intr()
1104 *
1105 * Neo specific interrupt handler.
1106 */
1107static irqreturn_t neo_intr(int irq, void *voidbrd)
1108{
1109	struct jsm_board *brd = voidbrd;
1110	struct jsm_channel *ch;
1111	int port = 0;
1112	int type = 0;
1113	int current_port;
1114	u32 tmp;
1115	u32 uart_poll;
1116	unsigned long lock_flags;
1117	unsigned long lock_flags2;
1118	int outofloop_count = 0;
1119
1120	/* Lock out the slow poller from running on this board. */
1121	spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1122
1123	/*
1124	 * Read in "extended" IRQ information from the 32bit Neo register.
1125	 * Bits 0-7: What port triggered the interrupt.
1126	 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1127	 */
1128	uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1129
1130	jsm_printk(INTR, INFO, &brd->pci_dev,
1131		"%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll);
1132
1133	if (!uart_poll) {
1134		jsm_printk(INTR, INFO, &brd->pci_dev,
1135			"Kernel interrupted to me, but no pending interrupts...\n");
1136		spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1137		return IRQ_NONE;
1138	}
1139
1140	/* At this point, we have at least SOMETHING to service, dig further... */
1141
1142	current_port = 0;
1143
1144	/* Loop on each port */
1145	while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1146
1147		tmp = uart_poll;
1148		outofloop_count++;
1149
1150		/* Check current port to see if it has interrupt pending */
1151		if ((tmp & jsm_offset_table[current_port]) != 0) {
1152			port = current_port;
1153			type = tmp >> (8 + (port * 3));
1154			type &= 0x7;
1155		} else {
1156			current_port++;
1157			continue;
1158		}
1159
1160		jsm_printk(INTR, INFO, &brd->pci_dev,
1161		"%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type);
1162
1163		/* Remove this port + type from uart_poll */
1164		uart_poll &= ~(jsm_offset_table[port]);
1165
1166		if (!type) {
1167			/* If no type, just ignore it, and move onto next port */
1168			jsm_printk(INTR, ERR, &brd->pci_dev,
1169				"Interrupt with no type! port: %d\n", port);
1170			continue;
1171		}
1172
1173		/* Switch on type of interrupt we have */
1174		switch (type) {
1175
1176		case UART_17158_RXRDY_TIMEOUT:
1177			/*
1178			 * RXRDY Time-out is cleared by reading data in the
1179			* RX FIFO until it falls below the trigger level.
1180			 */
1181
1182			/* Verify the port is in range. */
1183			if (port > brd->nasync)
1184				continue;
1185
1186			ch = brd->channels[port];
1187			neo_copy_data_from_uart_to_queue(ch);
1188
1189			/* Call our tty layer to enforce queue flow control if needed. */
1190			spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1191			jsm_check_queue_flow_control(ch);
1192			spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1193
1194			continue;
1195
1196		case UART_17158_RX_LINE_STATUS:
1197			/*
1198			 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1199			 */
1200			neo_parse_lsr(brd, port);
1201			continue;
1202
1203		case UART_17158_TXRDY:
1204			/*
1205			 * TXRDY interrupt clears after reading ISR register for the UART channel.
1206			 */
1207
1208			/*
1209			 * Yes, this is odd...
1210			 * Why would I check EVERY possibility of type of
1211			 * interrupt, when we know its TXRDY???
1212			 * Becuz for some reason, even tho we got triggered for TXRDY,
1213			 * it seems to be occasionally wrong. Instead of TX, which
1214			 * it should be, I was getting things like RXDY too. Weird.
1215			 */
1216			neo_parse_isr(brd, port);
1217			continue;
1218
1219		case UART_17158_MSR:
1220			/*
1221			 * MSR or flow control was seen.
1222			 */
1223			neo_parse_isr(brd, port);
1224			continue;
1225
1226		default:
1227			/*
1228			 * The UART triggered us with a bogus interrupt type.
1229			 * It appears the Exar chip, when REALLY bogged down, will throw
1230			 * these once and awhile.
1231			 * Its harmless, just ignore it and move on.
1232			 */
1233			jsm_printk(INTR, ERR, &brd->pci_dev,
1234				"%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type);
1235			continue;
1236		}
1237	}
1238
1239	spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1240
1241	jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n");
1242	return IRQ_HANDLED;
1243}
1244
1245/*
1246 * Neo specific way of turning off the receiver.
1247 * Used as a way to enforce queue flow control when in
1248 * hardware flow control mode.
1249 */
1250static void neo_disable_receiver(struct jsm_channel *ch)
1251{
1252	u8 tmp = readb(&ch->ch_neo_uart->ier);
1253	tmp &= ~(UART_IER_RDI);
1254	writeb(tmp, &ch->ch_neo_uart->ier);
1255
1256	/* flush write operation */
1257	neo_pci_posting_flush(ch->ch_bd);
1258}
1259
1260
1261/*
1262 * Neo specific way of turning on the receiver.
1263 * Used as a way to un-enforce queue flow control when in
1264 * hardware flow control mode.
1265 */
1266static void neo_enable_receiver(struct jsm_channel *ch)
1267{
1268	u8 tmp = readb(&ch->ch_neo_uart->ier);
1269	tmp |= (UART_IER_RDI);
1270	writeb(tmp, &ch->ch_neo_uart->ier);
1271
1272	/* flush write operation */
1273	neo_pci_posting_flush(ch->ch_bd);
1274}
1275
1276static void neo_send_start_character(struct jsm_channel *ch)
1277{
1278	if (!ch)
1279		return;
1280
1281	if (ch->ch_startc != __DISABLED_CHAR) {
1282		ch->ch_xon_sends++;
1283		writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1284
1285		/* flush write operation */
1286		neo_pci_posting_flush(ch->ch_bd);
1287	}
1288}
1289
1290static void neo_send_stop_character(struct jsm_channel *ch)
1291{
1292	if (!ch)
1293		return;
1294
1295	if (ch->ch_stopc != __DISABLED_CHAR) {
1296		ch->ch_xoff_sends++;
1297		writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1298
1299		/* flush write operation */
1300		neo_pci_posting_flush(ch->ch_bd);
1301	}
1302}
1303
1304/*
1305 * neo_uart_init
1306 */
1307static void neo_uart_init(struct jsm_channel *ch)
1308{
1309	writeb(0, &ch->ch_neo_uart->ier);
1310	writeb(0, &ch->ch_neo_uart->efr);
1311	writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1312
1313	/* Clear out UART and FIFO */
1314	readb(&ch->ch_neo_uart->txrx);
1315	writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1316	readb(&ch->ch_neo_uart->lsr);
1317	readb(&ch->ch_neo_uart->msr);
1318
1319	ch->ch_flags |= CH_FIFO_ENABLED;
1320
1321	/* Assert any signals we want up */
1322	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1323}
1324
1325/*
1326 * Make the UART completely turn off.
1327 */
1328static void neo_uart_off(struct jsm_channel *ch)
1329{
1330	/* Turn off UART enhanced bits */
1331	writeb(0, &ch->ch_neo_uart->efr);
1332
1333	/* Stop all interrupts from occurring. */
1334	writeb(0, &ch->ch_neo_uart->ier);
1335}
1336
1337static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1338{
1339	u8 left = 0;
1340	u8 lsr = readb(&ch->ch_neo_uart->lsr);
1341
1342	/* We must cache the LSR as some of the bits get reset once read... */
1343	ch->ch_cached_lsr |= lsr;
1344
1345	/* Determine whether the Transmitter is empty or not */
1346	if (!(lsr & UART_LSR_TEMT))
1347		left = 1;
1348	else {
1349		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1350		left = 0;
1351	}
1352
1353	return left;
1354}
1355
1356/* Channel lock MUST be held by the calling function! */
1357static void neo_send_break(struct jsm_channel *ch)
1358{
1359	/*
1360	 * Set the time we should stop sending the break.
1361	 * If we are already sending a break, toss away the existing
1362	 * time to stop, and use this new value instead.
1363	 */
1364
1365	/* Tell the UART to start sending the break */
1366	if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1367		u8 temp = readb(&ch->ch_neo_uart->lcr);
1368		writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1369		ch->ch_flags |= (CH_BREAK_SENDING);
1370
1371		/* flush write operation */
1372		neo_pci_posting_flush(ch->ch_bd);
1373	}
1374}
1375
1376/*
1377 * neo_send_immediate_char.
1378 *
1379 * Sends a specific character as soon as possible to the UART,
1380 * jumping over any bytes that might be in the write queue.
1381 *
1382 * The channel lock MUST be held by the calling function.
1383 */
1384static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1385{
1386	if (!ch)
1387		return;
1388
1389	writeb(c, &ch->ch_neo_uart->txrx);
1390
1391	/* flush write operation */
1392	neo_pci_posting_flush(ch->ch_bd);
1393}
1394
1395struct board_ops jsm_neo_ops = {
1396	.intr				= neo_intr,
1397	.uart_init			= neo_uart_init,
1398	.uart_off			= neo_uart_off,
1399	.param				= neo_param,
1400	.assert_modem_signals		= neo_assert_modem_signals,
1401	.flush_uart_write		= neo_flush_uart_write,
1402	.flush_uart_read		= neo_flush_uart_read,
1403	.disable_receiver		= neo_disable_receiver,
1404	.enable_receiver		= neo_enable_receiver,
1405	.send_break			= neo_send_break,
1406	.clear_break			= neo_clear_break,
1407	.send_start_character		= neo_send_start_character,
1408	.send_stop_character		= neo_send_stop_character,
1409	.copy_data_from_queue_to_uart	= neo_copy_data_from_queue_to_uart,
1410	.get_uart_bytes_left		= neo_get_uart_bytes_left,
1411	.send_immediate_char		= neo_send_immediate_char
1412};
v3.5.6
   1/************************************************************************
   2 * Copyright 2003 Digi International (www.digi.com)
   3 *
   4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2, or (at your option)
   9 * any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
  13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
  14 * PURPOSE.  See the GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
  19 * MA  02111-1307, USA.
  20 *
  21 * Contact Information:
  22 * Scott H Kilau <Scott_Kilau@digi.com>
  23 * Wendy Xiong   <wendyx@us.ibm.com>
  24 *
  25 ***********************************************************************/
  26#include <linux/delay.h>	/* For udelay */
  27#include <linux/serial_reg.h>	/* For the various UART offsets */
  28#include <linux/tty.h>
  29#include <linux/pci.h>
  30#include <asm/io.h>
  31
  32#include "jsm.h"		/* Driver main header file */
  33
  34static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
  35
  36/*
  37 * This function allows calls to ensure that all outstanding
  38 * PCI writes have been completed, by doing a PCI read against
  39 * a non-destructive, read-only location on the Neo card.
  40 *
  41 * In this case, we are reading the DVID (Read-only Device Identification)
  42 * value of the Neo card.
  43 */
  44static inline void neo_pci_posting_flush(struct jsm_board *bd)
  45{
  46      readb(bd->re_map_membase + 0x8D);
  47}
  48
  49static void neo_set_cts_flow_control(struct jsm_channel *ch)
  50{
  51	u8 ier, efr;
  52	ier = readb(&ch->ch_neo_uart->ier);
  53	efr = readb(&ch->ch_neo_uart->efr);
  54
  55	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
  56
  57	/* Turn on auto CTS flow control */
  58	ier |= (UART_17158_IER_CTSDSR);
  59	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
  60
  61	/* Turn off auto Xon flow control */
  62	efr &= ~(UART_17158_EFR_IXON);
  63
  64	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
  65	writeb(0, &ch->ch_neo_uart->efr);
  66
  67	/* Turn on UART enhanced bits */
  68	writeb(efr, &ch->ch_neo_uart->efr);
  69
  70	/* Turn on table D, with 8 char hi/low watermarks */
  71	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
  72
  73	/* Feed the UART our trigger levels */
  74	writeb(8, &ch->ch_neo_uart->tfifo);
  75	ch->ch_t_tlevel = 8;
  76
  77	writeb(ier, &ch->ch_neo_uart->ier);
  78}
  79
  80static void neo_set_rts_flow_control(struct jsm_channel *ch)
  81{
  82	u8 ier, efr;
  83	ier = readb(&ch->ch_neo_uart->ier);
  84	efr = readb(&ch->ch_neo_uart->efr);
  85
  86	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
  87
  88	/* Turn on auto RTS flow control */
  89	ier |= (UART_17158_IER_RTSDTR);
  90	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
  91
  92	/* Turn off auto Xoff flow control */
  93	ier &= ~(UART_17158_IER_XOFF);
  94	efr &= ~(UART_17158_EFR_IXOFF);
  95
  96	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
  97	writeb(0, &ch->ch_neo_uart->efr);
  98
  99	/* Turn on UART enhanced bits */
 100	writeb(efr, &ch->ch_neo_uart->efr);
 101
 102	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
 103	ch->ch_r_watermark = 4;
 104
 105	writeb(56, &ch->ch_neo_uart->rfifo);
 106	ch->ch_r_tlevel = 56;
 107
 108	writeb(ier, &ch->ch_neo_uart->ier);
 109
 110	/*
 111	 * From the Neo UART spec sheet:
 112	 * The auto RTS/DTR function must be started by asserting
 113	 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
 114	 * it is enabled.
 115	 */
 116	ch->ch_mostat |= (UART_MCR_RTS);
 117}
 118
 119
 120static void neo_set_ixon_flow_control(struct jsm_channel *ch)
 121{
 122	u8 ier, efr;
 123	ier = readb(&ch->ch_neo_uart->ier);
 124	efr = readb(&ch->ch_neo_uart->efr);
 125
 126	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
 127
 128	/* Turn off auto CTS flow control */
 129	ier &= ~(UART_17158_IER_CTSDSR);
 130	efr &= ~(UART_17158_EFR_CTSDSR);
 131
 132	/* Turn on auto Xon flow control */
 133	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
 134
 135	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 136	writeb(0, &ch->ch_neo_uart->efr);
 137
 138	/* Turn on UART enhanced bits */
 139	writeb(efr, &ch->ch_neo_uart->efr);
 140
 141	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 142	ch->ch_r_watermark = 4;
 143
 144	writeb(32, &ch->ch_neo_uart->rfifo);
 145	ch->ch_r_tlevel = 32;
 146
 147	/* Tell UART what start/stop chars it should be looking for */
 148	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
 149	writeb(0, &ch->ch_neo_uart->xonchar2);
 150
 151	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
 152	writeb(0, &ch->ch_neo_uart->xoffchar2);
 153
 154	writeb(ier, &ch->ch_neo_uart->ier);
 155}
 156
 157static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
 158{
 159	u8 ier, efr;
 160	ier = readb(&ch->ch_neo_uart->ier);
 161	efr = readb(&ch->ch_neo_uart->efr);
 162
 163	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
 164
 165	/* Turn off auto RTS flow control */
 166	ier &= ~(UART_17158_IER_RTSDTR);
 167	efr &= ~(UART_17158_EFR_RTSDTR);
 168
 169	/* Turn on auto Xoff flow control */
 170	ier |= (UART_17158_IER_XOFF);
 171	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
 172
 173	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 174	writeb(0, &ch->ch_neo_uart->efr);
 175
 176	/* Turn on UART enhanced bits */
 177	writeb(efr, &ch->ch_neo_uart->efr);
 178
 179	/* Turn on table D, with 8 char hi/low watermarks */
 180	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 181
 182	writeb(8, &ch->ch_neo_uart->tfifo);
 183	ch->ch_t_tlevel = 8;
 184
 185	/* Tell UART what start/stop chars it should be looking for */
 186	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
 187	writeb(0, &ch->ch_neo_uart->xonchar2);
 188
 189	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
 190	writeb(0, &ch->ch_neo_uart->xoffchar2);
 191
 192	writeb(ier, &ch->ch_neo_uart->ier);
 193}
 194
 195static void neo_set_no_input_flow_control(struct jsm_channel *ch)
 196{
 197	u8 ier, efr;
 198	ier = readb(&ch->ch_neo_uart->ier);
 199	efr = readb(&ch->ch_neo_uart->efr);
 200
 201	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
 202
 203	/* Turn off auto RTS flow control */
 204	ier &= ~(UART_17158_IER_RTSDTR);
 205	efr &= ~(UART_17158_EFR_RTSDTR);
 206
 207	/* Turn off auto Xoff flow control */
 208	ier &= ~(UART_17158_IER_XOFF);
 209	if (ch->ch_c_iflag & IXON)
 210		efr &= ~(UART_17158_EFR_IXOFF);
 211	else
 212		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
 213
 214	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 215	writeb(0, &ch->ch_neo_uart->efr);
 216
 217	/* Turn on UART enhanced bits */
 218	writeb(efr, &ch->ch_neo_uart->efr);
 219
 220	/* Turn on table D, with 8 char hi/low watermarks */
 221	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 222
 223	ch->ch_r_watermark = 0;
 224
 225	writeb(16, &ch->ch_neo_uart->tfifo);
 226	ch->ch_t_tlevel = 16;
 227
 228	writeb(16, &ch->ch_neo_uart->rfifo);
 229	ch->ch_r_tlevel = 16;
 230
 231	writeb(ier, &ch->ch_neo_uart->ier);
 232}
 233
 234static void neo_set_no_output_flow_control(struct jsm_channel *ch)
 235{
 236	u8 ier, efr;
 237	ier = readb(&ch->ch_neo_uart->ier);
 238	efr = readb(&ch->ch_neo_uart->efr);
 239
 240	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
 241
 242	/* Turn off auto CTS flow control */
 243	ier &= ~(UART_17158_IER_CTSDSR);
 244	efr &= ~(UART_17158_EFR_CTSDSR);
 245
 246	/* Turn off auto Xon flow control */
 247	if (ch->ch_c_iflag & IXOFF)
 248		efr &= ~(UART_17158_EFR_IXON);
 249	else
 250		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
 251
 252	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
 253	writeb(0, &ch->ch_neo_uart->efr);
 254
 255	/* Turn on UART enhanced bits */
 256	writeb(efr, &ch->ch_neo_uart->efr);
 257
 258	/* Turn on table D, with 8 char hi/low watermarks */
 259	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
 260
 261	ch->ch_r_watermark = 0;
 262
 263	writeb(16, &ch->ch_neo_uart->tfifo);
 264	ch->ch_t_tlevel = 16;
 265
 266	writeb(16, &ch->ch_neo_uart->rfifo);
 267	ch->ch_r_tlevel = 16;
 268
 269	writeb(ier, &ch->ch_neo_uart->ier);
 270}
 271
 272static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
 273{
 274
 275	/* if hardware flow control is set, then skip this whole thing */
 276	if (ch->ch_c_cflag & CRTSCTS)
 277		return;
 278
 279	jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n");
 280
 281	/* Tell UART what start/stop chars it should be looking for */
 282	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
 283	writeb(0, &ch->ch_neo_uart->xonchar2);
 284
 285	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
 286	writeb(0, &ch->ch_neo_uart->xoffchar2);
 287}
 288
 289static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
 290{
 291	int qleft = 0;
 292	u8 linestatus = 0;
 293	u8 error_mask = 0;
 294	int n = 0;
 295	int total = 0;
 296	u16 head;
 297	u16 tail;
 298
 299	if (!ch)
 300		return;
 301
 302	/* cache head and tail of queue */
 303	head = ch->ch_r_head & RQUEUEMASK;
 304	tail = ch->ch_r_tail & RQUEUEMASK;
 305
 306	/* Get our cached LSR */
 307	linestatus = ch->ch_cached_lsr;
 308	ch->ch_cached_lsr = 0;
 309
 310	/* Store how much space we have left in the queue */
 311	if ((qleft = tail - head - 1) < 0)
 312		qleft += RQUEUEMASK + 1;
 313
 314	/*
 315	 * If the UART is not in FIFO mode, force the FIFO copy to
 316	 * NOT be run, by setting total to 0.
 317	 *
 318	 * On the other hand, if the UART IS in FIFO mode, then ask
 319	 * the UART to give us an approximation of data it has RX'ed.
 320	 */
 321	if (!(ch->ch_flags & CH_FIFO_ENABLED))
 322		total = 0;
 323	else {
 324		total = readb(&ch->ch_neo_uart->rfifo);
 325
 326		/*
 327		 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
 328		 *
 329		 * This resolves a problem/bug with the Exar chip that sometimes
 330		 * returns a bogus value in the rfifo register.
 331		 * The count can be any where from 0-3 bytes "off".
 332		 * Bizarre, but true.
 333		 */
 334		total -= 3;
 335	}
 336
 337	/*
 338	 * Finally, bound the copy to make sure we don't overflow
 339	 * our own queue...
 340	 * The byte by byte copy loop below this loop this will
 341	 * deal with the queue overflow possibility.
 342	 */
 343	total = min(total, qleft);
 344
 345	while (total > 0) {
 346		/*
 347		 * Grab the linestatus register, we need to check
 348		 * to see if there are any errors in the FIFO.
 349		 */
 350		linestatus = readb(&ch->ch_neo_uart->lsr);
 351
 352		/*
 353		 * Break out if there is a FIFO error somewhere.
 354		 * This will allow us to go byte by byte down below,
 355		 * finding the exact location of the error.
 356		 */
 357		if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
 358			break;
 359
 360		/* Make sure we don't go over the end of our queue */
 361		n = min(((u32) total), (RQUEUESIZE - (u32) head));
 362
 363		/*
 364		 * Cut down n even further if needed, this is to fix
 365		 * a problem with memcpy_fromio() with the Neo on the
 366		 * IBM pSeries platform.
 367		 * 15 bytes max appears to be the magic number.
 368		 */
 369		n = min((u32) n, (u32) 12);
 370
 371		/*
 372		 * Since we are grabbing the linestatus register, which
 373		 * will reset some bits after our read, we need to ensure
 374		 * we don't miss our TX FIFO emptys.
 375		 */
 376		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
 377			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 378
 379		linestatus = 0;
 380
 381		/* Copy data from uart to the queue */
 382		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
 383		/*
 384		 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed
 385		 * that all the data currently in the FIFO is free of
 386		 * breaks and parity/frame/orun errors.
 387		 */
 388		memset(ch->ch_equeue + head, 0, n);
 389
 390		/* Add to and flip head if needed */
 391		head = (head + n) & RQUEUEMASK;
 392		total -= n;
 393		qleft -= n;
 394		ch->ch_rxcount += n;
 395	}
 396
 397	/*
 398	 * Create a mask to determine whether we should
 399	 * insert the character (if any) into our queue.
 400	 */
 401	if (ch->ch_c_iflag & IGNBRK)
 402		error_mask |= UART_LSR_BI;
 403
 404	/*
 405	 * Now cleanup any leftover bytes still in the UART.
 406	 * Also deal with any possible queue overflow here as well.
 407	 */
 408	while (1) {
 409
 410		/*
 411		 * Its possible we have a linestatus from the loop above
 412		 * this, so we "OR" on any extra bits.
 413		 */
 414		linestatus |= readb(&ch->ch_neo_uart->lsr);
 415
 416		/*
 417		 * If the chip tells us there is no more data pending to
 418		 * be read, we can then leave.
 419		 * But before we do, cache the linestatus, just in case.
 420		 */
 421		if (!(linestatus & UART_LSR_DR)) {
 422			ch->ch_cached_lsr = linestatus;
 423			break;
 424		}
 425
 426		/* No need to store this bit */
 427		linestatus &= ~UART_LSR_DR;
 428
 429		/*
 430		 * Since we are grabbing the linestatus register, which
 431		 * will reset some bits after our read, we need to ensure
 432		 * we don't miss our TX FIFO emptys.
 433		 */
 434		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
 435			linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
 436			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 437		}
 438
 439		/*
 440		 * Discard character if we are ignoring the error mask.
 441		 */
 442		if (linestatus & error_mask) {
 443			u8 discard;
 444			linestatus = 0;
 445			memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
 446			continue;
 447		}
 448
 449		/*
 450		 * If our queue is full, we have no choice but to drop some data.
 451		 * The assumption is that HWFLOW or SWFLOW should have stopped
 452		 * things way way before we got to this point.
 453		 *
 454		 * I decided that I wanted to ditch the oldest data first,
 455		 * I hope thats okay with everyone? Yes? Good.
 456		 */
 457		while (qleft < 1) {
 458			jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
 459				"Queue full, dropping DATA:%x LSR:%x\n",
 460				ch->ch_rqueue[tail], ch->ch_equeue[tail]);
 461
 462			ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
 463			ch->ch_err_overrun++;
 464			qleft++;
 465		}
 466
 467		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
 468		ch->ch_equeue[head] = (u8) linestatus;
 469
 470		jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
 471				"DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]);
 472
 473		/* Ditch any remaining linestatus value. */
 474		linestatus = 0;
 475
 476		/* Add to and flip head if needed */
 477		head = (head + 1) & RQUEUEMASK;
 478
 479		qleft--;
 480		ch->ch_rxcount++;
 481	}
 482
 483	/*
 484	 * Write new final heads to channel structure.
 485	 */
 486	ch->ch_r_head = head & RQUEUEMASK;
 487	ch->ch_e_head = head & EQUEUEMASK;
 488	jsm_input(ch);
 489}
 490
 491static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
 492{
 493	u16 head;
 494	u16 tail;
 495	int n;
 496	int s;
 497	int qlen;
 498	u32 len_written = 0;
 499	struct circ_buf *circ;
 500
 501	if (!ch)
 502		return;
 503
 504	circ = &ch->uart_port.state->xmit;
 505
 506	/* No data to write to the UART */
 507	if (uart_circ_empty(circ))
 508		return;
 509
 510	/* If port is "stopped", don't send any data to the UART */
 511	if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
 512		return;
 513	/*
 514	 * If FIFOs are disabled. Send data directly to txrx register
 515	 */
 516	if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
 517		u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
 518
 519		ch->ch_cached_lsr |= lsrbits;
 520		if (ch->ch_cached_lsr & UART_LSR_THRE) {
 521			ch->ch_cached_lsr &= ~(UART_LSR_THRE);
 522
 523			writeb(circ->buf[circ->tail], &ch->ch_neo_uart->txrx);
 524			jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev,
 525					"Tx data: %x\n", circ->buf[circ->tail]);
 526			circ->tail = (circ->tail + 1) & (UART_XMIT_SIZE - 1);
 
 527			ch->ch_txcount++;
 528		}
 529		return;
 530	}
 531
 532	/*
 533	 * We have to do it this way, because of the EXAR TXFIFO count bug.
 534	 */
 535	if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
 536		return;
 537
 538	n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
 539
 540	/* cache head and tail of queue */
 541	head = circ->head & (UART_XMIT_SIZE - 1);
 542	tail = circ->tail & (UART_XMIT_SIZE - 1);
 543	qlen = uart_circ_chars_pending(circ);
 544
 545	/* Find minimum of the FIFO space, versus queue length */
 546	n = min(n, qlen);
 547
 548	while (n > 0) {
 549
 550		s = ((head >= tail) ? head : UART_XMIT_SIZE) - tail;
 551		s = min(s, n);
 552
 553		if (s <= 0)
 554			break;
 555
 556		memcpy_toio(&ch->ch_neo_uart->txrxburst, circ->buf + tail, s);
 557		/* Add and flip queue if needed */
 558		tail = (tail + s) & (UART_XMIT_SIZE - 1);
 559		n -= s;
 560		ch->ch_txcount += s;
 561		len_written += s;
 562	}
 563
 564	/* Update the final tail */
 565	circ->tail = tail & (UART_XMIT_SIZE - 1);
 566
 567	if (len_written >= ch->ch_t_tlevel)
 568		ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 569
 570	if (uart_circ_empty(circ))
 571		uart_write_wakeup(&ch->uart_port);
 572}
 573
 574static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
 575{
 576	u8 msignals = signals;
 577
 578	jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
 579			"neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals);
 580
 581	/* Scrub off lower bits. They signify delta's, which I don't care about */
 582	/* Keep DDCD and DDSR though */
 583	msignals &= 0xf8;
 584
 585	if (msignals & UART_MSR_DDCD)
 586		uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
 587	if (msignals & UART_MSR_DDSR)
 588		uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
 589	if (msignals & UART_MSR_DCD)
 590		ch->ch_mistat |= UART_MSR_DCD;
 591	else
 592		ch->ch_mistat &= ~UART_MSR_DCD;
 593
 594	if (msignals & UART_MSR_DSR)
 595		ch->ch_mistat |= UART_MSR_DSR;
 596	else
 597		ch->ch_mistat &= ~UART_MSR_DSR;
 598
 599	if (msignals & UART_MSR_RI)
 600		ch->ch_mistat |= UART_MSR_RI;
 601	else
 602		ch->ch_mistat &= ~UART_MSR_RI;
 603
 604	if (msignals & UART_MSR_CTS)
 605		ch->ch_mistat |= UART_MSR_CTS;
 606	else
 607		ch->ch_mistat &= ~UART_MSR_CTS;
 608
 609	jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
 610			"Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
 611		ch->ch_portnum,
 612		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
 613		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
 614		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
 615		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
 616		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
 617		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
 618}
 619
 620/* Make the UART raise any of the output signals we want up */
 621static void neo_assert_modem_signals(struct jsm_channel *ch)
 622{
 623	if (!ch)
 624		return;
 625
 626	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
 627
 628	/* flush write operation */
 629	neo_pci_posting_flush(ch->ch_bd);
 630}
 631
 632/*
 633 * Flush the WRITE FIFO on the Neo.
 634 *
 635 * NOTE: Channel lock MUST be held before calling this function!
 636 */
 637static void neo_flush_uart_write(struct jsm_channel *ch)
 638{
 639	u8 tmp = 0;
 640	int i = 0;
 641
 642	if (!ch)
 643		return;
 644
 645	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
 646
 647	for (i = 0; i < 10; i++) {
 648
 649		/* Check to see if the UART feels it completely flushed the FIFO. */
 650		tmp = readb(&ch->ch_neo_uart->isr_fcr);
 651		if (tmp & 4) {
 652			jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
 653					"Still flushing TX UART... i: %d\n", i);
 654			udelay(10);
 655		}
 656		else
 657			break;
 658	}
 659
 660	ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 661}
 662
 663
 664/*
 665 * Flush the READ FIFO on the Neo.
 666 *
 667 * NOTE: Channel lock MUST be held before calling this function!
 668 */
 669static void neo_flush_uart_read(struct jsm_channel *ch)
 670{
 671	u8 tmp = 0;
 672	int i = 0;
 673
 674	if (!ch)
 675		return;
 676
 677	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
 678
 679	for (i = 0; i < 10; i++) {
 680
 681		/* Check to see if the UART feels it completely flushed the FIFO. */
 682		tmp = readb(&ch->ch_neo_uart->isr_fcr);
 683		if (tmp & 2) {
 684			jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
 685					"Still flushing RX UART... i: %d\n", i);
 686			udelay(10);
 687		}
 688		else
 689			break;
 690	}
 691}
 692
 693/*
 694 * No locks are assumed to be held when calling this function.
 695 */
 696static void neo_clear_break(struct jsm_channel *ch, int force)
 697{
 698	unsigned long lock_flags;
 699
 700	spin_lock_irqsave(&ch->ch_lock, lock_flags);
 701
 702	/* Turn break off, and unset some variables */
 703	if (ch->ch_flags & CH_BREAK_SENDING) {
 704		u8 temp = readb(&ch->ch_neo_uart->lcr);
 705		writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
 706
 707		ch->ch_flags &= ~(CH_BREAK_SENDING);
 708		jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
 709				"clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies);
 710
 711		/* flush write operation */
 712		neo_pci_posting_flush(ch->ch_bd);
 713	}
 714	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 715}
 716
 717/*
 718 * Parse the ISR register.
 719 */
 720static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
 721{
 722	struct jsm_channel *ch;
 723	u8 isr;
 724	u8 cause;
 725	unsigned long lock_flags;
 726
 727	if (!brd)
 728		return;
 729
 730	if (port > brd->maxports)
 731		return;
 732
 733	ch = brd->channels[port];
 734	if (!ch)
 735		return;
 736
 737	/* Here we try to figure out what caused the interrupt to happen */
 738	while (1) {
 739
 740		isr = readb(&ch->ch_neo_uart->isr_fcr);
 741
 742		/* Bail if no pending interrupt */
 743		if (isr & UART_IIR_NO_INT)
 744			break;
 745
 746		/*
 747		 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
 748		 */
 749		isr &= ~(UART_17158_IIR_FIFO_ENABLED);
 750
 751		jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 752				"%s:%d isr: %x\n", __FILE__, __LINE__, isr);
 753
 754		if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
 755			/* Read data from uart -> queue */
 756			neo_copy_data_from_uart_to_queue(ch);
 757
 758			/* Call our tty layer to enforce queue flow control if needed. */
 759			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 760			jsm_check_queue_flow_control(ch);
 761			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 762		}
 763
 764		if (isr & UART_IIR_THRI) {
 765			/* Transfer data (if any) from Write Queue -> UART. */
 766			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 767			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 768			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 769			neo_copy_data_from_queue_to_uart(ch);
 770		}
 771
 772		if (isr & UART_17158_IIR_XONXOFF) {
 773			cause = readb(&ch->ch_neo_uart->xoffchar1);
 774
 775			jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 776					"Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause);
 777
 778			/*
 779			 * Since the UART detected either an XON or
 780			 * XOFF match, we need to figure out which
 781			 * one it was, so we can suspend or resume data flow.
 782			 */
 783			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 784			if (cause == UART_17158_XON_DETECT) {
 785				/* Is output stopped right now, if so, resume it */
 786				if (brd->channels[port]->ch_flags & CH_STOP) {
 787					ch->ch_flags &= ~(CH_STOP);
 788				}
 789				jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 790						"Port %d. XON detected in incoming data\n", port);
 791			}
 792			else if (cause == UART_17158_XOFF_DETECT) {
 793				if (!(brd->channels[port]->ch_flags & CH_STOP)) {
 794					ch->ch_flags |= CH_STOP;
 795					jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 796							"Setting CH_STOP\n");
 797				}
 798				jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 799						"Port: %d. XOFF detected in incoming data\n", port);
 800			}
 801			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 802		}
 803
 804		if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
 805			/*
 806			 * If we get here, this means the hardware is doing auto flow control.
 807			 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
 808			 */
 809			cause = readb(&ch->ch_neo_uart->mcr);
 810
 811			/* Which pin is doing auto flow? RTS or DTR? */
 812			spin_lock_irqsave(&ch->ch_lock, lock_flags);
 813			if ((cause & 0x4) == 0) {
 814				if (cause & UART_MCR_RTS)
 815					ch->ch_mostat |= UART_MCR_RTS;
 816				else
 817					ch->ch_mostat &= ~(UART_MCR_RTS);
 818			} else {
 819				if (cause & UART_MCR_DTR)
 820					ch->ch_mostat |= UART_MCR_DTR;
 821				else
 822					ch->ch_mostat &= ~(UART_MCR_DTR);
 823			}
 824			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 825		}
 826
 827		/* Parse any modem signal changes */
 828		jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 829				"MOD_STAT: sending to parse_modem_sigs\n");
 830		neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
 831	}
 832}
 833
 834static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
 835{
 836	struct jsm_channel *ch;
 837	int linestatus;
 838	unsigned long lock_flags;
 839
 840	if (!brd)
 841		return;
 842
 843	if (port > brd->maxports)
 844		return;
 845
 846	ch = brd->channels[port];
 847	if (!ch)
 848		return;
 849
 850	linestatus = readb(&ch->ch_neo_uart->lsr);
 851
 852	jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
 853			"%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus);
 854
 855	ch->ch_cached_lsr |= linestatus;
 856
 857	if (ch->ch_cached_lsr & UART_LSR_DR) {
 858		/* Read data from uart -> queue */
 859		neo_copy_data_from_uart_to_queue(ch);
 860		spin_lock_irqsave(&ch->ch_lock, lock_flags);
 861		jsm_check_queue_flow_control(ch);
 862		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 863	}
 864
 865	/*
 866	 * This is a special flag. It indicates that at least 1
 867	 * RX error (parity, framing, or break) has happened.
 868	 * Mark this in our struct, which will tell me that I have
 869	 *to do the special RX+LSR read for this FIFO load.
 870	 */
 871	if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
 872		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
 873			"%s:%d Port: %d Got an RX error, need to parse LSR\n",
 874			__FILE__, __LINE__, port);
 875
 876	/*
 877	 * The next 3 tests should *NOT* happen, as the above test
 878	 * should encapsulate all 3... At least, thats what Exar says.
 879	 */
 880
 881	if (linestatus & UART_LSR_PE) {
 882		ch->ch_err_parity++;
 883		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
 884			"%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port);
 885	}
 886
 887	if (linestatus & UART_LSR_FE) {
 888		ch->ch_err_frame++;
 889		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
 890			"%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port);
 891	}
 892
 893	if (linestatus & UART_LSR_BI) {
 894		ch->ch_err_break++;
 895		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
 896			"%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port);
 897	}
 898
 899	if (linestatus & UART_LSR_OE) {
 900		/*
 901		 * Rx Oruns. Exar says that an orun will NOT corrupt
 902		 * the FIFO. It will just replace the holding register
 903		 * with this new data byte. So basically just ignore this.
 904		 * Probably we should eventually have an orun stat in our driver...
 905		 */
 906		ch->ch_err_overrun++;
 907		jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
 908			"%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port);
 909	}
 910
 911	if (linestatus & UART_LSR_THRE) {
 912		spin_lock_irqsave(&ch->ch_lock, lock_flags);
 913		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 914		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 915
 916		/* Transfer data (if any) from Write Queue -> UART. */
 917		neo_copy_data_from_queue_to_uart(ch);
 918	}
 919	else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
 920		spin_lock_irqsave(&ch->ch_lock, lock_flags);
 921		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
 922		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
 923
 924		/* Transfer data (if any) from Write Queue -> UART. */
 925		neo_copy_data_from_queue_to_uart(ch);
 926	}
 927}
 928
 929/*
 930 * neo_param()
 931 * Send any/all changes to the line to the UART.
 932 */
 933static void neo_param(struct jsm_channel *ch)
 934{
 935	u8 lcr = 0;
 936	u8 uart_lcr, ier;
 937	u32 baud;
 938	int quot;
 939	struct jsm_board *bd;
 940
 941	bd = ch->ch_bd;
 942	if (!bd)
 943		return;
 944
 945	/*
 946	 * If baud rate is zero, flush queues, and set mval to drop DTR.
 947	 */
 948	if ((ch->ch_c_cflag & (CBAUD)) == 0) {
 949		ch->ch_r_head = ch->ch_r_tail = 0;
 950		ch->ch_e_head = ch->ch_e_tail = 0;
 
 951
 952		neo_flush_uart_write(ch);
 953		neo_flush_uart_read(ch);
 954
 955		ch->ch_flags |= (CH_BAUD0);
 956		ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
 957		neo_assert_modem_signals(ch);
 958		return;
 959
 960	} else {
 961		int i;
 962		unsigned int cflag;
 963		static struct {
 964			unsigned int rate;
 965			unsigned int cflag;
 966		} baud_rates[] = {
 967			{ 921600, B921600 },
 968			{ 460800, B460800 },
 969			{ 230400, B230400 },
 970			{ 115200, B115200 },
 971			{  57600, B57600  },
 972			{  38400, B38400  },
 973			{  19200, B19200  },
 974			{   9600, B9600   },
 975			{   4800, B4800   },
 976			{   2400, B2400   },
 977			{   1200, B1200   },
 978			{    600, B600    },
 979			{    300, B300    },
 980			{    200, B200    },
 981			{    150, B150    },
 982			{    134, B134    },
 983			{    110, B110    },
 984			{     75, B75     },
 985			{     50, B50     },
 986		};
 987
 988		cflag = C_BAUD(ch->uart_port.state->port.tty);
 989		baud = 9600;
 990		for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
 991			if (baud_rates[i].cflag == cflag) {
 992				baud = baud_rates[i].rate;
 993				break;
 994			}
 995		}
 996
 997		if (ch->ch_flags & CH_BAUD0)
 998			ch->ch_flags &= ~(CH_BAUD0);
 999	}
1000
1001	if (ch->ch_c_cflag & PARENB)
1002		lcr |= UART_LCR_PARITY;
1003
1004	if (!(ch->ch_c_cflag & PARODD))
1005		lcr |= UART_LCR_EPAR;
1006
1007	/*
1008	 * Not all platforms support mark/space parity,
1009	 * so this will hide behind an ifdef.
1010	 */
1011#ifdef CMSPAR
1012	if (ch->ch_c_cflag & CMSPAR)
1013		lcr |= UART_LCR_SPAR;
1014#endif
1015
1016	if (ch->ch_c_cflag & CSTOPB)
1017		lcr |= UART_LCR_STOP;
1018
1019	switch (ch->ch_c_cflag & CSIZE) {
1020		case CS5:
1021			lcr |= UART_LCR_WLEN5;
1022			break;
1023		case CS6:
1024			lcr |= UART_LCR_WLEN6;
1025			break;
1026		case CS7:
1027			lcr |= UART_LCR_WLEN7;
1028			break;
1029		case CS8:
1030		default:
1031			lcr |= UART_LCR_WLEN8;
1032		break;
1033	}
1034
1035	ier = readb(&ch->ch_neo_uart->ier);
1036	uart_lcr = readb(&ch->ch_neo_uart->lcr);
1037
1038	if (baud == 0)
1039		baud = 9600;
1040
1041	quot = ch->ch_bd->bd_dividend / baud;
1042
1043	if (quot != 0) {
1044		writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1045		writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1046		writeb((quot >> 8), &ch->ch_neo_uart->ier);
1047		writeb(lcr, &ch->ch_neo_uart->lcr);
1048	}
1049
1050	if (uart_lcr != lcr)
1051		writeb(lcr, &ch->ch_neo_uart->lcr);
1052
1053	if (ch->ch_c_cflag & CREAD)
1054		ier |= (UART_IER_RDI | UART_IER_RLSI);
1055
1056	ier |= (UART_IER_THRI | UART_IER_MSI);
1057
1058	writeb(ier, &ch->ch_neo_uart->ier);
1059
1060	/* Set new start/stop chars */
1061	neo_set_new_start_stop_chars(ch);
1062
1063	if (ch->ch_c_cflag & CRTSCTS)
1064		neo_set_cts_flow_control(ch);
1065	else if (ch->ch_c_iflag & IXON) {
1066		/* If start/stop is set to disable, then we should disable flow control */
1067		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1068			neo_set_no_output_flow_control(ch);
1069		else
1070			neo_set_ixon_flow_control(ch);
1071	}
1072	else
1073		neo_set_no_output_flow_control(ch);
1074
1075	if (ch->ch_c_cflag & CRTSCTS)
1076		neo_set_rts_flow_control(ch);
1077	else if (ch->ch_c_iflag & IXOFF) {
1078		/* If start/stop is set to disable, then we should disable flow control */
1079		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1080			neo_set_no_input_flow_control(ch);
1081		else
1082			neo_set_ixoff_flow_control(ch);
1083	}
1084	else
1085		neo_set_no_input_flow_control(ch);
1086	/*
1087	 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1088	 * Not exactly elegant, but this is needed because of the Exar chip's
1089	 * delay on firing off the RX FIFO interrupt on slower baud rates.
1090	 */
1091	if (baud < 9600) {
1092		writeb(1, &ch->ch_neo_uart->rfifo);
1093		ch->ch_r_tlevel = 1;
1094	}
1095
1096	neo_assert_modem_signals(ch);
1097
1098	/* Get current status of the modem signals now */
1099	neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1100	return;
1101}
1102
1103/*
1104 * jsm_neo_intr()
1105 *
1106 * Neo specific interrupt handler.
1107 */
1108static irqreturn_t neo_intr(int irq, void *voidbrd)
1109{
1110	struct jsm_board *brd = voidbrd;
1111	struct jsm_channel *ch;
1112	int port = 0;
1113	int type = 0;
1114	int current_port;
1115	u32 tmp;
1116	u32 uart_poll;
1117	unsigned long lock_flags;
1118	unsigned long lock_flags2;
1119	int outofloop_count = 0;
1120
1121	/* Lock out the slow poller from running on this board. */
1122	spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1123
1124	/*
1125	 * Read in "extended" IRQ information from the 32bit Neo register.
1126	 * Bits 0-7: What port triggered the interrupt.
1127	 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1128	 */
1129	uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1130
1131	jsm_printk(INTR, INFO, &brd->pci_dev,
1132		"%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll);
1133
1134	if (!uart_poll) {
1135		jsm_printk(INTR, INFO, &brd->pci_dev,
1136			"Kernel interrupted to me, but no pending interrupts...\n");
1137		spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1138		return IRQ_NONE;
1139	}
1140
1141	/* At this point, we have at least SOMETHING to service, dig further... */
1142
1143	current_port = 0;
1144
1145	/* Loop on each port */
1146	while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1147
1148		tmp = uart_poll;
1149		outofloop_count++;
1150
1151		/* Check current port to see if it has interrupt pending */
1152		if ((tmp & jsm_offset_table[current_port]) != 0) {
1153			port = current_port;
1154			type = tmp >> (8 + (port * 3));
1155			type &= 0x7;
1156		} else {
1157			current_port++;
1158			continue;
1159		}
1160
1161		jsm_printk(INTR, INFO, &brd->pci_dev,
1162		"%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type);
1163
1164		/* Remove this port + type from uart_poll */
1165		uart_poll &= ~(jsm_offset_table[port]);
1166
1167		if (!type) {
1168			/* If no type, just ignore it, and move onto next port */
1169			jsm_printk(INTR, ERR, &brd->pci_dev,
1170				"Interrupt with no type! port: %d\n", port);
1171			continue;
1172		}
1173
1174		/* Switch on type of interrupt we have */
1175		switch (type) {
1176
1177		case UART_17158_RXRDY_TIMEOUT:
1178			/*
1179			 * RXRDY Time-out is cleared by reading data in the
1180			* RX FIFO until it falls below the trigger level.
1181			 */
1182
1183			/* Verify the port is in range. */
1184			if (port > brd->nasync)
1185				continue;
1186
1187			ch = brd->channels[port];
1188			neo_copy_data_from_uart_to_queue(ch);
1189
1190			/* Call our tty layer to enforce queue flow control if needed. */
1191			spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1192			jsm_check_queue_flow_control(ch);
1193			spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1194
1195			continue;
1196
1197		case UART_17158_RX_LINE_STATUS:
1198			/*
1199			 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1200			 */
1201			neo_parse_lsr(brd, port);
1202			continue;
1203
1204		case UART_17158_TXRDY:
1205			/*
1206			 * TXRDY interrupt clears after reading ISR register for the UART channel.
1207			 */
1208
1209			/*
1210			 * Yes, this is odd...
1211			 * Why would I check EVERY possibility of type of
1212			 * interrupt, when we know its TXRDY???
1213			 * Becuz for some reason, even tho we got triggered for TXRDY,
1214			 * it seems to be occasionally wrong. Instead of TX, which
1215			 * it should be, I was getting things like RXDY too. Weird.
1216			 */
1217			neo_parse_isr(brd, port);
1218			continue;
1219
1220		case UART_17158_MSR:
1221			/*
1222			 * MSR or flow control was seen.
1223			 */
1224			neo_parse_isr(brd, port);
1225			continue;
1226
1227		default:
1228			/*
1229			 * The UART triggered us with a bogus interrupt type.
1230			 * It appears the Exar chip, when REALLY bogged down, will throw
1231			 * these once and awhile.
1232			 * Its harmless, just ignore it and move on.
1233			 */
1234			jsm_printk(INTR, ERR, &brd->pci_dev,
1235				"%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type);
1236			continue;
1237		}
1238	}
1239
1240	spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1241
1242	jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n");
1243	return IRQ_HANDLED;
1244}
1245
1246/*
1247 * Neo specific way of turning off the receiver.
1248 * Used as a way to enforce queue flow control when in
1249 * hardware flow control mode.
1250 */
1251static void neo_disable_receiver(struct jsm_channel *ch)
1252{
1253	u8 tmp = readb(&ch->ch_neo_uart->ier);
1254	tmp &= ~(UART_IER_RDI);
1255	writeb(tmp, &ch->ch_neo_uart->ier);
1256
1257	/* flush write operation */
1258	neo_pci_posting_flush(ch->ch_bd);
1259}
1260
1261
1262/*
1263 * Neo specific way of turning on the receiver.
1264 * Used as a way to un-enforce queue flow control when in
1265 * hardware flow control mode.
1266 */
1267static void neo_enable_receiver(struct jsm_channel *ch)
1268{
1269	u8 tmp = readb(&ch->ch_neo_uart->ier);
1270	tmp |= (UART_IER_RDI);
1271	writeb(tmp, &ch->ch_neo_uart->ier);
1272
1273	/* flush write operation */
1274	neo_pci_posting_flush(ch->ch_bd);
1275}
1276
1277static void neo_send_start_character(struct jsm_channel *ch)
1278{
1279	if (!ch)
1280		return;
1281
1282	if (ch->ch_startc != __DISABLED_CHAR) {
1283		ch->ch_xon_sends++;
1284		writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1285
1286		/* flush write operation */
1287		neo_pci_posting_flush(ch->ch_bd);
1288	}
1289}
1290
1291static void neo_send_stop_character(struct jsm_channel *ch)
1292{
1293	if (!ch)
1294		return;
1295
1296	if (ch->ch_stopc != __DISABLED_CHAR) {
1297		ch->ch_xoff_sends++;
1298		writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1299
1300		/* flush write operation */
1301		neo_pci_posting_flush(ch->ch_bd);
1302	}
1303}
1304
1305/*
1306 * neo_uart_init
1307 */
1308static void neo_uart_init(struct jsm_channel *ch)
1309{
1310	writeb(0, &ch->ch_neo_uart->ier);
1311	writeb(0, &ch->ch_neo_uart->efr);
1312	writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1313
1314	/* Clear out UART and FIFO */
1315	readb(&ch->ch_neo_uart->txrx);
1316	writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1317	readb(&ch->ch_neo_uart->lsr);
1318	readb(&ch->ch_neo_uart->msr);
1319
1320	ch->ch_flags |= CH_FIFO_ENABLED;
1321
1322	/* Assert any signals we want up */
1323	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1324}
1325
1326/*
1327 * Make the UART completely turn off.
1328 */
1329static void neo_uart_off(struct jsm_channel *ch)
1330{
1331	/* Turn off UART enhanced bits */
1332	writeb(0, &ch->ch_neo_uart->efr);
1333
1334	/* Stop all interrupts from occurring. */
1335	writeb(0, &ch->ch_neo_uart->ier);
1336}
1337
1338static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1339{
1340	u8 left = 0;
1341	u8 lsr = readb(&ch->ch_neo_uart->lsr);
1342
1343	/* We must cache the LSR as some of the bits get reset once read... */
1344	ch->ch_cached_lsr |= lsr;
1345
1346	/* Determine whether the Transmitter is empty or not */
1347	if (!(lsr & UART_LSR_TEMT))
1348		left = 1;
1349	else {
1350		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1351		left = 0;
1352	}
1353
1354	return left;
1355}
1356
1357/* Channel lock MUST be held by the calling function! */
1358static void neo_send_break(struct jsm_channel *ch)
1359{
1360	/*
1361	 * Set the time we should stop sending the break.
1362	 * If we are already sending a break, toss away the existing
1363	 * time to stop, and use this new value instead.
1364	 */
1365
1366	/* Tell the UART to start sending the break */
1367	if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1368		u8 temp = readb(&ch->ch_neo_uart->lcr);
1369		writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1370		ch->ch_flags |= (CH_BREAK_SENDING);
1371
1372		/* flush write operation */
1373		neo_pci_posting_flush(ch->ch_bd);
1374	}
1375}
1376
1377/*
1378 * neo_send_immediate_char.
1379 *
1380 * Sends a specific character as soon as possible to the UART,
1381 * jumping over any bytes that might be in the write queue.
1382 *
1383 * The channel lock MUST be held by the calling function.
1384 */
1385static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1386{
1387	if (!ch)
1388		return;
1389
1390	writeb(c, &ch->ch_neo_uart->txrx);
1391
1392	/* flush write operation */
1393	neo_pci_posting_flush(ch->ch_bd);
1394}
1395
1396struct board_ops jsm_neo_ops = {
1397	.intr				= neo_intr,
1398	.uart_init			= neo_uart_init,
1399	.uart_off			= neo_uart_off,
1400	.param				= neo_param,
1401	.assert_modem_signals		= neo_assert_modem_signals,
1402	.flush_uart_write		= neo_flush_uart_write,
1403	.flush_uart_read		= neo_flush_uart_read,
1404	.disable_receiver		= neo_disable_receiver,
1405	.enable_receiver		= neo_enable_receiver,
1406	.send_break			= neo_send_break,
1407	.clear_break			= neo_clear_break,
1408	.send_start_character		= neo_send_start_character,
1409	.send_stop_character		= neo_send_stop_character,
1410	.copy_data_from_queue_to_uart	= neo_copy_data_from_queue_to_uart,
1411	.get_uart_bytes_left		= neo_get_uart_bytes_left,
1412	.send_immediate_char		= neo_send_immediate_char
1413};