Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * SPI_PPC4XX SPI controller driver.
  3 *
  4 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
  5 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
  6 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
  7 *
  8 * Based in part on drivers/spi/spi_s3c24xx.c
  9 *
 10 * Copyright (c) 2006 Ben Dooks
 11 * Copyright (c) 2006 Simtec Electronics
 12 *	Ben Dooks <ben@simtec.co.uk>
 13 *
 14 * This program is free software; you can redistribute  it and/or modify it
 15 * under the terms of the GNU General Public License version 2 as published
 16 * by the Free Software Foundation.
 17 */
 18
 19/*
 20 * The PPC4xx SPI controller has no FIFO so each sent/received byte will
 21 * generate an interrupt to the CPU. This can cause high CPU utilization.
 22 * This driver allows platforms to reduce the interrupt load on the CPU
 23 * during SPI transfers by setting max_speed_hz via the device tree.
 24 */
 25
 26#include <linux/module.h>
 27#include <linux/init.h>
 28#include <linux/sched.h>
 29#include <linux/slab.h>
 30#include <linux/errno.h>
 31#include <linux/wait.h>
 32#include <linux/of_platform.h>
 33#include <linux/of_spi.h>
 34#include <linux/of_gpio.h>
 35#include <linux/interrupt.h>
 36#include <linux/delay.h>
 37
 38#include <linux/gpio.h>
 39#include <linux/spi/spi.h>
 40#include <linux/spi/spi_bitbang.h>
 41
 42#include <asm/io.h>
 43#include <asm/dcr.h>
 44#include <asm/dcr-regs.h>
 45
 46/* bits in mode register - bit 0 is MSb */
 47
 48/*
 49 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
 50 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
 51 * Note: This is the inverse of CPHA.
 52 */
 53#define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
 54
 55/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
 56#define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
 57
 58/*
 59 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
 60 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
 61 * Note: This is identical to SPI_LSB_FIRST.
 62 */
 63#define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
 64
 65/*
 66 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
 67 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
 68 * Note: This is identical to CPOL.
 69 */
 70#define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
 71
 72/*
 73 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
 74 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
 75 */
 76#define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
 77
 78/* bits in control register */
 79/* starts a transfer when set */
 80#define SPI_PPC4XX_CR_STR	(0x80 >> 7)
 81
 82/* bits in status register */
 83/* port is busy with a transfer */
 84#define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
 85/* RxD ready */
 86#define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
 87
 88/* clock settings (SCP and CI) for various SPI modes */
 89#define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
 90#define SPI_CLK_MODE1	(0 | 0)
 91#define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
 92#define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
 93
 94#define DRIVER_NAME	"spi_ppc4xx_of"
 95
 96struct spi_ppc4xx_regs {
 97	u8 mode;
 98	u8 rxd;
 99	u8 txd;
100	u8 cr;
101	u8 sr;
102	u8 dummy;
103	/*
104	 * Clock divisor modulus register
105	 * This uses the follwing formula:
106	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
107	 * or
108	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
109	 * bit 0 is the MSb!
110	 */
111	u8 cdm;
112};
113
114/* SPI Controller driver's private data. */
115struct ppc4xx_spi {
116	/* bitbang has to be first */
117	struct spi_bitbang bitbang;
118	struct completion done;
119
120	u64 mapbase;
121	u64 mapsize;
122	int irqnum;
123	/* need this to set the SPI clock */
124	unsigned int opb_freq;
125
126	/* for transfers */
127	int len;
128	int count;
129	/* data buffers */
130	const unsigned char *tx;
131	unsigned char *rx;
132
133	int *gpios;
134
135	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
136	struct spi_master *master;
137	struct device *dev;
138};
139
140/* need this so we can set the clock in the chipselect routine */
141struct spi_ppc4xx_cs {
142	u8 mode;
143};
144
145static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
146{
147	struct ppc4xx_spi *hw;
148	u8 data;
149
150	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
151		t->tx_buf, t->rx_buf, t->len);
152
153	hw = spi_master_get_devdata(spi->master);
154
155	hw->tx = t->tx_buf;
156	hw->rx = t->rx_buf;
157	hw->len = t->len;
158	hw->count = 0;
159
160	/* send the first byte */
161	data = hw->tx ? hw->tx[0] : 0;
162	out_8(&hw->regs->txd, data);
163	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
164	wait_for_completion(&hw->done);
165
166	return hw->count;
167}
168
169static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
170{
171	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
172	struct spi_ppc4xx_cs *cs = spi->controller_state;
173	int scr;
174	u8 cdm = 0;
175	u32 speed;
176	u8 bits_per_word;
177
178	/* Start with the generic configuration for this device. */
179	bits_per_word = spi->bits_per_word;
180	speed = spi->max_speed_hz;
181
182	/*
183	 * Modify the configuration if the transfer overrides it.  Do not allow
184	 * the transfer to overwrite the generic configuration with zeros.
185	 */
186	if (t) {
187		if (t->bits_per_word)
188			bits_per_word = t->bits_per_word;
189
190		if (t->speed_hz)
191			speed = min(t->speed_hz, spi->max_speed_hz);
192	}
193
194	if (bits_per_word != 8) {
195		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
196				bits_per_word);
197		return -EINVAL;
198	}
199
200	if (!speed || (speed > spi->max_speed_hz)) {
201		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
202		return -EINVAL;
203	}
204
205	/* Write new configration */
206	out_8(&hw->regs->mode, cs->mode);
207
208	/* Set the clock */
209	/* opb_freq was already divided by 4 */
210	scr = (hw->opb_freq / speed) - 1;
211	if (scr > 0)
212		cdm = min(scr, 0xff);
213
214	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
215
216	if (in_8(&hw->regs->cdm) != cdm)
217		out_8(&hw->regs->cdm, cdm);
218
219	spin_lock(&hw->bitbang.lock);
220	if (!hw->bitbang.busy) {
221		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
222		/* Need to ndelay here? */
223	}
224	spin_unlock(&hw->bitbang.lock);
225
226	return 0;
227}
228
229static int spi_ppc4xx_setup(struct spi_device *spi)
230{
231	struct spi_ppc4xx_cs *cs = spi->controller_state;
232
233	if (spi->bits_per_word != 8) {
234		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
235			spi->bits_per_word);
236		return -EINVAL;
237	}
238
239	if (!spi->max_speed_hz) {
240		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
241		return -EINVAL;
242	}
243
244	if (cs == NULL) {
245		cs = kzalloc(sizeof *cs, GFP_KERNEL);
246		if (!cs)
247			return -ENOMEM;
248		spi->controller_state = cs;
249	}
250
251	/*
252	 * We set all bits of the SPI0_MODE register, so,
253	 * no need to read-modify-write
254	 */
255	cs->mode = SPI_PPC4XX_MODE_SPE;
256
257	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
258	case SPI_MODE_0:
259		cs->mode |= SPI_CLK_MODE0;
260		break;
261	case SPI_MODE_1:
262		cs->mode |= SPI_CLK_MODE1;
263		break;
264	case SPI_MODE_2:
265		cs->mode |= SPI_CLK_MODE2;
266		break;
267	case SPI_MODE_3:
268		cs->mode |= SPI_CLK_MODE3;
269		break;
270	}
271
272	if (spi->mode & SPI_LSB_FIRST)
273		cs->mode |= SPI_PPC4XX_MODE_RD;
274
275	return 0;
276}
277
278static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
279{
280	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
281	unsigned int cs = spi->chip_select;
282	unsigned int cspol;
283
284	/*
285	 * If there are no chip selects at all, or if this is the special
286	 * case of a non-existent (dummy) chip select, do nothing.
287	 */
288
289	if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
290		return;
291
292	cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
293	if (value == BITBANG_CS_INACTIVE)
294		cspol = !cspol;
295
296	gpio_set_value(hw->gpios[cs], cspol);
297}
298
299static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
300{
301	struct ppc4xx_spi *hw;
302	u8 status;
303	u8 data;
304	unsigned int count;
305
306	hw = (struct ppc4xx_spi *)dev_id;
307
308	status = in_8(&hw->regs->sr);
309	if (!status)
310		return IRQ_NONE;
311
312	/*
313	 * BSY de-asserts one cycle after the transfer is complete.  The
314	 * interrupt is asserted after the transfer is complete.  The exact
315	 * relationship is not documented, hence this code.
316	 */
317
318	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
319		u8 lstatus;
320		int cnt = 0;
321
322		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
323		do {
324			ndelay(10);
325			lstatus = in_8(&hw->regs->sr);
326		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
327
328		if (cnt >= 100) {
329			dev_err(hw->dev, "busywait: too many loops!\n");
330			complete(&hw->done);
331			return IRQ_HANDLED;
332		} else {
333			/* status is always 1 (RBR) here */
334			status = in_8(&hw->regs->sr);
335			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
336		}
337	}
338
339	count = hw->count;
340	hw->count++;
341
342	/* RBR triggered this interrupt.  Therefore, data must be ready. */
343	data = in_8(&hw->regs->rxd);
344	if (hw->rx)
345		hw->rx[count] = data;
346
347	count++;
348
349	if (count < hw->len) {
350		data = hw->tx ? hw->tx[count] : 0;
351		out_8(&hw->regs->txd, data);
352		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
353	} else {
354		complete(&hw->done);
355	}
356
357	return IRQ_HANDLED;
358}
359
360static void spi_ppc4xx_cleanup(struct spi_device *spi)
361{
362	kfree(spi->controller_state);
363}
364
365static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
366{
367	/*
368	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
369	 * the 2nd I2C bus. We need to enable the the SPI bus before
370	 * using it.
371	 */
372
373	/* need to clear bit 14 to enable SPC */
374	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
375}
376
377static void free_gpios(struct ppc4xx_spi *hw)
378{
379	if (hw->master->num_chipselect) {
380		int i;
381		for (i = 0; i < hw->master->num_chipselect; i++)
382			if (gpio_is_valid(hw->gpios[i]))
383				gpio_free(hw->gpios[i]);
384
385		kfree(hw->gpios);
386		hw->gpios = NULL;
387	}
388}
389
390/*
391 * platform_device layer stuff...
392 */
393static int __init spi_ppc4xx_of_probe(struct platform_device *op)
394{
395	struct ppc4xx_spi *hw;
396	struct spi_master *master;
397	struct spi_bitbang *bbp;
398	struct resource resource;
399	struct device_node *np = op->dev.of_node;
400	struct device *dev = &op->dev;
401	struct device_node *opbnp;
402	int ret;
403	int num_gpios;
404	const unsigned int *clk;
405
406	master = spi_alloc_master(dev, sizeof *hw);
407	if (master == NULL)
408		return -ENOMEM;
409	master->dev.of_node = np;
410	dev_set_drvdata(dev, master);
411	hw = spi_master_get_devdata(master);
412	hw->master = spi_master_get(master);
413	hw->dev = dev;
414
415	init_completion(&hw->done);
416
417	/*
418	 * A count of zero implies a single SPI device without any chip-select.
419	 * Note that of_gpio_count counts all gpios assigned to this spi master.
420	 * This includes both "null" gpio's and real ones.
421	 */
422	num_gpios = of_gpio_count(np);
423	if (num_gpios) {
424		int i;
425
426		hw->gpios = kzalloc(sizeof(int) * num_gpios, GFP_KERNEL);
427		if (!hw->gpios) {
428			ret = -ENOMEM;
429			goto free_master;
430		}
431
432		for (i = 0; i < num_gpios; i++) {
433			int gpio;
434			enum of_gpio_flags flags;
435
436			gpio = of_get_gpio_flags(np, i, &flags);
437			hw->gpios[i] = gpio;
438
439			if (gpio_is_valid(gpio)) {
440				/* Real CS - set the initial state. */
441				ret = gpio_request(gpio, np->name);
442				if (ret < 0) {
443					dev_err(dev, "can't request gpio "
444							"#%d: %d\n", i, ret);
445					goto free_gpios;
446				}
447
448				gpio_direction_output(gpio,
449						!!(flags & OF_GPIO_ACTIVE_LOW));
450			} else if (gpio == -EEXIST) {
451				; /* No CS, but that's OK. */
452			} else {
453				dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
454				ret = -EINVAL;
455				goto free_gpios;
456			}
457		}
458	}
459
460	/* Setup the state for the bitbang driver */
461	bbp = &hw->bitbang;
462	bbp->master = hw->master;
463	bbp->setup_transfer = spi_ppc4xx_setupxfer;
464	bbp->chipselect = spi_ppc4xx_chipsel;
465	bbp->txrx_bufs = spi_ppc4xx_txrx;
466	bbp->use_dma = 0;
467	bbp->master->setup = spi_ppc4xx_setup;
468	bbp->master->cleanup = spi_ppc4xx_cleanup;
469
470	/* Allocate bus num dynamically. */
471	bbp->master->bus_num = -1;
472
473	/* the spi->mode bits understood by this driver: */
474	bbp->master->mode_bits =
475		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
476
477	/* this many pins in all GPIO controllers */
478	bbp->master->num_chipselect = num_gpios;
479
480	/* Get the clock for the OPB */
481	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
482	if (opbnp == NULL) {
483		dev_err(dev, "OPB: cannot find node\n");
484		ret = -ENODEV;
485		goto free_gpios;
486	}
487	/* Get the clock (Hz) for the OPB */
488	clk = of_get_property(opbnp, "clock-frequency", NULL);
489	if (clk == NULL) {
490		dev_err(dev, "OPB: no clock-frequency property set\n");
491		of_node_put(opbnp);
492		ret = -ENODEV;
493		goto free_gpios;
494	}
495	hw->opb_freq = *clk;
496	hw->opb_freq >>= 2;
497	of_node_put(opbnp);
498
499	ret = of_address_to_resource(np, 0, &resource);
500	if (ret) {
501		dev_err(dev, "error while parsing device node resource\n");
502		goto free_gpios;
503	}
504	hw->mapbase = resource.start;
505	hw->mapsize = resource_size(&resource);
506
507	/* Sanity check */
508	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
509		dev_err(dev, "too small to map registers\n");
510		ret = -EINVAL;
511		goto free_gpios;
512	}
513
514	/* Request IRQ */
515	hw->irqnum = irq_of_parse_and_map(np, 0);
516	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
517			  IRQF_DISABLED, "spi_ppc4xx_of", (void *)hw);
518	if (ret) {
519		dev_err(dev, "unable to allocate interrupt\n");
520		goto free_gpios;
521	}
522
523	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
524		dev_err(dev, "resource unavailable\n");
525		ret = -EBUSY;
526		goto request_mem_error;
527	}
528
529	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
530
531	if (!hw->regs) {
532		dev_err(dev, "unable to memory map registers\n");
533		ret = -ENXIO;
534		goto map_io_error;
535	}
536
537	spi_ppc4xx_enable(hw);
538
539	/* Finally register our spi controller */
540	dev->dma_mask = 0;
541	ret = spi_bitbang_start(bbp);
542	if (ret) {
543		dev_err(dev, "failed to register SPI master\n");
544		goto unmap_regs;
545	}
546
547	dev_info(dev, "driver initialized\n");
548
549	return 0;
550
551unmap_regs:
552	iounmap(hw->regs);
553map_io_error:
554	release_mem_region(hw->mapbase, hw->mapsize);
555request_mem_error:
556	free_irq(hw->irqnum, hw);
557free_gpios:
558	free_gpios(hw);
559free_master:
560	dev_set_drvdata(dev, NULL);
561	spi_master_put(master);
562
563	dev_err(dev, "initialization failed\n");
564	return ret;
565}
566
567static int __exit spi_ppc4xx_of_remove(struct platform_device *op)
568{
569	struct spi_master *master = dev_get_drvdata(&op->dev);
570	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
571
572	spi_bitbang_stop(&hw->bitbang);
573	dev_set_drvdata(&op->dev, NULL);
574	release_mem_region(hw->mapbase, hw->mapsize);
575	free_irq(hw->irqnum, hw);
576	iounmap(hw->regs);
577	free_gpios(hw);
578	return 0;
579}
580
581static const struct of_device_id spi_ppc4xx_of_match[] = {
582	{ .compatible = "ibm,ppc4xx-spi", },
583	{},
584};
585
586MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
587
588static struct platform_driver spi_ppc4xx_of_driver = {
589	.probe = spi_ppc4xx_of_probe,
590	.remove = __exit_p(spi_ppc4xx_of_remove),
591	.driver = {
592		.name = DRIVER_NAME,
593		.owner = THIS_MODULE,
594		.of_match_table = spi_ppc4xx_of_match,
595	},
596};
597
598static int __init spi_ppc4xx_init(void)
599{
600	return platform_driver_register(&spi_ppc4xx_of_driver);
601}
602module_init(spi_ppc4xx_init);
603
604static void __exit spi_ppc4xx_exit(void)
605{
606	platform_driver_unregister(&spi_ppc4xx_of_driver);
607}
608module_exit(spi_ppc4xx_exit);
609
610MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
611MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
612MODULE_LICENSE("GPL");
v3.5.6
  1/*
  2 * SPI_PPC4XX SPI controller driver.
  3 *
  4 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
  5 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
  6 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
  7 *
  8 * Based in part on drivers/spi/spi_s3c24xx.c
  9 *
 10 * Copyright (c) 2006 Ben Dooks
 11 * Copyright (c) 2006 Simtec Electronics
 12 *	Ben Dooks <ben@simtec.co.uk>
 13 *
 14 * This program is free software; you can redistribute  it and/or modify it
 15 * under the terms of the GNU General Public License version 2 as published
 16 * by the Free Software Foundation.
 17 */
 18
 19/*
 20 * The PPC4xx SPI controller has no FIFO so each sent/received byte will
 21 * generate an interrupt to the CPU. This can cause high CPU utilization.
 22 * This driver allows platforms to reduce the interrupt load on the CPU
 23 * during SPI transfers by setting max_speed_hz via the device tree.
 24 */
 25
 26#include <linux/module.h>
 27#include <linux/init.h>
 28#include <linux/sched.h>
 29#include <linux/slab.h>
 30#include <linux/errno.h>
 31#include <linux/wait.h>
 32#include <linux/of_platform.h>
 
 33#include <linux/of_gpio.h>
 34#include <linux/interrupt.h>
 35#include <linux/delay.h>
 36
 37#include <linux/gpio.h>
 38#include <linux/spi/spi.h>
 39#include <linux/spi/spi_bitbang.h>
 40
 41#include <asm/io.h>
 42#include <asm/dcr.h>
 43#include <asm/dcr-regs.h>
 44
 45/* bits in mode register - bit 0 is MSb */
 46
 47/*
 48 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
 49 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
 50 * Note: This is the inverse of CPHA.
 51 */
 52#define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
 53
 54/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
 55#define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
 56
 57/*
 58 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
 59 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
 60 * Note: This is identical to SPI_LSB_FIRST.
 61 */
 62#define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
 63
 64/*
 65 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
 66 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
 67 * Note: This is identical to CPOL.
 68 */
 69#define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
 70
 71/*
 72 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
 73 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
 74 */
 75#define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
 76
 77/* bits in control register */
 78/* starts a transfer when set */
 79#define SPI_PPC4XX_CR_STR	(0x80 >> 7)
 80
 81/* bits in status register */
 82/* port is busy with a transfer */
 83#define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
 84/* RxD ready */
 85#define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
 86
 87/* clock settings (SCP and CI) for various SPI modes */
 88#define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
 89#define SPI_CLK_MODE1	(0 | 0)
 90#define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
 91#define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
 92
 93#define DRIVER_NAME	"spi_ppc4xx_of"
 94
 95struct spi_ppc4xx_regs {
 96	u8 mode;
 97	u8 rxd;
 98	u8 txd;
 99	u8 cr;
100	u8 sr;
101	u8 dummy;
102	/*
103	 * Clock divisor modulus register
104	 * This uses the follwing formula:
105	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
106	 * or
107	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
108	 * bit 0 is the MSb!
109	 */
110	u8 cdm;
111};
112
113/* SPI Controller driver's private data. */
114struct ppc4xx_spi {
115	/* bitbang has to be first */
116	struct spi_bitbang bitbang;
117	struct completion done;
118
119	u64 mapbase;
120	u64 mapsize;
121	int irqnum;
122	/* need this to set the SPI clock */
123	unsigned int opb_freq;
124
125	/* for transfers */
126	int len;
127	int count;
128	/* data buffers */
129	const unsigned char *tx;
130	unsigned char *rx;
131
132	int *gpios;
133
134	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
135	struct spi_master *master;
136	struct device *dev;
137};
138
139/* need this so we can set the clock in the chipselect routine */
140struct spi_ppc4xx_cs {
141	u8 mode;
142};
143
144static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
145{
146	struct ppc4xx_spi *hw;
147	u8 data;
148
149	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
150		t->tx_buf, t->rx_buf, t->len);
151
152	hw = spi_master_get_devdata(spi->master);
153
154	hw->tx = t->tx_buf;
155	hw->rx = t->rx_buf;
156	hw->len = t->len;
157	hw->count = 0;
158
159	/* send the first byte */
160	data = hw->tx ? hw->tx[0] : 0;
161	out_8(&hw->regs->txd, data);
162	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
163	wait_for_completion(&hw->done);
164
165	return hw->count;
166}
167
168static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
169{
170	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
171	struct spi_ppc4xx_cs *cs = spi->controller_state;
172	int scr;
173	u8 cdm = 0;
174	u32 speed;
175	u8 bits_per_word;
176
177	/* Start with the generic configuration for this device. */
178	bits_per_word = spi->bits_per_word;
179	speed = spi->max_speed_hz;
180
181	/*
182	 * Modify the configuration if the transfer overrides it.  Do not allow
183	 * the transfer to overwrite the generic configuration with zeros.
184	 */
185	if (t) {
186		if (t->bits_per_word)
187			bits_per_word = t->bits_per_word;
188
189		if (t->speed_hz)
190			speed = min(t->speed_hz, spi->max_speed_hz);
191	}
192
193	if (bits_per_word != 8) {
194		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
195				bits_per_word);
196		return -EINVAL;
197	}
198
199	if (!speed || (speed > spi->max_speed_hz)) {
200		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
201		return -EINVAL;
202	}
203
204	/* Write new configration */
205	out_8(&hw->regs->mode, cs->mode);
206
207	/* Set the clock */
208	/* opb_freq was already divided by 4 */
209	scr = (hw->opb_freq / speed) - 1;
210	if (scr > 0)
211		cdm = min(scr, 0xff);
212
213	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
214
215	if (in_8(&hw->regs->cdm) != cdm)
216		out_8(&hw->regs->cdm, cdm);
217
218	spin_lock(&hw->bitbang.lock);
219	if (!hw->bitbang.busy) {
220		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
221		/* Need to ndelay here? */
222	}
223	spin_unlock(&hw->bitbang.lock);
224
225	return 0;
226}
227
228static int spi_ppc4xx_setup(struct spi_device *spi)
229{
230	struct spi_ppc4xx_cs *cs = spi->controller_state;
231
232	if (spi->bits_per_word != 8) {
233		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
234			spi->bits_per_word);
235		return -EINVAL;
236	}
237
238	if (!spi->max_speed_hz) {
239		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
240		return -EINVAL;
241	}
242
243	if (cs == NULL) {
244		cs = kzalloc(sizeof *cs, GFP_KERNEL);
245		if (!cs)
246			return -ENOMEM;
247		spi->controller_state = cs;
248	}
249
250	/*
251	 * We set all bits of the SPI0_MODE register, so,
252	 * no need to read-modify-write
253	 */
254	cs->mode = SPI_PPC4XX_MODE_SPE;
255
256	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
257	case SPI_MODE_0:
258		cs->mode |= SPI_CLK_MODE0;
259		break;
260	case SPI_MODE_1:
261		cs->mode |= SPI_CLK_MODE1;
262		break;
263	case SPI_MODE_2:
264		cs->mode |= SPI_CLK_MODE2;
265		break;
266	case SPI_MODE_3:
267		cs->mode |= SPI_CLK_MODE3;
268		break;
269	}
270
271	if (spi->mode & SPI_LSB_FIRST)
272		cs->mode |= SPI_PPC4XX_MODE_RD;
273
274	return 0;
275}
276
277static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
278{
279	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
280	unsigned int cs = spi->chip_select;
281	unsigned int cspol;
282
283	/*
284	 * If there are no chip selects at all, or if this is the special
285	 * case of a non-existent (dummy) chip select, do nothing.
286	 */
287
288	if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
289		return;
290
291	cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
292	if (value == BITBANG_CS_INACTIVE)
293		cspol = !cspol;
294
295	gpio_set_value(hw->gpios[cs], cspol);
296}
297
298static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
299{
300	struct ppc4xx_spi *hw;
301	u8 status;
302	u8 data;
303	unsigned int count;
304
305	hw = (struct ppc4xx_spi *)dev_id;
306
307	status = in_8(&hw->regs->sr);
308	if (!status)
309		return IRQ_NONE;
310
311	/*
312	 * BSY de-asserts one cycle after the transfer is complete.  The
313	 * interrupt is asserted after the transfer is complete.  The exact
314	 * relationship is not documented, hence this code.
315	 */
316
317	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
318		u8 lstatus;
319		int cnt = 0;
320
321		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
322		do {
323			ndelay(10);
324			lstatus = in_8(&hw->regs->sr);
325		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
326
327		if (cnt >= 100) {
328			dev_err(hw->dev, "busywait: too many loops!\n");
329			complete(&hw->done);
330			return IRQ_HANDLED;
331		} else {
332			/* status is always 1 (RBR) here */
333			status = in_8(&hw->regs->sr);
334			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
335		}
336	}
337
338	count = hw->count;
339	hw->count++;
340
341	/* RBR triggered this interrupt.  Therefore, data must be ready. */
342	data = in_8(&hw->regs->rxd);
343	if (hw->rx)
344		hw->rx[count] = data;
345
346	count++;
347
348	if (count < hw->len) {
349		data = hw->tx ? hw->tx[count] : 0;
350		out_8(&hw->regs->txd, data);
351		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
352	} else {
353		complete(&hw->done);
354	}
355
356	return IRQ_HANDLED;
357}
358
359static void spi_ppc4xx_cleanup(struct spi_device *spi)
360{
361	kfree(spi->controller_state);
362}
363
364static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
365{
366	/*
367	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
368	 * the 2nd I2C bus. We need to enable the the SPI bus before
369	 * using it.
370	 */
371
372	/* need to clear bit 14 to enable SPC */
373	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
374}
375
376static void free_gpios(struct ppc4xx_spi *hw)
377{
378	if (hw->master->num_chipselect) {
379		int i;
380		for (i = 0; i < hw->master->num_chipselect; i++)
381			if (gpio_is_valid(hw->gpios[i]))
382				gpio_free(hw->gpios[i]);
383
384		kfree(hw->gpios);
385		hw->gpios = NULL;
386	}
387}
388
389/*
390 * platform_device layer stuff...
391 */
392static int __init spi_ppc4xx_of_probe(struct platform_device *op)
393{
394	struct ppc4xx_spi *hw;
395	struct spi_master *master;
396	struct spi_bitbang *bbp;
397	struct resource resource;
398	struct device_node *np = op->dev.of_node;
399	struct device *dev = &op->dev;
400	struct device_node *opbnp;
401	int ret;
402	int num_gpios;
403	const unsigned int *clk;
404
405	master = spi_alloc_master(dev, sizeof *hw);
406	if (master == NULL)
407		return -ENOMEM;
408	master->dev.of_node = np;
409	dev_set_drvdata(dev, master);
410	hw = spi_master_get_devdata(master);
411	hw->master = spi_master_get(master);
412	hw->dev = dev;
413
414	init_completion(&hw->done);
415
416	/*
417	 * A count of zero implies a single SPI device without any chip-select.
418	 * Note that of_gpio_count counts all gpios assigned to this spi master.
419	 * This includes both "null" gpio's and real ones.
420	 */
421	num_gpios = of_gpio_count(np);
422	if (num_gpios) {
423		int i;
424
425		hw->gpios = kzalloc(sizeof(int) * num_gpios, GFP_KERNEL);
426		if (!hw->gpios) {
427			ret = -ENOMEM;
428			goto free_master;
429		}
430
431		for (i = 0; i < num_gpios; i++) {
432			int gpio;
433			enum of_gpio_flags flags;
434
435			gpio = of_get_gpio_flags(np, i, &flags);
436			hw->gpios[i] = gpio;
437
438			if (gpio_is_valid(gpio)) {
439				/* Real CS - set the initial state. */
440				ret = gpio_request(gpio, np->name);
441				if (ret < 0) {
442					dev_err(dev, "can't request gpio "
443							"#%d: %d\n", i, ret);
444					goto free_gpios;
445				}
446
447				gpio_direction_output(gpio,
448						!!(flags & OF_GPIO_ACTIVE_LOW));
449			} else if (gpio == -EEXIST) {
450				; /* No CS, but that's OK. */
451			} else {
452				dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
453				ret = -EINVAL;
454				goto free_gpios;
455			}
456		}
457	}
458
459	/* Setup the state for the bitbang driver */
460	bbp = &hw->bitbang;
461	bbp->master = hw->master;
462	bbp->setup_transfer = spi_ppc4xx_setupxfer;
463	bbp->chipselect = spi_ppc4xx_chipsel;
464	bbp->txrx_bufs = spi_ppc4xx_txrx;
465	bbp->use_dma = 0;
466	bbp->master->setup = spi_ppc4xx_setup;
467	bbp->master->cleanup = spi_ppc4xx_cleanup;
468
 
 
 
469	/* the spi->mode bits understood by this driver: */
470	bbp->master->mode_bits =
471		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
472
473	/* this many pins in all GPIO controllers */
474	bbp->master->num_chipselect = num_gpios;
475
476	/* Get the clock for the OPB */
477	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
478	if (opbnp == NULL) {
479		dev_err(dev, "OPB: cannot find node\n");
480		ret = -ENODEV;
481		goto free_gpios;
482	}
483	/* Get the clock (Hz) for the OPB */
484	clk = of_get_property(opbnp, "clock-frequency", NULL);
485	if (clk == NULL) {
486		dev_err(dev, "OPB: no clock-frequency property set\n");
487		of_node_put(opbnp);
488		ret = -ENODEV;
489		goto free_gpios;
490	}
491	hw->opb_freq = *clk;
492	hw->opb_freq >>= 2;
493	of_node_put(opbnp);
494
495	ret = of_address_to_resource(np, 0, &resource);
496	if (ret) {
497		dev_err(dev, "error while parsing device node resource\n");
498		goto free_gpios;
499	}
500	hw->mapbase = resource.start;
501	hw->mapsize = resource_size(&resource);
502
503	/* Sanity check */
504	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
505		dev_err(dev, "too small to map registers\n");
506		ret = -EINVAL;
507		goto free_gpios;
508	}
509
510	/* Request IRQ */
511	hw->irqnum = irq_of_parse_and_map(np, 0);
512	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
513			  0, "spi_ppc4xx_of", (void *)hw);
514	if (ret) {
515		dev_err(dev, "unable to allocate interrupt\n");
516		goto free_gpios;
517	}
518
519	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
520		dev_err(dev, "resource unavailable\n");
521		ret = -EBUSY;
522		goto request_mem_error;
523	}
524
525	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
526
527	if (!hw->regs) {
528		dev_err(dev, "unable to memory map registers\n");
529		ret = -ENXIO;
530		goto map_io_error;
531	}
532
533	spi_ppc4xx_enable(hw);
534
535	/* Finally register our spi controller */
536	dev->dma_mask = 0;
537	ret = spi_bitbang_start(bbp);
538	if (ret) {
539		dev_err(dev, "failed to register SPI master\n");
540		goto unmap_regs;
541	}
542
543	dev_info(dev, "driver initialized\n");
544
545	return 0;
546
547unmap_regs:
548	iounmap(hw->regs);
549map_io_error:
550	release_mem_region(hw->mapbase, hw->mapsize);
551request_mem_error:
552	free_irq(hw->irqnum, hw);
553free_gpios:
554	free_gpios(hw);
555free_master:
556	dev_set_drvdata(dev, NULL);
557	spi_master_put(master);
558
559	dev_err(dev, "initialization failed\n");
560	return ret;
561}
562
563static int __exit spi_ppc4xx_of_remove(struct platform_device *op)
564{
565	struct spi_master *master = dev_get_drvdata(&op->dev);
566	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
567
568	spi_bitbang_stop(&hw->bitbang);
569	dev_set_drvdata(&op->dev, NULL);
570	release_mem_region(hw->mapbase, hw->mapsize);
571	free_irq(hw->irqnum, hw);
572	iounmap(hw->regs);
573	free_gpios(hw);
574	return 0;
575}
576
577static const struct of_device_id spi_ppc4xx_of_match[] = {
578	{ .compatible = "ibm,ppc4xx-spi", },
579	{},
580};
581
582MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
583
584static struct platform_driver spi_ppc4xx_of_driver = {
585	.probe = spi_ppc4xx_of_probe,
586	.remove = __exit_p(spi_ppc4xx_of_remove),
587	.driver = {
588		.name = DRIVER_NAME,
589		.owner = THIS_MODULE,
590		.of_match_table = spi_ppc4xx_of_match,
591	},
592};
593module_platform_driver(spi_ppc4xx_of_driver);
 
 
 
 
 
 
 
 
 
 
 
594
595MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
596MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
597MODULE_LICENSE("GPL");