Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) 2004-2011 Atheros Communications Inc.
   3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/mmc/card.h>
  20#include <linux/mmc/mmc.h>
  21#include <linux/mmc/host.h>
  22#include <linux/mmc/sdio_func.h>
  23#include <linux/mmc/sdio_ids.h>
  24#include <linux/mmc/sdio.h>
  25#include <linux/mmc/sd.h>
  26#include "hif.h"
  27#include "hif-ops.h"
  28#include "target.h"
  29#include "debug.h"
  30#include "cfg80211.h"
  31
  32struct ath6kl_sdio {
  33	struct sdio_func *func;
  34
  35	/* protects access to bus_req_freeq */
  36	spinlock_t lock;
  37
  38	/* free list */
  39	struct list_head bus_req_freeq;
  40
  41	/* available bus requests */
  42	struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
  43
  44	struct ath6kl *ar;
  45
  46	u8 *dma_buffer;
  47
  48	/* protects access to dma_buffer */
  49	struct mutex dma_buffer_mutex;
  50
  51	/* scatter request list head */
  52	struct list_head scat_req;
  53
  54	atomic_t irq_handling;
  55	wait_queue_head_t irq_wq;
  56
  57	/* protects access to scat_req */
  58	spinlock_t scat_lock;
  59
  60	bool scatter_enabled;
  61
  62	bool is_disabled;
  63	const struct sdio_device_id *id;
  64	struct work_struct wr_async_work;
  65	struct list_head wr_asyncq;
  66
  67	/* protects access to wr_asyncq */
  68	spinlock_t wr_async_lock;
  69};
  70
  71#define CMD53_ARG_READ          0
  72#define CMD53_ARG_WRITE         1
  73#define CMD53_ARG_BLOCK_BASIS   1
  74#define CMD53_ARG_FIXED_ADDRESS 0
  75#define CMD53_ARG_INCR_ADDRESS  1
  76
  77static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
  78{
  79	return ar->hif_priv;
  80}
  81
  82/*
  83 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
  84 * Most host controllers assume the buffer is DMA'able and will
  85 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
  86 * check fails on stack memory.
  87 */
  88static inline bool buf_needs_bounce(u8 *buf)
  89{
  90	return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
  91}
  92
  93static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
  94{
  95	struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
  96
  97	/* EP1 has an extended range */
  98	mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
  99	mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
 100	mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
 101	mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
 102	mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
 103	mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
 104}
 105
 106static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
 107					     u8 mode, u8 opcode, u32 addr,
 108					     u16 blksz)
 109{
 110	*arg = (((rw & 1) << 31) |
 111		((func & 0x7) << 28) |
 112		((mode & 1) << 27) |
 113		((opcode & 1) << 26) |
 114		((addr & 0x1FFFF) << 9) |
 115		(blksz & 0x1FF));
 116}
 117
 118static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
 119					     unsigned int address,
 120					     unsigned char val)
 121{
 122	const u8 func = 0;
 123
 124	*arg = ((write & 1) << 31) |
 125	       ((func & 0x7) << 28) |
 126	       ((raw & 1) << 27) |
 127	       (1 << 26) |
 128	       ((address & 0x1FFFF) << 9) |
 129	       (1 << 8) |
 130	       (val & 0xFF);
 131}
 132
 133static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
 134					   unsigned int address,
 135					   unsigned char byte)
 136{
 137	struct mmc_command io_cmd;
 138
 139	memset(&io_cmd, 0, sizeof(io_cmd));
 140	ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
 141	io_cmd.opcode = SD_IO_RW_DIRECT;
 142	io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
 143
 144	return mmc_wait_for_cmd(card->host, &io_cmd, 0);
 145}
 146
 147static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
 148			  u8 *buf, u32 len)
 149{
 150	int ret = 0;
 151
 152	sdio_claim_host(func);
 153
 154	if (request & HIF_WRITE) {
 155		/* FIXME: looks like ugly workaround for something */
 156		if (addr >= HIF_MBOX_BASE_ADDR &&
 157		    addr <= HIF_MBOX_END_ADDR)
 158			addr += (HIF_MBOX_WIDTH - len);
 159
 160		/* FIXME: this also looks like ugly workaround */
 161		if (addr == HIF_MBOX0_EXT_BASE_ADDR)
 162			addr += HIF_MBOX0_EXT_WIDTH - len;
 163
 164		if (request & HIF_FIXED_ADDRESS)
 165			ret = sdio_writesb(func, addr, buf, len);
 166		else
 167			ret = sdio_memcpy_toio(func, addr, buf, len);
 168	} else {
 169		if (request & HIF_FIXED_ADDRESS)
 170			ret = sdio_readsb(func, buf, addr, len);
 171		else
 172			ret = sdio_memcpy_fromio(func, buf, addr, len);
 173	}
 174
 175	sdio_release_host(func);
 176
 177	ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
 178		   request & HIF_WRITE ? "wr" : "rd", addr,
 179		   request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
 180	ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
 181
 182	return ret;
 183}
 184
 185static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
 186{
 187	struct bus_request *bus_req;
 188
 189	spin_lock_bh(&ar_sdio->lock);
 190
 191	if (list_empty(&ar_sdio->bus_req_freeq)) {
 192		spin_unlock_bh(&ar_sdio->lock);
 193		return NULL;
 194	}
 195
 196	bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
 197				   struct bus_request, list);
 198	list_del(&bus_req->list);
 199
 200	spin_unlock_bh(&ar_sdio->lock);
 201	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
 202		   __func__, bus_req);
 203
 204	return bus_req;
 205}
 206
 207static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
 208				     struct bus_request *bus_req)
 209{
 210	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
 211		   __func__, bus_req);
 212
 213	spin_lock_bh(&ar_sdio->lock);
 214	list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
 215	spin_unlock_bh(&ar_sdio->lock);
 216}
 217
 218static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
 219					struct mmc_data *data)
 220{
 221	struct scatterlist *sg;
 222	int i;
 223
 224	data->blksz = HIF_MBOX_BLOCK_SIZE;
 225	data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
 226
 227	ath6kl_dbg(ATH6KL_DBG_SCATTER,
 228		   "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
 229		   (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
 230		   data->blksz, data->blocks, scat_req->len,
 231		   scat_req->scat_entries);
 232
 233	data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
 234						    MMC_DATA_READ;
 235
 236	/* fill SG entries */
 237	sg = scat_req->sgentries;
 238	sg_init_table(sg, scat_req->scat_entries);
 239
 240	/* assemble SG list */
 241	for (i = 0; i < scat_req->scat_entries; i++, sg++) {
 242		ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
 243			   i, scat_req->scat_list[i].buf,
 244			   scat_req->scat_list[i].len);
 245
 246		sg_set_buf(sg, scat_req->scat_list[i].buf,
 247			   scat_req->scat_list[i].len);
 248	}
 249
 250	/* set scatter-gather table for request */
 251	data->sg = scat_req->sgentries;
 252	data->sg_len = scat_req->scat_entries;
 253}
 254
 255static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
 256			       struct bus_request *req)
 257{
 258	struct mmc_request mmc_req;
 259	struct mmc_command cmd;
 260	struct mmc_data data;
 261	struct hif_scatter_req *scat_req;
 262	u8 opcode, rw;
 263	int status, len;
 264
 265	scat_req = req->scat_req;
 266
 267	if (scat_req->virt_scat) {
 268		len = scat_req->len;
 269		if (scat_req->req & HIF_BLOCK_BASIS)
 270			len = round_down(len, HIF_MBOX_BLOCK_SIZE);
 271
 272		status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
 273					scat_req->addr, scat_req->virt_dma_buf,
 274					len);
 275		goto scat_complete;
 276	}
 277
 278	memset(&mmc_req, 0, sizeof(struct mmc_request));
 279	memset(&cmd, 0, sizeof(struct mmc_command));
 280	memset(&data, 0, sizeof(struct mmc_data));
 281
 282	ath6kl_sdio_setup_scat_data(scat_req, &data);
 283
 284	opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
 285		  CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
 286
 287	rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
 288
 289	/* Fixup the address so that the last byte will fall on MBOX EOM */
 290	if (scat_req->req & HIF_WRITE) {
 291		if (scat_req->addr == HIF_MBOX_BASE_ADDR)
 292			scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
 293		else
 294			/* Uses extended address range */
 295			scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
 296	}
 297
 298	/* set command argument */
 299	ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
 300				  CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
 301				  data.blocks);
 302
 303	cmd.opcode = SD_IO_RW_EXTENDED;
 304	cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
 305
 306	mmc_req.cmd = &cmd;
 307	mmc_req.data = &data;
 308
 309	sdio_claim_host(ar_sdio->func);
 310
 311	mmc_set_data_timeout(&data, ar_sdio->func->card);
 312	/* synchronous call to process request */
 313	mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
 314
 315	sdio_release_host(ar_sdio->func);
 316
 317	status = cmd.error ? cmd.error : data.error;
 318
 319scat_complete:
 320	scat_req->status = status;
 321
 322	if (scat_req->status)
 323		ath6kl_err("Scatter write request failed:%d\n",
 324			   scat_req->status);
 325
 326	if (scat_req->req & HIF_ASYNCHRONOUS)
 327		scat_req->complete(ar_sdio->ar->htc_target, scat_req);
 328
 329	return status;
 330}
 331
 332static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
 333					   int n_scat_entry, int n_scat_req,
 334					   bool virt_scat)
 335{
 336	struct hif_scatter_req *s_req;
 337	struct bus_request *bus_req;
 338	int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz;
 339	u8 *virt_buf;
 340
 341	scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
 342	scat_req_sz = sizeof(*s_req) + scat_list_sz;
 343
 344	if (!virt_scat)
 345		sg_sz = sizeof(struct scatterlist) * n_scat_entry;
 346	else
 347		buf_sz =  2 * L1_CACHE_BYTES +
 348			  ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
 349
 350	for (i = 0; i < n_scat_req; i++) {
 351		/* allocate the scatter request */
 352		s_req = kzalloc(scat_req_sz, GFP_KERNEL);
 353		if (!s_req)
 354			return -ENOMEM;
 355
 356		if (virt_scat) {
 357			virt_buf = kzalloc(buf_sz, GFP_KERNEL);
 358			if (!virt_buf) {
 359				kfree(s_req);
 360				return -ENOMEM;
 361			}
 362
 363			s_req->virt_dma_buf =
 364				(u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
 365		} else {
 366			/* allocate sglist */
 367			s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
 368
 369			if (!s_req->sgentries) {
 370				kfree(s_req);
 371				return -ENOMEM;
 372			}
 373		}
 374
 375		/* allocate a bus request for this scatter request */
 376		bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
 377		if (!bus_req) {
 378			kfree(s_req->sgentries);
 379			kfree(s_req->virt_dma_buf);
 380			kfree(s_req);
 381			return -ENOMEM;
 382		}
 383
 384		/* assign the scatter request to this bus request */
 385		bus_req->scat_req = s_req;
 386		s_req->busrequest = bus_req;
 387
 388		s_req->virt_scat = virt_scat;
 389
 390		/* add it to the scatter pool */
 391		hif_scatter_req_add(ar_sdio->ar, s_req);
 392	}
 393
 394	return 0;
 395}
 396
 397static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
 398				       u32 len, u32 request)
 399{
 400	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 401	u8  *tbuf = NULL;
 402	int ret;
 403	bool bounced = false;
 404
 405	if (request & HIF_BLOCK_BASIS)
 406		len = round_down(len, HIF_MBOX_BLOCK_SIZE);
 407
 408	if (buf_needs_bounce(buf)) {
 409		if (!ar_sdio->dma_buffer)
 410			return -ENOMEM;
 411		mutex_lock(&ar_sdio->dma_buffer_mutex);
 412		tbuf = ar_sdio->dma_buffer;
 413
 414		if (request & HIF_WRITE)
 415			memcpy(tbuf, buf, len);
 416
 417		bounced = true;
 418	} else
 419		tbuf = buf;
 420
 421	ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
 422	if ((request & HIF_READ) && bounced)
 423		memcpy(buf, tbuf, len);
 424
 425	if (bounced)
 426		mutex_unlock(&ar_sdio->dma_buffer_mutex);
 427
 428	return ret;
 429}
 430
 431static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
 432				      struct bus_request *req)
 433{
 434	if (req->scat_req)
 435		ath6kl_sdio_scat_rw(ar_sdio, req);
 436	else {
 437		void *context;
 438		int status;
 439
 440		status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
 441						     req->buffer, req->length,
 442						     req->request);
 443		context = req->packet;
 444		ath6kl_sdio_free_bus_req(ar_sdio, req);
 445		ath6kl_hif_rw_comp_handler(context, status);
 446	}
 447}
 448
 449static void ath6kl_sdio_write_async_work(struct work_struct *work)
 450{
 451	struct ath6kl_sdio *ar_sdio;
 452	struct bus_request *req, *tmp_req;
 453
 454	ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
 455
 456	spin_lock_bh(&ar_sdio->wr_async_lock);
 457	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
 458		list_del(&req->list);
 459		spin_unlock_bh(&ar_sdio->wr_async_lock);
 460		__ath6kl_sdio_write_async(ar_sdio, req);
 461		spin_lock_bh(&ar_sdio->wr_async_lock);
 462	}
 463	spin_unlock_bh(&ar_sdio->wr_async_lock);
 464}
 465
 466static void ath6kl_sdio_irq_handler(struct sdio_func *func)
 467{
 468	int status;
 469	struct ath6kl_sdio *ar_sdio;
 470
 471	ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
 472
 473	ar_sdio = sdio_get_drvdata(func);
 474	atomic_set(&ar_sdio->irq_handling, 1);
 475	/*
 476	 * Release the host during interrups so we can pick it back up when
 477	 * we process commands.
 478	 */
 479	sdio_release_host(ar_sdio->func);
 480
 481	status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
 482	sdio_claim_host(ar_sdio->func);
 483
 484	atomic_set(&ar_sdio->irq_handling, 0);
 485	wake_up(&ar_sdio->irq_wq);
 486
 487	WARN_ON(status && status != -ECANCELED);
 488}
 489
 490static int ath6kl_sdio_power_on(struct ath6kl *ar)
 491{
 492	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 493	struct sdio_func *func = ar_sdio->func;
 494	int ret = 0;
 495
 496	if (!ar_sdio->is_disabled)
 497		return 0;
 498
 499	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
 500
 501	sdio_claim_host(func);
 502
 503	ret = sdio_enable_func(func);
 504	if (ret) {
 505		ath6kl_err("Unable to enable sdio func: %d)\n", ret);
 506		sdio_release_host(func);
 507		return ret;
 508	}
 509
 510	sdio_release_host(func);
 511
 512	/*
 513	 * Wait for hardware to initialise. It should take a lot less than
 514	 * 10 ms but let's be conservative here.
 515	 */
 516	msleep(10);
 517
 518	ar_sdio->is_disabled = false;
 519
 520	return ret;
 521}
 522
 523static int ath6kl_sdio_power_off(struct ath6kl *ar)
 524{
 525	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 526	int ret;
 527
 528	if (ar_sdio->is_disabled)
 529		return 0;
 530
 531	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
 532
 533	/* Disable the card */
 534	sdio_claim_host(ar_sdio->func);
 535	ret = sdio_disable_func(ar_sdio->func);
 536	sdio_release_host(ar_sdio->func);
 537
 538	if (ret)
 539		return ret;
 540
 541	ar_sdio->is_disabled = true;
 542
 543	return ret;
 544}
 545
 546static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
 547				   u32 length, u32 request,
 548				   struct htc_packet *packet)
 549{
 550	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 551	struct bus_request *bus_req;
 552
 553	bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
 554
 555	if (WARN_ON_ONCE(!bus_req))
 556		return -ENOMEM;
 557
 558	bus_req->address = address;
 559	bus_req->buffer = buffer;
 560	bus_req->length = length;
 561	bus_req->request = request;
 562	bus_req->packet = packet;
 563
 564	spin_lock_bh(&ar_sdio->wr_async_lock);
 565	list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
 566	spin_unlock_bh(&ar_sdio->wr_async_lock);
 567	queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
 568
 569	return 0;
 570}
 571
 572static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
 573{
 574	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 575	int ret;
 576
 577	sdio_claim_host(ar_sdio->func);
 578
 579	/* Register the isr */
 580	ret =  sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
 581	if (ret)
 582		ath6kl_err("Failed to claim sdio irq: %d\n", ret);
 583
 584	sdio_release_host(ar_sdio->func);
 585}
 586
 587static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
 588{
 589	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 590
 591	return !atomic_read(&ar_sdio->irq_handling);
 592}
 593
 594static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
 595{
 596	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 597	int ret;
 598
 599	sdio_claim_host(ar_sdio->func);
 600
 601	if (atomic_read(&ar_sdio->irq_handling)) {
 602		sdio_release_host(ar_sdio->func);
 603
 604		ret = wait_event_interruptible(ar_sdio->irq_wq,
 605					       ath6kl_sdio_is_on_irq(ar));
 606		if (ret)
 607			return;
 608
 609		sdio_claim_host(ar_sdio->func);
 610	}
 611
 612	ret = sdio_release_irq(ar_sdio->func);
 613	if (ret)
 614		ath6kl_err("Failed to release sdio irq: %d\n", ret);
 615
 616	sdio_release_host(ar_sdio->func);
 617}
 618
 619static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
 620{
 621	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 622	struct hif_scatter_req *node = NULL;
 623
 624	spin_lock_bh(&ar_sdio->scat_lock);
 625
 626	if (!list_empty(&ar_sdio->scat_req)) {
 627		node = list_first_entry(&ar_sdio->scat_req,
 628					struct hif_scatter_req, list);
 629		list_del(&node->list);
 630
 631		node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
 632	}
 633
 634	spin_unlock_bh(&ar_sdio->scat_lock);
 635
 636	return node;
 637}
 638
 639static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
 640					struct hif_scatter_req *s_req)
 641{
 642	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 643
 644	spin_lock_bh(&ar_sdio->scat_lock);
 645
 646	list_add_tail(&s_req->list, &ar_sdio->scat_req);
 647
 648	spin_unlock_bh(&ar_sdio->scat_lock);
 649
 650}
 651
 652/* scatter gather read write request */
 653static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
 654					struct hif_scatter_req *scat_req)
 655{
 656	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 657	u32 request = scat_req->req;
 658	int status = 0;
 659
 660	if (!scat_req->len)
 661		return -EINVAL;
 662
 663	ath6kl_dbg(ATH6KL_DBG_SCATTER,
 664		   "hif-scatter: total len: %d scatter entries: %d\n",
 665		   scat_req->len, scat_req->scat_entries);
 666
 667	if (request & HIF_SYNCHRONOUS)
 668		status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
 669	else {
 670		spin_lock_bh(&ar_sdio->wr_async_lock);
 671		list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
 672		spin_unlock_bh(&ar_sdio->wr_async_lock);
 673		queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
 674	}
 675
 676	return status;
 677}
 678
 679/* clean up scatter support */
 680static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
 681{
 682	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 683	struct hif_scatter_req *s_req, *tmp_req;
 684
 685	/* empty the free list */
 686	spin_lock_bh(&ar_sdio->scat_lock);
 687	list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
 688		list_del(&s_req->list);
 689		spin_unlock_bh(&ar_sdio->scat_lock);
 690
 691		/*
 692		 * FIXME: should we also call completion handler with
 693		 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
 694		 * that the packet is properly freed?
 695		 */
 696		if (s_req->busrequest)
 697			ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
 698		kfree(s_req->virt_dma_buf);
 699		kfree(s_req->sgentries);
 700		kfree(s_req);
 701
 702		spin_lock_bh(&ar_sdio->scat_lock);
 703	}
 704	spin_unlock_bh(&ar_sdio->scat_lock);
 705}
 706
 707/* setup of HIF scatter resources */
 708static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
 709{
 710	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 711	struct htc_target *target = ar->htc_target;
 712	int ret;
 713	bool virt_scat = false;
 714
 715	if (ar_sdio->scatter_enabled)
 716		return 0;
 717
 718	ar_sdio->scatter_enabled = true;
 719
 720	/* check if host supports scatter and it meets our requirements */
 721	if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
 722		ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
 723			   ar_sdio->func->card->host->max_segs,
 724			   MAX_SCATTER_ENTRIES_PER_REQ);
 725		virt_scat = true;
 726	}
 727
 728	if (!virt_scat) {
 729		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
 730				MAX_SCATTER_ENTRIES_PER_REQ,
 731				MAX_SCATTER_REQUESTS, virt_scat);
 732
 733		if (!ret) {
 734			ath6kl_dbg(ATH6KL_DBG_BOOT,
 735				   "hif-scatter enabled requests %d entries %d\n",
 736				   MAX_SCATTER_REQUESTS,
 737				   MAX_SCATTER_ENTRIES_PER_REQ);
 738
 739			target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
 740			target->max_xfer_szper_scatreq =
 741						MAX_SCATTER_REQ_TRANSFER_SIZE;
 742		} else {
 743			ath6kl_sdio_cleanup_scatter(ar);
 744			ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
 745		}
 746	}
 747
 748	if (virt_scat || ret) {
 749		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
 750				ATH6KL_SCATTER_ENTRIES_PER_REQ,
 751				ATH6KL_SCATTER_REQS, virt_scat);
 752
 753		if (ret) {
 754			ath6kl_err("failed to alloc virtual scatter resources !\n");
 755			ath6kl_sdio_cleanup_scatter(ar);
 756			return ret;
 757		}
 758
 759		ath6kl_dbg(ATH6KL_DBG_BOOT,
 760			   "virtual scatter enabled requests %d entries %d\n",
 761			   ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
 762
 763		target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
 764		target->max_xfer_szper_scatreq =
 765					ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
 766	}
 767
 768	return 0;
 769}
 770
 771static int ath6kl_sdio_config(struct ath6kl *ar)
 772{
 773	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 774	struct sdio_func *func = ar_sdio->func;
 775	int ret;
 776
 777	sdio_claim_host(func);
 778
 779	if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
 780	    MANUFACTURER_ID_AR6003_BASE) {
 781		/* enable 4-bit ASYNC interrupt on AR6003 or later */
 782		ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
 783						CCCR_SDIO_IRQ_MODE_REG,
 784						SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
 785		if (ret) {
 786			ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
 787				   ret);
 788			goto out;
 789		}
 790
 791		ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
 792	}
 793
 794	/* give us some time to enable, in ms */
 795	func->enable_timeout = 100;
 796
 797	ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
 798	if (ret) {
 799		ath6kl_err("Set sdio block size %d failed: %d)\n",
 800			   HIF_MBOX_BLOCK_SIZE, ret);
 801		goto out;
 802	}
 803
 804out:
 805	sdio_release_host(func);
 806
 807	return ret;
 808}
 809
 810static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
 811{
 812	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 813	struct sdio_func *func = ar_sdio->func;
 814	mmc_pm_flag_t flags;
 815	int ret;
 816
 817	flags = sdio_get_host_pm_caps(func);
 818
 819	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
 820
 821	if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
 822	    !(flags & MMC_PM_KEEP_POWER))
 823		return -EINVAL;
 824
 825	ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
 826	if (ret) {
 827		ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
 828		return ret;
 829	}
 830
 831	/* sdio irq wakes up host */
 832	ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
 833	if (ret)
 834		ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
 835
 836	return ret;
 837}
 838
 839static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
 840{
 841	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 842	struct sdio_func *func = ar_sdio->func;
 843	mmc_pm_flag_t flags;
 844	bool try_deepsleep = false;
 845	int ret;
 846
 847	if (ar->state == ATH6KL_STATE_SCHED_SCAN) {
 848		ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sched scan is in progress\n");
 849
 850		ret = ath6kl_set_sdio_pm_caps(ar);
 851		if (ret)
 852			goto cut_pwr;
 853
 854		ret =  ath6kl_cfg80211_suspend(ar,
 855					       ATH6KL_CFG_SUSPEND_SCHED_SCAN,
 856					       NULL);
 857		if (ret)
 858			goto cut_pwr;
 859
 860		return 0;
 861	}
 862
 863	if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
 864	    (!ar->suspend_mode && wow)) {
 865
 866		ret = ath6kl_set_sdio_pm_caps(ar);
 867		if (ret)
 868			goto cut_pwr;
 869
 870		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
 871		if (ret && ret != -ENOTCONN)
 872			ath6kl_err("wow suspend failed: %d\n", ret);
 873
 874		if (ret &&
 875		    (!ar->wow_suspend_mode ||
 876		     ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
 877			try_deepsleep = true;
 878		else if (ret &&
 879			 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
 880			goto cut_pwr;
 881		if (!ret)
 882			return 0;
 883	}
 884
 885	if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
 886	    !ar->suspend_mode || try_deepsleep) {
 887
 888		flags = sdio_get_host_pm_caps(func);
 889		if (!(flags & MMC_PM_KEEP_POWER))
 890			goto cut_pwr;
 891
 892		ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
 893		if (ret)
 894			goto cut_pwr;
 895
 896		/*
 897		 * Workaround to support Deep Sleep with MSM, set the host pm
 898		 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
 899		 * the sdc2_clock and internally allows MSM to enter
 900		 * TCXO shutdown properly.
 901		 */
 902		if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
 903			ret = sdio_set_host_pm_flags(func,
 904						MMC_PM_WAKE_SDIO_IRQ);
 905			if (ret)
 906				goto cut_pwr;
 907		}
 908
 909		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
 910					      NULL);
 911		if (ret)
 912			goto cut_pwr;
 913
 914		return 0;
 915	}
 916
 917cut_pwr:
 918	if (func->card && func->card->host)
 919		func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
 920
 921	return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
 922}
 923
 924static int ath6kl_sdio_resume(struct ath6kl *ar)
 925{
 926	switch (ar->state) {
 927	case ATH6KL_STATE_OFF:
 928	case ATH6KL_STATE_CUTPOWER:
 929		ath6kl_dbg(ATH6KL_DBG_SUSPEND,
 930			   "sdio resume configuring sdio\n");
 931
 932		/* need to set sdio settings after power is cut from sdio */
 933		ath6kl_sdio_config(ar);
 934		break;
 935
 936	case ATH6KL_STATE_ON:
 937		break;
 938
 939	case ATH6KL_STATE_DEEPSLEEP:
 940		break;
 941
 942	case ATH6KL_STATE_WOW:
 943		break;
 944
 945	case ATH6KL_STATE_SCHED_SCAN:
 946		break;
 947
 948	case ATH6KL_STATE_SUSPENDING:
 949		break;
 950
 951	case ATH6KL_STATE_RESUMING:
 952		break;
 953	}
 954
 955	ath6kl_cfg80211_resume(ar);
 956
 957	return 0;
 958}
 959
 960/* set the window address register (using 4-byte register access ). */
 961static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
 962{
 963	int status;
 964	u8 addr_val[4];
 965	s32 i;
 966
 967	/*
 968	 * Write bytes 1,2,3 of the register to set the upper address bytes,
 969	 * the LSB is written last to initiate the access cycle
 970	 */
 971
 972	for (i = 1; i <= 3; i++) {
 973		/*
 974		 * Fill the buffer with the address byte value we want to
 975		 * hit 4 times.
 976		 */
 977		memset(addr_val, ((u8 *)&addr)[i], 4);
 978
 979		/*
 980		 * Hit each byte of the register address with a 4-byte
 981		 * write operation to the same address, this is a harmless
 982		 * operation.
 983		 */
 984		status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
 985					     4, HIF_WR_SYNC_BYTE_FIX);
 986		if (status)
 987			break;
 988	}
 989
 990	if (status) {
 991		ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
 992			   __func__, addr, reg_addr);
 993		return status;
 994	}
 995
 996	/*
 997	 * Write the address register again, this time write the whole
 998	 * 4-byte value. The effect here is that the LSB write causes the
 999	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
1000	 * effect since we are writing the same values again
1001	 */
1002	status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
1003				     4, HIF_WR_SYNC_BYTE_INC);
1004
1005	if (status) {
1006		ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1007			   __func__, addr, reg_addr);
1008		return status;
1009	}
1010
1011	return 0;
1012}
1013
1014static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1015{
1016	int status;
1017
1018	/* set window register to start read cycle */
1019	status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1020					address);
1021
1022	if (status)
1023		return status;
1024
1025	/* read the data */
1026	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1027				(u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1028	if (status) {
1029		ath6kl_err("%s: failed to read from window data addr\n",
1030			   __func__);
1031		return status;
1032	}
1033
1034	return status;
1035}
1036
1037static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1038				    __le32 data)
1039{
1040	int status;
1041	u32 val = (__force u32) data;
1042
1043	/* set write data */
1044	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1045				(u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1046	if (status) {
1047		ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1048			   __func__, data);
1049		return status;
1050	}
1051
1052	/* set window register, which starts the write cycle */
1053	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1054				      address);
1055}
1056
1057static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1058{
1059	u32 addr;
1060	unsigned long timeout;
1061	int ret;
1062
1063	ar->bmi.cmd_credits = 0;
1064
1065	/* Read the counter register to get the command credits */
1066	addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1067
1068	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1069	while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1070
1071		/*
1072		 * Hit the credit counter with a 4-byte access, the first byte
1073		 * read will hit the counter and cause a decrement, while the
1074		 * remaining 3 bytes has no effect. The rationale behind this
1075		 * is to make all HIF accesses 4-byte aligned.
1076		 */
1077		ret = ath6kl_sdio_read_write_sync(ar, addr,
1078					 (u8 *)&ar->bmi.cmd_credits, 4,
1079					 HIF_RD_SYNC_BYTE_INC);
1080		if (ret) {
1081			ath6kl_err("Unable to decrement the command credit count register: %d\n",
1082				   ret);
1083			return ret;
1084		}
1085
1086		/* The counter is only 8 bits.
1087		 * Ignore anything in the upper 3 bytes
1088		 */
1089		ar->bmi.cmd_credits &= 0xFF;
1090	}
1091
1092	if (!ar->bmi.cmd_credits) {
1093		ath6kl_err("bmi communication timeout\n");
1094		return -ETIMEDOUT;
1095	}
1096
1097	return 0;
1098}
1099
1100static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1101{
1102	unsigned long timeout;
1103	u32 rx_word = 0;
1104	int ret = 0;
1105
1106	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1107	while ((time_before(jiffies, timeout)) && !rx_word) {
1108		ret = ath6kl_sdio_read_write_sync(ar,
1109					RX_LOOKAHEAD_VALID_ADDRESS,
1110					(u8 *)&rx_word, sizeof(rx_word),
1111					HIF_RD_SYNC_BYTE_INC);
1112		if (ret) {
1113			ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1114			return ret;
1115		}
1116
1117		 /* all we really want is one bit */
1118		rx_word &= (1 << ENDPOINT1);
1119	}
1120
1121	if (!rx_word) {
1122		ath6kl_err("bmi_recv_buf FIFO empty\n");
1123		return -EINVAL;
1124	}
1125
1126	return ret;
1127}
1128
1129static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1130{
1131	int ret;
1132	u32 addr;
1133
1134	ret = ath6kl_sdio_bmi_credits(ar);
1135	if (ret)
1136		return ret;
1137
1138	addr = ar->mbox_info.htc_addr;
1139
1140	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1141					  HIF_WR_SYNC_BYTE_INC);
1142	if (ret)
1143		ath6kl_err("unable to send the bmi data to the device\n");
1144
1145	return ret;
1146}
1147
1148static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1149{
1150	int ret;
1151	u32 addr;
1152
1153	/*
1154	 * During normal bootup, small reads may be required.
1155	 * Rather than issue an HIF Read and then wait as the Target
1156	 * adds successive bytes to the FIFO, we wait here until
1157	 * we know that response data is available.
1158	 *
1159	 * This allows us to cleanly timeout on an unexpected
1160	 * Target failure rather than risk problems at the HIF level.
1161	 * In particular, this avoids SDIO timeouts and possibly garbage
1162	 * data on some host controllers.  And on an interconnect
1163	 * such as Compact Flash (as well as some SDIO masters) which
1164	 * does not provide any indication on data timeout, it avoids
1165	 * a potential hang or garbage response.
1166	 *
1167	 * Synchronization is more difficult for reads larger than the
1168	 * size of the MBOX FIFO (128B), because the Target is unable
1169	 * to push the 129th byte of data until AFTER the Host posts an
1170	 * HIF Read and removes some FIFO data.  So for large reads the
1171	 * Host proceeds to post an HIF Read BEFORE all the data is
1172	 * actually available to read.  Fortunately, large BMI reads do
1173	 * not occur in practice -- they're supported for debug/development.
1174	 *
1175	 * So Host/Target BMI synchronization is divided into these cases:
1176	 *  CASE 1: length < 4
1177	 *        Should not happen
1178	 *
1179	 *  CASE 2: 4 <= length <= 128
1180	 *        Wait for first 4 bytes to be in FIFO
1181	 *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1182	 *        a BMI command credit, which indicates that the ENTIRE
1183	 *        response is available in the the FIFO
1184	 *
1185	 *  CASE 3: length > 128
1186	 *        Wait for the first 4 bytes to be in FIFO
1187	 *
1188	 * For most uses, a small timeout should be sufficient and we will
1189	 * usually see a response quickly; but there may be some unusual
1190	 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1191	 * For now, we use an unbounded busy loop while waiting for
1192	 * BMI_EXECUTE.
1193	 *
1194	 * If BMI_EXECUTE ever needs to support longer-latency execution,
1195	 * especially in production, this code needs to be enhanced to sleep
1196	 * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1197	 * a function of Host processor speed.
1198	 */
1199	if (len >= 4) { /* NB: Currently, always true */
1200		ret = ath6kl_bmi_get_rx_lkahd(ar);
1201		if (ret)
1202			return ret;
1203	}
1204
1205	addr = ar->mbox_info.htc_addr;
1206	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1207				  HIF_RD_SYNC_BYTE_INC);
1208	if (ret) {
1209		ath6kl_err("Unable to read the bmi data from the device: %d\n",
1210			   ret);
1211		return ret;
1212	}
1213
1214	return 0;
1215}
1216
1217static void ath6kl_sdio_stop(struct ath6kl *ar)
1218{
1219	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1220	struct bus_request *req, *tmp_req;
1221	void *context;
1222
1223	/* FIXME: make sure that wq is not queued again */
1224
1225	cancel_work_sync(&ar_sdio->wr_async_work);
1226
1227	spin_lock_bh(&ar_sdio->wr_async_lock);
1228
1229	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1230		list_del(&req->list);
1231
1232		if (req->scat_req) {
1233			/* this is a scatter gather request */
1234			req->scat_req->status = -ECANCELED;
1235			req->scat_req->complete(ar_sdio->ar->htc_target,
1236						req->scat_req);
1237		} else {
1238			context = req->packet;
1239			ath6kl_sdio_free_bus_req(ar_sdio, req);
1240			ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1241		}
1242	}
1243
1244	spin_unlock_bh(&ar_sdio->wr_async_lock);
1245
1246	WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1247}
1248
1249static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1250	.read_write_sync = ath6kl_sdio_read_write_sync,
1251	.write_async = ath6kl_sdio_write_async,
1252	.irq_enable = ath6kl_sdio_irq_enable,
1253	.irq_disable = ath6kl_sdio_irq_disable,
1254	.scatter_req_get = ath6kl_sdio_scatter_req_get,
1255	.scatter_req_add = ath6kl_sdio_scatter_req_add,
1256	.enable_scatter = ath6kl_sdio_enable_scatter,
1257	.scat_req_rw = ath6kl_sdio_async_rw_scatter,
1258	.cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1259	.suspend = ath6kl_sdio_suspend,
1260	.resume = ath6kl_sdio_resume,
1261	.diag_read32 = ath6kl_sdio_diag_read32,
1262	.diag_write32 = ath6kl_sdio_diag_write32,
1263	.bmi_read = ath6kl_sdio_bmi_read,
1264	.bmi_write = ath6kl_sdio_bmi_write,
1265	.power_on = ath6kl_sdio_power_on,
1266	.power_off = ath6kl_sdio_power_off,
1267	.stop = ath6kl_sdio_stop,
1268};
1269
1270#ifdef CONFIG_PM_SLEEP
1271
1272/*
1273 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1274 * suspend. We instead follow cfg80211 suspend/resume handlers.
1275 */
1276static int ath6kl_sdio_pm_suspend(struct device *device)
1277{
1278	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1279
1280	return 0;
1281}
1282
1283static int ath6kl_sdio_pm_resume(struct device *device)
1284{
1285	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1286
1287	return 0;
1288}
1289
1290static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1291			 ath6kl_sdio_pm_resume);
1292
1293#define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1294
1295#else
1296
1297#define ATH6KL_SDIO_PM_OPS NULL
1298
1299#endif /* CONFIG_PM_SLEEP */
1300
1301static int ath6kl_sdio_probe(struct sdio_func *func,
1302			     const struct sdio_device_id *id)
1303{
1304	int ret;
1305	struct ath6kl_sdio *ar_sdio;
1306	struct ath6kl *ar;
1307	int count;
1308
1309	ath6kl_dbg(ATH6KL_DBG_BOOT,
1310		   "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1311		   func->num, func->vendor, func->device,
1312		   func->max_blksize, func->cur_blksize);
1313
1314	ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1315	if (!ar_sdio)
1316		return -ENOMEM;
1317
1318	ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1319	if (!ar_sdio->dma_buffer) {
1320		ret = -ENOMEM;
1321		goto err_hif;
1322	}
1323
1324	ar_sdio->func = func;
1325	sdio_set_drvdata(func, ar_sdio);
1326
1327	ar_sdio->id = id;
1328	ar_sdio->is_disabled = true;
1329
1330	spin_lock_init(&ar_sdio->lock);
1331	spin_lock_init(&ar_sdio->scat_lock);
1332	spin_lock_init(&ar_sdio->wr_async_lock);
1333	mutex_init(&ar_sdio->dma_buffer_mutex);
1334
1335	INIT_LIST_HEAD(&ar_sdio->scat_req);
1336	INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1337	INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1338
1339	INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1340
1341	init_waitqueue_head(&ar_sdio->irq_wq);
1342
1343	for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1344		ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1345
1346	ar = ath6kl_core_create(&ar_sdio->func->dev);
1347	if (!ar) {
1348		ath6kl_err("Failed to alloc ath6kl core\n");
1349		ret = -ENOMEM;
1350		goto err_dma;
1351	}
1352
1353	ar_sdio->ar = ar;
1354	ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1355	ar->hif_priv = ar_sdio;
1356	ar->hif_ops = &ath6kl_sdio_ops;
1357	ar->bmi.max_data_size = 256;
1358
1359	ath6kl_sdio_set_mbox_info(ar);
1360
1361	ret = ath6kl_sdio_config(ar);
1362	if (ret) {
1363		ath6kl_err("Failed to config sdio: %d\n", ret);
1364		goto err_core_alloc;
1365	}
1366
1367	ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1368	if (ret) {
1369		ath6kl_err("Failed to init ath6kl core\n");
1370		goto err_core_alloc;
1371	}
1372
1373	return ret;
1374
1375err_core_alloc:
1376	ath6kl_core_destroy(ar_sdio->ar);
1377err_dma:
1378	kfree(ar_sdio->dma_buffer);
1379err_hif:
1380	kfree(ar_sdio);
1381
1382	return ret;
1383}
1384
1385static void ath6kl_sdio_remove(struct sdio_func *func)
1386{
1387	struct ath6kl_sdio *ar_sdio;
1388
1389	ath6kl_dbg(ATH6KL_DBG_BOOT,
1390		   "sdio removed func %d vendor 0x%x device 0x%x\n",
1391		   func->num, func->vendor, func->device);
1392
1393	ar_sdio = sdio_get_drvdata(func);
1394
1395	ath6kl_stop_txrx(ar_sdio->ar);
1396	cancel_work_sync(&ar_sdio->wr_async_work);
1397
1398	ath6kl_core_cleanup(ar_sdio->ar);
1399	ath6kl_core_destroy(ar_sdio->ar);
1400
1401	kfree(ar_sdio->dma_buffer);
1402	kfree(ar_sdio);
1403}
1404
1405static const struct sdio_device_id ath6kl_sdio_devices[] = {
1406	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1407	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1408	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1409	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1410	{},
1411};
1412
1413MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1414
1415static struct sdio_driver ath6kl_sdio_driver = {
1416	.name = "ath6kl_sdio",
1417	.id_table = ath6kl_sdio_devices,
1418	.probe = ath6kl_sdio_probe,
1419	.remove = ath6kl_sdio_remove,
1420	.drv.pm = ATH6KL_SDIO_PM_OPS,
1421};
1422
1423static int __init ath6kl_sdio_init(void)
1424{
1425	int ret;
1426
1427	ret = sdio_register_driver(&ath6kl_sdio_driver);
1428	if (ret)
1429		ath6kl_err("sdio driver registration failed: %d\n", ret);
1430
1431	return ret;
1432}
1433
1434static void __exit ath6kl_sdio_exit(void)
1435{
1436	sdio_unregister_driver(&ath6kl_sdio_driver);
1437}
1438
1439module_init(ath6kl_sdio_init);
1440module_exit(ath6kl_sdio_exit);
1441
1442MODULE_AUTHOR("Atheros Communications, Inc.");
1443MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1444MODULE_LICENSE("Dual BSD/GPL");
1445
1446MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1447MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1448MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1449MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1450MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1451MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1452MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1453MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1454MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1455MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1456MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1457MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1458MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1459MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1460MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1461MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1462MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1463MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1464MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);