Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   5 *
   6 * Permission to use, copy, modify, and distribute this software for any
   7 * purpose with or without fee is hereby granted, provided that the above
   8 * copyright notice and this permission notice appear in all copies.
   9 *
  10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17 *
  18 */
  19
  20/*************************************\
  21* EEPROM access functions and helpers *
  22\*************************************/
  23
 
 
  24#include <linux/slab.h>
  25
  26#include "ath5k.h"
  27#include "reg.h"
  28#include "debug.h"
  29#include "base.h"
  30
  31
  32/******************\
  33* Helper functions *
  34\******************/
  35
  36/*
  37 * Translate binary channel representation in EEPROM to frequency
  38 */
  39static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  40							unsigned int mode)
  41{
  42	u16 val;
  43
  44	if (bin == AR5K_EEPROM_CHANNEL_DIS)
  45		return bin;
  46
  47	if (mode == AR5K_EEPROM_MODE_11A) {
  48		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  49			val = (5 * bin) + 4800;
  50		else
  51			val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  52				(bin * 10) + 5100;
  53	} else {
  54		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  55			val = bin + 2300;
  56		else
  57			val = bin + 2400;
  58	}
  59
  60	return val;
  61}
  62
  63
  64/*********\
  65* Parsers *
  66\*********/
  67
  68/*
  69 * Initialize eeprom & capabilities structs
  70 */
  71static int
  72ath5k_eeprom_init_header(struct ath5k_hw *ah)
  73{
  74	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  75	u16 val;
  76	u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  77
  78	/*
  79	 * Read values from EEPROM and store them in the capability structure
  80	 */
  81	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  82	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  83	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  84	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  85	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  86
  87	/* Return if we have an old EEPROM */
  88	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  89		return 0;
  90
  91	/*
  92	 * Validate the checksum of the EEPROM date. There are some
  93	 * devices with invalid EEPROMs.
  94	 */
  95	AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  96	if (val) {
  97		eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  98			   AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
  99		AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
 100		eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
 101
 102		/*
 103		 * Fail safe check to prevent stupid loops due
 104		 * to busted EEPROMs. XXX: This value is likely too
 105		 * big still, waiting on a better value.
 106		 */
 107		if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
 108			ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
 109				  "%d (0x%04x) max expected: %d (0x%04x)\n",
 110				  eep_max, eep_max,
 111				  3 * AR5K_EEPROM_INFO_MAX,
 112				  3 * AR5K_EEPROM_INFO_MAX);
 113			return -EIO;
 114		}
 115	}
 116
 117	for (cksum = 0, offset = 0; offset < eep_max; offset++) {
 118		AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
 119		cksum ^= val;
 120	}
 121	if (cksum != AR5K_EEPROM_INFO_CKSUM) {
 122		ATH5K_ERR(ah, "Invalid EEPROM "
 123			  "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
 124			  cksum, eep_max,
 125			  eep_max == AR5K_EEPROM_INFO_MAX ?
 126				"default size" : "custom size");
 127		return -EIO;
 128	}
 129
 130	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
 131	    ee_ant_gain);
 132
 133	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
 134		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
 135		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
 136
 137		/* XXX: Don't know which versions include these two */
 138		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
 139
 140		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
 141			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
 142
 143		if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
 144			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
 145			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
 146			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
 147		}
 148	}
 149
 150	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
 151		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
 152		ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
 153		ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
 154
 155		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
 156		ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
 157		ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
 158	}
 159
 160	AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
 161
 162	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
 163		ee->ee_is_hb63 = true;
 164	else
 165		ee->ee_is_hb63 = false;
 166
 167	AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
 168	ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
 169	ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
 170
 171	/* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
 172	 * and enable serdes programming if needed.
 173	 *
 174	 * XXX: Serdes values seem to be fixed so
 175	 * no need to read them here, we write them
 176	 * during ath5k_hw_init */
 177	AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
 178	ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
 179							true : false;
 180
 181	return 0;
 182}
 183
 184
 185/*
 186 * Read antenna infos from eeprom
 187 */
 188static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
 189		unsigned int mode)
 190{
 191	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 192	u32 o = *offset;
 193	u16 val;
 194	int i = 0;
 195
 196	AR5K_EEPROM_READ(o++, val);
 197	ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f;
 198	ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f;
 199	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
 200
 201	AR5K_EEPROM_READ(o++, val);
 202	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
 203	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
 204	ee->ee_ant_control[mode][i++]	= val & 0x3f;
 205
 206	AR5K_EEPROM_READ(o++, val);
 207	ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f;
 208	ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f;
 209	ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f;
 210
 211	AR5K_EEPROM_READ(o++, val);
 212	ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3;
 213	ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f;
 214	ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f;
 215	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
 216
 217	AR5K_EEPROM_READ(o++, val);
 218	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
 219	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
 220	ee->ee_ant_control[mode][i++]	= val & 0x3f;
 221
 222	/* Get antenna switch tables */
 223	ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
 224	    (ee->ee_ant_control[mode][0] << 4);
 225	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
 226	     ee->ee_ant_control[mode][1]	|
 227	    (ee->ee_ant_control[mode][2] << 6)	|
 228	    (ee->ee_ant_control[mode][3] << 12) |
 229	    (ee->ee_ant_control[mode][4] << 18) |
 230	    (ee->ee_ant_control[mode][5] << 24);
 231	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
 232	     ee->ee_ant_control[mode][6]	|
 233	    (ee->ee_ant_control[mode][7] << 6)	|
 234	    (ee->ee_ant_control[mode][8] << 12) |
 235	    (ee->ee_ant_control[mode][9] << 18) |
 236	    (ee->ee_ant_control[mode][10] << 24);
 237
 238	/* return new offset */
 239	*offset = o;
 240
 241	return 0;
 242}
 243
 244/*
 245 * Read supported modes and some mode-specific calibration data
 246 * from eeprom
 247 */
 248static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
 249		unsigned int mode)
 250{
 251	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 252	u32 o = *offset;
 253	u16 val;
 254
 255	ee->ee_n_piers[mode] = 0;
 256	AR5K_EEPROM_READ(o++, val);
 257	ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff);
 258	switch (mode) {
 259	case AR5K_EEPROM_MODE_11A:
 260		ee->ee_ob[mode][3]	= (val >> 5) & 0x7;
 261		ee->ee_db[mode][3]	= (val >> 2) & 0x7;
 262		ee->ee_ob[mode][2]	= (val << 1) & 0x7;
 263
 264		AR5K_EEPROM_READ(o++, val);
 265		ee->ee_ob[mode][2]	|= (val >> 15) & 0x1;
 266		ee->ee_db[mode][2]	= (val >> 12) & 0x7;
 267		ee->ee_ob[mode][1]	= (val >> 9) & 0x7;
 268		ee->ee_db[mode][1]	= (val >> 6) & 0x7;
 269		ee->ee_ob[mode][0]	= (val >> 3) & 0x7;
 270		ee->ee_db[mode][0]	= val & 0x7;
 271		break;
 272	case AR5K_EEPROM_MODE_11G:
 273	case AR5K_EEPROM_MODE_11B:
 274		ee->ee_ob[mode][1]	= (val >> 4) & 0x7;
 275		ee->ee_db[mode][1]	= val & 0x7;
 276		break;
 277	}
 278
 279	AR5K_EEPROM_READ(o++, val);
 280	ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff;
 281	ee->ee_thr_62[mode]		= val & 0xff;
 282
 283	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 284		ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
 285
 286	AR5K_EEPROM_READ(o++, val);
 287	ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff;
 288	ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff;
 289
 290	AR5K_EEPROM_READ(o++, val);
 291	ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff;
 292
 293	if ((val & 0xff) & 0x80)
 294		ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
 295	else
 296		ee->ee_noise_floor_thr[mode] = val & 0xff;
 297
 298	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 299		ee->ee_noise_floor_thr[mode] =
 300		    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
 301
 302	AR5K_EEPROM_READ(o++, val);
 303	ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff;
 304	ee->ee_x_gain[mode]		= (val >> 1) & 0xf;
 305	ee->ee_xpd[mode]		= val & 0x1;
 306
 307	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
 308	    mode != AR5K_EEPROM_MODE_11B)
 309		ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
 310
 311	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
 312		AR5K_EEPROM_READ(o++, val);
 313		ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
 314
 315		if (mode == AR5K_EEPROM_MODE_11A)
 316			ee->ee_xr_power[mode] = val & 0x3f;
 317		else {
 318			/* b_DB_11[bg] and b_OB_11[bg] */
 319			ee->ee_ob[mode][0] = val & 0x7;
 320			ee->ee_db[mode][0] = (val >> 3) & 0x7;
 321		}
 322	}
 323
 324	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
 325		ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
 326		ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
 327	} else {
 328		ee->ee_i_gain[mode] = (val >> 13) & 0x7;
 329
 330		AR5K_EEPROM_READ(o++, val);
 331		ee->ee_i_gain[mode] |= (val << 3) & 0x38;
 332
 333		if (mode == AR5K_EEPROM_MODE_11G) {
 334			ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
 335			if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
 336				ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
 337		}
 338	}
 339
 340	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
 341			mode == AR5K_EEPROM_MODE_11A) {
 342		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
 343		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
 344	}
 345
 346	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
 347		goto done;
 348
 349	/* Note: >= v5 have bg freq piers on another location
 350	 * so these freq piers are ignored for >= v5 (should be 0xff
 351	 * anyway) */
 352	switch (mode) {
 353	case AR5K_EEPROM_MODE_11A:
 354		if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
 355			break;
 356
 357		AR5K_EEPROM_READ(o++, val);
 358		ee->ee_margin_tx_rx[mode] = val & 0x3f;
 359		break;
 360	case AR5K_EEPROM_MODE_11B:
 361		AR5K_EEPROM_READ(o++, val);
 362
 363		ee->ee_pwr_cal_b[0].freq =
 364			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 365		if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 366			ee->ee_n_piers[mode]++;
 367
 368		ee->ee_pwr_cal_b[1].freq =
 369			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 370		if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 371			ee->ee_n_piers[mode]++;
 372
 373		AR5K_EEPROM_READ(o++, val);
 374		ee->ee_pwr_cal_b[2].freq =
 375			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 376		if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 377			ee->ee_n_piers[mode]++;
 378
 379		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 380			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 381		break;
 382	case AR5K_EEPROM_MODE_11G:
 383		AR5K_EEPROM_READ(o++, val);
 384
 385		ee->ee_pwr_cal_g[0].freq =
 386			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 387		if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 388			ee->ee_n_piers[mode]++;
 389
 390		ee->ee_pwr_cal_g[1].freq =
 391			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 392		if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 393			ee->ee_n_piers[mode]++;
 394
 395		AR5K_EEPROM_READ(o++, val);
 396		ee->ee_turbo_max_power[mode] = val & 0x7f;
 397		ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
 398
 399		AR5K_EEPROM_READ(o++, val);
 400		ee->ee_pwr_cal_g[2].freq =
 401			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 402		if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 403			ee->ee_n_piers[mode]++;
 404
 405		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 406			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 407
 408		AR5K_EEPROM_READ(o++, val);
 409		ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
 410		ee->ee_q_cal[mode] = val & 0x1f;
 411
 412		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
 413			AR5K_EEPROM_READ(o++, val);
 414			ee->ee_cck_ofdm_gain_delta = val & 0xff;
 415		}
 416		break;
 417	}
 418
 419	/*
 420	 * Read turbo mode information on newer EEPROM versions
 421	 */
 422	if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
 423		goto done;
 424
 425	switch (mode) {
 426	case AR5K_EEPROM_MODE_11A:
 427		ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
 428
 429		ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
 430		AR5K_EEPROM_READ(o++, val);
 431		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
 432		ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
 433
 434		ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
 435		AR5K_EEPROM_READ(o++, val);
 436		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
 437		ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
 438
 439		if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
 440			ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
 441		break;
 442	case AR5K_EEPROM_MODE_11G:
 443		ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
 444
 445		ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
 446		AR5K_EEPROM_READ(o++, val);
 447		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
 448		ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
 449
 450		ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
 451		AR5K_EEPROM_READ(o++, val);
 452		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
 453		ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
 454		break;
 455	}
 456
 457done:
 458	/* return new offset */
 459	*offset = o;
 460
 461	return 0;
 462}
 463
 464/* Read mode-specific data (except power calibration data) */
 465static int
 466ath5k_eeprom_init_modes(struct ath5k_hw *ah)
 467{
 468	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 469	u32 mode_offset[3];
 470	unsigned int mode;
 471	u32 offset;
 472	int ret;
 473
 474	/*
 475	 * Get values for all modes
 476	 */
 477	mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
 478	mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
 479	mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
 480
 481	ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
 482		AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
 483
 484	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
 485		offset = mode_offset[mode];
 486
 487		ret = ath5k_eeprom_read_ants(ah, &offset, mode);
 488		if (ret)
 489			return ret;
 490
 491		ret = ath5k_eeprom_read_modes(ah, &offset, mode);
 492		if (ret)
 493			return ret;
 494	}
 495
 496	/* override for older eeprom versions for better performance */
 497	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
 498		ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
 499		ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
 500		ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
 501	}
 502
 503	return 0;
 504}
 505
 506/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
 507 * frequency mask) */
 508static inline int
 509ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
 510			struct ath5k_chan_pcal_info *pc, unsigned int mode)
 511{
 512	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 513	int o = *offset;
 514	int i = 0;
 515	u8 freq1, freq2;
 516	u16 val;
 517
 518	ee->ee_n_piers[mode] = 0;
 519	while (i < max) {
 520		AR5K_EEPROM_READ(o++, val);
 521
 522		freq1 = val & 0xff;
 523		if (!freq1)
 524			break;
 525
 526		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 527				freq1, mode);
 528		ee->ee_n_piers[mode]++;
 529
 530		freq2 = (val >> 8) & 0xff;
 531		if (!freq2)
 532			break;
 533
 534		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 535				freq2, mode);
 536		ee->ee_n_piers[mode]++;
 537	}
 538
 539	/* return new offset */
 540	*offset = o;
 541
 542	return 0;
 543}
 544
 545/* Read frequency piers for 802.11a */
 546static int
 547ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
 548{
 549	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 550	struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
 551	int i;
 552	u16 val;
 553	u8 mask;
 554
 555	if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
 556		ath5k_eeprom_read_freq_list(ah, &offset,
 557			AR5K_EEPROM_N_5GHZ_CHAN, pcal,
 558			AR5K_EEPROM_MODE_11A);
 559	} else {
 560		mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
 561
 562		AR5K_EEPROM_READ(offset++, val);
 563		pcal[0].freq  = (val >> 9) & mask;
 564		pcal[1].freq  = (val >> 2) & mask;
 565		pcal[2].freq  = (val << 5) & mask;
 566
 567		AR5K_EEPROM_READ(offset++, val);
 568		pcal[2].freq |= (val >> 11) & 0x1f;
 569		pcal[3].freq  = (val >> 4) & mask;
 570		pcal[4].freq  = (val << 3) & mask;
 571
 572		AR5K_EEPROM_READ(offset++, val);
 573		pcal[4].freq |= (val >> 13) & 0x7;
 574		pcal[5].freq  = (val >> 6) & mask;
 575		pcal[6].freq  = (val << 1) & mask;
 576
 577		AR5K_EEPROM_READ(offset++, val);
 578		pcal[6].freq |= (val >> 15) & 0x1;
 579		pcal[7].freq  = (val >> 8) & mask;
 580		pcal[8].freq  = (val >> 1) & mask;
 581		pcal[9].freq  = (val << 6) & mask;
 582
 583		AR5K_EEPROM_READ(offset++, val);
 584		pcal[9].freq |= (val >> 10) & 0x3f;
 585
 586		/* Fixed number of piers */
 587		ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
 588
 589		for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
 590			pcal[i].freq = ath5k_eeprom_bin2freq(ee,
 591				pcal[i].freq, AR5K_EEPROM_MODE_11A);
 592		}
 593	}
 594
 595	return 0;
 596}
 597
 598/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
 599static inline int
 600ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
 601{
 602	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 603	struct ath5k_chan_pcal_info *pcal;
 604
 605	switch (mode) {
 606	case AR5K_EEPROM_MODE_11B:
 607		pcal = ee->ee_pwr_cal_b;
 608		break;
 609	case AR5K_EEPROM_MODE_11G:
 610		pcal = ee->ee_pwr_cal_g;
 611		break;
 612	default:
 613		return -EINVAL;
 614	}
 615
 616	ath5k_eeprom_read_freq_list(ah, &offset,
 617		AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
 618		mode);
 619
 620	return 0;
 621}
 622
 623
 624/*
 625 * Read power calibration for RF5111 chips
 626 *
 627 * For RF5111 we have an XPD -eXternal Power Detector- curve
 628 * for each calibrated channel. Each curve has 0,5dB Power steps
 629 * on x axis and PCDAC steps (offsets) on y axis and looks like an
 630 * exponential function. To recreate the curve we read 11 points
 631 * here and interpolate later.
 632 */
 633
 634/* Used to match PCDAC steps with power values on RF5111 chips
 635 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
 636 * steps that match with the power values we read from eeprom. On
 637 * older eeprom versions (< 3.2) these steps are equally spaced at
 638 * 10% of the pcdac curve -until the curve reaches its maximum-
 639 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
 640 * these 11 steps are spaced in a different way. This function returns
 641 * the pcdac steps based on eeprom version and curve min/max so that we
 642 * can have pcdac/pwr points.
 643 */
 644static inline void
 645ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
 646{
 647	static const u16 intercepts3[] = {
 648		0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
 649	};
 650	static const u16 intercepts3_2[] = {
 651		0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
 652	};
 653	const u16 *ip;
 654	int i;
 655
 656	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
 657		ip = intercepts3_2;
 658	else
 659		ip = intercepts3;
 660
 661	for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
 662		vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
 663}
 664
 665static int
 666ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
 667{
 668	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 669	struct ath5k_chan_pcal_info *chinfo;
 670	u8 pier, pdg;
 671
 672	switch (mode) {
 673	case AR5K_EEPROM_MODE_11A:
 674		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 675			return 0;
 676		chinfo = ee->ee_pwr_cal_a;
 677		break;
 678	case AR5K_EEPROM_MODE_11B:
 679		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
 680			return 0;
 681		chinfo = ee->ee_pwr_cal_b;
 682		break;
 683	case AR5K_EEPROM_MODE_11G:
 684		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 685			return 0;
 686		chinfo = ee->ee_pwr_cal_g;
 687		break;
 688	default:
 689		return -EINVAL;
 690	}
 691
 692	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 693		if (!chinfo[pier].pd_curves)
 694			continue;
 695
 696		for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
 697			struct ath5k_pdgain_info *pd =
 698					&chinfo[pier].pd_curves[pdg];
 699
 700			kfree(pd->pd_step);
 701			kfree(pd->pd_pwr);
 702		}
 703
 704		kfree(chinfo[pier].pd_curves);
 705	}
 706
 707	return 0;
 708}
 709
 710/* Convert RF5111 specific data to generic raw data
 711 * used by interpolation code */
 712static int
 713ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
 714				struct ath5k_chan_pcal_info *chinfo)
 715{
 716	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 717	struct ath5k_chan_pcal_info_rf5111 *pcinfo;
 718	struct ath5k_pdgain_info *pd;
 719	u8 pier, point, idx;
 720	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 721
 722	/* Fill raw data for each calibration pier */
 723	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 724
 725		pcinfo = &chinfo[pier].rf5111_info;
 726
 727		/* Allocate pd_curves for this cal pier */
 728		chinfo[pier].pd_curves =
 729			kcalloc(AR5K_EEPROM_N_PD_CURVES,
 730				sizeof(struct ath5k_pdgain_info),
 731				GFP_KERNEL);
 732
 733		if (!chinfo[pier].pd_curves)
 734			goto err_out;
 735
 736		/* Only one curve for RF5111
 737		 * find out which one and place
 738		 * in pd_curves.
 739		 * Note: ee_x_gain is reversed here */
 740		for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
 741
 742			if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
 743				pdgain_idx[0] = idx;
 744				break;
 745			}
 746		}
 747
 748		ee->ee_pd_gains[mode] = 1;
 749
 750		pd = &chinfo[pier].pd_curves[idx];
 751
 752		pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
 753
 754		/* Allocate pd points for this curve */
 755		pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
 756					sizeof(u8), GFP_KERNEL);
 757		if (!pd->pd_step)
 758			goto err_out;
 759
 760		pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
 761					sizeof(s16), GFP_KERNEL);
 762		if (!pd->pd_pwr)
 763			goto err_out;
 764
 765		/* Fill raw dataset
 766		 * (convert power to 0.25dB units
 767		 * for RF5112 compatibility) */
 768		for (point = 0; point < pd->pd_points; point++) {
 769
 770			/* Absolute values */
 771			pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
 772
 773			/* Already sorted */
 774			pd->pd_step[point] = pcinfo->pcdac[point];
 775		}
 776
 777		/* Set min/max pwr */
 778		chinfo[pier].min_pwr = pd->pd_pwr[0];
 779		chinfo[pier].max_pwr = pd->pd_pwr[10];
 780
 781	}
 782
 783	return 0;
 784
 785err_out:
 786	ath5k_eeprom_free_pcal_info(ah, mode);
 787	return -ENOMEM;
 788}
 789
 790/* Parse EEPROM data */
 791static int
 792ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
 793{
 794	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 795	struct ath5k_chan_pcal_info *pcal;
 796	int offset, ret;
 797	int i;
 798	u16 val;
 799
 800	offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 801	switch (mode) {
 802	case AR5K_EEPROM_MODE_11A:
 803		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 804			return 0;
 805
 806		ret = ath5k_eeprom_init_11a_pcal_freq(ah,
 807			offset + AR5K_EEPROM_GROUP1_OFFSET);
 808		if (ret < 0)
 809			return ret;
 810
 811		offset += AR5K_EEPROM_GROUP2_OFFSET;
 812		pcal = ee->ee_pwr_cal_a;
 813		break;
 814	case AR5K_EEPROM_MODE_11B:
 815		if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
 816		    !AR5K_EEPROM_HDR_11G(ee->ee_header))
 817			return 0;
 818
 819		pcal = ee->ee_pwr_cal_b;
 820		offset += AR5K_EEPROM_GROUP3_OFFSET;
 821
 822		/* fixed piers */
 823		pcal[0].freq = 2412;
 824		pcal[1].freq = 2447;
 825		pcal[2].freq = 2484;
 826		ee->ee_n_piers[mode] = 3;
 827		break;
 828	case AR5K_EEPROM_MODE_11G:
 829		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 830			return 0;
 831
 832		pcal = ee->ee_pwr_cal_g;
 833		offset += AR5K_EEPROM_GROUP4_OFFSET;
 834
 835		/* fixed piers */
 836		pcal[0].freq = 2312;
 837		pcal[1].freq = 2412;
 838		pcal[2].freq = 2484;
 839		ee->ee_n_piers[mode] = 3;
 840		break;
 841	default:
 842		return -EINVAL;
 843	}
 844
 845	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
 846		struct ath5k_chan_pcal_info_rf5111 *cdata =
 847			&pcal[i].rf5111_info;
 848
 849		AR5K_EEPROM_READ(offset++, val);
 850		cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
 851		cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
 852		cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
 853
 854		AR5K_EEPROM_READ(offset++, val);
 855		cdata->pwr[0] |= ((val >> 14) & 0x3);
 856		cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 857		cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 858		cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
 859
 860		AR5K_EEPROM_READ(offset++, val);
 861		cdata->pwr[3] |= ((val >> 12) & 0xf);
 862		cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
 863		cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
 864
 865		AR5K_EEPROM_READ(offset++, val);
 866		cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
 867		cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
 868		cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
 869
 870		AR5K_EEPROM_READ(offset++, val);
 871		cdata->pwr[8] |= ((val >> 14) & 0x3);
 872		cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 873		cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 874
 875		ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
 876			cdata->pcdac_max, cdata->pcdac);
 877	}
 878
 879	return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
 880}
 881
 882
 883/*
 884 * Read power calibration for RF5112 chips
 885 *
 886 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
 887 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
 888 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
 889 * power steps on x axis and PCDAC steps on y axis and looks like a
 890 * linear function. To recreate the curve and pass the power values
 891 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
 892 * and 3 points for xpd 3 (higher gain -> lower power) here and
 893 * interpolate later.
 894 *
 895 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
 896 */
 897
 898/* Convert RF5112 specific data to generic raw data
 899 * used by interpolation code */
 900static int
 901ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
 902				struct ath5k_chan_pcal_info *chinfo)
 903{
 904	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 905	struct ath5k_chan_pcal_info_rf5112 *pcinfo;
 906	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 907	unsigned int pier, pdg, point;
 908
 909	/* Fill raw data for each calibration pier */
 910	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 911
 912		pcinfo = &chinfo[pier].rf5112_info;
 913
 914		/* Allocate pd_curves for this cal pier */
 915		chinfo[pier].pd_curves =
 916				kcalloc(AR5K_EEPROM_N_PD_CURVES,
 917					sizeof(struct ath5k_pdgain_info),
 918					GFP_KERNEL);
 919
 920		if (!chinfo[pier].pd_curves)
 921			goto err_out;
 922
 923		/* Fill pd_curves */
 924		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
 925
 926			u8 idx = pdgain_idx[pdg];
 927			struct ath5k_pdgain_info *pd =
 928					&chinfo[pier].pd_curves[idx];
 929
 930			/* Lowest gain curve (max power) */
 931			if (pdg == 0) {
 932				/* One more point for better accuracy */
 933				pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
 934
 935				/* Allocate pd points for this curve */
 936				pd->pd_step = kcalloc(pd->pd_points,
 937						sizeof(u8), GFP_KERNEL);
 938
 939				if (!pd->pd_step)
 940					goto err_out;
 941
 942				pd->pd_pwr = kcalloc(pd->pd_points,
 943						sizeof(s16), GFP_KERNEL);
 944
 945				if (!pd->pd_pwr)
 946					goto err_out;
 947
 948				/* Fill raw dataset
 949				 * (all power levels are in 0.25dB units) */
 950				pd->pd_step[0] = pcinfo->pcdac_x0[0];
 951				pd->pd_pwr[0] = pcinfo->pwr_x0[0];
 952
 953				for (point = 1; point < pd->pd_points;
 954				point++) {
 955					/* Absolute values */
 956					pd->pd_pwr[point] =
 957						pcinfo->pwr_x0[point];
 958
 959					/* Deltas */
 960					pd->pd_step[point] =
 961						pd->pd_step[point - 1] +
 962						pcinfo->pcdac_x0[point];
 963				}
 964
 965				/* Set min power for this frequency */
 966				chinfo[pier].min_pwr = pd->pd_pwr[0];
 967
 968			/* Highest gain curve (min power) */
 969			} else if (pdg == 1) {
 970
 971				pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
 972
 973				/* Allocate pd points for this curve */
 974				pd->pd_step = kcalloc(pd->pd_points,
 975						sizeof(u8), GFP_KERNEL);
 976
 977				if (!pd->pd_step)
 978					goto err_out;
 979
 980				pd->pd_pwr = kcalloc(pd->pd_points,
 981						sizeof(s16), GFP_KERNEL);
 982
 983				if (!pd->pd_pwr)
 984					goto err_out;
 985
 986				/* Fill raw dataset
 987				 * (all power levels are in 0.25dB units) */
 988				for (point = 0; point < pd->pd_points;
 989				point++) {
 990					/* Absolute values */
 991					pd->pd_pwr[point] =
 992						pcinfo->pwr_x3[point];
 993
 994					/* Fixed points */
 995					pd->pd_step[point] =
 996						pcinfo->pcdac_x3[point];
 997				}
 998
 999				/* Since we have a higher gain curve
1000				 * override min power */
1001				chinfo[pier].min_pwr = pd->pd_pwr[0];
1002			}
1003		}
1004	}
1005
1006	return 0;
1007
1008err_out:
1009	ath5k_eeprom_free_pcal_info(ah, mode);
1010	return -ENOMEM;
1011}
1012
1013/* Parse EEPROM data */
1014static int
1015ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1016{
1017	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1018	struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1019	struct ath5k_chan_pcal_info *gen_chan_info;
1020	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1021	u32 offset;
1022	u8 i, c;
1023	u16 val;
1024	u8 pd_gains = 0;
1025
1026	/* Count how many curves we have and
1027	 * identify them (which one of the 4
1028	 * available curves we have on each count).
1029	 * Curves are stored from lower (x0) to
1030	 * higher (x3) gain */
1031	for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1032		/* ee_x_gain[mode] is x gain mask */
1033		if ((ee->ee_x_gain[mode] >> i) & 0x1)
1034			pdgain_idx[pd_gains++] = i;
1035	}
1036	ee->ee_pd_gains[mode] = pd_gains;
1037
1038	if (pd_gains == 0 || pd_gains > 2)
1039		return -EINVAL;
1040
1041	switch (mode) {
1042	case AR5K_EEPROM_MODE_11A:
1043		/*
1044		 * Read 5GHz EEPROM channels
1045		 */
1046		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1047		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1048
1049		offset += AR5K_EEPROM_GROUP2_OFFSET;
1050		gen_chan_info = ee->ee_pwr_cal_a;
1051		break;
1052	case AR5K_EEPROM_MODE_11B:
1053		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1054		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1055			offset += AR5K_EEPROM_GROUP3_OFFSET;
1056
1057		/* NB: frequency piers parsed during mode init */
1058		gen_chan_info = ee->ee_pwr_cal_b;
1059		break;
1060	case AR5K_EEPROM_MODE_11G:
1061		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1062		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1063			offset += AR5K_EEPROM_GROUP4_OFFSET;
1064		else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1065			offset += AR5K_EEPROM_GROUP2_OFFSET;
1066
1067		/* NB: frequency piers parsed during mode init */
1068		gen_chan_info = ee->ee_pwr_cal_g;
1069		break;
1070	default:
1071		return -EINVAL;
1072	}
1073
1074	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1075		chan_pcal_info = &gen_chan_info[i].rf5112_info;
1076
1077		/* Power values in quarter dB
1078		 * for the lower xpd gain curve
1079		 * (0 dBm -> higher output power) */
1080		for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1081			AR5K_EEPROM_READ(offset++, val);
1082			chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1083			chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1084		}
1085
1086		/* PCDAC steps
1087		 * corresponding to the above power
1088		 * measurements */
1089		AR5K_EEPROM_READ(offset++, val);
1090		chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1091		chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1092		chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1093
1094		/* Power values in quarter dB
1095		 * for the higher xpd gain curve
1096		 * (18 dBm -> lower output power) */
1097		AR5K_EEPROM_READ(offset++, val);
1098		chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1099		chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1100
1101		AR5K_EEPROM_READ(offset++, val);
1102		chan_pcal_info->pwr_x3[2] = (val & 0xff);
1103
1104		/* PCDAC steps
1105		 * corresponding to the above power
1106		 * measurements (fixed) */
1107		chan_pcal_info->pcdac_x3[0] = 20;
1108		chan_pcal_info->pcdac_x3[1] = 35;
1109		chan_pcal_info->pcdac_x3[2] = 63;
1110
1111		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1112			chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1113
1114			/* Last xpd0 power level is also channel maximum */
1115			gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1116		} else {
1117			chan_pcal_info->pcdac_x0[0] = 1;
1118			gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1119		}
1120
1121	}
1122
1123	return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1124}
1125
1126
1127/*
1128 * Read power calibration for RF2413 chips
1129 *
1130 * For RF2413 we have a Power to PDDAC table (Power Detector)
1131 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1132 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1133 * axis and looks like an exponential function like the RF5111 curve.
1134 *
1135 * To recreate the curves we read here the points and interpolate
1136 * later. Note that in most cases only 2 (higher and lower) curves are
1137 * used (like RF5112) but vendors have the opportunity to include all
1138 * 4 curves on eeprom. The final curve (higher power) has an extra
1139 * point for better accuracy like RF5112.
1140 */
1141
1142/* For RF2413 power calibration data doesn't start on a fixed location and
1143 * if a mode is not supported, its section is missing -not zeroed-.
1144 * So we need to calculate the starting offset for each section by using
1145 * these two functions */
1146
1147/* Return the size of each section based on the mode and the number of pd
1148 * gains available (maximum 4). */
1149static inline unsigned int
1150ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1151{
1152	static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1153	unsigned int sz;
1154
1155	sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1156	sz *= ee->ee_n_piers[mode];
1157
1158	return sz;
1159}
1160
1161/* Return the starting offset for a section based on the modes supported
1162 * and each section's size. */
1163static unsigned int
1164ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1165{
1166	u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1167
1168	switch (mode) {
1169	case AR5K_EEPROM_MODE_11G:
1170		if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1171			offset += ath5k_pdgains_size_2413(ee,
1172					AR5K_EEPROM_MODE_11B) +
1173					AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1174		/* fall through */
1175	case AR5K_EEPROM_MODE_11B:
1176		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1177			offset += ath5k_pdgains_size_2413(ee,
1178					AR5K_EEPROM_MODE_11A) +
1179					AR5K_EEPROM_N_5GHZ_CHAN / 2;
1180		/* fall through */
1181	case AR5K_EEPROM_MODE_11A:
1182		break;
1183	default:
1184		break;
1185	}
1186
1187	return offset;
1188}
1189
1190/* Convert RF2413 specific data to generic raw data
1191 * used by interpolation code */
1192static int
1193ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1194				struct ath5k_chan_pcal_info *chinfo)
1195{
1196	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1197	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1198	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1199	unsigned int pier, pdg, point;
1200
1201	/* Fill raw data for each calibration pier */
1202	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1203
1204		pcinfo = &chinfo[pier].rf2413_info;
1205
1206		/* Allocate pd_curves for this cal pier */
1207		chinfo[pier].pd_curves =
1208				kcalloc(AR5K_EEPROM_N_PD_CURVES,
1209					sizeof(struct ath5k_pdgain_info),
1210					GFP_KERNEL);
1211
1212		if (!chinfo[pier].pd_curves)
1213			goto err_out;
1214
1215		/* Fill pd_curves */
1216		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1217
1218			u8 idx = pdgain_idx[pdg];
1219			struct ath5k_pdgain_info *pd =
1220					&chinfo[pier].pd_curves[idx];
1221
1222			/* One more point for the highest power
1223			 * curve (lowest gain) */
1224			if (pdg == ee->ee_pd_gains[mode] - 1)
1225				pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1226			else
1227				pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1228
1229			/* Allocate pd points for this curve */
1230			pd->pd_step = kcalloc(pd->pd_points,
1231					sizeof(u8), GFP_KERNEL);
1232
1233			if (!pd->pd_step)
1234				goto err_out;
1235
1236			pd->pd_pwr = kcalloc(pd->pd_points,
1237					sizeof(s16), GFP_KERNEL);
1238
1239			if (!pd->pd_pwr)
1240				goto err_out;
1241
1242			/* Fill raw dataset
1243			 * convert all pwr levels to
1244			 * quarter dB for RF5112 compatibility */
1245			pd->pd_step[0] = pcinfo->pddac_i[pdg];
1246			pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1247
1248			for (point = 1; point < pd->pd_points; point++) {
1249
1250				pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1251					2 * pcinfo->pwr[pdg][point - 1];
1252
1253				pd->pd_step[point] = pd->pd_step[point - 1] +
1254						pcinfo->pddac[pdg][point - 1];
1255
1256			}
1257
1258			/* Highest gain curve -> min power */
1259			if (pdg == 0)
1260				chinfo[pier].min_pwr = pd->pd_pwr[0];
1261
1262			/* Lowest gain curve -> max power */
1263			if (pdg == ee->ee_pd_gains[mode] - 1)
1264				chinfo[pier].max_pwr =
1265					pd->pd_pwr[pd->pd_points - 1];
1266		}
1267	}
1268
1269	return 0;
1270
1271err_out:
1272	ath5k_eeprom_free_pcal_info(ah, mode);
1273	return -ENOMEM;
1274}
1275
1276/* Parse EEPROM data */
1277static int
1278ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1279{
1280	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1281	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1282	struct ath5k_chan_pcal_info *chinfo;
1283	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1284	u32 offset;
1285	int idx, i;
1286	u16 val;
1287	u8 pd_gains = 0;
1288
1289	/* Count how many curves we have and
1290	 * identify them (which one of the 4
1291	 * available curves we have on each count).
1292	 * Curves are stored from higher to
1293	 * lower gain so we go backwards */
1294	for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1295		/* ee_x_gain[mode] is x gain mask */
1296		if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1297			pdgain_idx[pd_gains++] = idx;
1298
1299	}
1300	ee->ee_pd_gains[mode] = pd_gains;
1301
1302	if (pd_gains == 0)
1303		return -EINVAL;
1304
1305	offset = ath5k_cal_data_offset_2413(ee, mode);
1306	switch (mode) {
1307	case AR5K_EEPROM_MODE_11A:
1308		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1309			return 0;
1310
1311		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1312		offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1313		chinfo = ee->ee_pwr_cal_a;
1314		break;
1315	case AR5K_EEPROM_MODE_11B:
1316		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1317			return 0;
1318
1319		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1320		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1321		chinfo = ee->ee_pwr_cal_b;
1322		break;
1323	case AR5K_EEPROM_MODE_11G:
1324		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1325			return 0;
1326
1327		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1328		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1329		chinfo = ee->ee_pwr_cal_g;
1330		break;
1331	default:
1332		return -EINVAL;
1333	}
1334
1335	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1336		pcinfo = &chinfo[i].rf2413_info;
1337
1338		/*
1339		 * Read pwr_i, pddac_i and the first
1340		 * 2 pd points (pwr, pddac)
1341		 */
1342		AR5K_EEPROM_READ(offset++, val);
1343		pcinfo->pwr_i[0] = val & 0x1f;
1344		pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1345		pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1346
1347		AR5K_EEPROM_READ(offset++, val);
1348		pcinfo->pddac[0][0] = val & 0x3f;
1349		pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1350		pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1351
1352		AR5K_EEPROM_READ(offset++, val);
1353		pcinfo->pwr[0][2] = val & 0xf;
1354		pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1355
1356		pcinfo->pwr[0][3] = 0;
1357		pcinfo->pddac[0][3] = 0;
1358
1359		if (pd_gains > 1) {
1360			/*
1361			 * Pd gain 0 is not the last pd gain
1362			 * so it only has 2 pd points.
1363			 * Continue with pd gain 1.
1364			 */
1365			pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1366
1367			pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1368			AR5K_EEPROM_READ(offset++, val);
1369			pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1370
1371			pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1372			pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1373
1374			AR5K_EEPROM_READ(offset++, val);
1375			pcinfo->pwr[1][1] = val & 0xf;
1376			pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1377			pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1378
1379			pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1380			AR5K_EEPROM_READ(offset++, val);
1381			pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1382
1383			pcinfo->pwr[1][3] = 0;
1384			pcinfo->pddac[1][3] = 0;
1385		} else if (pd_gains == 1) {
1386			/*
1387			 * Pd gain 0 is the last one so
1388			 * read the extra point.
1389			 */
1390			pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1391
1392			pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1393			AR5K_EEPROM_READ(offset++, val);
1394			pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1395		}
1396
1397		/*
1398		 * Proceed with the other pd_gains
1399		 * as above.
1400		 */
1401		if (pd_gains > 2) {
1402			pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1403			pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1404
1405			AR5K_EEPROM_READ(offset++, val);
1406			pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1407			pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1408			pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1409
1410			pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1411			AR5K_EEPROM_READ(offset++, val);
1412			pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1413
1414			pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1415			pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1416
1417			pcinfo->pwr[2][3] = 0;
1418			pcinfo->pddac[2][3] = 0;
1419		} else if (pd_gains == 2) {
1420			pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1421			pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1422		}
1423
1424		if (pd_gains > 3) {
1425			pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1426			AR5K_EEPROM_READ(offset++, val);
1427			pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1428
1429			pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1430			pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1431			pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1432
1433			AR5K_EEPROM_READ(offset++, val);
1434			pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1435			pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1436			pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1437
1438			pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1439			AR5K_EEPROM_READ(offset++, val);
1440			pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1441
1442			pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1443			pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1444
1445			pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1446			AR5K_EEPROM_READ(offset++, val);
1447			pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1448		} else if (pd_gains == 3) {
1449			pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1450			AR5K_EEPROM_READ(offset++, val);
1451			pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1452
1453			pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1454		}
1455	}
1456
1457	return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1458}
1459
1460
1461/*
1462 * Read per rate target power (this is the maximum tx power
1463 * supported by the card). This info is used when setting
1464 * tx power, no matter the channel.
1465 *
1466 * This also works for v5 EEPROMs.
1467 */
1468static int
1469ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1470{
1471	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1472	struct ath5k_rate_pcal_info *rate_pcal_info;
1473	u8 *rate_target_pwr_num;
1474	u32 offset;
1475	u16 val;
1476	int i;
1477
1478	offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1479	rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1480	switch (mode) {
1481	case AR5K_EEPROM_MODE_11A:
1482		offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1483		rate_pcal_info = ee->ee_rate_tpwr_a;
1484		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1485		break;
1486	case AR5K_EEPROM_MODE_11B:
1487		offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1488		rate_pcal_info = ee->ee_rate_tpwr_b;
1489		ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1490		break;
1491	case AR5K_EEPROM_MODE_11G:
1492		offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1493		rate_pcal_info = ee->ee_rate_tpwr_g;
1494		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1495		break;
1496	default:
1497		return -EINVAL;
1498	}
1499
1500	/* Different freq mask for older eeproms (<= v3.2) */
1501	if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1502		for (i = 0; i < (*rate_target_pwr_num); i++) {
1503			AR5K_EEPROM_READ(offset++, val);
1504			rate_pcal_info[i].freq =
1505			    ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1506
1507			rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1508			rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1509
1510			AR5K_EEPROM_READ(offset++, val);
1511
1512			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1513			    val == 0) {
1514				(*rate_target_pwr_num) = i;
1515				break;
1516			}
1517
1518			rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1519			rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1520			rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1521		}
1522	} else {
1523		for (i = 0; i < (*rate_target_pwr_num); i++) {
1524			AR5K_EEPROM_READ(offset++, val);
1525			rate_pcal_info[i].freq =
1526			    ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1527
1528			rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1529			rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1530
1531			AR5K_EEPROM_READ(offset++, val);
1532
1533			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1534			    val == 0) {
1535				(*rate_target_pwr_num) = i;
1536				break;
1537			}
1538
1539			rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1540			rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1541			rate_pcal_info[i].target_power_54 = (val & 0x3f);
1542		}
1543	}
1544
1545	return 0;
1546}
1547
1548
1549/*
1550 * Read per channel calibration info from EEPROM
1551 *
1552 * This info is used to calibrate the baseband power table. Imagine
1553 * that for each channel there is a power curve that's hw specific
1554 * (depends on amplifier etc) and we try to "correct" this curve using
1555 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1556 * it can use accurate power values when setting tx power (takes amplifier's
1557 * performance on each channel into account).
1558 *
1559 * EEPROM provides us with the offsets for some pre-calibrated channels
1560 * and we have to interpolate to create the full table for these channels and
1561 * also the table for any channel.
1562 */
1563static int
1564ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1565{
1566	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1567	int (*read_pcal)(struct ath5k_hw *hw, int mode);
1568	int mode;
1569	int err;
1570
1571	if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1572			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1573		read_pcal = ath5k_eeprom_read_pcal_info_5112;
1574	else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1575			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1576		read_pcal = ath5k_eeprom_read_pcal_info_2413;
1577	else
1578		read_pcal = ath5k_eeprom_read_pcal_info_5111;
1579
1580
1581	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1582	mode++) {
1583		err = read_pcal(ah, mode);
1584		if (err)
1585			return err;
1586
1587		err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1588		if (err < 0)
1589			return err;
1590	}
1591
1592	return 0;
1593}
1594
1595/* Read conformance test limits used for regulatory control */
1596static int
1597ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1598{
1599	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1600	struct ath5k_edge_power *rep;
1601	unsigned int fmask, pmask;
1602	unsigned int ctl_mode;
1603	int i, j;
1604	u32 offset;
1605	u16 val;
1606
1607	pmask = AR5K_EEPROM_POWER_M;
1608	fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1609	offset = AR5K_EEPROM_CTL(ee->ee_version);
1610	ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1611	for (i = 0; i < ee->ee_ctls; i += 2) {
1612		AR5K_EEPROM_READ(offset++, val);
1613		ee->ee_ctl[i] = (val >> 8) & 0xff;
1614		ee->ee_ctl[i + 1] = val & 0xff;
1615	}
1616
1617	offset = AR5K_EEPROM_GROUP8_OFFSET;
1618	if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1619		offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1620			AR5K_EEPROM_GROUP5_OFFSET;
1621	else
1622		offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1623
1624	rep = ee->ee_ctl_pwr;
1625	for (i = 0; i < ee->ee_ctls; i++) {
1626		switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1627		case AR5K_CTL_11A:
1628		case AR5K_CTL_TURBO:
1629			ctl_mode = AR5K_EEPROM_MODE_11A;
1630			break;
1631		default:
1632			ctl_mode = AR5K_EEPROM_MODE_11G;
1633			break;
1634		}
1635		if (ee->ee_ctl[i] == 0) {
1636			if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1637				offset += 8;
1638			else
1639				offset += 7;
1640			rep += AR5K_EEPROM_N_EDGES;
1641			continue;
1642		}
1643		if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1644			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1645				AR5K_EEPROM_READ(offset++, val);
1646				rep[j].freq = (val >> 8) & fmask;
1647				rep[j + 1].freq = val & fmask;
1648			}
1649			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1650				AR5K_EEPROM_READ(offset++, val);
1651				rep[j].edge = (val >> 8) & pmask;
1652				rep[j].flag = (val >> 14) & 1;
1653				rep[j + 1].edge = val & pmask;
1654				rep[j + 1].flag = (val >> 6) & 1;
1655			}
1656		} else {
1657			AR5K_EEPROM_READ(offset++, val);
1658			rep[0].freq = (val >> 9) & fmask;
1659			rep[1].freq = (val >> 2) & fmask;
1660			rep[2].freq = (val << 5) & fmask;
1661
1662			AR5K_EEPROM_READ(offset++, val);
1663			rep[2].freq |= (val >> 11) & 0x1f;
1664			rep[3].freq = (val >> 4) & fmask;
1665			rep[4].freq = (val << 3) & fmask;
1666
1667			AR5K_EEPROM_READ(offset++, val);
1668			rep[4].freq |= (val >> 13) & 0x7;
1669			rep[5].freq = (val >> 6) & fmask;
1670			rep[6].freq = (val << 1) & fmask;
1671
1672			AR5K_EEPROM_READ(offset++, val);
1673			rep[6].freq |= (val >> 15) & 0x1;
1674			rep[7].freq = (val >> 8) & fmask;
1675
1676			rep[0].edge = (val >> 2) & pmask;
1677			rep[1].edge = (val << 4) & pmask;
1678
1679			AR5K_EEPROM_READ(offset++, val);
1680			rep[1].edge |= (val >> 12) & 0xf;
1681			rep[2].edge = (val >> 6) & pmask;
1682			rep[3].edge = val & pmask;
1683
1684			AR5K_EEPROM_READ(offset++, val);
1685			rep[4].edge = (val >> 10) & pmask;
1686			rep[5].edge = (val >> 4) & pmask;
1687			rep[6].edge = (val << 2) & pmask;
1688
1689			AR5K_EEPROM_READ(offset++, val);
1690			rep[6].edge |= (val >> 14) & 0x3;
1691			rep[7].edge = (val >> 8) & pmask;
1692		}
1693		for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1694			rep[j].freq = ath5k_eeprom_bin2freq(ee,
1695				rep[j].freq, ctl_mode);
1696		}
1697		rep += AR5K_EEPROM_N_EDGES;
1698	}
1699
1700	return 0;
1701}
1702
1703static int
1704ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1705{
1706	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1707	u32 offset;
1708	u16 val;
1709	int ret = 0, i;
1710
1711	offset = AR5K_EEPROM_CTL(ee->ee_version) +
1712				AR5K_EEPROM_N_CTLS(ee->ee_version);
1713
1714	if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1715		/* No spur info for 5GHz */
1716		ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1717		/* 2 channels for 2GHz (2464/2420) */
1718		ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1719		ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1720		ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1721	} else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1722		for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1723			AR5K_EEPROM_READ(offset, val);
1724			ee->ee_spur_chans[i][0] = val;
1725			AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1726									val);
1727			ee->ee_spur_chans[i][1] = val;
1728			offset++;
1729		}
1730	}
1731
1732	return ret;
1733}
1734
1735
1736/***********************\
1737* Init/Detach functions *
1738\***********************/
1739
1740/*
1741 * Initialize eeprom data structure
1742 */
1743int
1744ath5k_eeprom_init(struct ath5k_hw *ah)
1745{
1746	int err;
1747
1748	err = ath5k_eeprom_init_header(ah);
1749	if (err < 0)
1750		return err;
1751
1752	err = ath5k_eeprom_init_modes(ah);
1753	if (err < 0)
1754		return err;
1755
1756	err = ath5k_eeprom_read_pcal_info(ah);
1757	if (err < 0)
1758		return err;
1759
1760	err = ath5k_eeprom_read_ctl_info(ah);
1761	if (err < 0)
1762		return err;
1763
1764	err = ath5k_eeprom_read_spur_chans(ah);
1765	if (err < 0)
1766		return err;
1767
1768	return 0;
1769}
1770
1771void
1772ath5k_eeprom_detach(struct ath5k_hw *ah)
1773{
1774	u8 mode;
1775
1776	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1777		ath5k_eeprom_free_pcal_info(ah, mode);
1778}
1779
1780int
1781ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
1782{
1783	switch (channel->hw_value & CHANNEL_MODES) {
1784	case CHANNEL_A:
1785	case CHANNEL_XR:
1786		return AR5K_EEPROM_MODE_11A;
1787	case CHANNEL_G:
1788		return AR5K_EEPROM_MODE_11G;
1789	case CHANNEL_B:
1790		return AR5K_EEPROM_MODE_11B;
1791	default:
1792		return -1;
1793	}
1794}
v3.5.6
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   5 *
   6 * Permission to use, copy, modify, and distribute this software for any
   7 * purpose with or without fee is hereby granted, provided that the above
   8 * copyright notice and this permission notice appear in all copies.
   9 *
  10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17 *
  18 */
  19
  20/*************************************\
  21* EEPROM access functions and helpers *
  22\*************************************/
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/slab.h>
  27
  28#include "ath5k.h"
  29#include "reg.h"
  30#include "debug.h"
 
  31
  32
  33/******************\
  34* Helper functions *
  35\******************/
  36
  37/*
  38 * Translate binary channel representation in EEPROM to frequency
  39 */
  40static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  41							unsigned int mode)
  42{
  43	u16 val;
  44
  45	if (bin == AR5K_EEPROM_CHANNEL_DIS)
  46		return bin;
  47
  48	if (mode == AR5K_EEPROM_MODE_11A) {
  49		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  50			val = (5 * bin) + 4800;
  51		else
  52			val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  53				(bin * 10) + 5100;
  54	} else {
  55		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  56			val = bin + 2300;
  57		else
  58			val = bin + 2400;
  59	}
  60
  61	return val;
  62}
  63
  64
  65/*********\
  66* Parsers *
  67\*********/
  68
  69/*
  70 * Initialize eeprom & capabilities structs
  71 */
  72static int
  73ath5k_eeprom_init_header(struct ath5k_hw *ah)
  74{
  75	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  76	u16 val;
  77	u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  78
  79	/*
  80	 * Read values from EEPROM and store them in the capability structure
  81	 */
  82	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  83	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  84	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  85	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  86	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  87
  88	/* Return if we have an old EEPROM */
  89	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  90		return 0;
  91
  92	/*
  93	 * Validate the checksum of the EEPROM date. There are some
  94	 * devices with invalid EEPROMs.
  95	 */
  96	AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  97	if (val) {
  98		eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  99			   AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
 100		AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
 101		eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
 102
 103		/*
 104		 * Fail safe check to prevent stupid loops due
 105		 * to busted EEPROMs. XXX: This value is likely too
 106		 * big still, waiting on a better value.
 107		 */
 108		if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
 109			ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
 110				  "%d (0x%04x) max expected: %d (0x%04x)\n",
 111				  eep_max, eep_max,
 112				  3 * AR5K_EEPROM_INFO_MAX,
 113				  3 * AR5K_EEPROM_INFO_MAX);
 114			return -EIO;
 115		}
 116	}
 117
 118	for (cksum = 0, offset = 0; offset < eep_max; offset++) {
 119		AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
 120		cksum ^= val;
 121	}
 122	if (cksum != AR5K_EEPROM_INFO_CKSUM) {
 123		ATH5K_ERR(ah, "Invalid EEPROM "
 124			  "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
 125			  cksum, eep_max,
 126			  eep_max == AR5K_EEPROM_INFO_MAX ?
 127				"default size" : "custom size");
 128		return -EIO;
 129	}
 130
 131	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
 132	    ee_ant_gain);
 133
 134	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
 135		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
 136		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
 137
 138		/* XXX: Don't know which versions include these two */
 139		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
 140
 141		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
 142			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
 143
 144		if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
 145			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
 146			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
 147			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
 148		}
 149	}
 150
 151	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
 152		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
 153		ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
 154		ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
 155
 156		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
 157		ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
 158		ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
 159	}
 160
 161	AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
 162
 163	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
 164		ee->ee_is_hb63 = true;
 165	else
 166		ee->ee_is_hb63 = false;
 167
 168	AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
 169	ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
 170	ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
 171
 172	/* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
 173	 * and enable serdes programming if needed.
 174	 *
 175	 * XXX: Serdes values seem to be fixed so
 176	 * no need to read them here, we write them
 177	 * during ath5k_hw_init */
 178	AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
 179	ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
 180							true : false;
 181
 182	return 0;
 183}
 184
 185
 186/*
 187 * Read antenna infos from eeprom
 188 */
 189static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
 190		unsigned int mode)
 191{
 192	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 193	u32 o = *offset;
 194	u16 val;
 195	int i = 0;
 196
 197	AR5K_EEPROM_READ(o++, val);
 198	ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f;
 199	ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f;
 200	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
 201
 202	AR5K_EEPROM_READ(o++, val);
 203	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
 204	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
 205	ee->ee_ant_control[mode][i++]	= val & 0x3f;
 206
 207	AR5K_EEPROM_READ(o++, val);
 208	ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f;
 209	ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f;
 210	ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f;
 211
 212	AR5K_EEPROM_READ(o++, val);
 213	ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3;
 214	ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f;
 215	ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f;
 216	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
 217
 218	AR5K_EEPROM_READ(o++, val);
 219	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
 220	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
 221	ee->ee_ant_control[mode][i++]	= val & 0x3f;
 222
 223	/* Get antenna switch tables */
 224	ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
 225	    (ee->ee_ant_control[mode][0] << 4);
 226	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
 227	     ee->ee_ant_control[mode][1]	|
 228	    (ee->ee_ant_control[mode][2] << 6)	|
 229	    (ee->ee_ant_control[mode][3] << 12) |
 230	    (ee->ee_ant_control[mode][4] << 18) |
 231	    (ee->ee_ant_control[mode][5] << 24);
 232	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
 233	     ee->ee_ant_control[mode][6]	|
 234	    (ee->ee_ant_control[mode][7] << 6)	|
 235	    (ee->ee_ant_control[mode][8] << 12) |
 236	    (ee->ee_ant_control[mode][9] << 18) |
 237	    (ee->ee_ant_control[mode][10] << 24);
 238
 239	/* return new offset */
 240	*offset = o;
 241
 242	return 0;
 243}
 244
 245/*
 246 * Read supported modes and some mode-specific calibration data
 247 * from eeprom
 248 */
 249static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
 250		unsigned int mode)
 251{
 252	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 253	u32 o = *offset;
 254	u16 val;
 255
 256	ee->ee_n_piers[mode] = 0;
 257	AR5K_EEPROM_READ(o++, val);
 258	ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff);
 259	switch (mode) {
 260	case AR5K_EEPROM_MODE_11A:
 261		ee->ee_ob[mode][3]	= (val >> 5) & 0x7;
 262		ee->ee_db[mode][3]	= (val >> 2) & 0x7;
 263		ee->ee_ob[mode][2]	= (val << 1) & 0x7;
 264
 265		AR5K_EEPROM_READ(o++, val);
 266		ee->ee_ob[mode][2]	|= (val >> 15) & 0x1;
 267		ee->ee_db[mode][2]	= (val >> 12) & 0x7;
 268		ee->ee_ob[mode][1]	= (val >> 9) & 0x7;
 269		ee->ee_db[mode][1]	= (val >> 6) & 0x7;
 270		ee->ee_ob[mode][0]	= (val >> 3) & 0x7;
 271		ee->ee_db[mode][0]	= val & 0x7;
 272		break;
 273	case AR5K_EEPROM_MODE_11G:
 274	case AR5K_EEPROM_MODE_11B:
 275		ee->ee_ob[mode][1]	= (val >> 4) & 0x7;
 276		ee->ee_db[mode][1]	= val & 0x7;
 277		break;
 278	}
 279
 280	AR5K_EEPROM_READ(o++, val);
 281	ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff;
 282	ee->ee_thr_62[mode]		= val & 0xff;
 283
 284	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 285		ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
 286
 287	AR5K_EEPROM_READ(o++, val);
 288	ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff;
 289	ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff;
 290
 291	AR5K_EEPROM_READ(o++, val);
 292	ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff;
 293
 294	if ((val & 0xff) & 0x80)
 295		ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
 296	else
 297		ee->ee_noise_floor_thr[mode] = val & 0xff;
 298
 299	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 300		ee->ee_noise_floor_thr[mode] =
 301		    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
 302
 303	AR5K_EEPROM_READ(o++, val);
 304	ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff;
 305	ee->ee_x_gain[mode]		= (val >> 1) & 0xf;
 306	ee->ee_xpd[mode]		= val & 0x1;
 307
 308	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
 309	    mode != AR5K_EEPROM_MODE_11B)
 310		ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
 311
 312	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
 313		AR5K_EEPROM_READ(o++, val);
 314		ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
 315
 316		if (mode == AR5K_EEPROM_MODE_11A)
 317			ee->ee_xr_power[mode] = val & 0x3f;
 318		else {
 319			/* b_DB_11[bg] and b_OB_11[bg] */
 320			ee->ee_ob[mode][0] = val & 0x7;
 321			ee->ee_db[mode][0] = (val >> 3) & 0x7;
 322		}
 323	}
 324
 325	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
 326		ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
 327		ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
 328	} else {
 329		ee->ee_i_gain[mode] = (val >> 13) & 0x7;
 330
 331		AR5K_EEPROM_READ(o++, val);
 332		ee->ee_i_gain[mode] |= (val << 3) & 0x38;
 333
 334		if (mode == AR5K_EEPROM_MODE_11G) {
 335			ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
 336			if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
 337				ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
 338		}
 339	}
 340
 341	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
 342			mode == AR5K_EEPROM_MODE_11A) {
 343		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
 344		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
 345	}
 346
 347	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
 348		goto done;
 349
 350	/* Note: >= v5 have bg freq piers on another location
 351	 * so these freq piers are ignored for >= v5 (should be 0xff
 352	 * anyway) */
 353	switch (mode) {
 354	case AR5K_EEPROM_MODE_11A:
 355		if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
 356			break;
 357
 358		AR5K_EEPROM_READ(o++, val);
 359		ee->ee_margin_tx_rx[mode] = val & 0x3f;
 360		break;
 361	case AR5K_EEPROM_MODE_11B:
 362		AR5K_EEPROM_READ(o++, val);
 363
 364		ee->ee_pwr_cal_b[0].freq =
 365			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 366		if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 367			ee->ee_n_piers[mode]++;
 368
 369		ee->ee_pwr_cal_b[1].freq =
 370			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 371		if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 372			ee->ee_n_piers[mode]++;
 373
 374		AR5K_EEPROM_READ(o++, val);
 375		ee->ee_pwr_cal_b[2].freq =
 376			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 377		if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 378			ee->ee_n_piers[mode]++;
 379
 380		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 381			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 382		break;
 383	case AR5K_EEPROM_MODE_11G:
 384		AR5K_EEPROM_READ(o++, val);
 385
 386		ee->ee_pwr_cal_g[0].freq =
 387			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 388		if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 389			ee->ee_n_piers[mode]++;
 390
 391		ee->ee_pwr_cal_g[1].freq =
 392			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 393		if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 394			ee->ee_n_piers[mode]++;
 395
 396		AR5K_EEPROM_READ(o++, val);
 397		ee->ee_turbo_max_power[mode] = val & 0x7f;
 398		ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
 399
 400		AR5K_EEPROM_READ(o++, val);
 401		ee->ee_pwr_cal_g[2].freq =
 402			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 403		if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 404			ee->ee_n_piers[mode]++;
 405
 406		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 407			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 408
 409		AR5K_EEPROM_READ(o++, val);
 410		ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
 411		ee->ee_q_cal[mode] = val & 0x1f;
 412
 413		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
 414			AR5K_EEPROM_READ(o++, val);
 415			ee->ee_cck_ofdm_gain_delta = val & 0xff;
 416		}
 417		break;
 418	}
 419
 420	/*
 421	 * Read turbo mode information on newer EEPROM versions
 422	 */
 423	if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
 424		goto done;
 425
 426	switch (mode) {
 427	case AR5K_EEPROM_MODE_11A:
 428		ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
 429
 430		ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
 431		AR5K_EEPROM_READ(o++, val);
 432		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
 433		ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
 434
 435		ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
 436		AR5K_EEPROM_READ(o++, val);
 437		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
 438		ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
 439
 440		if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
 441			ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
 442		break;
 443	case AR5K_EEPROM_MODE_11G:
 444		ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
 445
 446		ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
 447		AR5K_EEPROM_READ(o++, val);
 448		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
 449		ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
 450
 451		ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
 452		AR5K_EEPROM_READ(o++, val);
 453		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
 454		ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
 455		break;
 456	}
 457
 458done:
 459	/* return new offset */
 460	*offset = o;
 461
 462	return 0;
 463}
 464
 465/* Read mode-specific data (except power calibration data) */
 466static int
 467ath5k_eeprom_init_modes(struct ath5k_hw *ah)
 468{
 469	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 470	u32 mode_offset[3];
 471	unsigned int mode;
 472	u32 offset;
 473	int ret;
 474
 475	/*
 476	 * Get values for all modes
 477	 */
 478	mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
 479	mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
 480	mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
 481
 482	ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
 483		AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
 484
 485	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
 486		offset = mode_offset[mode];
 487
 488		ret = ath5k_eeprom_read_ants(ah, &offset, mode);
 489		if (ret)
 490			return ret;
 491
 492		ret = ath5k_eeprom_read_modes(ah, &offset, mode);
 493		if (ret)
 494			return ret;
 495	}
 496
 497	/* override for older eeprom versions for better performance */
 498	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
 499		ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
 500		ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
 501		ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
 502	}
 503
 504	return 0;
 505}
 506
 507/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
 508 * frequency mask) */
 509static inline int
 510ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
 511			struct ath5k_chan_pcal_info *pc, unsigned int mode)
 512{
 513	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 514	int o = *offset;
 515	int i = 0;
 516	u8 freq1, freq2;
 517	u16 val;
 518
 519	ee->ee_n_piers[mode] = 0;
 520	while (i < max) {
 521		AR5K_EEPROM_READ(o++, val);
 522
 523		freq1 = val & 0xff;
 524		if (!freq1)
 525			break;
 526
 527		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 528				freq1, mode);
 529		ee->ee_n_piers[mode]++;
 530
 531		freq2 = (val >> 8) & 0xff;
 532		if (!freq2)
 533			break;
 534
 535		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 536				freq2, mode);
 537		ee->ee_n_piers[mode]++;
 538	}
 539
 540	/* return new offset */
 541	*offset = o;
 542
 543	return 0;
 544}
 545
 546/* Read frequency piers for 802.11a */
 547static int
 548ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
 549{
 550	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 551	struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
 552	int i;
 553	u16 val;
 554	u8 mask;
 555
 556	if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
 557		ath5k_eeprom_read_freq_list(ah, &offset,
 558			AR5K_EEPROM_N_5GHZ_CHAN, pcal,
 559			AR5K_EEPROM_MODE_11A);
 560	} else {
 561		mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
 562
 563		AR5K_EEPROM_READ(offset++, val);
 564		pcal[0].freq  = (val >> 9) & mask;
 565		pcal[1].freq  = (val >> 2) & mask;
 566		pcal[2].freq  = (val << 5) & mask;
 567
 568		AR5K_EEPROM_READ(offset++, val);
 569		pcal[2].freq |= (val >> 11) & 0x1f;
 570		pcal[3].freq  = (val >> 4) & mask;
 571		pcal[4].freq  = (val << 3) & mask;
 572
 573		AR5K_EEPROM_READ(offset++, val);
 574		pcal[4].freq |= (val >> 13) & 0x7;
 575		pcal[5].freq  = (val >> 6) & mask;
 576		pcal[6].freq  = (val << 1) & mask;
 577
 578		AR5K_EEPROM_READ(offset++, val);
 579		pcal[6].freq |= (val >> 15) & 0x1;
 580		pcal[7].freq  = (val >> 8) & mask;
 581		pcal[8].freq  = (val >> 1) & mask;
 582		pcal[9].freq  = (val << 6) & mask;
 583
 584		AR5K_EEPROM_READ(offset++, val);
 585		pcal[9].freq |= (val >> 10) & 0x3f;
 586
 587		/* Fixed number of piers */
 588		ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
 589
 590		for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
 591			pcal[i].freq = ath5k_eeprom_bin2freq(ee,
 592				pcal[i].freq, AR5K_EEPROM_MODE_11A);
 593		}
 594	}
 595
 596	return 0;
 597}
 598
 599/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
 600static inline int
 601ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
 602{
 603	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 604	struct ath5k_chan_pcal_info *pcal;
 605
 606	switch (mode) {
 607	case AR5K_EEPROM_MODE_11B:
 608		pcal = ee->ee_pwr_cal_b;
 609		break;
 610	case AR5K_EEPROM_MODE_11G:
 611		pcal = ee->ee_pwr_cal_g;
 612		break;
 613	default:
 614		return -EINVAL;
 615	}
 616
 617	ath5k_eeprom_read_freq_list(ah, &offset,
 618		AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
 619		mode);
 620
 621	return 0;
 622}
 623
 624
 625/*
 626 * Read power calibration for RF5111 chips
 627 *
 628 * For RF5111 we have an XPD -eXternal Power Detector- curve
 629 * for each calibrated channel. Each curve has 0,5dB Power steps
 630 * on x axis and PCDAC steps (offsets) on y axis and looks like an
 631 * exponential function. To recreate the curve we read 11 points
 632 * here and interpolate later.
 633 */
 634
 635/* Used to match PCDAC steps with power values on RF5111 chips
 636 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
 637 * steps that match with the power values we read from eeprom. On
 638 * older eeprom versions (< 3.2) these steps are equally spaced at
 639 * 10% of the pcdac curve -until the curve reaches its maximum-
 640 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
 641 * these 11 steps are spaced in a different way. This function returns
 642 * the pcdac steps based on eeprom version and curve min/max so that we
 643 * can have pcdac/pwr points.
 644 */
 645static inline void
 646ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
 647{
 648	static const u16 intercepts3[] = {
 649		0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
 650	};
 651	static const u16 intercepts3_2[] = {
 652		0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
 653	};
 654	const u16 *ip;
 655	int i;
 656
 657	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
 658		ip = intercepts3_2;
 659	else
 660		ip = intercepts3;
 661
 662	for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
 663		vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
 664}
 665
 666static int
 667ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
 668{
 669	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 670	struct ath5k_chan_pcal_info *chinfo;
 671	u8 pier, pdg;
 672
 673	switch (mode) {
 674	case AR5K_EEPROM_MODE_11A:
 675		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 676			return 0;
 677		chinfo = ee->ee_pwr_cal_a;
 678		break;
 679	case AR5K_EEPROM_MODE_11B:
 680		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
 681			return 0;
 682		chinfo = ee->ee_pwr_cal_b;
 683		break;
 684	case AR5K_EEPROM_MODE_11G:
 685		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 686			return 0;
 687		chinfo = ee->ee_pwr_cal_g;
 688		break;
 689	default:
 690		return -EINVAL;
 691	}
 692
 693	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 694		if (!chinfo[pier].pd_curves)
 695			continue;
 696
 697		for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
 698			struct ath5k_pdgain_info *pd =
 699					&chinfo[pier].pd_curves[pdg];
 700
 701			kfree(pd->pd_step);
 702			kfree(pd->pd_pwr);
 703		}
 704
 705		kfree(chinfo[pier].pd_curves);
 706	}
 707
 708	return 0;
 709}
 710
 711/* Convert RF5111 specific data to generic raw data
 712 * used by interpolation code */
 713static int
 714ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
 715				struct ath5k_chan_pcal_info *chinfo)
 716{
 717	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 718	struct ath5k_chan_pcal_info_rf5111 *pcinfo;
 719	struct ath5k_pdgain_info *pd;
 720	u8 pier, point, idx;
 721	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 722
 723	/* Fill raw data for each calibration pier */
 724	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 725
 726		pcinfo = &chinfo[pier].rf5111_info;
 727
 728		/* Allocate pd_curves for this cal pier */
 729		chinfo[pier].pd_curves =
 730			kcalloc(AR5K_EEPROM_N_PD_CURVES,
 731				sizeof(struct ath5k_pdgain_info),
 732				GFP_KERNEL);
 733
 734		if (!chinfo[pier].pd_curves)
 735			goto err_out;
 736
 737		/* Only one curve for RF5111
 738		 * find out which one and place
 739		 * in pd_curves.
 740		 * Note: ee_x_gain is reversed here */
 741		for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
 742
 743			if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
 744				pdgain_idx[0] = idx;
 745				break;
 746			}
 747		}
 748
 749		ee->ee_pd_gains[mode] = 1;
 750
 751		pd = &chinfo[pier].pd_curves[idx];
 752
 753		pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
 754
 755		/* Allocate pd points for this curve */
 756		pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
 757					sizeof(u8), GFP_KERNEL);
 758		if (!pd->pd_step)
 759			goto err_out;
 760
 761		pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
 762					sizeof(s16), GFP_KERNEL);
 763		if (!pd->pd_pwr)
 764			goto err_out;
 765
 766		/* Fill raw dataset
 767		 * (convert power to 0.25dB units
 768		 * for RF5112 compatibility) */
 769		for (point = 0; point < pd->pd_points; point++) {
 770
 771			/* Absolute values */
 772			pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
 773
 774			/* Already sorted */
 775			pd->pd_step[point] = pcinfo->pcdac[point];
 776		}
 777
 778		/* Set min/max pwr */
 779		chinfo[pier].min_pwr = pd->pd_pwr[0];
 780		chinfo[pier].max_pwr = pd->pd_pwr[10];
 781
 782	}
 783
 784	return 0;
 785
 786err_out:
 787	ath5k_eeprom_free_pcal_info(ah, mode);
 788	return -ENOMEM;
 789}
 790
 791/* Parse EEPROM data */
 792static int
 793ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
 794{
 795	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 796	struct ath5k_chan_pcal_info *pcal;
 797	int offset, ret;
 798	int i;
 799	u16 val;
 800
 801	offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 802	switch (mode) {
 803	case AR5K_EEPROM_MODE_11A:
 804		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 805			return 0;
 806
 807		ret = ath5k_eeprom_init_11a_pcal_freq(ah,
 808			offset + AR5K_EEPROM_GROUP1_OFFSET);
 809		if (ret < 0)
 810			return ret;
 811
 812		offset += AR5K_EEPROM_GROUP2_OFFSET;
 813		pcal = ee->ee_pwr_cal_a;
 814		break;
 815	case AR5K_EEPROM_MODE_11B:
 816		if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
 817		    !AR5K_EEPROM_HDR_11G(ee->ee_header))
 818			return 0;
 819
 820		pcal = ee->ee_pwr_cal_b;
 821		offset += AR5K_EEPROM_GROUP3_OFFSET;
 822
 823		/* fixed piers */
 824		pcal[0].freq = 2412;
 825		pcal[1].freq = 2447;
 826		pcal[2].freq = 2484;
 827		ee->ee_n_piers[mode] = 3;
 828		break;
 829	case AR5K_EEPROM_MODE_11G:
 830		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 831			return 0;
 832
 833		pcal = ee->ee_pwr_cal_g;
 834		offset += AR5K_EEPROM_GROUP4_OFFSET;
 835
 836		/* fixed piers */
 837		pcal[0].freq = 2312;
 838		pcal[1].freq = 2412;
 839		pcal[2].freq = 2484;
 840		ee->ee_n_piers[mode] = 3;
 841		break;
 842	default:
 843		return -EINVAL;
 844	}
 845
 846	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
 847		struct ath5k_chan_pcal_info_rf5111 *cdata =
 848			&pcal[i].rf5111_info;
 849
 850		AR5K_EEPROM_READ(offset++, val);
 851		cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
 852		cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
 853		cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
 854
 855		AR5K_EEPROM_READ(offset++, val);
 856		cdata->pwr[0] |= ((val >> 14) & 0x3);
 857		cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 858		cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 859		cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
 860
 861		AR5K_EEPROM_READ(offset++, val);
 862		cdata->pwr[3] |= ((val >> 12) & 0xf);
 863		cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
 864		cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
 865
 866		AR5K_EEPROM_READ(offset++, val);
 867		cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
 868		cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
 869		cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
 870
 871		AR5K_EEPROM_READ(offset++, val);
 872		cdata->pwr[8] |= ((val >> 14) & 0x3);
 873		cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 874		cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 875
 876		ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
 877			cdata->pcdac_max, cdata->pcdac);
 878	}
 879
 880	return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
 881}
 882
 883
 884/*
 885 * Read power calibration for RF5112 chips
 886 *
 887 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
 888 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
 889 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
 890 * power steps on x axis and PCDAC steps on y axis and looks like a
 891 * linear function. To recreate the curve and pass the power values
 892 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
 893 * and 3 points for xpd 3 (higher gain -> lower power) here and
 894 * interpolate later.
 895 *
 896 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
 897 */
 898
 899/* Convert RF5112 specific data to generic raw data
 900 * used by interpolation code */
 901static int
 902ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
 903				struct ath5k_chan_pcal_info *chinfo)
 904{
 905	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 906	struct ath5k_chan_pcal_info_rf5112 *pcinfo;
 907	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 908	unsigned int pier, pdg, point;
 909
 910	/* Fill raw data for each calibration pier */
 911	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 912
 913		pcinfo = &chinfo[pier].rf5112_info;
 914
 915		/* Allocate pd_curves for this cal pier */
 916		chinfo[pier].pd_curves =
 917				kcalloc(AR5K_EEPROM_N_PD_CURVES,
 918					sizeof(struct ath5k_pdgain_info),
 919					GFP_KERNEL);
 920
 921		if (!chinfo[pier].pd_curves)
 922			goto err_out;
 923
 924		/* Fill pd_curves */
 925		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
 926
 927			u8 idx = pdgain_idx[pdg];
 928			struct ath5k_pdgain_info *pd =
 929					&chinfo[pier].pd_curves[idx];
 930
 931			/* Lowest gain curve (max power) */
 932			if (pdg == 0) {
 933				/* One more point for better accuracy */
 934				pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
 935
 936				/* Allocate pd points for this curve */
 937				pd->pd_step = kcalloc(pd->pd_points,
 938						sizeof(u8), GFP_KERNEL);
 939
 940				if (!pd->pd_step)
 941					goto err_out;
 942
 943				pd->pd_pwr = kcalloc(pd->pd_points,
 944						sizeof(s16), GFP_KERNEL);
 945
 946				if (!pd->pd_pwr)
 947					goto err_out;
 948
 949				/* Fill raw dataset
 950				 * (all power levels are in 0.25dB units) */
 951				pd->pd_step[0] = pcinfo->pcdac_x0[0];
 952				pd->pd_pwr[0] = pcinfo->pwr_x0[0];
 953
 954				for (point = 1; point < pd->pd_points;
 955				point++) {
 956					/* Absolute values */
 957					pd->pd_pwr[point] =
 958						pcinfo->pwr_x0[point];
 959
 960					/* Deltas */
 961					pd->pd_step[point] =
 962						pd->pd_step[point - 1] +
 963						pcinfo->pcdac_x0[point];
 964				}
 965
 966				/* Set min power for this frequency */
 967				chinfo[pier].min_pwr = pd->pd_pwr[0];
 968
 969			/* Highest gain curve (min power) */
 970			} else if (pdg == 1) {
 971
 972				pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
 973
 974				/* Allocate pd points for this curve */
 975				pd->pd_step = kcalloc(pd->pd_points,
 976						sizeof(u8), GFP_KERNEL);
 977
 978				if (!pd->pd_step)
 979					goto err_out;
 980
 981				pd->pd_pwr = kcalloc(pd->pd_points,
 982						sizeof(s16), GFP_KERNEL);
 983
 984				if (!pd->pd_pwr)
 985					goto err_out;
 986
 987				/* Fill raw dataset
 988				 * (all power levels are in 0.25dB units) */
 989				for (point = 0; point < pd->pd_points;
 990				point++) {
 991					/* Absolute values */
 992					pd->pd_pwr[point] =
 993						pcinfo->pwr_x3[point];
 994
 995					/* Fixed points */
 996					pd->pd_step[point] =
 997						pcinfo->pcdac_x3[point];
 998				}
 999
1000				/* Since we have a higher gain curve
1001				 * override min power */
1002				chinfo[pier].min_pwr = pd->pd_pwr[0];
1003			}
1004		}
1005	}
1006
1007	return 0;
1008
1009err_out:
1010	ath5k_eeprom_free_pcal_info(ah, mode);
1011	return -ENOMEM;
1012}
1013
1014/* Parse EEPROM data */
1015static int
1016ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1017{
1018	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1019	struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1020	struct ath5k_chan_pcal_info *gen_chan_info;
1021	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1022	u32 offset;
1023	u8 i, c;
1024	u16 val;
1025	u8 pd_gains = 0;
1026
1027	/* Count how many curves we have and
1028	 * identify them (which one of the 4
1029	 * available curves we have on each count).
1030	 * Curves are stored from lower (x0) to
1031	 * higher (x3) gain */
1032	for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1033		/* ee_x_gain[mode] is x gain mask */
1034		if ((ee->ee_x_gain[mode] >> i) & 0x1)
1035			pdgain_idx[pd_gains++] = i;
1036	}
1037	ee->ee_pd_gains[mode] = pd_gains;
1038
1039	if (pd_gains == 0 || pd_gains > 2)
1040		return -EINVAL;
1041
1042	switch (mode) {
1043	case AR5K_EEPROM_MODE_11A:
1044		/*
1045		 * Read 5GHz EEPROM channels
1046		 */
1047		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1048		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1049
1050		offset += AR5K_EEPROM_GROUP2_OFFSET;
1051		gen_chan_info = ee->ee_pwr_cal_a;
1052		break;
1053	case AR5K_EEPROM_MODE_11B:
1054		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1055		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1056			offset += AR5K_EEPROM_GROUP3_OFFSET;
1057
1058		/* NB: frequency piers parsed during mode init */
1059		gen_chan_info = ee->ee_pwr_cal_b;
1060		break;
1061	case AR5K_EEPROM_MODE_11G:
1062		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1063		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1064			offset += AR5K_EEPROM_GROUP4_OFFSET;
1065		else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1066			offset += AR5K_EEPROM_GROUP2_OFFSET;
1067
1068		/* NB: frequency piers parsed during mode init */
1069		gen_chan_info = ee->ee_pwr_cal_g;
1070		break;
1071	default:
1072		return -EINVAL;
1073	}
1074
1075	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1076		chan_pcal_info = &gen_chan_info[i].rf5112_info;
1077
1078		/* Power values in quarter dB
1079		 * for the lower xpd gain curve
1080		 * (0 dBm -> higher output power) */
1081		for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1082			AR5K_EEPROM_READ(offset++, val);
1083			chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1084			chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1085		}
1086
1087		/* PCDAC steps
1088		 * corresponding to the above power
1089		 * measurements */
1090		AR5K_EEPROM_READ(offset++, val);
1091		chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1092		chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1093		chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1094
1095		/* Power values in quarter dB
1096		 * for the higher xpd gain curve
1097		 * (18 dBm -> lower output power) */
1098		AR5K_EEPROM_READ(offset++, val);
1099		chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1100		chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1101
1102		AR5K_EEPROM_READ(offset++, val);
1103		chan_pcal_info->pwr_x3[2] = (val & 0xff);
1104
1105		/* PCDAC steps
1106		 * corresponding to the above power
1107		 * measurements (fixed) */
1108		chan_pcal_info->pcdac_x3[0] = 20;
1109		chan_pcal_info->pcdac_x3[1] = 35;
1110		chan_pcal_info->pcdac_x3[2] = 63;
1111
1112		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1113			chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1114
1115			/* Last xpd0 power level is also channel maximum */
1116			gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1117		} else {
1118			chan_pcal_info->pcdac_x0[0] = 1;
1119			gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1120		}
1121
1122	}
1123
1124	return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1125}
1126
1127
1128/*
1129 * Read power calibration for RF2413 chips
1130 *
1131 * For RF2413 we have a Power to PDDAC table (Power Detector)
1132 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1133 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1134 * axis and looks like an exponential function like the RF5111 curve.
1135 *
1136 * To recreate the curves we read here the points and interpolate
1137 * later. Note that in most cases only 2 (higher and lower) curves are
1138 * used (like RF5112) but vendors have the opportunity to include all
1139 * 4 curves on eeprom. The final curve (higher power) has an extra
1140 * point for better accuracy like RF5112.
1141 */
1142
1143/* For RF2413 power calibration data doesn't start on a fixed location and
1144 * if a mode is not supported, its section is missing -not zeroed-.
1145 * So we need to calculate the starting offset for each section by using
1146 * these two functions */
1147
1148/* Return the size of each section based on the mode and the number of pd
1149 * gains available (maximum 4). */
1150static inline unsigned int
1151ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1152{
1153	static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1154	unsigned int sz;
1155
1156	sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1157	sz *= ee->ee_n_piers[mode];
1158
1159	return sz;
1160}
1161
1162/* Return the starting offset for a section based on the modes supported
1163 * and each section's size. */
1164static unsigned int
1165ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1166{
1167	u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1168
1169	switch (mode) {
1170	case AR5K_EEPROM_MODE_11G:
1171		if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1172			offset += ath5k_pdgains_size_2413(ee,
1173					AR5K_EEPROM_MODE_11B) +
1174					AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1175		/* fall through */
1176	case AR5K_EEPROM_MODE_11B:
1177		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1178			offset += ath5k_pdgains_size_2413(ee,
1179					AR5K_EEPROM_MODE_11A) +
1180					AR5K_EEPROM_N_5GHZ_CHAN / 2;
1181		/* fall through */
1182	case AR5K_EEPROM_MODE_11A:
1183		break;
1184	default:
1185		break;
1186	}
1187
1188	return offset;
1189}
1190
1191/* Convert RF2413 specific data to generic raw data
1192 * used by interpolation code */
1193static int
1194ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1195				struct ath5k_chan_pcal_info *chinfo)
1196{
1197	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1198	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1199	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1200	unsigned int pier, pdg, point;
1201
1202	/* Fill raw data for each calibration pier */
1203	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1204
1205		pcinfo = &chinfo[pier].rf2413_info;
1206
1207		/* Allocate pd_curves for this cal pier */
1208		chinfo[pier].pd_curves =
1209				kcalloc(AR5K_EEPROM_N_PD_CURVES,
1210					sizeof(struct ath5k_pdgain_info),
1211					GFP_KERNEL);
1212
1213		if (!chinfo[pier].pd_curves)
1214			goto err_out;
1215
1216		/* Fill pd_curves */
1217		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1218
1219			u8 idx = pdgain_idx[pdg];
1220			struct ath5k_pdgain_info *pd =
1221					&chinfo[pier].pd_curves[idx];
1222
1223			/* One more point for the highest power
1224			 * curve (lowest gain) */
1225			if (pdg == ee->ee_pd_gains[mode] - 1)
1226				pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1227			else
1228				pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1229
1230			/* Allocate pd points for this curve */
1231			pd->pd_step = kcalloc(pd->pd_points,
1232					sizeof(u8), GFP_KERNEL);
1233
1234			if (!pd->pd_step)
1235				goto err_out;
1236
1237			pd->pd_pwr = kcalloc(pd->pd_points,
1238					sizeof(s16), GFP_KERNEL);
1239
1240			if (!pd->pd_pwr)
1241				goto err_out;
1242
1243			/* Fill raw dataset
1244			 * convert all pwr levels to
1245			 * quarter dB for RF5112 compatibility */
1246			pd->pd_step[0] = pcinfo->pddac_i[pdg];
1247			pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1248
1249			for (point = 1; point < pd->pd_points; point++) {
1250
1251				pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1252					2 * pcinfo->pwr[pdg][point - 1];
1253
1254				pd->pd_step[point] = pd->pd_step[point - 1] +
1255						pcinfo->pddac[pdg][point - 1];
1256
1257			}
1258
1259			/* Highest gain curve -> min power */
1260			if (pdg == 0)
1261				chinfo[pier].min_pwr = pd->pd_pwr[0];
1262
1263			/* Lowest gain curve -> max power */
1264			if (pdg == ee->ee_pd_gains[mode] - 1)
1265				chinfo[pier].max_pwr =
1266					pd->pd_pwr[pd->pd_points - 1];
1267		}
1268	}
1269
1270	return 0;
1271
1272err_out:
1273	ath5k_eeprom_free_pcal_info(ah, mode);
1274	return -ENOMEM;
1275}
1276
1277/* Parse EEPROM data */
1278static int
1279ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1280{
1281	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1282	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1283	struct ath5k_chan_pcal_info *chinfo;
1284	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1285	u32 offset;
1286	int idx, i;
1287	u16 val;
1288	u8 pd_gains = 0;
1289
1290	/* Count how many curves we have and
1291	 * identify them (which one of the 4
1292	 * available curves we have on each count).
1293	 * Curves are stored from higher to
1294	 * lower gain so we go backwards */
1295	for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1296		/* ee_x_gain[mode] is x gain mask */
1297		if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1298			pdgain_idx[pd_gains++] = idx;
1299
1300	}
1301	ee->ee_pd_gains[mode] = pd_gains;
1302
1303	if (pd_gains == 0)
1304		return -EINVAL;
1305
1306	offset = ath5k_cal_data_offset_2413(ee, mode);
1307	switch (mode) {
1308	case AR5K_EEPROM_MODE_11A:
1309		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1310			return 0;
1311
1312		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1313		offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1314		chinfo = ee->ee_pwr_cal_a;
1315		break;
1316	case AR5K_EEPROM_MODE_11B:
1317		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1318			return 0;
1319
1320		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1321		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1322		chinfo = ee->ee_pwr_cal_b;
1323		break;
1324	case AR5K_EEPROM_MODE_11G:
1325		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1326			return 0;
1327
1328		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1329		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1330		chinfo = ee->ee_pwr_cal_g;
1331		break;
1332	default:
1333		return -EINVAL;
1334	}
1335
1336	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1337		pcinfo = &chinfo[i].rf2413_info;
1338
1339		/*
1340		 * Read pwr_i, pddac_i and the first
1341		 * 2 pd points (pwr, pddac)
1342		 */
1343		AR5K_EEPROM_READ(offset++, val);
1344		pcinfo->pwr_i[0] = val & 0x1f;
1345		pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1346		pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1347
1348		AR5K_EEPROM_READ(offset++, val);
1349		pcinfo->pddac[0][0] = val & 0x3f;
1350		pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1351		pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1352
1353		AR5K_EEPROM_READ(offset++, val);
1354		pcinfo->pwr[0][2] = val & 0xf;
1355		pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1356
1357		pcinfo->pwr[0][3] = 0;
1358		pcinfo->pddac[0][3] = 0;
1359
1360		if (pd_gains > 1) {
1361			/*
1362			 * Pd gain 0 is not the last pd gain
1363			 * so it only has 2 pd points.
1364			 * Continue with pd gain 1.
1365			 */
1366			pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1367
1368			pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1369			AR5K_EEPROM_READ(offset++, val);
1370			pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1371
1372			pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1373			pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1374
1375			AR5K_EEPROM_READ(offset++, val);
1376			pcinfo->pwr[1][1] = val & 0xf;
1377			pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1378			pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1379
1380			pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1381			AR5K_EEPROM_READ(offset++, val);
1382			pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1383
1384			pcinfo->pwr[1][3] = 0;
1385			pcinfo->pddac[1][3] = 0;
1386		} else if (pd_gains == 1) {
1387			/*
1388			 * Pd gain 0 is the last one so
1389			 * read the extra point.
1390			 */
1391			pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1392
1393			pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1394			AR5K_EEPROM_READ(offset++, val);
1395			pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1396		}
1397
1398		/*
1399		 * Proceed with the other pd_gains
1400		 * as above.
1401		 */
1402		if (pd_gains > 2) {
1403			pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1404			pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1405
1406			AR5K_EEPROM_READ(offset++, val);
1407			pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1408			pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1409			pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1410
1411			pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1412			AR5K_EEPROM_READ(offset++, val);
1413			pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1414
1415			pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1416			pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1417
1418			pcinfo->pwr[2][3] = 0;
1419			pcinfo->pddac[2][3] = 0;
1420		} else if (pd_gains == 2) {
1421			pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1422			pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1423		}
1424
1425		if (pd_gains > 3) {
1426			pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1427			AR5K_EEPROM_READ(offset++, val);
1428			pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1429
1430			pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1431			pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1432			pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1433
1434			AR5K_EEPROM_READ(offset++, val);
1435			pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1436			pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1437			pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1438
1439			pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1440			AR5K_EEPROM_READ(offset++, val);
1441			pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1442
1443			pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1444			pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1445
1446			pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1447			AR5K_EEPROM_READ(offset++, val);
1448			pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1449		} else if (pd_gains == 3) {
1450			pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1451			AR5K_EEPROM_READ(offset++, val);
1452			pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1453
1454			pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1455		}
1456	}
1457
1458	return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1459}
1460
1461
1462/*
1463 * Read per rate target power (this is the maximum tx power
1464 * supported by the card). This info is used when setting
1465 * tx power, no matter the channel.
1466 *
1467 * This also works for v5 EEPROMs.
1468 */
1469static int
1470ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1471{
1472	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1473	struct ath5k_rate_pcal_info *rate_pcal_info;
1474	u8 *rate_target_pwr_num;
1475	u32 offset;
1476	u16 val;
1477	int i;
1478
1479	offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1480	rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1481	switch (mode) {
1482	case AR5K_EEPROM_MODE_11A:
1483		offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1484		rate_pcal_info = ee->ee_rate_tpwr_a;
1485		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1486		break;
1487	case AR5K_EEPROM_MODE_11B:
1488		offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1489		rate_pcal_info = ee->ee_rate_tpwr_b;
1490		ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1491		break;
1492	case AR5K_EEPROM_MODE_11G:
1493		offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1494		rate_pcal_info = ee->ee_rate_tpwr_g;
1495		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1496		break;
1497	default:
1498		return -EINVAL;
1499	}
1500
1501	/* Different freq mask for older eeproms (<= v3.2) */
1502	if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1503		for (i = 0; i < (*rate_target_pwr_num); i++) {
1504			AR5K_EEPROM_READ(offset++, val);
1505			rate_pcal_info[i].freq =
1506			    ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1507
1508			rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1509			rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1510
1511			AR5K_EEPROM_READ(offset++, val);
1512
1513			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1514			    val == 0) {
1515				(*rate_target_pwr_num) = i;
1516				break;
1517			}
1518
1519			rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1520			rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1521			rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1522		}
1523	} else {
1524		for (i = 0; i < (*rate_target_pwr_num); i++) {
1525			AR5K_EEPROM_READ(offset++, val);
1526			rate_pcal_info[i].freq =
1527			    ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1528
1529			rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1530			rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1531
1532			AR5K_EEPROM_READ(offset++, val);
1533
1534			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1535			    val == 0) {
1536				(*rate_target_pwr_num) = i;
1537				break;
1538			}
1539
1540			rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1541			rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1542			rate_pcal_info[i].target_power_54 = (val & 0x3f);
1543		}
1544	}
1545
1546	return 0;
1547}
1548
1549
1550/*
1551 * Read per channel calibration info from EEPROM
1552 *
1553 * This info is used to calibrate the baseband power table. Imagine
1554 * that for each channel there is a power curve that's hw specific
1555 * (depends on amplifier etc) and we try to "correct" this curve using
1556 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1557 * it can use accurate power values when setting tx power (takes amplifier's
1558 * performance on each channel into account).
1559 *
1560 * EEPROM provides us with the offsets for some pre-calibrated channels
1561 * and we have to interpolate to create the full table for these channels and
1562 * also the table for any channel.
1563 */
1564static int
1565ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1566{
1567	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1568	int (*read_pcal)(struct ath5k_hw *hw, int mode);
1569	int mode;
1570	int err;
1571
1572	if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1573			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1574		read_pcal = ath5k_eeprom_read_pcal_info_5112;
1575	else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1576			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1577		read_pcal = ath5k_eeprom_read_pcal_info_2413;
1578	else
1579		read_pcal = ath5k_eeprom_read_pcal_info_5111;
1580
1581
1582	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1583	mode++) {
1584		err = read_pcal(ah, mode);
1585		if (err)
1586			return err;
1587
1588		err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1589		if (err < 0)
1590			return err;
1591	}
1592
1593	return 0;
1594}
1595
1596/* Read conformance test limits used for regulatory control */
1597static int
1598ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1599{
1600	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601	struct ath5k_edge_power *rep;
1602	unsigned int fmask, pmask;
1603	unsigned int ctl_mode;
1604	int i, j;
1605	u32 offset;
1606	u16 val;
1607
1608	pmask = AR5K_EEPROM_POWER_M;
1609	fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1610	offset = AR5K_EEPROM_CTL(ee->ee_version);
1611	ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1612	for (i = 0; i < ee->ee_ctls; i += 2) {
1613		AR5K_EEPROM_READ(offset++, val);
1614		ee->ee_ctl[i] = (val >> 8) & 0xff;
1615		ee->ee_ctl[i + 1] = val & 0xff;
1616	}
1617
1618	offset = AR5K_EEPROM_GROUP8_OFFSET;
1619	if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1620		offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1621			AR5K_EEPROM_GROUP5_OFFSET;
1622	else
1623		offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1624
1625	rep = ee->ee_ctl_pwr;
1626	for (i = 0; i < ee->ee_ctls; i++) {
1627		switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1628		case AR5K_CTL_11A:
1629		case AR5K_CTL_TURBO:
1630			ctl_mode = AR5K_EEPROM_MODE_11A;
1631			break;
1632		default:
1633			ctl_mode = AR5K_EEPROM_MODE_11G;
1634			break;
1635		}
1636		if (ee->ee_ctl[i] == 0) {
1637			if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1638				offset += 8;
1639			else
1640				offset += 7;
1641			rep += AR5K_EEPROM_N_EDGES;
1642			continue;
1643		}
1644		if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1645			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1646				AR5K_EEPROM_READ(offset++, val);
1647				rep[j].freq = (val >> 8) & fmask;
1648				rep[j + 1].freq = val & fmask;
1649			}
1650			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1651				AR5K_EEPROM_READ(offset++, val);
1652				rep[j].edge = (val >> 8) & pmask;
1653				rep[j].flag = (val >> 14) & 1;
1654				rep[j + 1].edge = val & pmask;
1655				rep[j + 1].flag = (val >> 6) & 1;
1656			}
1657		} else {
1658			AR5K_EEPROM_READ(offset++, val);
1659			rep[0].freq = (val >> 9) & fmask;
1660			rep[1].freq = (val >> 2) & fmask;
1661			rep[2].freq = (val << 5) & fmask;
1662
1663			AR5K_EEPROM_READ(offset++, val);
1664			rep[2].freq |= (val >> 11) & 0x1f;
1665			rep[3].freq = (val >> 4) & fmask;
1666			rep[4].freq = (val << 3) & fmask;
1667
1668			AR5K_EEPROM_READ(offset++, val);
1669			rep[4].freq |= (val >> 13) & 0x7;
1670			rep[5].freq = (val >> 6) & fmask;
1671			rep[6].freq = (val << 1) & fmask;
1672
1673			AR5K_EEPROM_READ(offset++, val);
1674			rep[6].freq |= (val >> 15) & 0x1;
1675			rep[7].freq = (val >> 8) & fmask;
1676
1677			rep[0].edge = (val >> 2) & pmask;
1678			rep[1].edge = (val << 4) & pmask;
1679
1680			AR5K_EEPROM_READ(offset++, val);
1681			rep[1].edge |= (val >> 12) & 0xf;
1682			rep[2].edge = (val >> 6) & pmask;
1683			rep[3].edge = val & pmask;
1684
1685			AR5K_EEPROM_READ(offset++, val);
1686			rep[4].edge = (val >> 10) & pmask;
1687			rep[5].edge = (val >> 4) & pmask;
1688			rep[6].edge = (val << 2) & pmask;
1689
1690			AR5K_EEPROM_READ(offset++, val);
1691			rep[6].edge |= (val >> 14) & 0x3;
1692			rep[7].edge = (val >> 8) & pmask;
1693		}
1694		for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1695			rep[j].freq = ath5k_eeprom_bin2freq(ee,
1696				rep[j].freq, ctl_mode);
1697		}
1698		rep += AR5K_EEPROM_N_EDGES;
1699	}
1700
1701	return 0;
1702}
1703
1704static int
1705ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1706{
1707	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1708	u32 offset;
1709	u16 val;
1710	int ret = 0, i;
1711
1712	offset = AR5K_EEPROM_CTL(ee->ee_version) +
1713				AR5K_EEPROM_N_CTLS(ee->ee_version);
1714
1715	if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1716		/* No spur info for 5GHz */
1717		ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1718		/* 2 channels for 2GHz (2464/2420) */
1719		ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1720		ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1721		ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1722	} else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1723		for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1724			AR5K_EEPROM_READ(offset, val);
1725			ee->ee_spur_chans[i][0] = val;
1726			AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1727									val);
1728			ee->ee_spur_chans[i][1] = val;
1729			offset++;
1730		}
1731	}
1732
1733	return ret;
1734}
1735
1736
1737/***********************\
1738* Init/Detach functions *
1739\***********************/
1740
1741/*
1742 * Initialize eeprom data structure
1743 */
1744int
1745ath5k_eeprom_init(struct ath5k_hw *ah)
1746{
1747	int err;
1748
1749	err = ath5k_eeprom_init_header(ah);
1750	if (err < 0)
1751		return err;
1752
1753	err = ath5k_eeprom_init_modes(ah);
1754	if (err < 0)
1755		return err;
1756
1757	err = ath5k_eeprom_read_pcal_info(ah);
1758	if (err < 0)
1759		return err;
1760
1761	err = ath5k_eeprom_read_ctl_info(ah);
1762	if (err < 0)
1763		return err;
1764
1765	err = ath5k_eeprom_read_spur_chans(ah);
1766	if (err < 0)
1767		return err;
1768
1769	return 0;
1770}
1771
1772void
1773ath5k_eeprom_detach(struct ath5k_hw *ah)
1774{
1775	u8 mode;
1776
1777	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1778		ath5k_eeprom_free_pcal_info(ah, mode);
1779}
1780
1781int
1782ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
1783{
1784	switch (channel->hw_value) {
1785	case AR5K_MODE_11A:
 
1786		return AR5K_EEPROM_MODE_11A;
1787	case AR5K_MODE_11G:
1788		return AR5K_EEPROM_MODE_11G;
1789	case AR5K_MODE_11B:
1790		return AR5K_EEPROM_MODE_11B;
1791	default:
1792		return -1;
1793	}
1794}