Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *      FarSync WAN driver for Linux (2.6.x kernel version)
   3 *
   4 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
   5 *
   6 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
   7 *      www.farsite.co.uk
   8 *
   9 *      This program is free software; you can redistribute it and/or
  10 *      modify it under the terms of the GNU General Public License
  11 *      as published by the Free Software Foundation; either version
  12 *      2 of the License, or (at your option) any later version.
  13 *
  14 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
  15 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/module.h>
  21#include <linux/kernel.h>
  22#include <linux/version.h>
  23#include <linux/pci.h>
  24#include <linux/sched.h>
  25#include <linux/slab.h>
  26#include <linux/ioport.h>
  27#include <linux/init.h>
  28#include <linux/interrupt.h>
  29#include <linux/if.h>
  30#include <linux/hdlc.h>
  31#include <asm/io.h>
  32#include <asm/uaccess.h>
  33
  34#include "farsync.h"
  35
  36/*
  37 *      Module info
  38 */
  39MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
  40MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
  41MODULE_LICENSE("GPL");
  42
  43/*      Driver configuration and global parameters
  44 *      ==========================================
  45 */
  46
  47/*      Number of ports (per card) and cards supported
  48 */
  49#define FST_MAX_PORTS           4
  50#define FST_MAX_CARDS           32
  51
  52/*      Default parameters for the link
  53 */
  54#define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
  55					 * useful */
  56#define FST_TXQ_DEPTH           16	/* This one is for the buffering
  57					 * of frames on the way down to the card
  58					 * so that we can keep the card busy
  59					 * and maximise throughput
  60					 */
  61#define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
  62					 * network layer */
  63#define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
  64					 * control from network layer */
  65#define FST_MAX_MTU             8000	/* Huge but possible */
  66#define FST_DEF_MTU             1500	/* Common sane value */
  67
  68#define FST_TX_TIMEOUT          (2*HZ)
  69
  70#ifdef ARPHRD_RAWHDLC
  71#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
  72#else
  73#define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
  74#endif
  75
  76/*
  77 * Modules parameters and associated variables
  78 */
  79static int fst_txq_low = FST_LOW_WATER_MARK;
  80static int fst_txq_high = FST_HIGH_WATER_MARK;
  81static int fst_max_reads = 7;
  82static int fst_excluded_cards = 0;
  83static int fst_excluded_list[FST_MAX_CARDS];
  84
  85module_param(fst_txq_low, int, 0);
  86module_param(fst_txq_high, int, 0);
  87module_param(fst_max_reads, int, 0);
  88module_param(fst_excluded_cards, int, 0);
  89module_param_array(fst_excluded_list, int, NULL, 0);
  90
  91/*      Card shared memory layout
  92 *      =========================
  93 */
  94#pragma pack(1)
  95
  96/*      This information is derived in part from the FarSite FarSync Smc.h
  97 *      file. Unfortunately various name clashes and the non-portability of the
  98 *      bit field declarations in that file have meant that I have chosen to
  99 *      recreate the information here.
 100 *
 101 *      The SMC (Shared Memory Configuration) has a version number that is
 102 *      incremented every time there is a significant change. This number can
 103 *      be used to check that we have not got out of step with the firmware
 104 *      contained in the .CDE files.
 105 */
 106#define SMC_VERSION 24
 107
 108#define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
 109
 110#define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
 111				 * configuration structure */
 112#define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
 113				 * buffers */
 114
 115#define LEN_TX_BUFFER 8192	/* Size of packet buffers */
 116#define LEN_RX_BUFFER 8192
 117
 118#define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
 119#define LEN_SMALL_RX_BUFFER 256
 120
 121#define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
 122#define NUM_RX_BUFFER 8
 123
 124/* Interrupt retry time in milliseconds */
 125#define INT_RETRY_TIME 2
 126
 127/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
 128 *      of buffer descriptors. The structure is almost identical to that used
 129 *      in the LANCE Ethernet controllers. Details available as PDF from the
 130 *      AMD web site: http://www.amd.com/products/epd/processors/\
 131 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
 132 */
 133struct txdesc {			/* Transmit descriptor */
 134	volatile u16 ladr;	/* Low order address of packet. This is a
 135				 * linear address in the Am186 memory space
 136				 */
 137	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
 138				 * bits must be zero
 139				 */
 140	volatile u8 bits;	/* Status and config */
 141	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
 142				 * Transmit terminal count interrupt enable in
 143				 * top bit.
 144				 */
 145	u16 unused;		/* Not used in Tx */
 146};
 147
 148struct rxdesc {			/* Receive descriptor */
 149	volatile u16 ladr;	/* Low order address of packet */
 150	volatile u8 hadr;	/* High order address */
 151	volatile u8 bits;	/* Status and config */
 152	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
 153				 * Receive terminal count interrupt enable in
 154				 * top bit.
 155				 */
 156	volatile u16 mcnt;	/* Message byte count (15 bits) */
 157};
 158
 159/* Convert a length into the 15 bit 2's complement */
 160/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
 161/* Since we need to set the high bit to enable the completion interrupt this
 162 * can be made a lot simpler
 163 */
 164#define cnv_bcnt(len)   (-(len))
 165
 166/* Status and config bits for the above */
 167#define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
 168#define TX_STP          0x02	/* Tx: start of packet */
 169#define TX_ENP          0x01	/* Tx: end of packet */
 170#define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
 171#define RX_FRAM         0x20	/* Rx: framing error */
 172#define RX_OFLO         0x10	/* Rx: overflow error */
 173#define RX_CRC          0x08	/* Rx: CRC error */
 174#define RX_HBUF         0x04	/* Rx: buffer error */
 175#define RX_STP          0x02	/* Rx: start of packet */
 176#define RX_ENP          0x01	/* Rx: end of packet */
 177
 178/* Interrupts from the card are caused by various events which are presented
 179 * in a circular buffer as several events may be processed on one physical int
 180 */
 181#define MAX_CIRBUFF     32
 182
 183struct cirbuff {
 184	u8 rdindex;		/* read, then increment and wrap */
 185	u8 wrindex;		/* write, then increment and wrap */
 186	u8 evntbuff[MAX_CIRBUFF];
 187};
 188
 189/* Interrupt event codes.
 190 * Where appropriate the two low order bits indicate the port number
 191 */
 192#define CTLA_CHG        0x18	/* Control signal changed */
 193#define CTLB_CHG        0x19
 194#define CTLC_CHG        0x1A
 195#define CTLD_CHG        0x1B
 196
 197#define INIT_CPLT       0x20	/* Initialisation complete */
 198#define INIT_FAIL       0x21	/* Initialisation failed */
 199
 200#define ABTA_SENT       0x24	/* Abort sent */
 201#define ABTB_SENT       0x25
 202#define ABTC_SENT       0x26
 203#define ABTD_SENT       0x27
 204
 205#define TXA_UNDF        0x28	/* Transmission underflow */
 206#define TXB_UNDF        0x29
 207#define TXC_UNDF        0x2A
 208#define TXD_UNDF        0x2B
 209
 210#define F56_INT         0x2C
 211#define M32_INT         0x2D
 212
 213#define TE1_ALMA        0x30
 214
 215/* Port physical configuration. See farsync.h for field values */
 216struct port_cfg {
 217	u16 lineInterface;	/* Physical interface type */
 218	u8 x25op;		/* Unused at present */
 219	u8 internalClock;	/* 1 => internal clock, 0 => external */
 220	u8 transparentMode;	/* 1 => on, 0 => off */
 221	u8 invertClock;		/* 0 => normal, 1 => inverted */
 222	u8 padBytes[6];		/* Padding */
 223	u32 lineSpeed;		/* Speed in bps */
 224};
 225
 226/* TE1 port physical configuration */
 227struct su_config {
 228	u32 dataRate;
 229	u8 clocking;
 230	u8 framing;
 231	u8 structure;
 232	u8 interface;
 233	u8 coding;
 234	u8 lineBuildOut;
 235	u8 equalizer;
 236	u8 transparentMode;
 237	u8 loopMode;
 238	u8 range;
 239	u8 txBufferMode;
 240	u8 rxBufferMode;
 241	u8 startingSlot;
 242	u8 losThreshold;
 243	u8 enableIdleCode;
 244	u8 idleCode;
 245	u8 spare[44];
 246};
 247
 248/* TE1 Status */
 249struct su_status {
 250	u32 receiveBufferDelay;
 251	u32 framingErrorCount;
 252	u32 codeViolationCount;
 253	u32 crcErrorCount;
 254	u32 lineAttenuation;
 255	u8 portStarted;
 256	u8 lossOfSignal;
 257	u8 receiveRemoteAlarm;
 258	u8 alarmIndicationSignal;
 259	u8 spare[40];
 260};
 261
 262/* Finally sling all the above together into the shared memory structure.
 263 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
 264 * evolving under NT for some time so I guess we're stuck with it.
 265 * The structure starts at offset SMC_BASE.
 266 * See farsync.h for some field values.
 267 */
 268struct fst_shared {
 269	/* DMA descriptor rings */
 270	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
 271	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
 272
 273	/* Obsolete small buffers */
 274	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
 275	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
 276
 277	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
 278				 * 0xFF => halted
 279				 */
 280
 281	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
 282				 * set to 0xEE by host to acknowledge interrupt
 283				 */
 284
 285	u16 smcVersion;		/* Must match SMC_VERSION */
 286
 287	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
 288				 * version, RR = revision and BB = build
 289				 */
 290
 291	u16 txa_done;		/* Obsolete completion flags */
 292	u16 rxa_done;
 293	u16 txb_done;
 294	u16 rxb_done;
 295	u16 txc_done;
 296	u16 rxc_done;
 297	u16 txd_done;
 298	u16 rxd_done;
 299
 300	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
 301
 302	struct cirbuff interruptEvent;	/* interrupt causes */
 303
 304	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
 305	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
 306
 307	struct port_cfg portConfig[FST_MAX_PORTS];
 308
 309	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
 310
 311	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
 312
 313	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
 314	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
 315
 316	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
 317	u16 cardMailbox[4];	/* Not used */
 318
 319	/* Number of times the card thinks the host has
 320	 * missed an interrupt by not acknowledging
 321	 * within 2mS (I guess NT has problems)
 322	 */
 323	u32 interruptRetryCount;
 324
 325	/* Driver private data used as an ID. We'll not
 326	 * use this as I'd rather keep such things
 327	 * in main memory rather than on the PCI bus
 328	 */
 329	u32 portHandle[FST_MAX_PORTS];
 330
 331	/* Count of Tx underflows for stats */
 332	u32 transmitBufferUnderflow[FST_MAX_PORTS];
 333
 334	/* Debounced V.24 control input status */
 335	u32 v24DebouncedSts[FST_MAX_PORTS];
 336
 337	/* Adapter debounce timers. Don't touch */
 338	u32 ctsTimer[FST_MAX_PORTS];
 339	u32 ctsTimerRun[FST_MAX_PORTS];
 340	u32 dcdTimer[FST_MAX_PORTS];
 341	u32 dcdTimerRun[FST_MAX_PORTS];
 342
 343	u32 numberOfPorts;	/* Number of ports detected at startup */
 344
 345	u16 _reserved[64];
 346
 347	u16 cardMode;		/* Bit-mask to enable features:
 348				 * Bit 0: 1 enables LED identify mode
 349				 */
 350
 351	u16 portScheduleOffset;
 352
 353	struct su_config suConfig;	/* TE1 Bits */
 354	struct su_status suStatus;
 355
 356	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
 357				 * the structure and marks the end of shared
 358				 * memory. Adapter code initializes it as
 359				 * END_SIG.
 360				 */
 361};
 362
 363/* endOfSmcSignature value */
 364#define END_SIG                 0x12345678
 365
 366/* Mailbox values. (portMailbox) */
 367#define NOP             0	/* No operation */
 368#define ACK             1	/* Positive acknowledgement to PC driver */
 369#define NAK             2	/* Negative acknowledgement to PC driver */
 370#define STARTPORT       3	/* Start an HDLC port */
 371#define STOPPORT        4	/* Stop an HDLC port */
 372#define ABORTTX         5	/* Abort the transmitter for a port */
 373#define SETV24O         6	/* Set V24 outputs */
 374
 375/* PLX Chip Register Offsets */
 376#define CNTRL_9052      0x50	/* Control Register */
 377#define CNTRL_9054      0x6c	/* Control Register */
 378
 379#define INTCSR_9052     0x4c	/* Interrupt control/status register */
 380#define INTCSR_9054     0x68	/* Interrupt control/status register */
 381
 382/* 9054 DMA Registers */
 383/*
 384 * Note that we will be using DMA Channel 0 for copying rx data
 385 * and Channel 1 for copying tx data
 386 */
 387#define DMAMODE0        0x80
 388#define DMAPADR0        0x84
 389#define DMALADR0        0x88
 390#define DMASIZ0         0x8c
 391#define DMADPR0         0x90
 392#define DMAMODE1        0x94
 393#define DMAPADR1        0x98
 394#define DMALADR1        0x9c
 395#define DMASIZ1         0xa0
 396#define DMADPR1         0xa4
 397#define DMACSR0         0xa8
 398#define DMACSR1         0xa9
 399#define DMAARB          0xac
 400#define DMATHR          0xb0
 401#define DMADAC0         0xb4
 402#define DMADAC1         0xb8
 403#define DMAMARBR        0xac
 404
 405#define FST_MIN_DMA_LEN 64
 406#define FST_RX_DMA_INT  0x01
 407#define FST_TX_DMA_INT  0x02
 408#define FST_CARD_INT    0x04
 409
 410/* Larger buffers are positioned in memory at offset BFM_BASE */
 411struct buf_window {
 412	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
 413	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
 414};
 415
 416/* Calculate offset of a buffer object within the shared memory window */
 417#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
 418
 419#pragma pack()
 420
 421/*      Device driver private information
 422 *      =================================
 423 */
 424/*      Per port (line or channel) information
 425 */
 426struct fst_port_info {
 427        struct net_device *dev; /* Device struct - must be first */
 428	struct fst_card_info *card;	/* Card we're associated with */
 429	int index;		/* Port index on the card */
 430	int hwif;		/* Line hardware (lineInterface copy) */
 431	int run;		/* Port is running */
 432	int mode;		/* Normal or FarSync raw */
 433	int rxpos;		/* Next Rx buffer to use */
 434	int txpos;		/* Next Tx buffer to use */
 435	int txipos;		/* Next Tx buffer to check for free */
 436	int start;		/* Indication of start/stop to network */
 437	/*
 438	 * A sixteen entry transmit queue
 439	 */
 440	int txqs;		/* index to get next buffer to tx */
 441	int txqe;		/* index to queue next packet */
 442	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
 443	int rxqdepth;
 444};
 445
 446/*      Per card information
 447 */
 448struct fst_card_info {
 449	char __iomem *mem;	/* Card memory mapped to kernel space */
 450	char __iomem *ctlmem;	/* Control memory for PCI cards */
 451	unsigned int phys_mem;	/* Physical memory window address */
 452	unsigned int phys_ctlmem;	/* Physical control memory address */
 453	unsigned int irq;	/* Interrupt request line number */
 454	unsigned int nports;	/* Number of serial ports */
 455	unsigned int type;	/* Type index of card */
 456	unsigned int state;	/* State of card */
 457	spinlock_t card_lock;	/* Lock for SMP access */
 458	unsigned short pci_conf;	/* PCI card config in I/O space */
 459	/* Per port info */
 460	struct fst_port_info ports[FST_MAX_PORTS];
 461	struct pci_dev *device;	/* Information about the pci device */
 462	int card_no;		/* Inst of the card on the system */
 463	int family;		/* TxP or TxU */
 464	int dmarx_in_progress;
 465	int dmatx_in_progress;
 466	unsigned long int_count;
 467	unsigned long int_time_ave;
 468	void *rx_dma_handle_host;
 469	dma_addr_t rx_dma_handle_card;
 470	void *tx_dma_handle_host;
 471	dma_addr_t tx_dma_handle_card;
 472	struct sk_buff *dma_skb_rx;
 473	struct fst_port_info *dma_port_rx;
 474	struct fst_port_info *dma_port_tx;
 475	int dma_len_rx;
 476	int dma_len_tx;
 477	int dma_txpos;
 478	int dma_rxpos;
 479};
 480
 481/* Convert an HDLC device pointer into a port info pointer and similar */
 482#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
 483#define port_to_dev(P)  ((P)->dev)
 484
 485
 486/*
 487 *      Shared memory window access macros
 488 *
 489 *      We have a nice memory based structure above, which could be directly
 490 *      mapped on i386 but might not work on other architectures unless we use
 491 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
 492 *      physical offsets so we have to convert. The only saving grace is that
 493 *      this should all collapse back to a simple indirection eventually.
 494 */
 495#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
 496
 497#define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
 498#define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
 499#define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
 500
 501#define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
 502#define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
 503#define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
 504
 505/*
 506 *      Debug support
 507 */
 508#if FST_DEBUG
 509
 510static int fst_debug_mask = { FST_DEBUG };
 511
 512/* Most common debug activity is to print something if the corresponding bit
 513 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
 514 * support variable numbers of macro parameters. The inverted if prevents us
 515 * eating someone else's else clause.
 516 */
 517#define dbg(F, fmt, args...)					\
 518do {								\
 519	if (fst_debug_mask & (F))				\
 520		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
 521} while (0)
 522#else
 523#define dbg(F, fmt, args...)					\
 524do {								\
 525	if (0)							\
 526		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
 527} while (0)
 528#endif
 529
 530/*
 531 *      PCI ID lookup table
 532 */
 533static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
 534	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 
 535	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
 536
 537	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 
 538	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
 539
 540	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 
 541	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
 542
 543	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 
 544	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
 545
 546	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 
 547	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
 548
 549	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 
 550	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 551
 552	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 
 553	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 554	{0,}			/* End */
 555};
 556
 557MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
 558
 559/*
 560 *      Device Driver Work Queues
 561 *
 562 *      So that we don't spend too much time processing events in the 
 563 *      Interrupt Service routine, we will declare a work queue per Card 
 564 *      and make the ISR schedule a task in the queue for later execution.
 565 *      In the 2.4 Kernel we used to use the immediate queue for BH's
 566 *      Now that they are gone, tasklets seem to be much better than work 
 567 *      queues.
 568 */
 569
 570static void do_bottom_half_tx(struct fst_card_info *card);
 571static void do_bottom_half_rx(struct fst_card_info *card);
 572static void fst_process_tx_work_q(unsigned long work_q);
 573static void fst_process_int_work_q(unsigned long work_q);
 574
 575static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
 576static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
 577
 578static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
 579static spinlock_t fst_work_q_lock;
 580static u64 fst_work_txq;
 581static u64 fst_work_intq;
 582
 583static void
 584fst_q_work_item(u64 * queue, int card_index)
 585{
 586	unsigned long flags;
 587	u64 mask;
 588
 589	/*
 590	 * Grab the queue exclusively
 591	 */
 592	spin_lock_irqsave(&fst_work_q_lock, flags);
 593
 594	/*
 595	 * Making an entry in the queue is simply a matter of setting
 596	 * a bit for the card indicating that there is work to do in the
 597	 * bottom half for the card.  Note the limitation of 64 cards.
 598	 * That ought to be enough
 599	 */
 600	mask = 1 << card_index;
 601	*queue |= mask;
 602	spin_unlock_irqrestore(&fst_work_q_lock, flags);
 603}
 604
 605static void
 606fst_process_tx_work_q(unsigned long /*void **/work_q)
 607{
 608	unsigned long flags;
 609	u64 work_txq;
 610	int i;
 611
 612	/*
 613	 * Grab the queue exclusively
 614	 */
 615	dbg(DBG_TX, "fst_process_tx_work_q\n");
 616	spin_lock_irqsave(&fst_work_q_lock, flags);
 617	work_txq = fst_work_txq;
 618	fst_work_txq = 0;
 619	spin_unlock_irqrestore(&fst_work_q_lock, flags);
 620
 621	/*
 622	 * Call the bottom half for each card with work waiting
 623	 */
 624	for (i = 0; i < FST_MAX_CARDS; i++) {
 625		if (work_txq & 0x01) {
 626			if (fst_card_array[i] != NULL) {
 627				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
 628				do_bottom_half_tx(fst_card_array[i]);
 629			}
 630		}
 631		work_txq = work_txq >> 1;
 632	}
 633}
 634
 635static void
 636fst_process_int_work_q(unsigned long /*void **/work_q)
 637{
 638	unsigned long flags;
 639	u64 work_intq;
 640	int i;
 641
 642	/*
 643	 * Grab the queue exclusively
 644	 */
 645	dbg(DBG_INTR, "fst_process_int_work_q\n");
 646	spin_lock_irqsave(&fst_work_q_lock, flags);
 647	work_intq = fst_work_intq;
 648	fst_work_intq = 0;
 649	spin_unlock_irqrestore(&fst_work_q_lock, flags);
 650
 651	/*
 652	 * Call the bottom half for each card with work waiting
 653	 */
 654	for (i = 0; i < FST_MAX_CARDS; i++) {
 655		if (work_intq & 0x01) {
 656			if (fst_card_array[i] != NULL) {
 657				dbg(DBG_INTR,
 658				    "Calling rx & tx bh for card %d\n", i);
 659				do_bottom_half_rx(fst_card_array[i]);
 660				do_bottom_half_tx(fst_card_array[i]);
 661			}
 662		}
 663		work_intq = work_intq >> 1;
 664	}
 665}
 666
 667/*      Card control functions
 668 *      ======================
 669 */
 670/*      Place the processor in reset state
 671 *
 672 * Used to be a simple write to card control space but a glitch in the latest
 673 * AMD Am186CH processor means that we now have to do it by asserting and de-
 674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
 675 * at offset 9052_CNTRL.  Note the updates for the TXU.
 676 */
 677static inline void
 678fst_cpureset(struct fst_card_info *card)
 679{
 680	unsigned char interrupt_line_register;
 681	unsigned long j = jiffies + 1;
 682	unsigned int regval;
 683
 684	if (card->family == FST_FAMILY_TXU) {
 685		if (pci_read_config_byte
 686		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
 687			dbg(DBG_ASS,
 688			    "Error in reading interrupt line register\n");
 689		}
 690		/*
 691		 * Assert PLX software reset and Am186 hardware reset
 692		 * and then deassert the PLX software reset but 186 still in reset
 693		 */
 694		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
 695		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 696		/*
 697		 * We are delaying here to allow the 9054 to reset itself
 698		 */
 699		j = jiffies + 1;
 700		while (jiffies < j)
 701			/* Do nothing */ ;
 702		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
 703		/*
 704		 * We are delaying here to allow the 9054 to reload its eeprom
 705		 */
 706		j = jiffies + 1;
 707		while (jiffies < j)
 708			/* Do nothing */ ;
 709		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 710
 711		if (pci_write_config_byte
 712		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
 713			dbg(DBG_ASS,
 714			    "Error in writing interrupt line register\n");
 715		}
 716
 717	} else {
 718		regval = inl(card->pci_conf + CNTRL_9052);
 719
 720		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
 721		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
 722	}
 723}
 724
 725/*      Release the processor from reset
 726 */
 727static inline void
 728fst_cpurelease(struct fst_card_info *card)
 729{
 730	if (card->family == FST_FAMILY_TXU) {
 731		/*
 732		 * Force posted writes to complete
 733		 */
 734		(void) readb(card->mem);
 735
 736		/*
 737		 * Release LRESET DO = 1
 738		 * Then release Local Hold, DO = 1
 739		 */
 740		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
 741		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 742	} else {
 743		(void) readb(card->ctlmem);
 744	}
 745}
 746
 747/*      Clear the cards interrupt flag
 748 */
 749static inline void
 750fst_clear_intr(struct fst_card_info *card)
 751{
 752	if (card->family == FST_FAMILY_TXU) {
 753		(void) readb(card->ctlmem);
 754	} else {
 755		/* Poke the appropriate PLX chip register (same as enabling interrupts)
 756		 */
 757		outw(0x0543, card->pci_conf + INTCSR_9052);
 758	}
 759}
 760
 761/*      Enable card interrupts
 762 */
 763static inline void
 764fst_enable_intr(struct fst_card_info *card)
 765{
 766	if (card->family == FST_FAMILY_TXU) {
 767		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
 768	} else {
 769		outw(0x0543, card->pci_conf + INTCSR_9052);
 770	}
 771}
 772
 773/*      Disable card interrupts
 774 */
 775static inline void
 776fst_disable_intr(struct fst_card_info *card)
 777{
 778	if (card->family == FST_FAMILY_TXU) {
 779		outl(0x00000000, card->pci_conf + INTCSR_9054);
 780	} else {
 781		outw(0x0000, card->pci_conf + INTCSR_9052);
 782	}
 783}
 784
 785/*      Process the result of trying to pass a received frame up the stack
 786 */
 787static void
 788fst_process_rx_status(int rx_status, char *name)
 789{
 790	switch (rx_status) {
 791	case NET_RX_SUCCESS:
 792		{
 793			/*
 794			 * Nothing to do here
 795			 */
 796			break;
 797		}
 798	case NET_RX_DROP:
 799		{
 800			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
 801			break;
 802		}
 803	}
 804}
 805
 806/*      Initilaise DMA for PLX 9054
 807 */
 808static inline void
 809fst_init_dma(struct fst_card_info *card)
 810{
 811	/*
 812	 * This is only required for the PLX 9054
 813	 */
 814	if (card->family == FST_FAMILY_TXU) {
 815	        pci_set_master(card->device);
 816		outl(0x00020441, card->pci_conf + DMAMODE0);
 817		outl(0x00020441, card->pci_conf + DMAMODE1);
 818		outl(0x0, card->pci_conf + DMATHR);
 819	}
 820}
 821
 822/*      Tx dma complete interrupt
 823 */
 824static void
 825fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 826		    int len, int txpos)
 827{
 828	struct net_device *dev = port_to_dev(port);
 829
 830	/*
 831	 * Everything is now set, just tell the card to go
 832	 */
 833	dbg(DBG_TX, "fst_tx_dma_complete\n");
 834	FST_WRB(card, txDescrRing[port->index][txpos].bits,
 835		DMA_OWN | TX_STP | TX_ENP);
 836	dev->stats.tx_packets++;
 837	dev->stats.tx_bytes += len;
 838	dev->trans_start = jiffies;
 839}
 840
 841/*
 842 * Mark it for our own raw sockets interface
 843 */
 844static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
 845{
 846	skb->dev = dev;
 847	skb_reset_mac_header(skb);
 848	skb->pkt_type = PACKET_HOST;
 849	return htons(ETH_P_CUST);
 850}
 851
 852/*      Rx dma complete interrupt
 853 */
 854static void
 855fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 856		    int len, struct sk_buff *skb, int rxp)
 857{
 858	struct net_device *dev = port_to_dev(port);
 859	int pi;
 860	int rx_status;
 861
 862	dbg(DBG_TX, "fst_rx_dma_complete\n");
 863	pi = port->index;
 864	memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
 865
 866	/* Reset buffer descriptor */
 867	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
 868
 869	/* Update stats */
 870	dev->stats.rx_packets++;
 871	dev->stats.rx_bytes += len;
 872
 873	/* Push upstream */
 874	dbg(DBG_RX, "Pushing the frame up the stack\n");
 875	if (port->mode == FST_RAW)
 876		skb->protocol = farsync_type_trans(skb, dev);
 877	else
 878		skb->protocol = hdlc_type_trans(skb, dev);
 879	rx_status = netif_rx(skb);
 880	fst_process_rx_status(rx_status, port_to_dev(port)->name);
 881	if (rx_status == NET_RX_DROP)
 882		dev->stats.rx_dropped++;
 883}
 884
 885/*
 886 *      Receive a frame through the DMA
 887 */
 888static inline void
 889fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
 890	   dma_addr_t mem, int len)
 891{
 892	/*
 893	 * This routine will setup the DMA and start it
 894	 */
 895
 896	dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
 897	    (unsigned long) skb, (unsigned long) mem, len);
 898	if (card->dmarx_in_progress) {
 899		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
 900	}
 901
 902	outl(skb, card->pci_conf + DMAPADR0);	/* Copy to here */
 903	outl(mem, card->pci_conf + DMALADR0);	/* from here */
 904	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
 905	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
 906
 907	/*
 908	 * We use the dmarx_in_progress flag to flag the channel as busy
 909	 */
 910	card->dmarx_in_progress = 1;
 911	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
 912}
 913
 914/*
 915 *      Send a frame through the DMA
 916 */
 917static inline void
 918fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
 919	   unsigned char *mem, int len)
 920{
 921	/*
 922	 * This routine will setup the DMA and start it.
 923	 */
 924
 925	dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
 926	if (card->dmatx_in_progress) {
 927		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
 928	}
 929
 930	outl((unsigned long) skb, card->pci_conf + DMAPADR1);	/* Copy from here */
 931	outl((unsigned long) mem, card->pci_conf + DMALADR1);	/* to here */
 932	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
 933	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
 934
 935	/*
 936	 * We use the dmatx_in_progress to flag the channel as busy
 937	 */
 938	card->dmatx_in_progress = 1;
 939	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
 940}
 941
 942/*      Issue a Mailbox command for a port.
 943 *      Note we issue them on a fire and forget basis, not expecting to see an
 944 *      error and not waiting for completion.
 945 */
 946static void
 947fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
 948{
 949	struct fst_card_info *card;
 950	unsigned short mbval;
 951	unsigned long flags;
 952	int safety;
 953
 954	card = port->card;
 955	spin_lock_irqsave(&card->card_lock, flags);
 956	mbval = FST_RDW(card, portMailbox[port->index][0]);
 957
 958	safety = 0;
 959	/* Wait for any previous command to complete */
 960	while (mbval > NAK) {
 961		spin_unlock_irqrestore(&card->card_lock, flags);
 962		schedule_timeout_uninterruptible(1);
 963		spin_lock_irqsave(&card->card_lock, flags);
 964
 965		if (++safety > 2000) {
 966			pr_err("Mailbox safety timeout\n");
 967			break;
 968		}
 969
 970		mbval = FST_RDW(card, portMailbox[port->index][0]);
 971	}
 972	if (safety > 0) {
 973		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
 974	}
 975	if (mbval == NAK) {
 976		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
 977	}
 978
 979	FST_WRW(card, portMailbox[port->index][0], cmd);
 980
 981	if (cmd == ABORTTX || cmd == STARTPORT) {
 982		port->txpos = 0;
 983		port->txipos = 0;
 984		port->start = 0;
 985	}
 986
 987	spin_unlock_irqrestore(&card->card_lock, flags);
 988}
 989
 990/*      Port output signals control
 991 */
 992static inline void
 993fst_op_raise(struct fst_port_info *port, unsigned int outputs)
 994{
 995	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
 996	FST_WRL(port->card, v24OpSts[port->index], outputs);
 997
 998	if (port->run)
 999		fst_issue_cmd(port, SETV24O);
1000}
1001
1002static inline void
1003fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1004{
1005	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1006	FST_WRL(port->card, v24OpSts[port->index], outputs);
1007
1008	if (port->run)
1009		fst_issue_cmd(port, SETV24O);
1010}
1011
1012/*
1013 *      Setup port Rx buffers
1014 */
1015static void
1016fst_rx_config(struct fst_port_info *port)
1017{
1018	int i;
1019	int pi;
1020	unsigned int offset;
1021	unsigned long flags;
1022	struct fst_card_info *card;
1023
1024	pi = port->index;
1025	card = port->card;
1026	spin_lock_irqsave(&card->card_lock, flags);
1027	for (i = 0; i < NUM_RX_BUFFER; i++) {
1028		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1029
1030		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1031		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1032		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1033		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1034		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1035	}
1036	port->rxpos = 0;
1037	spin_unlock_irqrestore(&card->card_lock, flags);
1038}
1039
1040/*
1041 *      Setup port Tx buffers
1042 */
1043static void
1044fst_tx_config(struct fst_port_info *port)
1045{
1046	int i;
1047	int pi;
1048	unsigned int offset;
1049	unsigned long flags;
1050	struct fst_card_info *card;
1051
1052	pi = port->index;
1053	card = port->card;
1054	spin_lock_irqsave(&card->card_lock, flags);
1055	for (i = 0; i < NUM_TX_BUFFER; i++) {
1056		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1057
1058		FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1059		FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1060		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1061		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1062	}
1063	port->txpos = 0;
1064	port->txipos = 0;
1065	port->start = 0;
1066	spin_unlock_irqrestore(&card->card_lock, flags);
1067}
1068
1069/*      TE1 Alarm change interrupt event
1070 */
1071static void
1072fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1073{
1074	u8 los;
1075	u8 rra;
1076	u8 ais;
1077
1078	los = FST_RDB(card, suStatus.lossOfSignal);
1079	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1080	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1081
1082	if (los) {
1083		/*
1084		 * Lost the link
1085		 */
1086		if (netif_carrier_ok(port_to_dev(port))) {
1087			dbg(DBG_INTR, "Net carrier off\n");
1088			netif_carrier_off(port_to_dev(port));
1089		}
1090	} else {
1091		/*
1092		 * Link available
1093		 */
1094		if (!netif_carrier_ok(port_to_dev(port))) {
1095			dbg(DBG_INTR, "Net carrier on\n");
1096			netif_carrier_on(port_to_dev(port));
1097		}
1098	}
1099
1100	if (los)
1101		dbg(DBG_INTR, "Assert LOS Alarm\n");
1102	else
1103		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1104	if (rra)
1105		dbg(DBG_INTR, "Assert RRA Alarm\n");
1106	else
1107		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1108
1109	if (ais)
1110		dbg(DBG_INTR, "Assert AIS Alarm\n");
1111	else
1112		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1113}
1114
1115/*      Control signal change interrupt event
1116 */
1117static void
1118fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1119{
1120	int signals;
1121
1122	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1123
1124	if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1125		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1126		if (!netif_carrier_ok(port_to_dev(port))) {
1127			dbg(DBG_INTR, "DCD active\n");
1128			netif_carrier_on(port_to_dev(port));
1129		}
1130	} else {
1131		if (netif_carrier_ok(port_to_dev(port))) {
1132			dbg(DBG_INTR, "DCD lost\n");
1133			netif_carrier_off(port_to_dev(port));
1134		}
1135	}
1136}
1137
1138/*      Log Rx Errors
1139 */
1140static void
1141fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1142		 unsigned char dmabits, int rxp, unsigned short len)
1143{
1144	struct net_device *dev = port_to_dev(port);
1145
1146	/*
1147	 * Increment the appropriate error counter
1148	 */
1149	dev->stats.rx_errors++;
1150	if (dmabits & RX_OFLO) {
1151		dev->stats.rx_fifo_errors++;
1152		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1153		    card->card_no, port->index, rxp);
1154	}
1155	if (dmabits & RX_CRC) {
1156		dev->stats.rx_crc_errors++;
1157		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1158		    card->card_no, port->index);
1159	}
1160	if (dmabits & RX_FRAM) {
1161		dev->stats.rx_frame_errors++;
1162		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1163		    card->card_no, port->index);
1164	}
1165	if (dmabits == (RX_STP | RX_ENP)) {
1166		dev->stats.rx_length_errors++;
1167		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1168		    len, card->card_no, port->index);
1169	}
1170}
1171
1172/*      Rx Error Recovery
1173 */
1174static void
1175fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1176		     unsigned char dmabits, int rxp, unsigned short len)
1177{
1178	int i;
1179	int pi;
1180
1181	pi = port->index;
1182	/* 
1183	 * Discard buffer descriptors until we see the start of the
1184	 * next frame.  Note that for long frames this could be in
1185	 * a subsequent interrupt. 
1186	 */
1187	i = 0;
1188	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1189		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1190		rxp = (rxp+1) % NUM_RX_BUFFER;
1191		if (++i > NUM_RX_BUFFER) {
1192			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1193			    " than we have\n");
1194			break;
1195		}
1196		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1197		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1198	}
1199	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1200
1201	/* Discard the terminal buffer */
1202	if (!(dmabits & DMA_OWN)) {
1203		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1204		rxp = (rxp+1) % NUM_RX_BUFFER;
1205	}
1206	port->rxpos = rxp;
1207	return;
1208
1209}
1210
1211/*      Rx complete interrupt
1212 */
1213static void
1214fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1215{
1216	unsigned char dmabits;
1217	int pi;
1218	int rxp;
1219	int rx_status;
1220	unsigned short len;
1221	struct sk_buff *skb;
1222	struct net_device *dev = port_to_dev(port);
1223
1224	/* Check we have a buffer to process */
1225	pi = port->index;
1226	rxp = port->rxpos;
1227	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1228	if (dmabits & DMA_OWN) {
1229		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1230		    pi, rxp);
1231		return;
1232	}
1233	if (card->dmarx_in_progress) {
1234		return;
1235	}
1236
1237	/* Get buffer length */
1238	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1239	/* Discard the CRC */
1240	len -= 2;
1241	if (len == 0) {
1242		/*
1243		 * This seems to happen on the TE1 interface sometimes
1244		 * so throw the frame away and log the event.
1245		 */
1246		pr_err("Frame received with 0 length. Card %d Port %d\n",
1247		       card->card_no, port->index);
1248		/* Return descriptor to card */
1249		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1250
1251		rxp = (rxp+1) % NUM_RX_BUFFER;
1252		port->rxpos = rxp;
1253		return;
1254	}
1255
1256	/* Check buffer length and for other errors. We insist on one packet
1257	 * in one buffer. This simplifies things greatly and since we've
1258	 * allocated 8K it shouldn't be a real world limitation
1259	 */
1260	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1261	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1262		fst_log_rx_error(card, port, dmabits, rxp, len);
1263		fst_recover_rx_error(card, port, dmabits, rxp, len);
1264		return;
1265	}
1266
1267	/* Allocate SKB */
1268	if ((skb = dev_alloc_skb(len)) == NULL) {
1269		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1270
1271		dev->stats.rx_dropped++;
1272
1273		/* Return descriptor to card */
1274		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1275
1276		rxp = (rxp+1) % NUM_RX_BUFFER;
1277		port->rxpos = rxp;
1278		return;
1279	}
1280
1281	/*
1282	 * We know the length we need to receive, len.
1283	 * It's not worth using the DMA for reads of less than
1284	 * FST_MIN_DMA_LEN
1285	 */
1286
1287	if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1288		memcpy_fromio(skb_put(skb, len),
1289			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1290			      len);
1291
1292		/* Reset buffer descriptor */
1293		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1294
1295		/* Update stats */
1296		dev->stats.rx_packets++;
1297		dev->stats.rx_bytes += len;
1298
1299		/* Push upstream */
1300		dbg(DBG_RX, "Pushing frame up the stack\n");
1301		if (port->mode == FST_RAW)
1302			skb->protocol = farsync_type_trans(skb, dev);
1303		else
1304			skb->protocol = hdlc_type_trans(skb, dev);
1305		rx_status = netif_rx(skb);
1306		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1307		if (rx_status == NET_RX_DROP)
1308			dev->stats.rx_dropped++;
1309	} else {
1310		card->dma_skb_rx = skb;
1311		card->dma_port_rx = port;
1312		card->dma_len_rx = len;
1313		card->dma_rxpos = rxp;
1314		fst_rx_dma(card, card->rx_dma_handle_card,
1315			   BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1316	}
1317	if (rxp != port->rxpos) {
1318		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1319		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1320	}
1321	rxp = (rxp+1) % NUM_RX_BUFFER;
1322	port->rxpos = rxp;
1323}
1324
1325/*
1326 *      The bottom halfs to the ISR
1327 *
1328 */
1329
1330static void
1331do_bottom_half_tx(struct fst_card_info *card)
1332{
1333	struct fst_port_info *port;
1334	int pi;
1335	int txq_length;
1336	struct sk_buff *skb;
1337	unsigned long flags;
1338	struct net_device *dev;
1339
1340	/*
1341	 *  Find a free buffer for the transmit
1342	 *  Step through each port on this card
1343	 */
1344
1345	dbg(DBG_TX, "do_bottom_half_tx\n");
1346	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1347		if (!port->run)
1348			continue;
1349
1350		dev = port_to_dev(port);
1351		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1352			 DMA_OWN) &&
1353		       !(card->dmatx_in_progress)) {
1354			/*
1355			 * There doesn't seem to be a txdone event per-se
1356			 * We seem to have to deduce it, by checking the DMA_OWN
1357			 * bit on the next buffer we think we can use
1358			 */
1359			spin_lock_irqsave(&card->card_lock, flags);
1360			if ((txq_length = port->txqe - port->txqs) < 0) {
1361				/*
1362				 * This is the case where one has wrapped and the
1363				 * maths gives us a negative number
1364				 */
1365				txq_length = txq_length + FST_TXQ_DEPTH;
1366			}
1367			spin_unlock_irqrestore(&card->card_lock, flags);
1368			if (txq_length > 0) {
1369				/*
1370				 * There is something to send
1371				 */
1372				spin_lock_irqsave(&card->card_lock, flags);
1373				skb = port->txq[port->txqs];
1374				port->txqs++;
1375				if (port->txqs == FST_TXQ_DEPTH) {
1376					port->txqs = 0;
1377				}
1378				spin_unlock_irqrestore(&card->card_lock, flags);
1379				/*
1380				 * copy the data and set the required indicators on the
1381				 * card.
1382				 */
1383				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1384					cnv_bcnt(skb->len));
1385				if ((skb->len < FST_MIN_DMA_LEN) ||
1386				    (card->family == FST_FAMILY_TXP)) {
1387					/* Enqueue the packet with normal io */
1388					memcpy_toio(card->mem +
1389						    BUF_OFFSET(txBuffer[pi]
1390							       [port->
1391								txpos][0]),
1392						    skb->data, skb->len);
1393					FST_WRB(card,
1394						txDescrRing[pi][port->txpos].
1395						bits,
1396						DMA_OWN | TX_STP | TX_ENP);
1397					dev->stats.tx_packets++;
1398					dev->stats.tx_bytes += skb->len;
1399					dev->trans_start = jiffies;
1400				} else {
1401					/* Or do it through dma */
1402					memcpy(card->tx_dma_handle_host,
1403					       skb->data, skb->len);
1404					card->dma_port_tx = port;
1405					card->dma_len_tx = skb->len;
1406					card->dma_txpos = port->txpos;
1407					fst_tx_dma(card,
1408						   (char *) card->
1409						   tx_dma_handle_card,
1410						   (char *)
1411						   BUF_OFFSET(txBuffer[pi]
1412							      [port->txpos][0]),
1413						   skb->len);
1414				}
1415				if (++port->txpos >= NUM_TX_BUFFER)
1416					port->txpos = 0;
1417				/*
1418				 * If we have flow control on, can we now release it?
1419				 */
1420				if (port->start) {
1421					if (txq_length < fst_txq_low) {
1422						netif_wake_queue(port_to_dev
1423								 (port));
1424						port->start = 0;
1425					}
1426				}
1427				dev_kfree_skb(skb);
1428			} else {
1429				/*
1430				 * Nothing to send so break out of the while loop
1431				 */
1432				break;
1433			}
1434		}
1435	}
1436}
1437
1438static void
1439do_bottom_half_rx(struct fst_card_info *card)
1440{
1441	struct fst_port_info *port;
1442	int pi;
1443	int rx_count = 0;
1444
1445	/* Check for rx completions on all ports on this card */
1446	dbg(DBG_RX, "do_bottom_half_rx\n");
1447	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1448		if (!port->run)
1449			continue;
1450
1451		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1452			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1453			if (rx_count > fst_max_reads) {
1454				/*
1455				 * Don't spend forever in receive processing
1456				 * Schedule another event
1457				 */
1458				fst_q_work_item(&fst_work_intq, card->card_no);
1459				tasklet_schedule(&fst_int_task);
1460				break;	/* Leave the loop */
1461			}
1462			fst_intr_rx(card, port);
1463			rx_count++;
1464		}
1465	}
1466}
1467
1468/*
1469 *      The interrupt service routine
1470 *      Dev_id is our fst_card_info pointer
1471 */
1472static irqreturn_t
1473fst_intr(int dummy, void *dev_id)
1474{
1475	struct fst_card_info *card = dev_id;
1476	struct fst_port_info *port;
1477	int rdidx;		/* Event buffer indices */
1478	int wridx;
1479	int event;		/* Actual event for processing */
1480	unsigned int dma_intcsr = 0;
1481	unsigned int do_card_interrupt;
1482	unsigned int int_retry_count;
1483
1484	/*
1485	 * Check to see if the interrupt was for this card
1486	 * return if not
1487	 * Note that the call to clear the interrupt is important
1488	 */
1489	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1490	if (card->state != FST_RUNNING) {
1491		pr_err("Interrupt received for card %d in a non running state (%d)\n",
1492		       card->card_no, card->state);
1493
1494		/* 
1495		 * It is possible to really be running, i.e. we have re-loaded
1496		 * a running card
1497		 * Clear and reprime the interrupt source 
1498		 */
1499		fst_clear_intr(card);
1500		return IRQ_HANDLED;
1501	}
1502
1503	/* Clear and reprime the interrupt source */
1504	fst_clear_intr(card);
1505
1506	/*
1507	 * Is the interrupt for this card (handshake == 1)
1508	 */
1509	do_card_interrupt = 0;
1510	if (FST_RDB(card, interruptHandshake) == 1) {
1511		do_card_interrupt += FST_CARD_INT;
1512		/* Set the software acknowledge */
1513		FST_WRB(card, interruptHandshake, 0xEE);
1514	}
1515	if (card->family == FST_FAMILY_TXU) {
1516		/*
1517		 * Is it a DMA Interrupt
1518		 */
1519		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1520		if (dma_intcsr & 0x00200000) {
1521			/*
1522			 * DMA Channel 0 (Rx transfer complete)
1523			 */
1524			dbg(DBG_RX, "DMA Rx xfer complete\n");
1525			outb(0x8, card->pci_conf + DMACSR0);
1526			fst_rx_dma_complete(card, card->dma_port_rx,
1527					    card->dma_len_rx, card->dma_skb_rx,
1528					    card->dma_rxpos);
1529			card->dmarx_in_progress = 0;
1530			do_card_interrupt += FST_RX_DMA_INT;
1531		}
1532		if (dma_intcsr & 0x00400000) {
1533			/*
1534			 * DMA Channel 1 (Tx transfer complete)
1535			 */
1536			dbg(DBG_TX, "DMA Tx xfer complete\n");
1537			outb(0x8, card->pci_conf + DMACSR1);
1538			fst_tx_dma_complete(card, card->dma_port_tx,
1539					    card->dma_len_tx, card->dma_txpos);
1540			card->dmatx_in_progress = 0;
1541			do_card_interrupt += FST_TX_DMA_INT;
1542		}
1543	}
1544
1545	/*
1546	 * Have we been missing Interrupts
1547	 */
1548	int_retry_count = FST_RDL(card, interruptRetryCount);
1549	if (int_retry_count) {
1550		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1551		    card->card_no, int_retry_count);
1552		FST_WRL(card, interruptRetryCount, 0);
1553	}
1554
1555	if (!do_card_interrupt) {
1556		return IRQ_HANDLED;
1557	}
1558
1559	/* Scehdule the bottom half of the ISR */
1560	fst_q_work_item(&fst_work_intq, card->card_no);
1561	tasklet_schedule(&fst_int_task);
1562
1563	/* Drain the event queue */
1564	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1565	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1566	while (rdidx != wridx) {
1567		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1568		port = &card->ports[event & 0x03];
1569
1570		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1571
1572		switch (event) {
1573		case TE1_ALMA:
1574			dbg(DBG_INTR, "TE1 Alarm intr\n");
1575			if (port->run)
1576				fst_intr_te1_alarm(card, port);
1577			break;
1578
1579		case CTLA_CHG:
1580		case CTLB_CHG:
1581		case CTLC_CHG:
1582		case CTLD_CHG:
1583			if (port->run)
1584				fst_intr_ctlchg(card, port);
1585			break;
1586
1587		case ABTA_SENT:
1588		case ABTB_SENT:
1589		case ABTC_SENT:
1590		case ABTD_SENT:
1591			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1592			break;
1593
1594		case TXA_UNDF:
1595		case TXB_UNDF:
1596		case TXC_UNDF:
1597		case TXD_UNDF:
1598			/* Difficult to see how we'd get this given that we
1599			 * always load up the entire packet for DMA.
1600			 */
1601			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1602			port_to_dev(port)->stats.tx_errors++;
1603			port_to_dev(port)->stats.tx_fifo_errors++;
1604			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1605			    card->card_no, port->index);
1606			break;
1607
1608		case INIT_CPLT:
1609			dbg(DBG_INIT, "Card init OK intr\n");
1610			break;
1611
1612		case INIT_FAIL:
1613			dbg(DBG_INIT, "Card init FAILED intr\n");
1614			card->state = FST_IFAILED;
1615			break;
1616
1617		default:
1618			pr_err("intr: unknown card event %d. ignored\n", event);
1619			break;
1620		}
1621
1622		/* Bump and wrap the index */
1623		if (++rdidx >= MAX_CIRBUFF)
1624			rdidx = 0;
1625	}
1626	FST_WRB(card, interruptEvent.rdindex, rdidx);
1627        return IRQ_HANDLED;
1628}
1629
1630/*      Check that the shared memory configuration is one that we can handle
1631 *      and that some basic parameters are correct
1632 */
1633static void
1634check_started_ok(struct fst_card_info *card)
1635{
1636	int i;
1637
1638	/* Check structure version and end marker */
1639	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1640		pr_err("Bad shared memory version %d expected %d\n",
1641		       FST_RDW(card, smcVersion), SMC_VERSION);
1642		card->state = FST_BADVERSION;
1643		return;
1644	}
1645	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1646		pr_err("Missing shared memory signature\n");
1647		card->state = FST_BADVERSION;
1648		return;
1649	}
1650	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1651	if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1652		card->state = FST_RUNNING;
1653	} else if (i == 0xFF) {
1654		pr_err("Firmware initialisation failed. Card halted\n");
1655		card->state = FST_HALTED;
1656		return;
1657	} else if (i != 0x00) {
1658		pr_err("Unknown firmware status 0x%x\n", i);
1659		card->state = FST_HALTED;
1660		return;
1661	}
1662
1663	/* Finally check the number of ports reported by firmware against the
1664	 * number we assumed at card detection. Should never happen with
1665	 * existing firmware etc so we just report it for the moment.
1666	 */
1667	if (FST_RDL(card, numberOfPorts) != card->nports) {
1668		pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1669			card->card_no,
1670			FST_RDL(card, numberOfPorts), card->nports);
1671	}
1672}
1673
1674static int
1675set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676		   struct fstioc_info *info)
1677{
1678	int err;
1679	unsigned char my_framing;
1680
1681	/* Set things according to the user set valid flags 
1682	 * Several of the old options have been invalidated/replaced by the 
1683	 * generic hdlc package.
1684	 */
1685	err = 0;
1686	if (info->valid & FSTVAL_PROTO) {
1687		if (info->proto == FST_RAW)
1688			port->mode = FST_RAW;
1689		else
1690			port->mode = FST_GEN_HDLC;
1691	}
1692
1693	if (info->valid & FSTVAL_CABLE)
1694		err = -EINVAL;
1695
1696	if (info->valid & FSTVAL_SPEED)
1697		err = -EINVAL;
1698
1699	if (info->valid & FSTVAL_PHASE)
1700		FST_WRB(card, portConfig[port->index].invertClock,
1701			info->invertClock);
1702	if (info->valid & FSTVAL_MODE)
1703		FST_WRW(card, cardMode, info->cardMode);
1704	if (info->valid & FSTVAL_TE1) {
1705		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706		FST_WRB(card, suConfig.clocking, info->clockSource);
1707		my_framing = FRAMING_E1;
1708		if (info->framing == E1)
1709			my_framing = FRAMING_E1;
1710		if (info->framing == T1)
1711			my_framing = FRAMING_T1;
1712		if (info->framing == J1)
1713			my_framing = FRAMING_J1;
1714		FST_WRB(card, suConfig.framing, my_framing);
1715		FST_WRB(card, suConfig.structure, info->structure);
1716		FST_WRB(card, suConfig.interface, info->interface);
1717		FST_WRB(card, suConfig.coding, info->coding);
1718		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719		FST_WRB(card, suConfig.equalizer, info->equalizer);
1720		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721		FST_WRB(card, suConfig.loopMode, info->loopMode);
1722		FST_WRB(card, suConfig.range, info->range);
1723		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727		if (info->idleCode)
1728			FST_WRB(card, suConfig.enableIdleCode, 1);
1729		else
1730			FST_WRB(card, suConfig.enableIdleCode, 0);
1731		FST_WRB(card, suConfig.idleCode, info->idleCode);
1732#if FST_DEBUG
1733		if (info->valid & FSTVAL_TE1) {
1734			printk("Setting TE1 data\n");
1735			printk("Line Speed = %d\n", info->lineSpeed);
1736			printk("Start slot = %d\n", info->startingSlot);
1737			printk("Clock source = %d\n", info->clockSource);
1738			printk("Framing = %d\n", my_framing);
1739			printk("Structure = %d\n", info->structure);
1740			printk("interface = %d\n", info->interface);
1741			printk("Coding = %d\n", info->coding);
1742			printk("Line build out = %d\n", info->lineBuildOut);
1743			printk("Equaliser = %d\n", info->equalizer);
1744			printk("Transparent mode = %d\n",
1745			       info->transparentMode);
1746			printk("Loop mode = %d\n", info->loopMode);
1747			printk("Range = %d\n", info->range);
1748			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750			printk("LOS Threshold = %d\n", info->losThreshold);
1751			printk("Idle Code = %d\n", info->idleCode);
1752		}
1753#endif
1754	}
1755#if FST_DEBUG
1756	if (info->valid & FSTVAL_DEBUG) {
1757		fst_debug_mask = info->debug;
1758	}
1759#endif
1760
1761	return err;
1762}
1763
1764static void
1765gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766		 struct fstioc_info *info)
1767{
1768	int i;
1769
1770	memset(info, 0, sizeof (struct fstioc_info));
1771
1772	i = port->index;
1773	info->kernelVersion = LINUX_VERSION_CODE;
1774	info->nports = card->nports;
1775	info->type = card->type;
1776	info->state = card->state;
1777	info->proto = FST_GEN_HDLC;
1778	info->index = i;
1779#if FST_DEBUG
1780	info->debug = fst_debug_mask;
1781#endif
1782
1783	/* Only mark information as valid if card is running.
1784	 * Copy the data anyway in case it is useful for diagnostics
1785	 */
1786	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787#if FST_DEBUG
1788	    | FSTVAL_DEBUG
1789#endif
1790	    ;
1791
1792	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798	info->clockStatus = FST_RDW(card, clockStatus[i]);
1799	info->cableStatus = FST_RDW(card, cableStatus);
1800	info->cardMode = FST_RDW(card, cardMode);
1801	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802
1803	/*
1804	 * The T2U can report cable presence for both A or B
1805	 * in bits 0 and 1 of cableStatus.  See which port we are and 
1806	 * do the mapping.
1807	 */
1808	if (card->family == FST_FAMILY_TXU) {
1809		if (port->index == 0) {
1810			/*
1811			 * Port A
1812			 */
1813			info->cableStatus = info->cableStatus & 1;
1814		} else {
1815			/*
1816			 * Port B
1817			 */
1818			info->cableStatus = info->cableStatus >> 1;
1819			info->cableStatus = info->cableStatus & 1;
1820		}
1821	}
1822	/*
1823	 * Some additional bits if we are TE1
1824	 */
1825	if (card->type == FST_TYPE_TE1) {
1826		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827		info->clockSource = FST_RDB(card, suConfig.clocking);
1828		info->framing = FST_RDB(card, suConfig.framing);
1829		info->structure = FST_RDB(card, suConfig.structure);
1830		info->interface = FST_RDB(card, suConfig.interface);
1831		info->coding = FST_RDB(card, suConfig.coding);
1832		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833		info->equalizer = FST_RDB(card, suConfig.equalizer);
1834		info->loopMode = FST_RDB(card, suConfig.loopMode);
1835		info->range = FST_RDB(card, suConfig.range);
1836		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840		if (FST_RDB(card, suConfig.enableIdleCode))
1841			info->idleCode = FST_RDB(card, suConfig.idleCode);
1842		else
1843			info->idleCode = 0;
1844		info->receiveBufferDelay =
1845		    FST_RDL(card, suStatus.receiveBufferDelay);
1846		info->framingErrorCount =
1847		    FST_RDL(card, suStatus.framingErrorCount);
1848		info->codeViolationCount =
1849		    FST_RDL(card, suStatus.codeViolationCount);
1850		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853		info->receiveRemoteAlarm =
1854		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1855		info->alarmIndicationSignal =
1856		    FST_RDB(card, suStatus.alarmIndicationSignal);
1857	}
1858}
1859
1860static int
1861fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862	      struct ifreq *ifr)
1863{
1864	sync_serial_settings sync;
1865	int i;
1866
1867	if (ifr->ifr_settings.size != sizeof (sync)) {
1868		return -ENOMEM;
1869	}
1870
1871	if (copy_from_user
1872	    (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873		return -EFAULT;
1874	}
1875
1876	if (sync.loopback)
1877		return -EINVAL;
1878
1879	i = port->index;
1880
1881	switch (ifr->ifr_settings.type) {
1882	case IF_IFACE_V35:
1883		FST_WRW(card, portConfig[i].lineInterface, V35);
1884		port->hwif = V35;
1885		break;
1886
1887	case IF_IFACE_V24:
1888		FST_WRW(card, portConfig[i].lineInterface, V24);
1889		port->hwif = V24;
1890		break;
1891
1892	case IF_IFACE_X21:
1893		FST_WRW(card, portConfig[i].lineInterface, X21);
1894		port->hwif = X21;
1895		break;
1896
1897	case IF_IFACE_X21D:
1898		FST_WRW(card, portConfig[i].lineInterface, X21D);
1899		port->hwif = X21D;
1900		break;
1901
1902	case IF_IFACE_T1:
1903		FST_WRW(card, portConfig[i].lineInterface, T1);
1904		port->hwif = T1;
1905		break;
1906
1907	case IF_IFACE_E1:
1908		FST_WRW(card, portConfig[i].lineInterface, E1);
1909		port->hwif = E1;
1910		break;
1911
1912	case IF_IFACE_SYNC_SERIAL:
1913		break;
1914
1915	default:
1916		return -EINVAL;
1917	}
1918
1919	switch (sync.clock_type) {
1920	case CLOCK_EXT:
1921		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922		break;
1923
1924	case CLOCK_INT:
1925		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926		break;
1927
1928	default:
1929		return -EINVAL;
1930	}
1931	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932	return 0;
1933}
1934
1935static int
1936fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937	      struct ifreq *ifr)
1938{
1939	sync_serial_settings sync;
1940	int i;
1941
1942	/* First check what line type is set, we'll default to reporting X.21
1943	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944	 * changed
1945	 */
1946	switch (port->hwif) {
1947	case E1:
1948		ifr->ifr_settings.type = IF_IFACE_E1;
1949		break;
1950	case T1:
1951		ifr->ifr_settings.type = IF_IFACE_T1;
1952		break;
1953	case V35:
1954		ifr->ifr_settings.type = IF_IFACE_V35;
1955		break;
1956	case V24:
1957		ifr->ifr_settings.type = IF_IFACE_V24;
1958		break;
1959	case X21D:
1960		ifr->ifr_settings.type = IF_IFACE_X21D;
1961		break;
1962	case X21:
1963	default:
1964		ifr->ifr_settings.type = IF_IFACE_X21;
1965		break;
1966	}
1967	if (ifr->ifr_settings.size == 0) {
1968		return 0;	/* only type requested */
1969	}
1970	if (ifr->ifr_settings.size < sizeof (sync)) {
1971		return -ENOMEM;
1972	}
1973
1974	i = port->index;
1975	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1976	/* Lucky card and linux use same encoding here */
1977	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1978	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1979	sync.loopback = 0;
1980
1981	if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1982		return -EFAULT;
1983	}
1984
1985	ifr->ifr_settings.size = sizeof (sync);
1986	return 0;
1987}
1988
1989static int
1990fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1991{
1992	struct fst_card_info *card;
1993	struct fst_port_info *port;
1994	struct fstioc_write wrthdr;
1995	struct fstioc_info info;
1996	unsigned long flags;
1997	void *buf;
1998
1999	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2000
2001	port = dev_to_port(dev);
2002	card = port->card;
2003
2004	if (!capable(CAP_NET_ADMIN))
2005		return -EPERM;
2006
2007	switch (cmd) {
2008	case FSTCPURESET:
2009		fst_cpureset(card);
2010		card->state = FST_RESET;
2011		return 0;
2012
2013	case FSTCPURELEASE:
2014		fst_cpurelease(card);
2015		card->state = FST_STARTING;
2016		return 0;
2017
2018	case FSTWRITE:		/* Code write (download) */
2019
2020		/* First copy in the header with the length and offset of data
2021		 * to write
2022		 */
2023		if (ifr->ifr_data == NULL) {
2024			return -EINVAL;
2025		}
2026		if (copy_from_user(&wrthdr, ifr->ifr_data,
2027				   sizeof (struct fstioc_write))) {
2028			return -EFAULT;
2029		}
2030
2031		/* Sanity check the parameters. We don't support partial writes
2032		 * when going over the top
2033		 */
2034		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2035		    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2036			return -ENXIO;
2037		}
2038
2039		/* Now copy the data to the card. */
2040
2041		buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2042				  wrthdr.size);
2043		if (IS_ERR(buf))
2044			return PTR_ERR(buf);
2045
2046		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2047		kfree(buf);
2048
2049		/* Writes to the memory of a card in the reset state constitute
2050		 * a download
2051		 */
2052		if (card->state == FST_RESET) {
2053			card->state = FST_DOWNLOAD;
2054		}
2055		return 0;
2056
2057	case FSTGETCONF:
2058
2059		/* If card has just been started check the shared memory config
2060		 * version and marker
2061		 */
2062		if (card->state == FST_STARTING) {
2063			check_started_ok(card);
2064
2065			/* If everything checked out enable card interrupts */
2066			if (card->state == FST_RUNNING) {
2067				spin_lock_irqsave(&card->card_lock, flags);
2068				fst_enable_intr(card);
2069				FST_WRB(card, interruptHandshake, 0xEE);
2070				spin_unlock_irqrestore(&card->card_lock, flags);
2071			}
2072		}
2073
2074		if (ifr->ifr_data == NULL) {
2075			return -EINVAL;
2076		}
2077
2078		gather_conf_info(card, port, &info);
2079
2080		if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2081			return -EFAULT;
2082		}
2083		return 0;
2084
2085	case FSTSETCONF:
2086
2087		/*
2088		 * Most of the settings have been moved to the generic ioctls
2089		 * this just covers debug and board ident now
2090		 */
2091
2092		if (card->state != FST_RUNNING) {
2093			pr_err("Attempt to configure card %d in non-running state (%d)\n",
2094			       card->card_no, card->state);
2095			return -EIO;
2096		}
2097		if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2098			return -EFAULT;
2099		}
2100
2101		return set_conf_from_info(card, port, &info);
2102
2103	case SIOCWANDEV:
2104		switch (ifr->ifr_settings.type) {
2105		case IF_GET_IFACE:
2106			return fst_get_iface(card, port, ifr);
2107
2108		case IF_IFACE_SYNC_SERIAL:
2109		case IF_IFACE_V35:
2110		case IF_IFACE_V24:
2111		case IF_IFACE_X21:
2112		case IF_IFACE_X21D:
2113		case IF_IFACE_T1:
2114		case IF_IFACE_E1:
2115			return fst_set_iface(card, port, ifr);
2116
2117		case IF_PROTO_RAW:
2118			port->mode = FST_RAW;
2119			return 0;
2120
2121		case IF_GET_PROTO:
2122			if (port->mode == FST_RAW) {
2123				ifr->ifr_settings.type = IF_PROTO_RAW;
2124				return 0;
2125			}
2126			return hdlc_ioctl(dev, ifr, cmd);
2127
2128		default:
2129			port->mode = FST_GEN_HDLC;
2130			dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2131			    ifr->ifr_settings.type);
2132			return hdlc_ioctl(dev, ifr, cmd);
2133		}
2134
2135	default:
2136		/* Not one of ours. Pass through to HDLC package */
2137		return hdlc_ioctl(dev, ifr, cmd);
2138	}
2139}
2140
2141static void
2142fst_openport(struct fst_port_info *port)
2143{
2144	int signals;
2145	int txq_length;
2146
2147	/* Only init things if card is actually running. This allows open to
2148	 * succeed for downloads etc.
2149	 */
2150	if (port->card->state == FST_RUNNING) {
2151		if (port->run) {
2152			dbg(DBG_OPEN, "open: found port already running\n");
2153
2154			fst_issue_cmd(port, STOPPORT);
2155			port->run = 0;
2156		}
2157
2158		fst_rx_config(port);
2159		fst_tx_config(port);
2160		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2161
2162		fst_issue_cmd(port, STARTPORT);
2163		port->run = 1;
2164
2165		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2166		if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2167			       ? IPSTS_INDICATE : IPSTS_DCD))
2168			netif_carrier_on(port_to_dev(port));
2169		else
2170			netif_carrier_off(port_to_dev(port));
2171
2172		txq_length = port->txqe - port->txqs;
2173		port->txqe = 0;
2174		port->txqs = 0;
2175	}
2176
2177}
2178
2179static void
2180fst_closeport(struct fst_port_info *port)
2181{
2182	if (port->card->state == FST_RUNNING) {
2183		if (port->run) {
2184			port->run = 0;
2185			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2186
2187			fst_issue_cmd(port, STOPPORT);
2188		} else {
2189			dbg(DBG_OPEN, "close: port not running\n");
2190		}
2191	}
2192}
2193
2194static int
2195fst_open(struct net_device *dev)
2196{
2197	int err;
2198	struct fst_port_info *port;
2199
2200	port = dev_to_port(dev);
2201	if (!try_module_get(THIS_MODULE))
2202          return -EBUSY;
2203
2204	if (port->mode != FST_RAW) {
2205		err = hdlc_open(dev);
2206		if (err) {
2207			module_put(THIS_MODULE);
2208			return err;
2209		}
2210	}
2211
2212	fst_openport(port);
2213	netif_wake_queue(dev);
2214	return 0;
2215}
2216
2217static int
2218fst_close(struct net_device *dev)
2219{
2220	struct fst_port_info *port;
2221	struct fst_card_info *card;
2222	unsigned char tx_dma_done;
2223	unsigned char rx_dma_done;
2224
2225	port = dev_to_port(dev);
2226	card = port->card;
2227
2228	tx_dma_done = inb(card->pci_conf + DMACSR1);
2229	rx_dma_done = inb(card->pci_conf + DMACSR0);
2230	dbg(DBG_OPEN,
2231	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2232	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2233	    rx_dma_done);
2234
2235	netif_stop_queue(dev);
2236	fst_closeport(dev_to_port(dev));
2237	if (port->mode != FST_RAW) {
2238		hdlc_close(dev);
2239	}
2240	module_put(THIS_MODULE);
2241	return 0;
2242}
2243
2244static int
2245fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2246{
2247	/*
2248	 * Setting currently fixed in FarSync card so we check and forget
2249	 */
2250	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2251		return -EINVAL;
2252	return 0;
2253}
2254
2255static void
2256fst_tx_timeout(struct net_device *dev)
2257{
2258	struct fst_port_info *port;
2259	struct fst_card_info *card;
2260
2261	port = dev_to_port(dev);
2262	card = port->card;
2263	dev->stats.tx_errors++;
2264	dev->stats.tx_aborted_errors++;
2265	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2266	    card->card_no, port->index);
2267	fst_issue_cmd(port, ABORTTX);
2268
2269	dev->trans_start = jiffies;
2270	netif_wake_queue(dev);
2271	port->start = 0;
2272}
2273
2274static netdev_tx_t
2275fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2276{
2277	struct fst_card_info *card;
2278	struct fst_port_info *port;
2279	unsigned long flags;
2280	int txq_length;
2281
2282	port = dev_to_port(dev);
2283	card = port->card;
2284	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2285
2286	/* Drop packet with error if we don't have carrier */
2287	if (!netif_carrier_ok(dev)) {
2288		dev_kfree_skb(skb);
2289		dev->stats.tx_errors++;
2290		dev->stats.tx_carrier_errors++;
2291		dbg(DBG_ASS,
2292		    "Tried to transmit but no carrier on card %d port %d\n",
2293		    card->card_no, port->index);
2294		return NETDEV_TX_OK;
2295	}
2296
2297	/* Drop it if it's too big! MTU failure ? */
2298	if (skb->len > LEN_TX_BUFFER) {
2299		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2300		    LEN_TX_BUFFER);
2301		dev_kfree_skb(skb);
2302		dev->stats.tx_errors++;
2303		return NETDEV_TX_OK;
2304	}
2305
2306	/*
2307	 * We are always going to queue the packet
2308	 * so that the bottom half is the only place we tx from
2309	 * Check there is room in the port txq
2310	 */
2311	spin_lock_irqsave(&card->card_lock, flags);
2312	if ((txq_length = port->txqe - port->txqs) < 0) {
2313		/*
2314		 * This is the case where the next free has wrapped but the
2315		 * last used hasn't
2316		 */
2317		txq_length = txq_length + FST_TXQ_DEPTH;
2318	}
2319	spin_unlock_irqrestore(&card->card_lock, flags);
2320	if (txq_length > fst_txq_high) {
2321		/*
2322		 * We have got enough buffers in the pipeline.  Ask the network
2323		 * layer to stop sending frames down
2324		 */
2325		netif_stop_queue(dev);
2326		port->start = 1;	/* I'm using this to signal stop sent up */
2327	}
2328
2329	if (txq_length == FST_TXQ_DEPTH - 1) {
2330		/*
2331		 * This shouldn't have happened but such is life
2332		 */
2333		dev_kfree_skb(skb);
2334		dev->stats.tx_errors++;
2335		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2336		    card->card_no, port->index);
2337		return NETDEV_TX_OK;
2338	}
2339
2340	/*
2341	 * queue the buffer
2342	 */
2343	spin_lock_irqsave(&card->card_lock, flags);
2344	port->txq[port->txqe] = skb;
2345	port->txqe++;
2346	if (port->txqe == FST_TXQ_DEPTH)
2347		port->txqe = 0;
2348	spin_unlock_irqrestore(&card->card_lock, flags);
2349
2350	/* Scehdule the bottom half which now does transmit processing */
2351	fst_q_work_item(&fst_work_txq, card->card_no);
2352	tasklet_schedule(&fst_tx_task);
2353
2354	return NETDEV_TX_OK;
2355}
2356
2357/*
2358 *      Card setup having checked hardware resources.
2359 *      Should be pretty bizarre if we get an error here (kernel memory
2360 *      exhaustion is one possibility). If we do see a problem we report it
2361 *      via a printk and leave the corresponding interface and all that follow
2362 *      disabled.
2363 */
2364static char *type_strings[] __devinitdata = {
2365	"no hardware",		/* Should never be seen */
2366	"FarSync T2P",
2367	"FarSync T4P",
2368	"FarSync T1U",
2369	"FarSync T2U",
2370	"FarSync T4U",
2371	"FarSync TE1"
2372};
2373
2374static void __devinit
2375fst_init_card(struct fst_card_info *card)
2376{
2377	int i;
2378	int err;
2379
2380	/* We're working on a number of ports based on the card ID. If the
2381	 * firmware detects something different later (should never happen)
2382	 * we'll have to revise it in some way then.
2383	 */
2384	for (i = 0; i < card->nports; i++) {
2385                err = register_hdlc_device(card->ports[i].dev);
2386                if (err < 0) {
2387			int j;
2388			pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2389			       i, -err);
2390			for (j = i; j < card->nports; j++) {
2391				free_netdev(card->ports[j].dev);
2392				card->ports[j].dev = NULL;
2393			}
2394                        card->nports = i;
2395                        break;
2396                }
2397	}
2398
2399	pr_info("%s-%s: %s IRQ%d, %d ports\n",
2400		port_to_dev(&card->ports[0])->name,
2401		port_to_dev(&card->ports[card->nports - 1])->name,
2402		type_strings[card->type], card->irq, card->nports);
2403}
2404
2405static const struct net_device_ops fst_ops = {
2406	.ndo_open       = fst_open,
2407	.ndo_stop       = fst_close,
2408	.ndo_change_mtu = hdlc_change_mtu,
2409	.ndo_start_xmit = hdlc_start_xmit,
2410	.ndo_do_ioctl   = fst_ioctl,
2411	.ndo_tx_timeout = fst_tx_timeout,
2412};
2413
2414/*
2415 *      Initialise card when detected.
2416 *      Returns 0 to indicate success, or errno otherwise.
2417 */
2418static int __devinit
2419fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2420{
2421	static int no_of_cards_added = 0;
2422	struct fst_card_info *card;
2423	int err = 0;
2424	int i;
2425
2426	printk_once(KERN_INFO
2427		    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2428			   " (c) 2001-2004 FarSite Communications Ltd.\n"));
2429#if FST_DEBUG
2430	dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2431#endif
2432	/*
2433	 * We are going to be clever and allow certain cards not to be
2434	 * configured.  An exclude list can be provided in /etc/modules.conf
2435	 */
2436	if (fst_excluded_cards != 0) {
2437		/*
2438		 * There are cards to exclude
2439		 *
2440		 */
2441		for (i = 0; i < fst_excluded_cards; i++) {
2442			if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2443				pr_info("FarSync PCI device %d not assigned\n",
2444					(pdev->devfn) >> 3);
2445				return -EBUSY;
2446			}
2447		}
2448	}
2449
2450	/* Allocate driver private data */
2451	card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2452	if (card == NULL) {
2453		pr_err("FarSync card found but insufficient memory for driver storage\n");
2454		return -ENOMEM;
2455	}
2456
2457	/* Try to enable the device */
2458	if ((err = pci_enable_device(pdev)) != 0) {
2459		pr_err("Failed to enable card. Err %d\n", -err);
2460		kfree(card);
2461		return err;
2462	}
2463
2464	if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2465		pr_err("Failed to allocate regions. Err %d\n", -err);
2466		pci_disable_device(pdev);
2467		kfree(card);
2468	        return err;
2469	}
2470
2471	/* Get virtual addresses of memory regions */
2472	card->pci_conf = pci_resource_start(pdev, 1);
2473	card->phys_mem = pci_resource_start(pdev, 2);
2474	card->phys_ctlmem = pci_resource_start(pdev, 3);
2475	if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2476		pr_err("Physical memory remap failed\n");
2477		pci_release_regions(pdev);
2478		pci_disable_device(pdev);
2479		kfree(card);
2480		return -ENODEV;
2481	}
2482	if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2483		pr_err("Control memory remap failed\n");
2484		pci_release_regions(pdev);
2485		pci_disable_device(pdev);
 
2486		kfree(card);
2487		return -ENODEV;
2488	}
2489	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2490
2491	/* Register the interrupt handler */
2492	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2493		pr_err("Unable to register interrupt %d\n", card->irq);
2494		pci_release_regions(pdev);
2495		pci_disable_device(pdev);
2496		iounmap(card->ctlmem);
2497		iounmap(card->mem);
2498		kfree(card);
2499		return -ENODEV;
2500	}
2501
2502	/* Record info we need */
2503	card->irq = pdev->irq;
2504	card->type = ent->driver_data;
2505	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2506			(ent->driver_data == FST_TYPE_T4P))
2507	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2508	if ((ent->driver_data == FST_TYPE_T1U) ||
2509	    (ent->driver_data == FST_TYPE_TE1))
2510		card->nports = 1;
2511	else
2512		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2513				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2514
2515	card->state = FST_UNINIT;
2516        spin_lock_init ( &card->card_lock );
2517
2518        for ( i = 0 ; i < card->nports ; i++ ) {
2519		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2520		hdlc_device *hdlc;
2521		if (!dev) {
2522			while (i--)
2523				free_netdev(card->ports[i].dev);
2524			pr_err("FarSync: out of memory\n");
2525                        free_irq(card->irq, card);
2526                        pci_release_regions(pdev);
2527                        pci_disable_device(pdev);
2528                        iounmap(card->ctlmem);
2529                        iounmap(card->mem);
2530                        kfree(card);
2531                        return -ENODEV;
2532		}
2533		card->ports[i].dev    = dev;
2534                card->ports[i].card   = card;
2535                card->ports[i].index  = i;
2536                card->ports[i].run    = 0;
2537
2538		hdlc = dev_to_hdlc(dev);
2539
2540                /* Fill in the net device info */
2541		/* Since this is a PCI setup this is purely
2542		 * informational. Give them the buffer addresses
2543		 * and basic card I/O.
2544		 */
2545                dev->mem_start   = card->phys_mem
2546                                 + BUF_OFFSET ( txBuffer[i][0][0]);
2547                dev->mem_end     = card->phys_mem
2548                                 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2549                dev->base_addr   = card->pci_conf;
2550                dev->irq         = card->irq;
2551
2552		dev->netdev_ops = &fst_ops;
2553		dev->tx_queue_len = FST_TX_QUEUE_LEN;
2554		dev->watchdog_timeo = FST_TX_TIMEOUT;
2555                hdlc->attach = fst_attach;
2556                hdlc->xmit   = fst_start_xmit;
2557	}
2558
2559	card->device = pdev;
2560
2561	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2562	    card->nports, card->irq);
2563	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2564	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2565
2566	/* Reset the card's processor */
2567	fst_cpureset(card);
2568	card->state = FST_RESET;
2569
2570	/* Initialise DMA (if required) */
2571	fst_init_dma(card);
2572
2573	/* Record driver data for later use */
2574	pci_set_drvdata(pdev, card);
2575
2576	/* Remainder of card setup */
2577	fst_card_array[no_of_cards_added] = card;
2578	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2579	fst_init_card(card);
2580	if (card->family == FST_FAMILY_TXU) {
2581		/*
2582		 * Allocate a dma buffer for transmit and receives
2583		 */
2584		card->rx_dma_handle_host =
2585		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2586					 &card->rx_dma_handle_card);
2587		if (card->rx_dma_handle_host == NULL) {
2588			pr_err("Could not allocate rx dma buffer\n");
2589			fst_disable_intr(card);
2590			pci_release_regions(pdev);
2591			pci_disable_device(pdev);
2592			iounmap(card->ctlmem);
2593			iounmap(card->mem);
2594			kfree(card);
2595			return -ENOMEM;
2596		}
2597		card->tx_dma_handle_host =
2598		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2599					 &card->tx_dma_handle_card);
2600		if (card->tx_dma_handle_host == NULL) {
2601			pr_err("Could not allocate tx dma buffer\n");
2602			fst_disable_intr(card);
2603			pci_release_regions(pdev);
2604			pci_disable_device(pdev);
2605			iounmap(card->ctlmem);
2606			iounmap(card->mem);
2607			kfree(card);
2608			return -ENOMEM;
2609		}
2610	}
2611	return 0;		/* Success */
2612}
2613
2614/*
2615 *      Cleanup and close down a card
2616 */
2617static void __devexit
2618fst_remove_one(struct pci_dev *pdev)
2619{
2620	struct fst_card_info *card;
2621	int i;
2622
2623	card = pci_get_drvdata(pdev);
2624
2625	for (i = 0; i < card->nports; i++) {
2626		struct net_device *dev = port_to_dev(&card->ports[i]);
2627		unregister_hdlc_device(dev);
2628	}
2629
2630	fst_disable_intr(card);
2631	free_irq(card->irq, card);
2632
2633	iounmap(card->ctlmem);
2634	iounmap(card->mem);
2635	pci_release_regions(pdev);
2636	if (card->family == FST_FAMILY_TXU) {
2637		/*
2638		 * Free dma buffers
2639		 */
2640		pci_free_consistent(card->device, FST_MAX_MTU,
2641				    card->rx_dma_handle_host,
2642				    card->rx_dma_handle_card);
2643		pci_free_consistent(card->device, FST_MAX_MTU,
2644				    card->tx_dma_handle_host,
2645				    card->tx_dma_handle_card);
2646	}
2647	fst_card_array[card->card_no] = NULL;
2648}
2649
2650static struct pci_driver fst_driver = {
2651        .name		= FST_NAME,
2652        .id_table	= fst_pci_dev_id,
2653        .probe		= fst_add_one,
2654        .remove	= __devexit_p(fst_remove_one),
2655        .suspend	= NULL,
2656        .resume	= NULL,
2657};
2658
2659static int __init
2660fst_init(void)
2661{
2662	int i;
2663
2664	for (i = 0; i < FST_MAX_CARDS; i++)
2665		fst_card_array[i] = NULL;
2666	spin_lock_init(&fst_work_q_lock);
2667	return pci_register_driver(&fst_driver);
2668}
2669
2670static void __exit
2671fst_cleanup_module(void)
2672{
2673	pr_info("FarSync WAN driver unloading\n");
2674	pci_unregister_driver(&fst_driver);
2675}
2676
2677module_init(fst_init);
2678module_exit(fst_cleanup_module);
v3.5.6
   1/*
   2 *      FarSync WAN driver for Linux (2.6.x kernel version)
   3 *
   4 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
   5 *
   6 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
   7 *      www.farsite.co.uk
   8 *
   9 *      This program is free software; you can redistribute it and/or
  10 *      modify it under the terms of the GNU General Public License
  11 *      as published by the Free Software Foundation; either version
  12 *      2 of the License, or (at your option) any later version.
  13 *
  14 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
  15 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/module.h>
  21#include <linux/kernel.h>
  22#include <linux/version.h>
  23#include <linux/pci.h>
  24#include <linux/sched.h>
  25#include <linux/slab.h>
  26#include <linux/ioport.h>
  27#include <linux/init.h>
  28#include <linux/interrupt.h>
  29#include <linux/if.h>
  30#include <linux/hdlc.h>
  31#include <asm/io.h>
  32#include <asm/uaccess.h>
  33
  34#include "farsync.h"
  35
  36/*
  37 *      Module info
  38 */
  39MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
  40MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
  41MODULE_LICENSE("GPL");
  42
  43/*      Driver configuration and global parameters
  44 *      ==========================================
  45 */
  46
  47/*      Number of ports (per card) and cards supported
  48 */
  49#define FST_MAX_PORTS           4
  50#define FST_MAX_CARDS           32
  51
  52/*      Default parameters for the link
  53 */
  54#define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
  55					 * useful */
  56#define FST_TXQ_DEPTH           16	/* This one is for the buffering
  57					 * of frames on the way down to the card
  58					 * so that we can keep the card busy
  59					 * and maximise throughput
  60					 */
  61#define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
  62					 * network layer */
  63#define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
  64					 * control from network layer */
  65#define FST_MAX_MTU             8000	/* Huge but possible */
  66#define FST_DEF_MTU             1500	/* Common sane value */
  67
  68#define FST_TX_TIMEOUT          (2*HZ)
  69
  70#ifdef ARPHRD_RAWHDLC
  71#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
  72#else
  73#define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
  74#endif
  75
  76/*
  77 * Modules parameters and associated variables
  78 */
  79static int fst_txq_low = FST_LOW_WATER_MARK;
  80static int fst_txq_high = FST_HIGH_WATER_MARK;
  81static int fst_max_reads = 7;
  82static int fst_excluded_cards = 0;
  83static int fst_excluded_list[FST_MAX_CARDS];
  84
  85module_param(fst_txq_low, int, 0);
  86module_param(fst_txq_high, int, 0);
  87module_param(fst_max_reads, int, 0);
  88module_param(fst_excluded_cards, int, 0);
  89module_param_array(fst_excluded_list, int, NULL, 0);
  90
  91/*      Card shared memory layout
  92 *      =========================
  93 */
  94#pragma pack(1)
  95
  96/*      This information is derived in part from the FarSite FarSync Smc.h
  97 *      file. Unfortunately various name clashes and the non-portability of the
  98 *      bit field declarations in that file have meant that I have chosen to
  99 *      recreate the information here.
 100 *
 101 *      The SMC (Shared Memory Configuration) has a version number that is
 102 *      incremented every time there is a significant change. This number can
 103 *      be used to check that we have not got out of step with the firmware
 104 *      contained in the .CDE files.
 105 */
 106#define SMC_VERSION 24
 107
 108#define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
 109
 110#define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
 111				 * configuration structure */
 112#define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
 113				 * buffers */
 114
 115#define LEN_TX_BUFFER 8192	/* Size of packet buffers */
 116#define LEN_RX_BUFFER 8192
 117
 118#define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
 119#define LEN_SMALL_RX_BUFFER 256
 120
 121#define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
 122#define NUM_RX_BUFFER 8
 123
 124/* Interrupt retry time in milliseconds */
 125#define INT_RETRY_TIME 2
 126
 127/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
 128 *      of buffer descriptors. The structure is almost identical to that used
 129 *      in the LANCE Ethernet controllers. Details available as PDF from the
 130 *      AMD web site: http://www.amd.com/products/epd/processors/\
 131 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
 132 */
 133struct txdesc {			/* Transmit descriptor */
 134	volatile u16 ladr;	/* Low order address of packet. This is a
 135				 * linear address in the Am186 memory space
 136				 */
 137	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
 138				 * bits must be zero
 139				 */
 140	volatile u8 bits;	/* Status and config */
 141	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
 142				 * Transmit terminal count interrupt enable in
 143				 * top bit.
 144				 */
 145	u16 unused;		/* Not used in Tx */
 146};
 147
 148struct rxdesc {			/* Receive descriptor */
 149	volatile u16 ladr;	/* Low order address of packet */
 150	volatile u8 hadr;	/* High order address */
 151	volatile u8 bits;	/* Status and config */
 152	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
 153				 * Receive terminal count interrupt enable in
 154				 * top bit.
 155				 */
 156	volatile u16 mcnt;	/* Message byte count (15 bits) */
 157};
 158
 159/* Convert a length into the 15 bit 2's complement */
 160/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
 161/* Since we need to set the high bit to enable the completion interrupt this
 162 * can be made a lot simpler
 163 */
 164#define cnv_bcnt(len)   (-(len))
 165
 166/* Status and config bits for the above */
 167#define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
 168#define TX_STP          0x02	/* Tx: start of packet */
 169#define TX_ENP          0x01	/* Tx: end of packet */
 170#define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
 171#define RX_FRAM         0x20	/* Rx: framing error */
 172#define RX_OFLO         0x10	/* Rx: overflow error */
 173#define RX_CRC          0x08	/* Rx: CRC error */
 174#define RX_HBUF         0x04	/* Rx: buffer error */
 175#define RX_STP          0x02	/* Rx: start of packet */
 176#define RX_ENP          0x01	/* Rx: end of packet */
 177
 178/* Interrupts from the card are caused by various events which are presented
 179 * in a circular buffer as several events may be processed on one physical int
 180 */
 181#define MAX_CIRBUFF     32
 182
 183struct cirbuff {
 184	u8 rdindex;		/* read, then increment and wrap */
 185	u8 wrindex;		/* write, then increment and wrap */
 186	u8 evntbuff[MAX_CIRBUFF];
 187};
 188
 189/* Interrupt event codes.
 190 * Where appropriate the two low order bits indicate the port number
 191 */
 192#define CTLA_CHG        0x18	/* Control signal changed */
 193#define CTLB_CHG        0x19
 194#define CTLC_CHG        0x1A
 195#define CTLD_CHG        0x1B
 196
 197#define INIT_CPLT       0x20	/* Initialisation complete */
 198#define INIT_FAIL       0x21	/* Initialisation failed */
 199
 200#define ABTA_SENT       0x24	/* Abort sent */
 201#define ABTB_SENT       0x25
 202#define ABTC_SENT       0x26
 203#define ABTD_SENT       0x27
 204
 205#define TXA_UNDF        0x28	/* Transmission underflow */
 206#define TXB_UNDF        0x29
 207#define TXC_UNDF        0x2A
 208#define TXD_UNDF        0x2B
 209
 210#define F56_INT         0x2C
 211#define M32_INT         0x2D
 212
 213#define TE1_ALMA        0x30
 214
 215/* Port physical configuration. See farsync.h for field values */
 216struct port_cfg {
 217	u16 lineInterface;	/* Physical interface type */
 218	u8 x25op;		/* Unused at present */
 219	u8 internalClock;	/* 1 => internal clock, 0 => external */
 220	u8 transparentMode;	/* 1 => on, 0 => off */
 221	u8 invertClock;		/* 0 => normal, 1 => inverted */
 222	u8 padBytes[6];		/* Padding */
 223	u32 lineSpeed;		/* Speed in bps */
 224};
 225
 226/* TE1 port physical configuration */
 227struct su_config {
 228	u32 dataRate;
 229	u8 clocking;
 230	u8 framing;
 231	u8 structure;
 232	u8 interface;
 233	u8 coding;
 234	u8 lineBuildOut;
 235	u8 equalizer;
 236	u8 transparentMode;
 237	u8 loopMode;
 238	u8 range;
 239	u8 txBufferMode;
 240	u8 rxBufferMode;
 241	u8 startingSlot;
 242	u8 losThreshold;
 243	u8 enableIdleCode;
 244	u8 idleCode;
 245	u8 spare[44];
 246};
 247
 248/* TE1 Status */
 249struct su_status {
 250	u32 receiveBufferDelay;
 251	u32 framingErrorCount;
 252	u32 codeViolationCount;
 253	u32 crcErrorCount;
 254	u32 lineAttenuation;
 255	u8 portStarted;
 256	u8 lossOfSignal;
 257	u8 receiveRemoteAlarm;
 258	u8 alarmIndicationSignal;
 259	u8 spare[40];
 260};
 261
 262/* Finally sling all the above together into the shared memory structure.
 263 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
 264 * evolving under NT for some time so I guess we're stuck with it.
 265 * The structure starts at offset SMC_BASE.
 266 * See farsync.h for some field values.
 267 */
 268struct fst_shared {
 269	/* DMA descriptor rings */
 270	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
 271	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
 272
 273	/* Obsolete small buffers */
 274	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
 275	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
 276
 277	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
 278				 * 0xFF => halted
 279				 */
 280
 281	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
 282				 * set to 0xEE by host to acknowledge interrupt
 283				 */
 284
 285	u16 smcVersion;		/* Must match SMC_VERSION */
 286
 287	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
 288				 * version, RR = revision and BB = build
 289				 */
 290
 291	u16 txa_done;		/* Obsolete completion flags */
 292	u16 rxa_done;
 293	u16 txb_done;
 294	u16 rxb_done;
 295	u16 txc_done;
 296	u16 rxc_done;
 297	u16 txd_done;
 298	u16 rxd_done;
 299
 300	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
 301
 302	struct cirbuff interruptEvent;	/* interrupt causes */
 303
 304	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
 305	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
 306
 307	struct port_cfg portConfig[FST_MAX_PORTS];
 308
 309	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
 310
 311	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
 312
 313	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
 314	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
 315
 316	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
 317	u16 cardMailbox[4];	/* Not used */
 318
 319	/* Number of times the card thinks the host has
 320	 * missed an interrupt by not acknowledging
 321	 * within 2mS (I guess NT has problems)
 322	 */
 323	u32 interruptRetryCount;
 324
 325	/* Driver private data used as an ID. We'll not
 326	 * use this as I'd rather keep such things
 327	 * in main memory rather than on the PCI bus
 328	 */
 329	u32 portHandle[FST_MAX_PORTS];
 330
 331	/* Count of Tx underflows for stats */
 332	u32 transmitBufferUnderflow[FST_MAX_PORTS];
 333
 334	/* Debounced V.24 control input status */
 335	u32 v24DebouncedSts[FST_MAX_PORTS];
 336
 337	/* Adapter debounce timers. Don't touch */
 338	u32 ctsTimer[FST_MAX_PORTS];
 339	u32 ctsTimerRun[FST_MAX_PORTS];
 340	u32 dcdTimer[FST_MAX_PORTS];
 341	u32 dcdTimerRun[FST_MAX_PORTS];
 342
 343	u32 numberOfPorts;	/* Number of ports detected at startup */
 344
 345	u16 _reserved[64];
 346
 347	u16 cardMode;		/* Bit-mask to enable features:
 348				 * Bit 0: 1 enables LED identify mode
 349				 */
 350
 351	u16 portScheduleOffset;
 352
 353	struct su_config suConfig;	/* TE1 Bits */
 354	struct su_status suStatus;
 355
 356	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
 357				 * the structure and marks the end of shared
 358				 * memory. Adapter code initializes it as
 359				 * END_SIG.
 360				 */
 361};
 362
 363/* endOfSmcSignature value */
 364#define END_SIG                 0x12345678
 365
 366/* Mailbox values. (portMailbox) */
 367#define NOP             0	/* No operation */
 368#define ACK             1	/* Positive acknowledgement to PC driver */
 369#define NAK             2	/* Negative acknowledgement to PC driver */
 370#define STARTPORT       3	/* Start an HDLC port */
 371#define STOPPORT        4	/* Stop an HDLC port */
 372#define ABORTTX         5	/* Abort the transmitter for a port */
 373#define SETV24O         6	/* Set V24 outputs */
 374
 375/* PLX Chip Register Offsets */
 376#define CNTRL_9052      0x50	/* Control Register */
 377#define CNTRL_9054      0x6c	/* Control Register */
 378
 379#define INTCSR_9052     0x4c	/* Interrupt control/status register */
 380#define INTCSR_9054     0x68	/* Interrupt control/status register */
 381
 382/* 9054 DMA Registers */
 383/*
 384 * Note that we will be using DMA Channel 0 for copying rx data
 385 * and Channel 1 for copying tx data
 386 */
 387#define DMAMODE0        0x80
 388#define DMAPADR0        0x84
 389#define DMALADR0        0x88
 390#define DMASIZ0         0x8c
 391#define DMADPR0         0x90
 392#define DMAMODE1        0x94
 393#define DMAPADR1        0x98
 394#define DMALADR1        0x9c
 395#define DMASIZ1         0xa0
 396#define DMADPR1         0xa4
 397#define DMACSR0         0xa8
 398#define DMACSR1         0xa9
 399#define DMAARB          0xac
 400#define DMATHR          0xb0
 401#define DMADAC0         0xb4
 402#define DMADAC1         0xb8
 403#define DMAMARBR        0xac
 404
 405#define FST_MIN_DMA_LEN 64
 406#define FST_RX_DMA_INT  0x01
 407#define FST_TX_DMA_INT  0x02
 408#define FST_CARD_INT    0x04
 409
 410/* Larger buffers are positioned in memory at offset BFM_BASE */
 411struct buf_window {
 412	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
 413	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
 414};
 415
 416/* Calculate offset of a buffer object within the shared memory window */
 417#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
 418
 419#pragma pack()
 420
 421/*      Device driver private information
 422 *      =================================
 423 */
 424/*      Per port (line or channel) information
 425 */
 426struct fst_port_info {
 427        struct net_device *dev; /* Device struct - must be first */
 428	struct fst_card_info *card;	/* Card we're associated with */
 429	int index;		/* Port index on the card */
 430	int hwif;		/* Line hardware (lineInterface copy) */
 431	int run;		/* Port is running */
 432	int mode;		/* Normal or FarSync raw */
 433	int rxpos;		/* Next Rx buffer to use */
 434	int txpos;		/* Next Tx buffer to use */
 435	int txipos;		/* Next Tx buffer to check for free */
 436	int start;		/* Indication of start/stop to network */
 437	/*
 438	 * A sixteen entry transmit queue
 439	 */
 440	int txqs;		/* index to get next buffer to tx */
 441	int txqe;		/* index to queue next packet */
 442	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
 443	int rxqdepth;
 444};
 445
 446/*      Per card information
 447 */
 448struct fst_card_info {
 449	char __iomem *mem;	/* Card memory mapped to kernel space */
 450	char __iomem *ctlmem;	/* Control memory for PCI cards */
 451	unsigned int phys_mem;	/* Physical memory window address */
 452	unsigned int phys_ctlmem;	/* Physical control memory address */
 453	unsigned int irq;	/* Interrupt request line number */
 454	unsigned int nports;	/* Number of serial ports */
 455	unsigned int type;	/* Type index of card */
 456	unsigned int state;	/* State of card */
 457	spinlock_t card_lock;	/* Lock for SMP access */
 458	unsigned short pci_conf;	/* PCI card config in I/O space */
 459	/* Per port info */
 460	struct fst_port_info ports[FST_MAX_PORTS];
 461	struct pci_dev *device;	/* Information about the pci device */
 462	int card_no;		/* Inst of the card on the system */
 463	int family;		/* TxP or TxU */
 464	int dmarx_in_progress;
 465	int dmatx_in_progress;
 466	unsigned long int_count;
 467	unsigned long int_time_ave;
 468	void *rx_dma_handle_host;
 469	dma_addr_t rx_dma_handle_card;
 470	void *tx_dma_handle_host;
 471	dma_addr_t tx_dma_handle_card;
 472	struct sk_buff *dma_skb_rx;
 473	struct fst_port_info *dma_port_rx;
 474	struct fst_port_info *dma_port_tx;
 475	int dma_len_rx;
 476	int dma_len_tx;
 477	int dma_txpos;
 478	int dma_rxpos;
 479};
 480
 481/* Convert an HDLC device pointer into a port info pointer and similar */
 482#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
 483#define port_to_dev(P)  ((P)->dev)
 484
 485
 486/*
 487 *      Shared memory window access macros
 488 *
 489 *      We have a nice memory based structure above, which could be directly
 490 *      mapped on i386 but might not work on other architectures unless we use
 491 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
 492 *      physical offsets so we have to convert. The only saving grace is that
 493 *      this should all collapse back to a simple indirection eventually.
 494 */
 495#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
 496
 497#define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
 498#define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
 499#define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
 500
 501#define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
 502#define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
 503#define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
 504
 505/*
 506 *      Debug support
 507 */
 508#if FST_DEBUG
 509
 510static int fst_debug_mask = { FST_DEBUG };
 511
 512/* Most common debug activity is to print something if the corresponding bit
 513 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
 514 * support variable numbers of macro parameters. The inverted if prevents us
 515 * eating someone else's else clause.
 516 */
 517#define dbg(F, fmt, args...)					\
 518do {								\
 519	if (fst_debug_mask & (F))				\
 520		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
 521} while (0)
 522#else
 523#define dbg(F, fmt, args...)					\
 524do {								\
 525	if (0)							\
 526		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
 527} while (0)
 528#endif
 529
 530/*
 531 *      PCI ID lookup table
 532 */
 533static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
 534	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 
 535	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
 536
 537	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 
 538	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
 539
 540	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 
 541	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
 542
 543	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 
 544	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
 545
 546	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 
 547	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
 548
 549	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 
 550	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 551
 552	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 
 553	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 554	{0,}			/* End */
 555};
 556
 557MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
 558
 559/*
 560 *      Device Driver Work Queues
 561 *
 562 *      So that we don't spend too much time processing events in the 
 563 *      Interrupt Service routine, we will declare a work queue per Card 
 564 *      and make the ISR schedule a task in the queue for later execution.
 565 *      In the 2.4 Kernel we used to use the immediate queue for BH's
 566 *      Now that they are gone, tasklets seem to be much better than work 
 567 *      queues.
 568 */
 569
 570static void do_bottom_half_tx(struct fst_card_info *card);
 571static void do_bottom_half_rx(struct fst_card_info *card);
 572static void fst_process_tx_work_q(unsigned long work_q);
 573static void fst_process_int_work_q(unsigned long work_q);
 574
 575static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
 576static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
 577
 578static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
 579static spinlock_t fst_work_q_lock;
 580static u64 fst_work_txq;
 581static u64 fst_work_intq;
 582
 583static void
 584fst_q_work_item(u64 * queue, int card_index)
 585{
 586	unsigned long flags;
 587	u64 mask;
 588
 589	/*
 590	 * Grab the queue exclusively
 591	 */
 592	spin_lock_irqsave(&fst_work_q_lock, flags);
 593
 594	/*
 595	 * Making an entry in the queue is simply a matter of setting
 596	 * a bit for the card indicating that there is work to do in the
 597	 * bottom half for the card.  Note the limitation of 64 cards.
 598	 * That ought to be enough
 599	 */
 600	mask = 1 << card_index;
 601	*queue |= mask;
 602	spin_unlock_irqrestore(&fst_work_q_lock, flags);
 603}
 604
 605static void
 606fst_process_tx_work_q(unsigned long /*void **/work_q)
 607{
 608	unsigned long flags;
 609	u64 work_txq;
 610	int i;
 611
 612	/*
 613	 * Grab the queue exclusively
 614	 */
 615	dbg(DBG_TX, "fst_process_tx_work_q\n");
 616	spin_lock_irqsave(&fst_work_q_lock, flags);
 617	work_txq = fst_work_txq;
 618	fst_work_txq = 0;
 619	spin_unlock_irqrestore(&fst_work_q_lock, flags);
 620
 621	/*
 622	 * Call the bottom half for each card with work waiting
 623	 */
 624	for (i = 0; i < FST_MAX_CARDS; i++) {
 625		if (work_txq & 0x01) {
 626			if (fst_card_array[i] != NULL) {
 627				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
 628				do_bottom_half_tx(fst_card_array[i]);
 629			}
 630		}
 631		work_txq = work_txq >> 1;
 632	}
 633}
 634
 635static void
 636fst_process_int_work_q(unsigned long /*void **/work_q)
 637{
 638	unsigned long flags;
 639	u64 work_intq;
 640	int i;
 641
 642	/*
 643	 * Grab the queue exclusively
 644	 */
 645	dbg(DBG_INTR, "fst_process_int_work_q\n");
 646	spin_lock_irqsave(&fst_work_q_lock, flags);
 647	work_intq = fst_work_intq;
 648	fst_work_intq = 0;
 649	spin_unlock_irqrestore(&fst_work_q_lock, flags);
 650
 651	/*
 652	 * Call the bottom half for each card with work waiting
 653	 */
 654	for (i = 0; i < FST_MAX_CARDS; i++) {
 655		if (work_intq & 0x01) {
 656			if (fst_card_array[i] != NULL) {
 657				dbg(DBG_INTR,
 658				    "Calling rx & tx bh for card %d\n", i);
 659				do_bottom_half_rx(fst_card_array[i]);
 660				do_bottom_half_tx(fst_card_array[i]);
 661			}
 662		}
 663		work_intq = work_intq >> 1;
 664	}
 665}
 666
 667/*      Card control functions
 668 *      ======================
 669 */
 670/*      Place the processor in reset state
 671 *
 672 * Used to be a simple write to card control space but a glitch in the latest
 673 * AMD Am186CH processor means that we now have to do it by asserting and de-
 674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
 675 * at offset 9052_CNTRL.  Note the updates for the TXU.
 676 */
 677static inline void
 678fst_cpureset(struct fst_card_info *card)
 679{
 680	unsigned char interrupt_line_register;
 681	unsigned long j = jiffies + 1;
 682	unsigned int regval;
 683
 684	if (card->family == FST_FAMILY_TXU) {
 685		if (pci_read_config_byte
 686		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
 687			dbg(DBG_ASS,
 688			    "Error in reading interrupt line register\n");
 689		}
 690		/*
 691		 * Assert PLX software reset and Am186 hardware reset
 692		 * and then deassert the PLX software reset but 186 still in reset
 693		 */
 694		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
 695		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 696		/*
 697		 * We are delaying here to allow the 9054 to reset itself
 698		 */
 699		j = jiffies + 1;
 700		while (jiffies < j)
 701			/* Do nothing */ ;
 702		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
 703		/*
 704		 * We are delaying here to allow the 9054 to reload its eeprom
 705		 */
 706		j = jiffies + 1;
 707		while (jiffies < j)
 708			/* Do nothing */ ;
 709		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 710
 711		if (pci_write_config_byte
 712		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
 713			dbg(DBG_ASS,
 714			    "Error in writing interrupt line register\n");
 715		}
 716
 717	} else {
 718		regval = inl(card->pci_conf + CNTRL_9052);
 719
 720		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
 721		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
 722	}
 723}
 724
 725/*      Release the processor from reset
 726 */
 727static inline void
 728fst_cpurelease(struct fst_card_info *card)
 729{
 730	if (card->family == FST_FAMILY_TXU) {
 731		/*
 732		 * Force posted writes to complete
 733		 */
 734		(void) readb(card->mem);
 735
 736		/*
 737		 * Release LRESET DO = 1
 738		 * Then release Local Hold, DO = 1
 739		 */
 740		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
 741		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 742	} else {
 743		(void) readb(card->ctlmem);
 744	}
 745}
 746
 747/*      Clear the cards interrupt flag
 748 */
 749static inline void
 750fst_clear_intr(struct fst_card_info *card)
 751{
 752	if (card->family == FST_FAMILY_TXU) {
 753		(void) readb(card->ctlmem);
 754	} else {
 755		/* Poke the appropriate PLX chip register (same as enabling interrupts)
 756		 */
 757		outw(0x0543, card->pci_conf + INTCSR_9052);
 758	}
 759}
 760
 761/*      Enable card interrupts
 762 */
 763static inline void
 764fst_enable_intr(struct fst_card_info *card)
 765{
 766	if (card->family == FST_FAMILY_TXU) {
 767		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
 768	} else {
 769		outw(0x0543, card->pci_conf + INTCSR_9052);
 770	}
 771}
 772
 773/*      Disable card interrupts
 774 */
 775static inline void
 776fst_disable_intr(struct fst_card_info *card)
 777{
 778	if (card->family == FST_FAMILY_TXU) {
 779		outl(0x00000000, card->pci_conf + INTCSR_9054);
 780	} else {
 781		outw(0x0000, card->pci_conf + INTCSR_9052);
 782	}
 783}
 784
 785/*      Process the result of trying to pass a received frame up the stack
 786 */
 787static void
 788fst_process_rx_status(int rx_status, char *name)
 789{
 790	switch (rx_status) {
 791	case NET_RX_SUCCESS:
 792		{
 793			/*
 794			 * Nothing to do here
 795			 */
 796			break;
 797		}
 798	case NET_RX_DROP:
 799		{
 800			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
 801			break;
 802		}
 803	}
 804}
 805
 806/*      Initilaise DMA for PLX 9054
 807 */
 808static inline void
 809fst_init_dma(struct fst_card_info *card)
 810{
 811	/*
 812	 * This is only required for the PLX 9054
 813	 */
 814	if (card->family == FST_FAMILY_TXU) {
 815	        pci_set_master(card->device);
 816		outl(0x00020441, card->pci_conf + DMAMODE0);
 817		outl(0x00020441, card->pci_conf + DMAMODE1);
 818		outl(0x0, card->pci_conf + DMATHR);
 819	}
 820}
 821
 822/*      Tx dma complete interrupt
 823 */
 824static void
 825fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 826		    int len, int txpos)
 827{
 828	struct net_device *dev = port_to_dev(port);
 829
 830	/*
 831	 * Everything is now set, just tell the card to go
 832	 */
 833	dbg(DBG_TX, "fst_tx_dma_complete\n");
 834	FST_WRB(card, txDescrRing[port->index][txpos].bits,
 835		DMA_OWN | TX_STP | TX_ENP);
 836	dev->stats.tx_packets++;
 837	dev->stats.tx_bytes += len;
 838	dev->trans_start = jiffies;
 839}
 840
 841/*
 842 * Mark it for our own raw sockets interface
 843 */
 844static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
 845{
 846	skb->dev = dev;
 847	skb_reset_mac_header(skb);
 848	skb->pkt_type = PACKET_HOST;
 849	return htons(ETH_P_CUST);
 850}
 851
 852/*      Rx dma complete interrupt
 853 */
 854static void
 855fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 856		    int len, struct sk_buff *skb, int rxp)
 857{
 858	struct net_device *dev = port_to_dev(port);
 859	int pi;
 860	int rx_status;
 861
 862	dbg(DBG_TX, "fst_rx_dma_complete\n");
 863	pi = port->index;
 864	memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
 865
 866	/* Reset buffer descriptor */
 867	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
 868
 869	/* Update stats */
 870	dev->stats.rx_packets++;
 871	dev->stats.rx_bytes += len;
 872
 873	/* Push upstream */
 874	dbg(DBG_RX, "Pushing the frame up the stack\n");
 875	if (port->mode == FST_RAW)
 876		skb->protocol = farsync_type_trans(skb, dev);
 877	else
 878		skb->protocol = hdlc_type_trans(skb, dev);
 879	rx_status = netif_rx(skb);
 880	fst_process_rx_status(rx_status, port_to_dev(port)->name);
 881	if (rx_status == NET_RX_DROP)
 882		dev->stats.rx_dropped++;
 883}
 884
 885/*
 886 *      Receive a frame through the DMA
 887 */
 888static inline void
 889fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
 890	   dma_addr_t mem, int len)
 891{
 892	/*
 893	 * This routine will setup the DMA and start it
 894	 */
 895
 896	dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
 897	    (unsigned long) skb, (unsigned long) mem, len);
 898	if (card->dmarx_in_progress) {
 899		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
 900	}
 901
 902	outl(skb, card->pci_conf + DMAPADR0);	/* Copy to here */
 903	outl(mem, card->pci_conf + DMALADR0);	/* from here */
 904	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
 905	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
 906
 907	/*
 908	 * We use the dmarx_in_progress flag to flag the channel as busy
 909	 */
 910	card->dmarx_in_progress = 1;
 911	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
 912}
 913
 914/*
 915 *      Send a frame through the DMA
 916 */
 917static inline void
 918fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
 919	   unsigned char *mem, int len)
 920{
 921	/*
 922	 * This routine will setup the DMA and start it.
 923	 */
 924
 925	dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
 926	if (card->dmatx_in_progress) {
 927		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
 928	}
 929
 930	outl((unsigned long) skb, card->pci_conf + DMAPADR1);	/* Copy from here */
 931	outl((unsigned long) mem, card->pci_conf + DMALADR1);	/* to here */
 932	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
 933	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
 934
 935	/*
 936	 * We use the dmatx_in_progress to flag the channel as busy
 937	 */
 938	card->dmatx_in_progress = 1;
 939	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
 940}
 941
 942/*      Issue a Mailbox command for a port.
 943 *      Note we issue them on a fire and forget basis, not expecting to see an
 944 *      error and not waiting for completion.
 945 */
 946static void
 947fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
 948{
 949	struct fst_card_info *card;
 950	unsigned short mbval;
 951	unsigned long flags;
 952	int safety;
 953
 954	card = port->card;
 955	spin_lock_irqsave(&card->card_lock, flags);
 956	mbval = FST_RDW(card, portMailbox[port->index][0]);
 957
 958	safety = 0;
 959	/* Wait for any previous command to complete */
 960	while (mbval > NAK) {
 961		spin_unlock_irqrestore(&card->card_lock, flags);
 962		schedule_timeout_uninterruptible(1);
 963		spin_lock_irqsave(&card->card_lock, flags);
 964
 965		if (++safety > 2000) {
 966			pr_err("Mailbox safety timeout\n");
 967			break;
 968		}
 969
 970		mbval = FST_RDW(card, portMailbox[port->index][0]);
 971	}
 972	if (safety > 0) {
 973		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
 974	}
 975	if (mbval == NAK) {
 976		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
 977	}
 978
 979	FST_WRW(card, portMailbox[port->index][0], cmd);
 980
 981	if (cmd == ABORTTX || cmd == STARTPORT) {
 982		port->txpos = 0;
 983		port->txipos = 0;
 984		port->start = 0;
 985	}
 986
 987	spin_unlock_irqrestore(&card->card_lock, flags);
 988}
 989
 990/*      Port output signals control
 991 */
 992static inline void
 993fst_op_raise(struct fst_port_info *port, unsigned int outputs)
 994{
 995	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
 996	FST_WRL(port->card, v24OpSts[port->index], outputs);
 997
 998	if (port->run)
 999		fst_issue_cmd(port, SETV24O);
1000}
1001
1002static inline void
1003fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1004{
1005	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1006	FST_WRL(port->card, v24OpSts[port->index], outputs);
1007
1008	if (port->run)
1009		fst_issue_cmd(port, SETV24O);
1010}
1011
1012/*
1013 *      Setup port Rx buffers
1014 */
1015static void
1016fst_rx_config(struct fst_port_info *port)
1017{
1018	int i;
1019	int pi;
1020	unsigned int offset;
1021	unsigned long flags;
1022	struct fst_card_info *card;
1023
1024	pi = port->index;
1025	card = port->card;
1026	spin_lock_irqsave(&card->card_lock, flags);
1027	for (i = 0; i < NUM_RX_BUFFER; i++) {
1028		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1029
1030		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1031		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1032		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1033		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1034		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1035	}
1036	port->rxpos = 0;
1037	spin_unlock_irqrestore(&card->card_lock, flags);
1038}
1039
1040/*
1041 *      Setup port Tx buffers
1042 */
1043static void
1044fst_tx_config(struct fst_port_info *port)
1045{
1046	int i;
1047	int pi;
1048	unsigned int offset;
1049	unsigned long flags;
1050	struct fst_card_info *card;
1051
1052	pi = port->index;
1053	card = port->card;
1054	spin_lock_irqsave(&card->card_lock, flags);
1055	for (i = 0; i < NUM_TX_BUFFER; i++) {
1056		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1057
1058		FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1059		FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1060		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1061		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1062	}
1063	port->txpos = 0;
1064	port->txipos = 0;
1065	port->start = 0;
1066	spin_unlock_irqrestore(&card->card_lock, flags);
1067}
1068
1069/*      TE1 Alarm change interrupt event
1070 */
1071static void
1072fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1073{
1074	u8 los;
1075	u8 rra;
1076	u8 ais;
1077
1078	los = FST_RDB(card, suStatus.lossOfSignal);
1079	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1080	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1081
1082	if (los) {
1083		/*
1084		 * Lost the link
1085		 */
1086		if (netif_carrier_ok(port_to_dev(port))) {
1087			dbg(DBG_INTR, "Net carrier off\n");
1088			netif_carrier_off(port_to_dev(port));
1089		}
1090	} else {
1091		/*
1092		 * Link available
1093		 */
1094		if (!netif_carrier_ok(port_to_dev(port))) {
1095			dbg(DBG_INTR, "Net carrier on\n");
1096			netif_carrier_on(port_to_dev(port));
1097		}
1098	}
1099
1100	if (los)
1101		dbg(DBG_INTR, "Assert LOS Alarm\n");
1102	else
1103		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1104	if (rra)
1105		dbg(DBG_INTR, "Assert RRA Alarm\n");
1106	else
1107		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1108
1109	if (ais)
1110		dbg(DBG_INTR, "Assert AIS Alarm\n");
1111	else
1112		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1113}
1114
1115/*      Control signal change interrupt event
1116 */
1117static void
1118fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1119{
1120	int signals;
1121
1122	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1123
1124	if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1125		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1126		if (!netif_carrier_ok(port_to_dev(port))) {
1127			dbg(DBG_INTR, "DCD active\n");
1128			netif_carrier_on(port_to_dev(port));
1129		}
1130	} else {
1131		if (netif_carrier_ok(port_to_dev(port))) {
1132			dbg(DBG_INTR, "DCD lost\n");
1133			netif_carrier_off(port_to_dev(port));
1134		}
1135	}
1136}
1137
1138/*      Log Rx Errors
1139 */
1140static void
1141fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1142		 unsigned char dmabits, int rxp, unsigned short len)
1143{
1144	struct net_device *dev = port_to_dev(port);
1145
1146	/*
1147	 * Increment the appropriate error counter
1148	 */
1149	dev->stats.rx_errors++;
1150	if (dmabits & RX_OFLO) {
1151		dev->stats.rx_fifo_errors++;
1152		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1153		    card->card_no, port->index, rxp);
1154	}
1155	if (dmabits & RX_CRC) {
1156		dev->stats.rx_crc_errors++;
1157		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1158		    card->card_no, port->index);
1159	}
1160	if (dmabits & RX_FRAM) {
1161		dev->stats.rx_frame_errors++;
1162		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1163		    card->card_no, port->index);
1164	}
1165	if (dmabits == (RX_STP | RX_ENP)) {
1166		dev->stats.rx_length_errors++;
1167		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1168		    len, card->card_no, port->index);
1169	}
1170}
1171
1172/*      Rx Error Recovery
1173 */
1174static void
1175fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1176		     unsigned char dmabits, int rxp, unsigned short len)
1177{
1178	int i;
1179	int pi;
1180
1181	pi = port->index;
1182	/* 
1183	 * Discard buffer descriptors until we see the start of the
1184	 * next frame.  Note that for long frames this could be in
1185	 * a subsequent interrupt. 
1186	 */
1187	i = 0;
1188	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1189		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1190		rxp = (rxp+1) % NUM_RX_BUFFER;
1191		if (++i > NUM_RX_BUFFER) {
1192			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1193			    " than we have\n");
1194			break;
1195		}
1196		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1197		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1198	}
1199	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1200
1201	/* Discard the terminal buffer */
1202	if (!(dmabits & DMA_OWN)) {
1203		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1204		rxp = (rxp+1) % NUM_RX_BUFFER;
1205	}
1206	port->rxpos = rxp;
1207	return;
1208
1209}
1210
1211/*      Rx complete interrupt
1212 */
1213static void
1214fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1215{
1216	unsigned char dmabits;
1217	int pi;
1218	int rxp;
1219	int rx_status;
1220	unsigned short len;
1221	struct sk_buff *skb;
1222	struct net_device *dev = port_to_dev(port);
1223
1224	/* Check we have a buffer to process */
1225	pi = port->index;
1226	rxp = port->rxpos;
1227	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1228	if (dmabits & DMA_OWN) {
1229		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1230		    pi, rxp);
1231		return;
1232	}
1233	if (card->dmarx_in_progress) {
1234		return;
1235	}
1236
1237	/* Get buffer length */
1238	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1239	/* Discard the CRC */
1240	len -= 2;
1241	if (len == 0) {
1242		/*
1243		 * This seems to happen on the TE1 interface sometimes
1244		 * so throw the frame away and log the event.
1245		 */
1246		pr_err("Frame received with 0 length. Card %d Port %d\n",
1247		       card->card_no, port->index);
1248		/* Return descriptor to card */
1249		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1250
1251		rxp = (rxp+1) % NUM_RX_BUFFER;
1252		port->rxpos = rxp;
1253		return;
1254	}
1255
1256	/* Check buffer length and for other errors. We insist on one packet
1257	 * in one buffer. This simplifies things greatly and since we've
1258	 * allocated 8K it shouldn't be a real world limitation
1259	 */
1260	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1261	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1262		fst_log_rx_error(card, port, dmabits, rxp, len);
1263		fst_recover_rx_error(card, port, dmabits, rxp, len);
1264		return;
1265	}
1266
1267	/* Allocate SKB */
1268	if ((skb = dev_alloc_skb(len)) == NULL) {
1269		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1270
1271		dev->stats.rx_dropped++;
1272
1273		/* Return descriptor to card */
1274		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1275
1276		rxp = (rxp+1) % NUM_RX_BUFFER;
1277		port->rxpos = rxp;
1278		return;
1279	}
1280
1281	/*
1282	 * We know the length we need to receive, len.
1283	 * It's not worth using the DMA for reads of less than
1284	 * FST_MIN_DMA_LEN
1285	 */
1286
1287	if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1288		memcpy_fromio(skb_put(skb, len),
1289			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1290			      len);
1291
1292		/* Reset buffer descriptor */
1293		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1294
1295		/* Update stats */
1296		dev->stats.rx_packets++;
1297		dev->stats.rx_bytes += len;
1298
1299		/* Push upstream */
1300		dbg(DBG_RX, "Pushing frame up the stack\n");
1301		if (port->mode == FST_RAW)
1302			skb->protocol = farsync_type_trans(skb, dev);
1303		else
1304			skb->protocol = hdlc_type_trans(skb, dev);
1305		rx_status = netif_rx(skb);
1306		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1307		if (rx_status == NET_RX_DROP)
1308			dev->stats.rx_dropped++;
1309	} else {
1310		card->dma_skb_rx = skb;
1311		card->dma_port_rx = port;
1312		card->dma_len_rx = len;
1313		card->dma_rxpos = rxp;
1314		fst_rx_dma(card, card->rx_dma_handle_card,
1315			   BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1316	}
1317	if (rxp != port->rxpos) {
1318		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1319		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1320	}
1321	rxp = (rxp+1) % NUM_RX_BUFFER;
1322	port->rxpos = rxp;
1323}
1324
1325/*
1326 *      The bottom halfs to the ISR
1327 *
1328 */
1329
1330static void
1331do_bottom_half_tx(struct fst_card_info *card)
1332{
1333	struct fst_port_info *port;
1334	int pi;
1335	int txq_length;
1336	struct sk_buff *skb;
1337	unsigned long flags;
1338	struct net_device *dev;
1339
1340	/*
1341	 *  Find a free buffer for the transmit
1342	 *  Step through each port on this card
1343	 */
1344
1345	dbg(DBG_TX, "do_bottom_half_tx\n");
1346	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1347		if (!port->run)
1348			continue;
1349
1350		dev = port_to_dev(port);
1351		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1352			 DMA_OWN) &&
1353		       !(card->dmatx_in_progress)) {
1354			/*
1355			 * There doesn't seem to be a txdone event per-se
1356			 * We seem to have to deduce it, by checking the DMA_OWN
1357			 * bit on the next buffer we think we can use
1358			 */
1359			spin_lock_irqsave(&card->card_lock, flags);
1360			if ((txq_length = port->txqe - port->txqs) < 0) {
1361				/*
1362				 * This is the case where one has wrapped and the
1363				 * maths gives us a negative number
1364				 */
1365				txq_length = txq_length + FST_TXQ_DEPTH;
1366			}
1367			spin_unlock_irqrestore(&card->card_lock, flags);
1368			if (txq_length > 0) {
1369				/*
1370				 * There is something to send
1371				 */
1372				spin_lock_irqsave(&card->card_lock, flags);
1373				skb = port->txq[port->txqs];
1374				port->txqs++;
1375				if (port->txqs == FST_TXQ_DEPTH) {
1376					port->txqs = 0;
1377				}
1378				spin_unlock_irqrestore(&card->card_lock, flags);
1379				/*
1380				 * copy the data and set the required indicators on the
1381				 * card.
1382				 */
1383				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1384					cnv_bcnt(skb->len));
1385				if ((skb->len < FST_MIN_DMA_LEN) ||
1386				    (card->family == FST_FAMILY_TXP)) {
1387					/* Enqueue the packet with normal io */
1388					memcpy_toio(card->mem +
1389						    BUF_OFFSET(txBuffer[pi]
1390							       [port->
1391								txpos][0]),
1392						    skb->data, skb->len);
1393					FST_WRB(card,
1394						txDescrRing[pi][port->txpos].
1395						bits,
1396						DMA_OWN | TX_STP | TX_ENP);
1397					dev->stats.tx_packets++;
1398					dev->stats.tx_bytes += skb->len;
1399					dev->trans_start = jiffies;
1400				} else {
1401					/* Or do it through dma */
1402					memcpy(card->tx_dma_handle_host,
1403					       skb->data, skb->len);
1404					card->dma_port_tx = port;
1405					card->dma_len_tx = skb->len;
1406					card->dma_txpos = port->txpos;
1407					fst_tx_dma(card,
1408						   (char *) card->
1409						   tx_dma_handle_card,
1410						   (char *)
1411						   BUF_OFFSET(txBuffer[pi]
1412							      [port->txpos][0]),
1413						   skb->len);
1414				}
1415				if (++port->txpos >= NUM_TX_BUFFER)
1416					port->txpos = 0;
1417				/*
1418				 * If we have flow control on, can we now release it?
1419				 */
1420				if (port->start) {
1421					if (txq_length < fst_txq_low) {
1422						netif_wake_queue(port_to_dev
1423								 (port));
1424						port->start = 0;
1425					}
1426				}
1427				dev_kfree_skb(skb);
1428			} else {
1429				/*
1430				 * Nothing to send so break out of the while loop
1431				 */
1432				break;
1433			}
1434		}
1435	}
1436}
1437
1438static void
1439do_bottom_half_rx(struct fst_card_info *card)
1440{
1441	struct fst_port_info *port;
1442	int pi;
1443	int rx_count = 0;
1444
1445	/* Check for rx completions on all ports on this card */
1446	dbg(DBG_RX, "do_bottom_half_rx\n");
1447	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1448		if (!port->run)
1449			continue;
1450
1451		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1452			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1453			if (rx_count > fst_max_reads) {
1454				/*
1455				 * Don't spend forever in receive processing
1456				 * Schedule another event
1457				 */
1458				fst_q_work_item(&fst_work_intq, card->card_no);
1459				tasklet_schedule(&fst_int_task);
1460				break;	/* Leave the loop */
1461			}
1462			fst_intr_rx(card, port);
1463			rx_count++;
1464		}
1465	}
1466}
1467
1468/*
1469 *      The interrupt service routine
1470 *      Dev_id is our fst_card_info pointer
1471 */
1472static irqreturn_t
1473fst_intr(int dummy, void *dev_id)
1474{
1475	struct fst_card_info *card = dev_id;
1476	struct fst_port_info *port;
1477	int rdidx;		/* Event buffer indices */
1478	int wridx;
1479	int event;		/* Actual event for processing */
1480	unsigned int dma_intcsr = 0;
1481	unsigned int do_card_interrupt;
1482	unsigned int int_retry_count;
1483
1484	/*
1485	 * Check to see if the interrupt was for this card
1486	 * return if not
1487	 * Note that the call to clear the interrupt is important
1488	 */
1489	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1490	if (card->state != FST_RUNNING) {
1491		pr_err("Interrupt received for card %d in a non running state (%d)\n",
1492		       card->card_no, card->state);
1493
1494		/* 
1495		 * It is possible to really be running, i.e. we have re-loaded
1496		 * a running card
1497		 * Clear and reprime the interrupt source 
1498		 */
1499		fst_clear_intr(card);
1500		return IRQ_HANDLED;
1501	}
1502
1503	/* Clear and reprime the interrupt source */
1504	fst_clear_intr(card);
1505
1506	/*
1507	 * Is the interrupt for this card (handshake == 1)
1508	 */
1509	do_card_interrupt = 0;
1510	if (FST_RDB(card, interruptHandshake) == 1) {
1511		do_card_interrupt += FST_CARD_INT;
1512		/* Set the software acknowledge */
1513		FST_WRB(card, interruptHandshake, 0xEE);
1514	}
1515	if (card->family == FST_FAMILY_TXU) {
1516		/*
1517		 * Is it a DMA Interrupt
1518		 */
1519		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1520		if (dma_intcsr & 0x00200000) {
1521			/*
1522			 * DMA Channel 0 (Rx transfer complete)
1523			 */
1524			dbg(DBG_RX, "DMA Rx xfer complete\n");
1525			outb(0x8, card->pci_conf + DMACSR0);
1526			fst_rx_dma_complete(card, card->dma_port_rx,
1527					    card->dma_len_rx, card->dma_skb_rx,
1528					    card->dma_rxpos);
1529			card->dmarx_in_progress = 0;
1530			do_card_interrupt += FST_RX_DMA_INT;
1531		}
1532		if (dma_intcsr & 0x00400000) {
1533			/*
1534			 * DMA Channel 1 (Tx transfer complete)
1535			 */
1536			dbg(DBG_TX, "DMA Tx xfer complete\n");
1537			outb(0x8, card->pci_conf + DMACSR1);
1538			fst_tx_dma_complete(card, card->dma_port_tx,
1539					    card->dma_len_tx, card->dma_txpos);
1540			card->dmatx_in_progress = 0;
1541			do_card_interrupt += FST_TX_DMA_INT;
1542		}
1543	}
1544
1545	/*
1546	 * Have we been missing Interrupts
1547	 */
1548	int_retry_count = FST_RDL(card, interruptRetryCount);
1549	if (int_retry_count) {
1550		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1551		    card->card_no, int_retry_count);
1552		FST_WRL(card, interruptRetryCount, 0);
1553	}
1554
1555	if (!do_card_interrupt) {
1556		return IRQ_HANDLED;
1557	}
1558
1559	/* Scehdule the bottom half of the ISR */
1560	fst_q_work_item(&fst_work_intq, card->card_no);
1561	tasklet_schedule(&fst_int_task);
1562
1563	/* Drain the event queue */
1564	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1565	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1566	while (rdidx != wridx) {
1567		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1568		port = &card->ports[event & 0x03];
1569
1570		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1571
1572		switch (event) {
1573		case TE1_ALMA:
1574			dbg(DBG_INTR, "TE1 Alarm intr\n");
1575			if (port->run)
1576				fst_intr_te1_alarm(card, port);
1577			break;
1578
1579		case CTLA_CHG:
1580		case CTLB_CHG:
1581		case CTLC_CHG:
1582		case CTLD_CHG:
1583			if (port->run)
1584				fst_intr_ctlchg(card, port);
1585			break;
1586
1587		case ABTA_SENT:
1588		case ABTB_SENT:
1589		case ABTC_SENT:
1590		case ABTD_SENT:
1591			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1592			break;
1593
1594		case TXA_UNDF:
1595		case TXB_UNDF:
1596		case TXC_UNDF:
1597		case TXD_UNDF:
1598			/* Difficult to see how we'd get this given that we
1599			 * always load up the entire packet for DMA.
1600			 */
1601			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1602			port_to_dev(port)->stats.tx_errors++;
1603			port_to_dev(port)->stats.tx_fifo_errors++;
1604			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1605			    card->card_no, port->index);
1606			break;
1607
1608		case INIT_CPLT:
1609			dbg(DBG_INIT, "Card init OK intr\n");
1610			break;
1611
1612		case INIT_FAIL:
1613			dbg(DBG_INIT, "Card init FAILED intr\n");
1614			card->state = FST_IFAILED;
1615			break;
1616
1617		default:
1618			pr_err("intr: unknown card event %d. ignored\n", event);
1619			break;
1620		}
1621
1622		/* Bump and wrap the index */
1623		if (++rdidx >= MAX_CIRBUFF)
1624			rdidx = 0;
1625	}
1626	FST_WRB(card, interruptEvent.rdindex, rdidx);
1627        return IRQ_HANDLED;
1628}
1629
1630/*      Check that the shared memory configuration is one that we can handle
1631 *      and that some basic parameters are correct
1632 */
1633static void
1634check_started_ok(struct fst_card_info *card)
1635{
1636	int i;
1637
1638	/* Check structure version and end marker */
1639	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1640		pr_err("Bad shared memory version %d expected %d\n",
1641		       FST_RDW(card, smcVersion), SMC_VERSION);
1642		card->state = FST_BADVERSION;
1643		return;
1644	}
1645	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1646		pr_err("Missing shared memory signature\n");
1647		card->state = FST_BADVERSION;
1648		return;
1649	}
1650	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1651	if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1652		card->state = FST_RUNNING;
1653	} else if (i == 0xFF) {
1654		pr_err("Firmware initialisation failed. Card halted\n");
1655		card->state = FST_HALTED;
1656		return;
1657	} else if (i != 0x00) {
1658		pr_err("Unknown firmware status 0x%x\n", i);
1659		card->state = FST_HALTED;
1660		return;
1661	}
1662
1663	/* Finally check the number of ports reported by firmware against the
1664	 * number we assumed at card detection. Should never happen with
1665	 * existing firmware etc so we just report it for the moment.
1666	 */
1667	if (FST_RDL(card, numberOfPorts) != card->nports) {
1668		pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1669			card->card_no,
1670			FST_RDL(card, numberOfPorts), card->nports);
1671	}
1672}
1673
1674static int
1675set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676		   struct fstioc_info *info)
1677{
1678	int err;
1679	unsigned char my_framing;
1680
1681	/* Set things according to the user set valid flags 
1682	 * Several of the old options have been invalidated/replaced by the 
1683	 * generic hdlc package.
1684	 */
1685	err = 0;
1686	if (info->valid & FSTVAL_PROTO) {
1687		if (info->proto == FST_RAW)
1688			port->mode = FST_RAW;
1689		else
1690			port->mode = FST_GEN_HDLC;
1691	}
1692
1693	if (info->valid & FSTVAL_CABLE)
1694		err = -EINVAL;
1695
1696	if (info->valid & FSTVAL_SPEED)
1697		err = -EINVAL;
1698
1699	if (info->valid & FSTVAL_PHASE)
1700		FST_WRB(card, portConfig[port->index].invertClock,
1701			info->invertClock);
1702	if (info->valid & FSTVAL_MODE)
1703		FST_WRW(card, cardMode, info->cardMode);
1704	if (info->valid & FSTVAL_TE1) {
1705		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706		FST_WRB(card, suConfig.clocking, info->clockSource);
1707		my_framing = FRAMING_E1;
1708		if (info->framing == E1)
1709			my_framing = FRAMING_E1;
1710		if (info->framing == T1)
1711			my_framing = FRAMING_T1;
1712		if (info->framing == J1)
1713			my_framing = FRAMING_J1;
1714		FST_WRB(card, suConfig.framing, my_framing);
1715		FST_WRB(card, suConfig.structure, info->structure);
1716		FST_WRB(card, suConfig.interface, info->interface);
1717		FST_WRB(card, suConfig.coding, info->coding);
1718		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719		FST_WRB(card, suConfig.equalizer, info->equalizer);
1720		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721		FST_WRB(card, suConfig.loopMode, info->loopMode);
1722		FST_WRB(card, suConfig.range, info->range);
1723		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727		if (info->idleCode)
1728			FST_WRB(card, suConfig.enableIdleCode, 1);
1729		else
1730			FST_WRB(card, suConfig.enableIdleCode, 0);
1731		FST_WRB(card, suConfig.idleCode, info->idleCode);
1732#if FST_DEBUG
1733		if (info->valid & FSTVAL_TE1) {
1734			printk("Setting TE1 data\n");
1735			printk("Line Speed = %d\n", info->lineSpeed);
1736			printk("Start slot = %d\n", info->startingSlot);
1737			printk("Clock source = %d\n", info->clockSource);
1738			printk("Framing = %d\n", my_framing);
1739			printk("Structure = %d\n", info->structure);
1740			printk("interface = %d\n", info->interface);
1741			printk("Coding = %d\n", info->coding);
1742			printk("Line build out = %d\n", info->lineBuildOut);
1743			printk("Equaliser = %d\n", info->equalizer);
1744			printk("Transparent mode = %d\n",
1745			       info->transparentMode);
1746			printk("Loop mode = %d\n", info->loopMode);
1747			printk("Range = %d\n", info->range);
1748			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750			printk("LOS Threshold = %d\n", info->losThreshold);
1751			printk("Idle Code = %d\n", info->idleCode);
1752		}
1753#endif
1754	}
1755#if FST_DEBUG
1756	if (info->valid & FSTVAL_DEBUG) {
1757		fst_debug_mask = info->debug;
1758	}
1759#endif
1760
1761	return err;
1762}
1763
1764static void
1765gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766		 struct fstioc_info *info)
1767{
1768	int i;
1769
1770	memset(info, 0, sizeof (struct fstioc_info));
1771
1772	i = port->index;
1773	info->kernelVersion = LINUX_VERSION_CODE;
1774	info->nports = card->nports;
1775	info->type = card->type;
1776	info->state = card->state;
1777	info->proto = FST_GEN_HDLC;
1778	info->index = i;
1779#if FST_DEBUG
1780	info->debug = fst_debug_mask;
1781#endif
1782
1783	/* Only mark information as valid if card is running.
1784	 * Copy the data anyway in case it is useful for diagnostics
1785	 */
1786	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787#if FST_DEBUG
1788	    | FSTVAL_DEBUG
1789#endif
1790	    ;
1791
1792	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798	info->clockStatus = FST_RDW(card, clockStatus[i]);
1799	info->cableStatus = FST_RDW(card, cableStatus);
1800	info->cardMode = FST_RDW(card, cardMode);
1801	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802
1803	/*
1804	 * The T2U can report cable presence for both A or B
1805	 * in bits 0 and 1 of cableStatus.  See which port we are and 
1806	 * do the mapping.
1807	 */
1808	if (card->family == FST_FAMILY_TXU) {
1809		if (port->index == 0) {
1810			/*
1811			 * Port A
1812			 */
1813			info->cableStatus = info->cableStatus & 1;
1814		} else {
1815			/*
1816			 * Port B
1817			 */
1818			info->cableStatus = info->cableStatus >> 1;
1819			info->cableStatus = info->cableStatus & 1;
1820		}
1821	}
1822	/*
1823	 * Some additional bits if we are TE1
1824	 */
1825	if (card->type == FST_TYPE_TE1) {
1826		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827		info->clockSource = FST_RDB(card, suConfig.clocking);
1828		info->framing = FST_RDB(card, suConfig.framing);
1829		info->structure = FST_RDB(card, suConfig.structure);
1830		info->interface = FST_RDB(card, suConfig.interface);
1831		info->coding = FST_RDB(card, suConfig.coding);
1832		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833		info->equalizer = FST_RDB(card, suConfig.equalizer);
1834		info->loopMode = FST_RDB(card, suConfig.loopMode);
1835		info->range = FST_RDB(card, suConfig.range);
1836		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840		if (FST_RDB(card, suConfig.enableIdleCode))
1841			info->idleCode = FST_RDB(card, suConfig.idleCode);
1842		else
1843			info->idleCode = 0;
1844		info->receiveBufferDelay =
1845		    FST_RDL(card, suStatus.receiveBufferDelay);
1846		info->framingErrorCount =
1847		    FST_RDL(card, suStatus.framingErrorCount);
1848		info->codeViolationCount =
1849		    FST_RDL(card, suStatus.codeViolationCount);
1850		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853		info->receiveRemoteAlarm =
1854		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1855		info->alarmIndicationSignal =
1856		    FST_RDB(card, suStatus.alarmIndicationSignal);
1857	}
1858}
1859
1860static int
1861fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862	      struct ifreq *ifr)
1863{
1864	sync_serial_settings sync;
1865	int i;
1866
1867	if (ifr->ifr_settings.size != sizeof (sync)) {
1868		return -ENOMEM;
1869	}
1870
1871	if (copy_from_user
1872	    (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873		return -EFAULT;
1874	}
1875
1876	if (sync.loopback)
1877		return -EINVAL;
1878
1879	i = port->index;
1880
1881	switch (ifr->ifr_settings.type) {
1882	case IF_IFACE_V35:
1883		FST_WRW(card, portConfig[i].lineInterface, V35);
1884		port->hwif = V35;
1885		break;
1886
1887	case IF_IFACE_V24:
1888		FST_WRW(card, portConfig[i].lineInterface, V24);
1889		port->hwif = V24;
1890		break;
1891
1892	case IF_IFACE_X21:
1893		FST_WRW(card, portConfig[i].lineInterface, X21);
1894		port->hwif = X21;
1895		break;
1896
1897	case IF_IFACE_X21D:
1898		FST_WRW(card, portConfig[i].lineInterface, X21D);
1899		port->hwif = X21D;
1900		break;
1901
1902	case IF_IFACE_T1:
1903		FST_WRW(card, portConfig[i].lineInterface, T1);
1904		port->hwif = T1;
1905		break;
1906
1907	case IF_IFACE_E1:
1908		FST_WRW(card, portConfig[i].lineInterface, E1);
1909		port->hwif = E1;
1910		break;
1911
1912	case IF_IFACE_SYNC_SERIAL:
1913		break;
1914
1915	default:
1916		return -EINVAL;
1917	}
1918
1919	switch (sync.clock_type) {
1920	case CLOCK_EXT:
1921		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922		break;
1923
1924	case CLOCK_INT:
1925		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926		break;
1927
1928	default:
1929		return -EINVAL;
1930	}
1931	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932	return 0;
1933}
1934
1935static int
1936fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937	      struct ifreq *ifr)
1938{
1939	sync_serial_settings sync;
1940	int i;
1941
1942	/* First check what line type is set, we'll default to reporting X.21
1943	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944	 * changed
1945	 */
1946	switch (port->hwif) {
1947	case E1:
1948		ifr->ifr_settings.type = IF_IFACE_E1;
1949		break;
1950	case T1:
1951		ifr->ifr_settings.type = IF_IFACE_T1;
1952		break;
1953	case V35:
1954		ifr->ifr_settings.type = IF_IFACE_V35;
1955		break;
1956	case V24:
1957		ifr->ifr_settings.type = IF_IFACE_V24;
1958		break;
1959	case X21D:
1960		ifr->ifr_settings.type = IF_IFACE_X21D;
1961		break;
1962	case X21:
1963	default:
1964		ifr->ifr_settings.type = IF_IFACE_X21;
1965		break;
1966	}
1967	if (ifr->ifr_settings.size == 0) {
1968		return 0;	/* only type requested */
1969	}
1970	if (ifr->ifr_settings.size < sizeof (sync)) {
1971		return -ENOMEM;
1972	}
1973
1974	i = port->index;
1975	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1976	/* Lucky card and linux use same encoding here */
1977	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1978	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1979	sync.loopback = 0;
1980
1981	if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1982		return -EFAULT;
1983	}
1984
1985	ifr->ifr_settings.size = sizeof (sync);
1986	return 0;
1987}
1988
1989static int
1990fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1991{
1992	struct fst_card_info *card;
1993	struct fst_port_info *port;
1994	struct fstioc_write wrthdr;
1995	struct fstioc_info info;
1996	unsigned long flags;
1997	void *buf;
1998
1999	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2000
2001	port = dev_to_port(dev);
2002	card = port->card;
2003
2004	if (!capable(CAP_NET_ADMIN))
2005		return -EPERM;
2006
2007	switch (cmd) {
2008	case FSTCPURESET:
2009		fst_cpureset(card);
2010		card->state = FST_RESET;
2011		return 0;
2012
2013	case FSTCPURELEASE:
2014		fst_cpurelease(card);
2015		card->state = FST_STARTING;
2016		return 0;
2017
2018	case FSTWRITE:		/* Code write (download) */
2019
2020		/* First copy in the header with the length and offset of data
2021		 * to write
2022		 */
2023		if (ifr->ifr_data == NULL) {
2024			return -EINVAL;
2025		}
2026		if (copy_from_user(&wrthdr, ifr->ifr_data,
2027				   sizeof (struct fstioc_write))) {
2028			return -EFAULT;
2029		}
2030
2031		/* Sanity check the parameters. We don't support partial writes
2032		 * when going over the top
2033		 */
2034		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2035		    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2036			return -ENXIO;
2037		}
2038
2039		/* Now copy the data to the card. */
2040
2041		buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2042				  wrthdr.size);
2043		if (IS_ERR(buf))
2044			return PTR_ERR(buf);
2045
2046		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2047		kfree(buf);
2048
2049		/* Writes to the memory of a card in the reset state constitute
2050		 * a download
2051		 */
2052		if (card->state == FST_RESET) {
2053			card->state = FST_DOWNLOAD;
2054		}
2055		return 0;
2056
2057	case FSTGETCONF:
2058
2059		/* If card has just been started check the shared memory config
2060		 * version and marker
2061		 */
2062		if (card->state == FST_STARTING) {
2063			check_started_ok(card);
2064
2065			/* If everything checked out enable card interrupts */
2066			if (card->state == FST_RUNNING) {
2067				spin_lock_irqsave(&card->card_lock, flags);
2068				fst_enable_intr(card);
2069				FST_WRB(card, interruptHandshake, 0xEE);
2070				spin_unlock_irqrestore(&card->card_lock, flags);
2071			}
2072		}
2073
2074		if (ifr->ifr_data == NULL) {
2075			return -EINVAL;
2076		}
2077
2078		gather_conf_info(card, port, &info);
2079
2080		if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2081			return -EFAULT;
2082		}
2083		return 0;
2084
2085	case FSTSETCONF:
2086
2087		/*
2088		 * Most of the settings have been moved to the generic ioctls
2089		 * this just covers debug and board ident now
2090		 */
2091
2092		if (card->state != FST_RUNNING) {
2093			pr_err("Attempt to configure card %d in non-running state (%d)\n",
2094			       card->card_no, card->state);
2095			return -EIO;
2096		}
2097		if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2098			return -EFAULT;
2099		}
2100
2101		return set_conf_from_info(card, port, &info);
2102
2103	case SIOCWANDEV:
2104		switch (ifr->ifr_settings.type) {
2105		case IF_GET_IFACE:
2106			return fst_get_iface(card, port, ifr);
2107
2108		case IF_IFACE_SYNC_SERIAL:
2109		case IF_IFACE_V35:
2110		case IF_IFACE_V24:
2111		case IF_IFACE_X21:
2112		case IF_IFACE_X21D:
2113		case IF_IFACE_T1:
2114		case IF_IFACE_E1:
2115			return fst_set_iface(card, port, ifr);
2116
2117		case IF_PROTO_RAW:
2118			port->mode = FST_RAW;
2119			return 0;
2120
2121		case IF_GET_PROTO:
2122			if (port->mode == FST_RAW) {
2123				ifr->ifr_settings.type = IF_PROTO_RAW;
2124				return 0;
2125			}
2126			return hdlc_ioctl(dev, ifr, cmd);
2127
2128		default:
2129			port->mode = FST_GEN_HDLC;
2130			dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2131			    ifr->ifr_settings.type);
2132			return hdlc_ioctl(dev, ifr, cmd);
2133		}
2134
2135	default:
2136		/* Not one of ours. Pass through to HDLC package */
2137		return hdlc_ioctl(dev, ifr, cmd);
2138	}
2139}
2140
2141static void
2142fst_openport(struct fst_port_info *port)
2143{
2144	int signals;
2145	int txq_length;
2146
2147	/* Only init things if card is actually running. This allows open to
2148	 * succeed for downloads etc.
2149	 */
2150	if (port->card->state == FST_RUNNING) {
2151		if (port->run) {
2152			dbg(DBG_OPEN, "open: found port already running\n");
2153
2154			fst_issue_cmd(port, STOPPORT);
2155			port->run = 0;
2156		}
2157
2158		fst_rx_config(port);
2159		fst_tx_config(port);
2160		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2161
2162		fst_issue_cmd(port, STARTPORT);
2163		port->run = 1;
2164
2165		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2166		if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2167			       ? IPSTS_INDICATE : IPSTS_DCD))
2168			netif_carrier_on(port_to_dev(port));
2169		else
2170			netif_carrier_off(port_to_dev(port));
2171
2172		txq_length = port->txqe - port->txqs;
2173		port->txqe = 0;
2174		port->txqs = 0;
2175	}
2176
2177}
2178
2179static void
2180fst_closeport(struct fst_port_info *port)
2181{
2182	if (port->card->state == FST_RUNNING) {
2183		if (port->run) {
2184			port->run = 0;
2185			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2186
2187			fst_issue_cmd(port, STOPPORT);
2188		} else {
2189			dbg(DBG_OPEN, "close: port not running\n");
2190		}
2191	}
2192}
2193
2194static int
2195fst_open(struct net_device *dev)
2196{
2197	int err;
2198	struct fst_port_info *port;
2199
2200	port = dev_to_port(dev);
2201	if (!try_module_get(THIS_MODULE))
2202          return -EBUSY;
2203
2204	if (port->mode != FST_RAW) {
2205		err = hdlc_open(dev);
2206		if (err) {
2207			module_put(THIS_MODULE);
2208			return err;
2209		}
2210	}
2211
2212	fst_openport(port);
2213	netif_wake_queue(dev);
2214	return 0;
2215}
2216
2217static int
2218fst_close(struct net_device *dev)
2219{
2220	struct fst_port_info *port;
2221	struct fst_card_info *card;
2222	unsigned char tx_dma_done;
2223	unsigned char rx_dma_done;
2224
2225	port = dev_to_port(dev);
2226	card = port->card;
2227
2228	tx_dma_done = inb(card->pci_conf + DMACSR1);
2229	rx_dma_done = inb(card->pci_conf + DMACSR0);
2230	dbg(DBG_OPEN,
2231	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2232	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2233	    rx_dma_done);
2234
2235	netif_stop_queue(dev);
2236	fst_closeport(dev_to_port(dev));
2237	if (port->mode != FST_RAW) {
2238		hdlc_close(dev);
2239	}
2240	module_put(THIS_MODULE);
2241	return 0;
2242}
2243
2244static int
2245fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2246{
2247	/*
2248	 * Setting currently fixed in FarSync card so we check and forget
2249	 */
2250	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2251		return -EINVAL;
2252	return 0;
2253}
2254
2255static void
2256fst_tx_timeout(struct net_device *dev)
2257{
2258	struct fst_port_info *port;
2259	struct fst_card_info *card;
2260
2261	port = dev_to_port(dev);
2262	card = port->card;
2263	dev->stats.tx_errors++;
2264	dev->stats.tx_aborted_errors++;
2265	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2266	    card->card_no, port->index);
2267	fst_issue_cmd(port, ABORTTX);
2268
2269	dev->trans_start = jiffies;
2270	netif_wake_queue(dev);
2271	port->start = 0;
2272}
2273
2274static netdev_tx_t
2275fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2276{
2277	struct fst_card_info *card;
2278	struct fst_port_info *port;
2279	unsigned long flags;
2280	int txq_length;
2281
2282	port = dev_to_port(dev);
2283	card = port->card;
2284	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2285
2286	/* Drop packet with error if we don't have carrier */
2287	if (!netif_carrier_ok(dev)) {
2288		dev_kfree_skb(skb);
2289		dev->stats.tx_errors++;
2290		dev->stats.tx_carrier_errors++;
2291		dbg(DBG_ASS,
2292		    "Tried to transmit but no carrier on card %d port %d\n",
2293		    card->card_no, port->index);
2294		return NETDEV_TX_OK;
2295	}
2296
2297	/* Drop it if it's too big! MTU failure ? */
2298	if (skb->len > LEN_TX_BUFFER) {
2299		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2300		    LEN_TX_BUFFER);
2301		dev_kfree_skb(skb);
2302		dev->stats.tx_errors++;
2303		return NETDEV_TX_OK;
2304	}
2305
2306	/*
2307	 * We are always going to queue the packet
2308	 * so that the bottom half is the only place we tx from
2309	 * Check there is room in the port txq
2310	 */
2311	spin_lock_irqsave(&card->card_lock, flags);
2312	if ((txq_length = port->txqe - port->txqs) < 0) {
2313		/*
2314		 * This is the case where the next free has wrapped but the
2315		 * last used hasn't
2316		 */
2317		txq_length = txq_length + FST_TXQ_DEPTH;
2318	}
2319	spin_unlock_irqrestore(&card->card_lock, flags);
2320	if (txq_length > fst_txq_high) {
2321		/*
2322		 * We have got enough buffers in the pipeline.  Ask the network
2323		 * layer to stop sending frames down
2324		 */
2325		netif_stop_queue(dev);
2326		port->start = 1;	/* I'm using this to signal stop sent up */
2327	}
2328
2329	if (txq_length == FST_TXQ_DEPTH - 1) {
2330		/*
2331		 * This shouldn't have happened but such is life
2332		 */
2333		dev_kfree_skb(skb);
2334		dev->stats.tx_errors++;
2335		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2336		    card->card_no, port->index);
2337		return NETDEV_TX_OK;
2338	}
2339
2340	/*
2341	 * queue the buffer
2342	 */
2343	spin_lock_irqsave(&card->card_lock, flags);
2344	port->txq[port->txqe] = skb;
2345	port->txqe++;
2346	if (port->txqe == FST_TXQ_DEPTH)
2347		port->txqe = 0;
2348	spin_unlock_irqrestore(&card->card_lock, flags);
2349
2350	/* Scehdule the bottom half which now does transmit processing */
2351	fst_q_work_item(&fst_work_txq, card->card_no);
2352	tasklet_schedule(&fst_tx_task);
2353
2354	return NETDEV_TX_OK;
2355}
2356
2357/*
2358 *      Card setup having checked hardware resources.
2359 *      Should be pretty bizarre if we get an error here (kernel memory
2360 *      exhaustion is one possibility). If we do see a problem we report it
2361 *      via a printk and leave the corresponding interface and all that follow
2362 *      disabled.
2363 */
2364static char *type_strings[] __devinitdata = {
2365	"no hardware",		/* Should never be seen */
2366	"FarSync T2P",
2367	"FarSync T4P",
2368	"FarSync T1U",
2369	"FarSync T2U",
2370	"FarSync T4U",
2371	"FarSync TE1"
2372};
2373
2374static void __devinit
2375fst_init_card(struct fst_card_info *card)
2376{
2377	int i;
2378	int err;
2379
2380	/* We're working on a number of ports based on the card ID. If the
2381	 * firmware detects something different later (should never happen)
2382	 * we'll have to revise it in some way then.
2383	 */
2384	for (i = 0; i < card->nports; i++) {
2385                err = register_hdlc_device(card->ports[i].dev);
2386                if (err < 0) {
2387			int j;
2388			pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2389			       i, -err);
2390			for (j = i; j < card->nports; j++) {
2391				free_netdev(card->ports[j].dev);
2392				card->ports[j].dev = NULL;
2393			}
2394                        card->nports = i;
2395                        break;
2396                }
2397	}
2398
2399	pr_info("%s-%s: %s IRQ%d, %d ports\n",
2400		port_to_dev(&card->ports[0])->name,
2401		port_to_dev(&card->ports[card->nports - 1])->name,
2402		type_strings[card->type], card->irq, card->nports);
2403}
2404
2405static const struct net_device_ops fst_ops = {
2406	.ndo_open       = fst_open,
2407	.ndo_stop       = fst_close,
2408	.ndo_change_mtu = hdlc_change_mtu,
2409	.ndo_start_xmit = hdlc_start_xmit,
2410	.ndo_do_ioctl   = fst_ioctl,
2411	.ndo_tx_timeout = fst_tx_timeout,
2412};
2413
2414/*
2415 *      Initialise card when detected.
2416 *      Returns 0 to indicate success, or errno otherwise.
2417 */
2418static int __devinit
2419fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2420{
2421	static int no_of_cards_added = 0;
2422	struct fst_card_info *card;
2423	int err = 0;
2424	int i;
2425
2426	printk_once(KERN_INFO
2427		    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2428			   " (c) 2001-2004 FarSite Communications Ltd.\n"));
2429#if FST_DEBUG
2430	dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2431#endif
2432	/*
2433	 * We are going to be clever and allow certain cards not to be
2434	 * configured.  An exclude list can be provided in /etc/modules.conf
2435	 */
2436	if (fst_excluded_cards != 0) {
2437		/*
2438		 * There are cards to exclude
2439		 *
2440		 */
2441		for (i = 0; i < fst_excluded_cards; i++) {
2442			if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2443				pr_info("FarSync PCI device %d not assigned\n",
2444					(pdev->devfn) >> 3);
2445				return -EBUSY;
2446			}
2447		}
2448	}
2449
2450	/* Allocate driver private data */
2451	card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2452	if (card == NULL) {
2453		pr_err("FarSync card found but insufficient memory for driver storage\n");
2454		return -ENOMEM;
2455	}
2456
2457	/* Try to enable the device */
2458	if ((err = pci_enable_device(pdev)) != 0) {
2459		pr_err("Failed to enable card. Err %d\n", -err);
2460		kfree(card);
2461		return err;
2462	}
2463
2464	if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2465		pr_err("Failed to allocate regions. Err %d\n", -err);
2466		pci_disable_device(pdev);
2467		kfree(card);
2468	        return err;
2469	}
2470
2471	/* Get virtual addresses of memory regions */
2472	card->pci_conf = pci_resource_start(pdev, 1);
2473	card->phys_mem = pci_resource_start(pdev, 2);
2474	card->phys_ctlmem = pci_resource_start(pdev, 3);
2475	if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2476		pr_err("Physical memory remap failed\n");
2477		pci_release_regions(pdev);
2478		pci_disable_device(pdev);
2479		kfree(card);
2480		return -ENODEV;
2481	}
2482	if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2483		pr_err("Control memory remap failed\n");
2484		pci_release_regions(pdev);
2485		pci_disable_device(pdev);
2486		iounmap(card->mem);
2487		kfree(card);
2488		return -ENODEV;
2489	}
2490	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2491
2492	/* Register the interrupt handler */
2493	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2494		pr_err("Unable to register interrupt %d\n", card->irq);
2495		pci_release_regions(pdev);
2496		pci_disable_device(pdev);
2497		iounmap(card->ctlmem);
2498		iounmap(card->mem);
2499		kfree(card);
2500		return -ENODEV;
2501	}
2502
2503	/* Record info we need */
2504	card->irq = pdev->irq;
2505	card->type = ent->driver_data;
2506	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2507			(ent->driver_data == FST_TYPE_T4P))
2508	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2509	if ((ent->driver_data == FST_TYPE_T1U) ||
2510	    (ent->driver_data == FST_TYPE_TE1))
2511		card->nports = 1;
2512	else
2513		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2514				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2515
2516	card->state = FST_UNINIT;
2517        spin_lock_init ( &card->card_lock );
2518
2519        for ( i = 0 ; i < card->nports ; i++ ) {
2520		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2521		hdlc_device *hdlc;
2522		if (!dev) {
2523			while (i--)
2524				free_netdev(card->ports[i].dev);
2525			pr_err("FarSync: out of memory\n");
2526                        free_irq(card->irq, card);
2527                        pci_release_regions(pdev);
2528                        pci_disable_device(pdev);
2529                        iounmap(card->ctlmem);
2530                        iounmap(card->mem);
2531                        kfree(card);
2532                        return -ENODEV;
2533		}
2534		card->ports[i].dev    = dev;
2535                card->ports[i].card   = card;
2536                card->ports[i].index  = i;
2537                card->ports[i].run    = 0;
2538
2539		hdlc = dev_to_hdlc(dev);
2540
2541                /* Fill in the net device info */
2542		/* Since this is a PCI setup this is purely
2543		 * informational. Give them the buffer addresses
2544		 * and basic card I/O.
2545		 */
2546                dev->mem_start   = card->phys_mem
2547                                 + BUF_OFFSET ( txBuffer[i][0][0]);
2548                dev->mem_end     = card->phys_mem
2549                                 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2550                dev->base_addr   = card->pci_conf;
2551                dev->irq         = card->irq;
2552
2553		dev->netdev_ops = &fst_ops;
2554		dev->tx_queue_len = FST_TX_QUEUE_LEN;
2555		dev->watchdog_timeo = FST_TX_TIMEOUT;
2556                hdlc->attach = fst_attach;
2557                hdlc->xmit   = fst_start_xmit;
2558	}
2559
2560	card->device = pdev;
2561
2562	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2563	    card->nports, card->irq);
2564	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2565	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2566
2567	/* Reset the card's processor */
2568	fst_cpureset(card);
2569	card->state = FST_RESET;
2570
2571	/* Initialise DMA (if required) */
2572	fst_init_dma(card);
2573
2574	/* Record driver data for later use */
2575	pci_set_drvdata(pdev, card);
2576
2577	/* Remainder of card setup */
2578	fst_card_array[no_of_cards_added] = card;
2579	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2580	fst_init_card(card);
2581	if (card->family == FST_FAMILY_TXU) {
2582		/*
2583		 * Allocate a dma buffer for transmit and receives
2584		 */
2585		card->rx_dma_handle_host =
2586		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2587					 &card->rx_dma_handle_card);
2588		if (card->rx_dma_handle_host == NULL) {
2589			pr_err("Could not allocate rx dma buffer\n");
2590			fst_disable_intr(card);
2591			pci_release_regions(pdev);
2592			pci_disable_device(pdev);
2593			iounmap(card->ctlmem);
2594			iounmap(card->mem);
2595			kfree(card);
2596			return -ENOMEM;
2597		}
2598		card->tx_dma_handle_host =
2599		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2600					 &card->tx_dma_handle_card);
2601		if (card->tx_dma_handle_host == NULL) {
2602			pr_err("Could not allocate tx dma buffer\n");
2603			fst_disable_intr(card);
2604			pci_release_regions(pdev);
2605			pci_disable_device(pdev);
2606			iounmap(card->ctlmem);
2607			iounmap(card->mem);
2608			kfree(card);
2609			return -ENOMEM;
2610		}
2611	}
2612	return 0;		/* Success */
2613}
2614
2615/*
2616 *      Cleanup and close down a card
2617 */
2618static void __devexit
2619fst_remove_one(struct pci_dev *pdev)
2620{
2621	struct fst_card_info *card;
2622	int i;
2623
2624	card = pci_get_drvdata(pdev);
2625
2626	for (i = 0; i < card->nports; i++) {
2627		struct net_device *dev = port_to_dev(&card->ports[i]);
2628		unregister_hdlc_device(dev);
2629	}
2630
2631	fst_disable_intr(card);
2632	free_irq(card->irq, card);
2633
2634	iounmap(card->ctlmem);
2635	iounmap(card->mem);
2636	pci_release_regions(pdev);
2637	if (card->family == FST_FAMILY_TXU) {
2638		/*
2639		 * Free dma buffers
2640		 */
2641		pci_free_consistent(card->device, FST_MAX_MTU,
2642				    card->rx_dma_handle_host,
2643				    card->rx_dma_handle_card);
2644		pci_free_consistent(card->device, FST_MAX_MTU,
2645				    card->tx_dma_handle_host,
2646				    card->tx_dma_handle_card);
2647	}
2648	fst_card_array[card->card_no] = NULL;
2649}
2650
2651static struct pci_driver fst_driver = {
2652        .name		= FST_NAME,
2653        .id_table	= fst_pci_dev_id,
2654        .probe		= fst_add_one,
2655        .remove	= __devexit_p(fst_remove_one),
2656        .suspend	= NULL,
2657        .resume	= NULL,
2658};
2659
2660static int __init
2661fst_init(void)
2662{
2663	int i;
2664
2665	for (i = 0; i < FST_MAX_CARDS; i++)
2666		fst_card_array[i] = NULL;
2667	spin_lock_init(&fst_work_q_lock);
2668	return pci_register_driver(&fst_driver);
2669}
2670
2671static void __exit
2672fst_cleanup_module(void)
2673{
2674	pr_info("FarSync WAN driver unloading\n");
2675	pci_unregister_driver(&fst_driver);
2676}
2677
2678module_init(fst_init);
2679module_exit(fst_cleanup_module);