Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
   3 *
   4 * Based on skelton.c by Donald Becker.
   5 *
   6 * This driver is a replacement of older and less maintained version.
   7 * This is a header of the older version:
   8 *	-----<snip>-----
   9 *	Copyright 2001 MontaVista Software Inc.
  10 *	Author: MontaVista Software, Inc.
  11 *		ahennessy@mvista.com
  12 *	Copyright (C) 2000-2001 Toshiba Corporation
  13 *	static const char *version =
  14 *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
  15 *	-----<snip>-----
  16 *
  17 * This file is subject to the terms and conditions of the GNU General Public
  18 * License.  See the file "COPYING" in the main directory of this archive
  19 * for more details.
  20 *
  21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
  22 * All Rights Reserved.
  23 */
  24
  25#define DRV_VERSION	"1.39"
  26static const char *version = "tc35815.c:v" DRV_VERSION "\n";
  27#define MODNAME			"tc35815"
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/fcntl.h>
  33#include <linux/interrupt.h>
  34#include <linux/ioport.h>
  35#include <linux/in.h>
  36#include <linux/if_vlan.h>
  37#include <linux/slab.h>
  38#include <linux/string.h>
  39#include <linux/spinlock.h>
  40#include <linux/errno.h>
  41#include <linux/init.h>
  42#include <linux/netdevice.h>
  43#include <linux/etherdevice.h>
  44#include <linux/skbuff.h>
  45#include <linux/delay.h>
  46#include <linux/pci.h>
  47#include <linux/phy.h>
  48#include <linux/workqueue.h>
  49#include <linux/platform_device.h>
  50#include <linux/prefetch.h>
  51#include <asm/io.h>
  52#include <asm/byteorder.h>
  53
  54enum tc35815_chiptype {
  55	TC35815CF = 0,
  56	TC35815_NWU,
  57	TC35815_TX4939,
  58};
  59
  60/* indexed by tc35815_chiptype, above */
  61static const struct {
  62	const char *name;
  63} chip_info[] __devinitdata = {
  64	{ "TOSHIBA TC35815CF 10/100BaseTX" },
  65	{ "TOSHIBA TC35815 with Wake on LAN" },
  66	{ "TOSHIBA TC35815/TX4939" },
  67};
  68
  69static DEFINE_PCI_DEVICE_TABLE(tc35815_pci_tbl) = {
  70	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
  71	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
  72	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
  73	{0,}
  74};
  75MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
  76
  77/* see MODULE_PARM_DESC */
  78static struct tc35815_options {
  79	int speed;
  80	int duplex;
  81} options;
  82
  83/*
  84 * Registers
  85 */
  86struct tc35815_regs {
  87	__u32 DMA_Ctl;		/* 0x00 */
  88	__u32 TxFrmPtr;
  89	__u32 TxThrsh;
  90	__u32 TxPollCtr;
  91	__u32 BLFrmPtr;
  92	__u32 RxFragSize;
  93	__u32 Int_En;
  94	__u32 FDA_Bas;
  95	__u32 FDA_Lim;		/* 0x20 */
  96	__u32 Int_Src;
  97	__u32 unused0[2];
  98	__u32 PauseCnt;
  99	__u32 RemPauCnt;
 100	__u32 TxCtlFrmStat;
 101	__u32 unused1;
 102	__u32 MAC_Ctl;		/* 0x40 */
 103	__u32 CAM_Ctl;
 104	__u32 Tx_Ctl;
 105	__u32 Tx_Stat;
 106	__u32 Rx_Ctl;
 107	__u32 Rx_Stat;
 108	__u32 MD_Data;
 109	__u32 MD_CA;
 110	__u32 CAM_Adr;		/* 0x60 */
 111	__u32 CAM_Data;
 112	__u32 CAM_Ena;
 113	__u32 PROM_Ctl;
 114	__u32 PROM_Data;
 115	__u32 Algn_Cnt;
 116	__u32 CRC_Cnt;
 117	__u32 Miss_Cnt;
 118};
 119
 120/*
 121 * Bit assignments
 122 */
 123/* DMA_Ctl bit assign ------------------------------------------------------- */
 124#define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
 125#define DMA_RxAlign_1	       0x00400000
 126#define DMA_RxAlign_2	       0x00800000
 127#define DMA_RxAlign_3	       0x00c00000
 128#define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
 129#define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
 130#define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
 131#define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
 132#define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
 133#define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
 134#define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
 135#define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
 136#define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
 137
 138/* RxFragSize bit assign ---------------------------------------------------- */
 139#define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
 140#define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
 141
 142/* MAC_Ctl bit assign ------------------------------------------------------- */
 143#define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
 144#define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
 145#define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
 146#define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
 147#define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
 148#define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
 149#define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
 150#define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
 151#define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
 152#define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
 153#define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
 154#define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
 155
 156/* PROM_Ctl bit assign ------------------------------------------------------ */
 157#define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
 158#define PROM_Read	       0x00004000 /*10:Read operation		     */
 159#define PROM_Write	       0x00002000 /*01:Write operation		     */
 160#define PROM_Erase	       0x00006000 /*11:Erase operation		     */
 161					  /*00:Enable or Disable Writting,   */
 162					  /*	  as specified in PROM_Addr. */
 163#define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
 164					  /*00xxxx:	      disable	     */
 165
 166/* CAM_Ctl bit assign ------------------------------------------------------- */
 167#define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
 168#define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
 169					  /*			accept other */
 170#define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
 171#define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
 172#define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
 173
 174/* CAM_Ena bit assign ------------------------------------------------------- */
 175#define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
 176#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
 177#define CAM_Ena_Bit(index)	(1 << (index))
 178#define CAM_ENTRY_DESTINATION	0
 179#define CAM_ENTRY_SOURCE	1
 180#define CAM_ENTRY_MACCTL	20
 181
 182/* Tx_Ctl bit assign -------------------------------------------------------- */
 183#define Tx_En		       0x00000001 /* 1:Transmit enable		     */
 184#define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
 185#define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
 186#define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
 187#define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
 188#define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
 189#define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
 190#define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
 191#define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
 192#define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
 193#define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
 194#define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
 195
 196/* Tx_Stat bit assign ------------------------------------------------------- */
 197#define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
 198#define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
 199#define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
 200#define Tx_Paused	       0x00000040 /* Transmit Paused		     */
 201#define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
 202#define Tx_Under	       0x00000100 /* Underrun			     */
 203#define Tx_Defer	       0x00000200 /* Deferral			     */
 204#define Tx_NCarr	       0x00000400 /* No Carrier			     */
 205#define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
 206#define Tx_LateColl	       0x00001000 /* Late Collision		     */
 207#define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
 208#define Tx_Comp		       0x00004000 /* Completion			     */
 209#define Tx_Halted	       0x00008000 /* Tx Halted			     */
 210#define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
 211
 212/* Rx_Ctl bit assign -------------------------------------------------------- */
 213#define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
 214#define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
 215#define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
 216#define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
 217#define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
 218#define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
 219#define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
 220#define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
 221#define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
 222#define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
 223#define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
 224#define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
 225
 226/* Rx_Stat bit assign ------------------------------------------------------- */
 227#define Rx_Halted	       0x00008000 /* Rx Halted			     */
 228#define Rx_Good		       0x00004000 /* Rx Good			     */
 229#define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
 230#define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
 231#define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
 232#define Rx_Over		       0x00000400 /* Rx Overflow		     */
 233#define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
 234#define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
 235#define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
 236#define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
 237#define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
 238#define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
 239
 240#define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
 241
 242/* Int_En bit assign -------------------------------------------------------- */
 243#define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
 244#define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
 245#define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
 246#define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
 247#define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
 248#define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
 249#define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
 250#define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
 251#define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
 252#define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
 253#define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
 254#define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
 255					  /*		   Exhausted Enable  */
 256
 257/* Int_Src bit assign ------------------------------------------------------- */
 258#define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
 259#define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
 260#define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
 261#define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
 262#define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
 263#define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
 264#define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
 265#define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
 266#define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
 267#define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
 268#define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
 269#define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
 270#define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
 271#define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
 272#define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
 273
 274/* MD_CA bit assign --------------------------------------------------------- */
 275#define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
 276#define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
 277#define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
 278
 279
 280/*
 281 * Descriptors
 282 */
 283
 284/* Frame descripter */
 285struct FDesc {
 286	volatile __u32 FDNext;
 287	volatile __u32 FDSystem;
 288	volatile __u32 FDStat;
 289	volatile __u32 FDCtl;
 290};
 291
 292/* Buffer descripter */
 293struct BDesc {
 294	volatile __u32 BuffData;
 295	volatile __u32 BDCtl;
 296};
 297
 298#define FD_ALIGN	16
 299
 300/* Frame Descripter bit assign ---------------------------------------------- */
 301#define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
 302#define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
 303#define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
 304#define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
 305#define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
 306#define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
 307#define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
 308#define FD_FrmOpt_Packing      0x04000000 /* Rx only */
 309#define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
 310#define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
 311#define FD_BDCnt_SHIFT	       16
 312
 313/* Buffer Descripter bit assign --------------------------------------------- */
 314#define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
 315#define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
 316#define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
 317#define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
 318#define BD_RxBDID_SHIFT	       16
 319#define BD_RxBDSeqN_SHIFT      24
 320
 321
 322/* Some useful constants. */
 323
 324#define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
 325	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
 326	Tx_En)	/* maybe  0x7b01 */
 327/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
 328#define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
 329	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
 330#define INT_EN_CMD  (Int_NRAbtEn | \
 331	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
 332	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
 333	Int_STargAbtEn | \
 334	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
 335#define DMA_CTL_CMD	DMA_BURST_SIZE
 336#define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
 337
 338/* Tuning parameters */
 339#define DMA_BURST_SIZE	32
 340#define TX_THRESHOLD	1024
 341/* used threshold with packet max byte for low pci transfer ability.*/
 342#define TX_THRESHOLD_MAX 1536
 343/* setting threshold max value when overrun error occurred this count. */
 344#define TX_THRESHOLD_KEEP_LIMIT 10
 345
 346/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
 347#define FD_PAGE_NUM 4
 348#define RX_BUF_NUM	128	/* < 256 */
 349#define RX_FD_NUM	256	/* >= 32 */
 350#define TX_FD_NUM	128
 351#if RX_CTL_CMD & Rx_LongEn
 352#define RX_BUF_SIZE	PAGE_SIZE
 353#elif RX_CTL_CMD & Rx_StripCRC
 354#define RX_BUF_SIZE	\
 355	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
 356#else
 357#define RX_BUF_SIZE	\
 358	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
 359#endif
 360#define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
 361#define NAPI_WEIGHT	16
 362
 363struct TxFD {
 364	struct FDesc fd;
 365	struct BDesc bd;
 366	struct BDesc unused;
 367};
 368
 369struct RxFD {
 370	struct FDesc fd;
 371	struct BDesc bd[0];	/* variable length */
 372};
 373
 374struct FrFD {
 375	struct FDesc fd;
 376	struct BDesc bd[RX_BUF_NUM];
 377};
 378
 379
 380#define tc_readl(addr)	ioread32(addr)
 381#define tc_writel(d, addr)	iowrite32(d, addr)
 382
 383#define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
 384
 385/* Information that need to be kept for each controller. */
 386struct tc35815_local {
 387	struct pci_dev *pci_dev;
 388
 389	struct net_device *dev;
 390	struct napi_struct napi;
 391
 392	/* statistics */
 393	struct {
 394		int max_tx_qlen;
 395		int tx_ints;
 396		int rx_ints;
 397		int tx_underrun;
 398	} lstats;
 399
 400	/* Tx control lock.  This protects the transmit buffer ring
 401	 * state along with the "tx full" state of the driver.  This
 402	 * means all netif_queue flow control actions are protected
 403	 * by this lock as well.
 404	 */
 405	spinlock_t lock;
 406	spinlock_t rx_lock;
 407
 408	struct mii_bus *mii_bus;
 409	struct phy_device *phy_dev;
 410	int duplex;
 411	int speed;
 412	int link;
 413	struct work_struct restart_work;
 414
 415	/*
 416	 * Transmitting: Batch Mode.
 417	 *	1 BD in 1 TxFD.
 418	 * Receiving: Non-Packing Mode.
 419	 *	1 circular FD for Free Buffer List.
 420	 *	RX_BUF_NUM BD in Free Buffer FD.
 421	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
 422	 */
 423	void *fd_buf;	/* for TxFD, RxFD, FrFD */
 424	dma_addr_t fd_buf_dma;
 425	struct TxFD *tfd_base;
 426	unsigned int tfd_start;
 427	unsigned int tfd_end;
 428	struct RxFD *rfd_base;
 429	struct RxFD *rfd_limit;
 430	struct RxFD *rfd_cur;
 431	struct FrFD *fbl_ptr;
 432	unsigned int fbl_count;
 433	struct {
 434		struct sk_buff *skb;
 435		dma_addr_t skb_dma;
 436	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
 437	u32 msg_enable;
 438	enum tc35815_chiptype chiptype;
 439};
 440
 441static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
 442{
 443	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
 444}
 445#ifdef DEBUG
 446static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
 447{
 448	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
 449}
 450#endif
 451static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
 452				       struct pci_dev *hwdev,
 453				       dma_addr_t *dma_handle)
 454{
 455	struct sk_buff *skb;
 456	skb = dev_alloc_skb(RX_BUF_SIZE);
 457	if (!skb)
 458		return NULL;
 459	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
 460				     PCI_DMA_FROMDEVICE);
 461	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
 462		dev_kfree_skb_any(skb);
 463		return NULL;
 464	}
 465	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
 466	return skb;
 467}
 468
 469static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
 470{
 471	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
 472			 PCI_DMA_FROMDEVICE);
 473	dev_kfree_skb_any(skb);
 474}
 475
 476/* Index to functions, as function prototypes. */
 477
 478static int	tc35815_open(struct net_device *dev);
 479static int	tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
 480static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
 481static int	tc35815_rx(struct net_device *dev, int limit);
 482static int	tc35815_poll(struct napi_struct *napi, int budget);
 483static void	tc35815_txdone(struct net_device *dev);
 484static int	tc35815_close(struct net_device *dev);
 485static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
 486static void	tc35815_set_multicast_list(struct net_device *dev);
 487static void	tc35815_tx_timeout(struct net_device *dev);
 488static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 489#ifdef CONFIG_NET_POLL_CONTROLLER
 490static void	tc35815_poll_controller(struct net_device *dev);
 491#endif
 492static const struct ethtool_ops tc35815_ethtool_ops;
 493
 494/* Example routines you must write ;->. */
 495static void	tc35815_chip_reset(struct net_device *dev);
 496static void	tc35815_chip_init(struct net_device *dev);
 497
 498#ifdef DEBUG
 499static void	panic_queues(struct net_device *dev);
 500#endif
 501
 502static void tc35815_restart_work(struct work_struct *work);
 503
 504static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 505{
 506	struct net_device *dev = bus->priv;
 507	struct tc35815_regs __iomem *tr =
 508		(struct tc35815_regs __iomem *)dev->base_addr;
 509	unsigned long timeout = jiffies + HZ;
 510
 511	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
 512	udelay(12); /* it takes 32 x 400ns at least */
 513	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
 514		if (time_after(jiffies, timeout))
 515			return -EIO;
 516		cpu_relax();
 517	}
 518	return tc_readl(&tr->MD_Data) & 0xffff;
 519}
 520
 521static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
 522{
 523	struct net_device *dev = bus->priv;
 524	struct tc35815_regs __iomem *tr =
 525		(struct tc35815_regs __iomem *)dev->base_addr;
 526	unsigned long timeout = jiffies + HZ;
 527
 528	tc_writel(val, &tr->MD_Data);
 529	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
 530		  &tr->MD_CA);
 531	udelay(12); /* it takes 32 x 400ns at least */
 532	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
 533		if (time_after(jiffies, timeout))
 534			return -EIO;
 535		cpu_relax();
 536	}
 537	return 0;
 538}
 539
 540static void tc_handle_link_change(struct net_device *dev)
 541{
 542	struct tc35815_local *lp = netdev_priv(dev);
 543	struct phy_device *phydev = lp->phy_dev;
 544	unsigned long flags;
 545	int status_change = 0;
 546
 547	spin_lock_irqsave(&lp->lock, flags);
 548	if (phydev->link &&
 549	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
 550		struct tc35815_regs __iomem *tr =
 551			(struct tc35815_regs __iomem *)dev->base_addr;
 552		u32 reg;
 553
 554		reg = tc_readl(&tr->MAC_Ctl);
 555		reg |= MAC_HaltReq;
 556		tc_writel(reg, &tr->MAC_Ctl);
 557		if (phydev->duplex == DUPLEX_FULL)
 558			reg |= MAC_FullDup;
 559		else
 560			reg &= ~MAC_FullDup;
 561		tc_writel(reg, &tr->MAC_Ctl);
 562		reg &= ~MAC_HaltReq;
 563		tc_writel(reg, &tr->MAC_Ctl);
 564
 565		/*
 566		 * TX4939 PCFG.SPEEDn bit will be changed on
 567		 * NETDEV_CHANGE event.
 568		 */
 569		/*
 570		 * WORKAROUND: enable LostCrS only if half duplex
 571		 * operation.
 572		 * (TX4939 does not have EnLCarr)
 573		 */
 574		if (phydev->duplex == DUPLEX_HALF &&
 575		    lp->chiptype != TC35815_TX4939)
 576			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
 577				  &tr->Tx_Ctl);
 578
 579		lp->speed = phydev->speed;
 580		lp->duplex = phydev->duplex;
 581		status_change = 1;
 582	}
 583
 584	if (phydev->link != lp->link) {
 585		if (phydev->link) {
 586			/* delayed promiscuous enabling */
 587			if (dev->flags & IFF_PROMISC)
 588				tc35815_set_multicast_list(dev);
 589		} else {
 590			lp->speed = 0;
 591			lp->duplex = -1;
 592		}
 593		lp->link = phydev->link;
 594
 595		status_change = 1;
 596	}
 597	spin_unlock_irqrestore(&lp->lock, flags);
 598
 599	if (status_change && netif_msg_link(lp)) {
 600		phy_print_status(phydev);
 601		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
 602			 dev->name,
 603			 phy_read(phydev, MII_BMCR),
 604			 phy_read(phydev, MII_BMSR),
 605			 phy_read(phydev, MII_LPA));
 606	}
 607}
 608
 609static int tc_mii_probe(struct net_device *dev)
 610{
 611	struct tc35815_local *lp = netdev_priv(dev);
 612	struct phy_device *phydev = NULL;
 613	int phy_addr;
 614	u32 dropmask;
 615
 616	/* find the first phy */
 617	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 618		if (lp->mii_bus->phy_map[phy_addr]) {
 619			if (phydev) {
 620				printk(KERN_ERR "%s: multiple PHYs found\n",
 621				       dev->name);
 622				return -EINVAL;
 623			}
 624			phydev = lp->mii_bus->phy_map[phy_addr];
 625			break;
 626		}
 627	}
 628
 629	if (!phydev) {
 630		printk(KERN_ERR "%s: no PHY found\n", dev->name);
 631		return -ENODEV;
 632	}
 633
 634	/* attach the mac to the phy */
 635	phydev = phy_connect(dev, dev_name(&phydev->dev),
 636			     &tc_handle_link_change, 0,
 637			     lp->chiptype == TC35815_TX4939 ?
 638			     PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
 639	if (IS_ERR(phydev)) {
 640		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
 641		return PTR_ERR(phydev);
 642	}
 643	printk(KERN_INFO "%s: attached PHY driver [%s] "
 644		"(mii_bus:phy_addr=%s, id=%x)\n",
 645		dev->name, phydev->drv->name, dev_name(&phydev->dev),
 646		phydev->phy_id);
 647
 648	/* mask with MAC supported features */
 649	phydev->supported &= PHY_BASIC_FEATURES;
 650	dropmask = 0;
 651	if (options.speed == 10)
 652		dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
 653	else if (options.speed == 100)
 654		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
 655	if (options.duplex == 1)
 656		dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
 657	else if (options.duplex == 2)
 658		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
 659	phydev->supported &= ~dropmask;
 660	phydev->advertising = phydev->supported;
 661
 662	lp->link = 0;
 663	lp->speed = 0;
 664	lp->duplex = -1;
 665	lp->phy_dev = phydev;
 666
 667	return 0;
 668}
 669
 670static int tc_mii_init(struct net_device *dev)
 671{
 672	struct tc35815_local *lp = netdev_priv(dev);
 673	int err;
 674	int i;
 675
 676	lp->mii_bus = mdiobus_alloc();
 677	if (lp->mii_bus == NULL) {
 678		err = -ENOMEM;
 679		goto err_out;
 680	}
 681
 682	lp->mii_bus->name = "tc35815_mii_bus";
 683	lp->mii_bus->read = tc_mdio_read;
 684	lp->mii_bus->write = tc_mdio_write;
 685	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
 686		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
 687	lp->mii_bus->priv = dev;
 688	lp->mii_bus->parent = &lp->pci_dev->dev;
 689	lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
 690	if (!lp->mii_bus->irq) {
 691		err = -ENOMEM;
 692		goto err_out_free_mii_bus;
 693	}
 694
 695	for (i = 0; i < PHY_MAX_ADDR; i++)
 696		lp->mii_bus->irq[i] = PHY_POLL;
 697
 698	err = mdiobus_register(lp->mii_bus);
 699	if (err)
 700		goto err_out_free_mdio_irq;
 701	err = tc_mii_probe(dev);
 702	if (err)
 703		goto err_out_unregister_bus;
 704	return 0;
 705
 706err_out_unregister_bus:
 707	mdiobus_unregister(lp->mii_bus);
 708err_out_free_mdio_irq:
 709	kfree(lp->mii_bus->irq);
 710err_out_free_mii_bus:
 711	mdiobus_free(lp->mii_bus);
 712err_out:
 713	return err;
 714}
 715
 716#ifdef CONFIG_CPU_TX49XX
 717/*
 718 * Find a platform_device providing a MAC address.  The platform code
 719 * should provide a "tc35815-mac" device with a MAC address in its
 720 * platform_data.
 721 */
 722static int __devinit tc35815_mac_match(struct device *dev, void *data)
 723{
 724	struct platform_device *plat_dev = to_platform_device(dev);
 725	struct pci_dev *pci_dev = data;
 726	unsigned int id = pci_dev->irq;
 727	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
 728}
 729
 730static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
 731{
 732	struct tc35815_local *lp = netdev_priv(dev);
 733	struct device *pd = bus_find_device(&platform_bus_type, NULL,
 734					    lp->pci_dev, tc35815_mac_match);
 735	if (pd) {
 736		if (pd->platform_data)
 737			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
 738		put_device(pd);
 739		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
 740	}
 741	return -ENODEV;
 742}
 743#else
 744static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
 745{
 746	return -ENODEV;
 747}
 748#endif
 749
 750static int __devinit tc35815_init_dev_addr(struct net_device *dev)
 751{
 752	struct tc35815_regs __iomem *tr =
 753		(struct tc35815_regs __iomem *)dev->base_addr;
 754	int i;
 755
 756	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
 757		;
 758	for (i = 0; i < 6; i += 2) {
 759		unsigned short data;
 760		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
 761		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
 762			;
 763		data = tc_readl(&tr->PROM_Data);
 764		dev->dev_addr[i] = data & 0xff;
 765		dev->dev_addr[i+1] = data >> 8;
 766	}
 767	if (!is_valid_ether_addr(dev->dev_addr))
 768		return tc35815_read_plat_dev_addr(dev);
 769	return 0;
 770}
 771
 772static const struct net_device_ops tc35815_netdev_ops = {
 773	.ndo_open		= tc35815_open,
 774	.ndo_stop		= tc35815_close,
 775	.ndo_start_xmit		= tc35815_send_packet,
 776	.ndo_get_stats		= tc35815_get_stats,
 777	.ndo_set_multicast_list	= tc35815_set_multicast_list,
 778	.ndo_tx_timeout		= tc35815_tx_timeout,
 779	.ndo_do_ioctl		= tc35815_ioctl,
 780	.ndo_validate_addr	= eth_validate_addr,
 781	.ndo_change_mtu		= eth_change_mtu,
 782	.ndo_set_mac_address	= eth_mac_addr,
 783#ifdef CONFIG_NET_POLL_CONTROLLER
 784	.ndo_poll_controller	= tc35815_poll_controller,
 785#endif
 786};
 787
 788static int __devinit tc35815_init_one(struct pci_dev *pdev,
 789				      const struct pci_device_id *ent)
 790{
 791	void __iomem *ioaddr = NULL;
 792	struct net_device *dev;
 793	struct tc35815_local *lp;
 794	int rc;
 795
 796	static int printed_version;
 797	if (!printed_version++) {
 798		printk(version);
 799		dev_printk(KERN_DEBUG, &pdev->dev,
 800			   "speed:%d duplex:%d\n",
 801			   options.speed, options.duplex);
 802	}
 803
 804	if (!pdev->irq) {
 805		dev_warn(&pdev->dev, "no IRQ assigned.\n");
 806		return -ENODEV;
 807	}
 808
 809	/* dev zeroed in alloc_etherdev */
 810	dev = alloc_etherdev(sizeof(*lp));
 811	if (dev == NULL) {
 812		dev_err(&pdev->dev, "unable to alloc new ethernet\n");
 813		return -ENOMEM;
 814	}
 815	SET_NETDEV_DEV(dev, &pdev->dev);
 816	lp = netdev_priv(dev);
 817	lp->dev = dev;
 818
 819	/* enable device (incl. PCI PM wakeup), and bus-mastering */
 820	rc = pcim_enable_device(pdev);
 821	if (rc)
 822		goto err_out;
 823	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
 824	if (rc)
 825		goto err_out;
 826	pci_set_master(pdev);
 827	ioaddr = pcim_iomap_table(pdev)[1];
 828
 829	/* Initialize the device structure. */
 830	dev->netdev_ops = &tc35815_netdev_ops;
 831	dev->ethtool_ops = &tc35815_ethtool_ops;
 832	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
 833	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
 834
 835	dev->irq = pdev->irq;
 836	dev->base_addr = (unsigned long)ioaddr;
 837
 838	INIT_WORK(&lp->restart_work, tc35815_restart_work);
 839	spin_lock_init(&lp->lock);
 840	spin_lock_init(&lp->rx_lock);
 841	lp->pci_dev = pdev;
 842	lp->chiptype = ent->driver_data;
 843
 844	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
 845	pci_set_drvdata(pdev, dev);
 846
 847	/* Soft reset the chip. */
 848	tc35815_chip_reset(dev);
 849
 850	/* Retrieve the ethernet address. */
 851	if (tc35815_init_dev_addr(dev)) {
 852		dev_warn(&pdev->dev, "not valid ether addr\n");
 853		random_ether_addr(dev->dev_addr);
 854	}
 855
 856	rc = register_netdev(dev);
 857	if (rc)
 858		goto err_out;
 859
 860	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
 861	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
 862		dev->name,
 863		chip_info[ent->driver_data].name,
 864		dev->base_addr,
 865		dev->dev_addr,
 866		dev->irq);
 867
 868	rc = tc_mii_init(dev);
 869	if (rc)
 870		goto err_out_unregister;
 871
 872	return 0;
 873
 874err_out_unregister:
 875	unregister_netdev(dev);
 876err_out:
 877	free_netdev(dev);
 878	return rc;
 879}
 880
 881
 882static void __devexit tc35815_remove_one(struct pci_dev *pdev)
 883{
 884	struct net_device *dev = pci_get_drvdata(pdev);
 885	struct tc35815_local *lp = netdev_priv(dev);
 886
 887	phy_disconnect(lp->phy_dev);
 888	mdiobus_unregister(lp->mii_bus);
 889	kfree(lp->mii_bus->irq);
 890	mdiobus_free(lp->mii_bus);
 891	unregister_netdev(dev);
 892	free_netdev(dev);
 893	pci_set_drvdata(pdev, NULL);
 894}
 895
 896static int
 897tc35815_init_queues(struct net_device *dev)
 898{
 899	struct tc35815_local *lp = netdev_priv(dev);
 900	int i;
 901	unsigned long fd_addr;
 902
 903	if (!lp->fd_buf) {
 904		BUG_ON(sizeof(struct FDesc) +
 905		       sizeof(struct BDesc) * RX_BUF_NUM +
 906		       sizeof(struct FDesc) * RX_FD_NUM +
 907		       sizeof(struct TxFD) * TX_FD_NUM >
 908		       PAGE_SIZE * FD_PAGE_NUM);
 909
 910		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
 911						  PAGE_SIZE * FD_PAGE_NUM,
 912						  &lp->fd_buf_dma);
 913		if (!lp->fd_buf)
 914			return -ENOMEM;
 915		for (i = 0; i < RX_BUF_NUM; i++) {
 916			lp->rx_skbs[i].skb =
 917				alloc_rxbuf_skb(dev, lp->pci_dev,
 918						&lp->rx_skbs[i].skb_dma);
 919			if (!lp->rx_skbs[i].skb) {
 920				while (--i >= 0) {
 921					free_rxbuf_skb(lp->pci_dev,
 922						       lp->rx_skbs[i].skb,
 923						       lp->rx_skbs[i].skb_dma);
 924					lp->rx_skbs[i].skb = NULL;
 925				}
 926				pci_free_consistent(lp->pci_dev,
 927						    PAGE_SIZE * FD_PAGE_NUM,
 928						    lp->fd_buf,
 929						    lp->fd_buf_dma);
 930				lp->fd_buf = NULL;
 931				return -ENOMEM;
 932			}
 933		}
 934		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
 935		       dev->name, lp->fd_buf);
 936		printk("\n");
 937	} else {
 938		for (i = 0; i < FD_PAGE_NUM; i++)
 939			clear_page((void *)((unsigned long)lp->fd_buf +
 940					    i * PAGE_SIZE));
 941	}
 942	fd_addr = (unsigned long)lp->fd_buf;
 943
 944	/* Free Descriptors (for Receive) */
 945	lp->rfd_base = (struct RxFD *)fd_addr;
 946	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
 947	for (i = 0; i < RX_FD_NUM; i++)
 948		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
 949	lp->rfd_cur = lp->rfd_base;
 950	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
 951
 952	/* Transmit Descriptors */
 953	lp->tfd_base = (struct TxFD *)fd_addr;
 954	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
 955	for (i = 0; i < TX_FD_NUM; i++) {
 956		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
 957		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
 958		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
 959	}
 960	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
 961	lp->tfd_start = 0;
 962	lp->tfd_end = 0;
 963
 964	/* Buffer List (for Receive) */
 965	lp->fbl_ptr = (struct FrFD *)fd_addr;
 966	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
 967	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
 968	/*
 969	 * move all allocated skbs to head of rx_skbs[] array.
 970	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
 971	 * tc35815_rx() had failed.
 972	 */
 973	lp->fbl_count = 0;
 974	for (i = 0; i < RX_BUF_NUM; i++) {
 975		if (lp->rx_skbs[i].skb) {
 976			if (i != lp->fbl_count) {
 977				lp->rx_skbs[lp->fbl_count].skb =
 978					lp->rx_skbs[i].skb;
 979				lp->rx_skbs[lp->fbl_count].skb_dma =
 980					lp->rx_skbs[i].skb_dma;
 981			}
 982			lp->fbl_count++;
 983		}
 984	}
 985	for (i = 0; i < RX_BUF_NUM; i++) {
 986		if (i >= lp->fbl_count) {
 987			lp->fbl_ptr->bd[i].BuffData = 0;
 988			lp->fbl_ptr->bd[i].BDCtl = 0;
 989			continue;
 990		}
 991		lp->fbl_ptr->bd[i].BuffData =
 992			cpu_to_le32(lp->rx_skbs[i].skb_dma);
 993		/* BDID is index of FrFD.bd[] */
 994		lp->fbl_ptr->bd[i].BDCtl =
 995			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
 996				    RX_BUF_SIZE);
 997	}
 998
 999	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
1000	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
1001	return 0;
1002}
1003
1004static void
1005tc35815_clear_queues(struct net_device *dev)
1006{
1007	struct tc35815_local *lp = netdev_priv(dev);
1008	int i;
1009
1010	for (i = 0; i < TX_FD_NUM; i++) {
1011		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1012		struct sk_buff *skb =
1013			fdsystem != 0xffffffff ?
1014			lp->tx_skbs[fdsystem].skb : NULL;
1015#ifdef DEBUG
1016		if (lp->tx_skbs[i].skb != skb) {
1017			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1018			panic_queues(dev);
1019		}
1020#else
1021		BUG_ON(lp->tx_skbs[i].skb != skb);
1022#endif
1023		if (skb) {
1024			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1025			lp->tx_skbs[i].skb = NULL;
1026			lp->tx_skbs[i].skb_dma = 0;
1027			dev_kfree_skb_any(skb);
1028		}
1029		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1030	}
1031
1032	tc35815_init_queues(dev);
1033}
1034
1035static void
1036tc35815_free_queues(struct net_device *dev)
1037{
1038	struct tc35815_local *lp = netdev_priv(dev);
1039	int i;
1040
1041	if (lp->tfd_base) {
1042		for (i = 0; i < TX_FD_NUM; i++) {
1043			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1044			struct sk_buff *skb =
1045				fdsystem != 0xffffffff ?
1046				lp->tx_skbs[fdsystem].skb : NULL;
1047#ifdef DEBUG
1048			if (lp->tx_skbs[i].skb != skb) {
1049				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1050				panic_queues(dev);
1051			}
1052#else
1053			BUG_ON(lp->tx_skbs[i].skb != skb);
1054#endif
1055			if (skb) {
1056				dev_kfree_skb(skb);
1057				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1058				lp->tx_skbs[i].skb = NULL;
1059				lp->tx_skbs[i].skb_dma = 0;
1060			}
1061			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1062		}
1063	}
1064
1065	lp->rfd_base = NULL;
1066	lp->rfd_limit = NULL;
1067	lp->rfd_cur = NULL;
1068	lp->fbl_ptr = NULL;
1069
1070	for (i = 0; i < RX_BUF_NUM; i++) {
1071		if (lp->rx_skbs[i].skb) {
1072			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1073				       lp->rx_skbs[i].skb_dma);
1074			lp->rx_skbs[i].skb = NULL;
1075		}
1076	}
1077	if (lp->fd_buf) {
1078		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1079				    lp->fd_buf, lp->fd_buf_dma);
1080		lp->fd_buf = NULL;
1081	}
1082}
1083
1084static void
1085dump_txfd(struct TxFD *fd)
1086{
1087	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1088	       le32_to_cpu(fd->fd.FDNext),
1089	       le32_to_cpu(fd->fd.FDSystem),
1090	       le32_to_cpu(fd->fd.FDStat),
1091	       le32_to_cpu(fd->fd.FDCtl));
1092	printk("BD: ");
1093	printk(" %08x %08x",
1094	       le32_to_cpu(fd->bd.BuffData),
1095	       le32_to_cpu(fd->bd.BDCtl));
1096	printk("\n");
1097}
1098
1099static int
1100dump_rxfd(struct RxFD *fd)
1101{
1102	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1103	if (bd_count > 8)
1104		bd_count = 8;
1105	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1106	       le32_to_cpu(fd->fd.FDNext),
1107	       le32_to_cpu(fd->fd.FDSystem),
1108	       le32_to_cpu(fd->fd.FDStat),
1109	       le32_to_cpu(fd->fd.FDCtl));
1110	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1111		return 0;
1112	printk("BD: ");
1113	for (i = 0; i < bd_count; i++)
1114		printk(" %08x %08x",
1115		       le32_to_cpu(fd->bd[i].BuffData),
1116		       le32_to_cpu(fd->bd[i].BDCtl));
1117	printk("\n");
1118	return bd_count;
1119}
1120
1121#ifdef DEBUG
1122static void
1123dump_frfd(struct FrFD *fd)
1124{
1125	int i;
1126	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1127	       le32_to_cpu(fd->fd.FDNext),
1128	       le32_to_cpu(fd->fd.FDSystem),
1129	       le32_to_cpu(fd->fd.FDStat),
1130	       le32_to_cpu(fd->fd.FDCtl));
1131	printk("BD: ");
1132	for (i = 0; i < RX_BUF_NUM; i++)
1133		printk(" %08x %08x",
1134		       le32_to_cpu(fd->bd[i].BuffData),
1135		       le32_to_cpu(fd->bd[i].BDCtl));
1136	printk("\n");
1137}
1138
1139static void
1140panic_queues(struct net_device *dev)
1141{
1142	struct tc35815_local *lp = netdev_priv(dev);
1143	int i;
1144
1145	printk("TxFD base %p, start %u, end %u\n",
1146	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1147	printk("RxFD base %p limit %p cur %p\n",
1148	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1149	printk("FrFD %p\n", lp->fbl_ptr);
1150	for (i = 0; i < TX_FD_NUM; i++)
1151		dump_txfd(&lp->tfd_base[i]);
1152	for (i = 0; i < RX_FD_NUM; i++) {
1153		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1154		i += (bd_count + 1) / 2;	/* skip BDs */
1155	}
1156	dump_frfd(lp->fbl_ptr);
1157	panic("%s: Illegal queue state.", dev->name);
1158}
1159#endif
1160
1161static void print_eth(const u8 *add)
1162{
1163	printk(KERN_DEBUG "print_eth(%p)\n", add);
1164	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1165		add + 6, add, add[12], add[13]);
1166}
1167
1168static int tc35815_tx_full(struct net_device *dev)
1169{
1170	struct tc35815_local *lp = netdev_priv(dev);
1171	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1172}
1173
1174static void tc35815_restart(struct net_device *dev)
1175{
1176	struct tc35815_local *lp = netdev_priv(dev);
1177
1178	if (lp->phy_dev) {
1179		int timeout;
1180
1181		phy_write(lp->phy_dev, MII_BMCR, BMCR_RESET);
1182		timeout = 100;
1183		while (--timeout) {
1184			if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET))
1185				break;
1186			udelay(1);
1187		}
1188		if (!timeout)
1189			printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
1190	}
1191
1192	spin_lock_bh(&lp->rx_lock);
1193	spin_lock_irq(&lp->lock);
1194	tc35815_chip_reset(dev);
1195	tc35815_clear_queues(dev);
1196	tc35815_chip_init(dev);
1197	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1198	tc35815_set_multicast_list(dev);
1199	spin_unlock_irq(&lp->lock);
1200	spin_unlock_bh(&lp->rx_lock);
1201
1202	netif_wake_queue(dev);
1203}
1204
1205static void tc35815_restart_work(struct work_struct *work)
1206{
1207	struct tc35815_local *lp =
1208		container_of(work, struct tc35815_local, restart_work);
1209	struct net_device *dev = lp->dev;
1210
1211	tc35815_restart(dev);
1212}
1213
1214static void tc35815_schedule_restart(struct net_device *dev)
1215{
1216	struct tc35815_local *lp = netdev_priv(dev);
1217	struct tc35815_regs __iomem *tr =
1218		(struct tc35815_regs __iomem *)dev->base_addr;
1219	unsigned long flags;
1220
1221	/* disable interrupts */
1222	spin_lock_irqsave(&lp->lock, flags);
1223	tc_writel(0, &tr->Int_En);
1224	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1225	schedule_work(&lp->restart_work);
1226	spin_unlock_irqrestore(&lp->lock, flags);
1227}
1228
1229static void tc35815_tx_timeout(struct net_device *dev)
1230{
1231	struct tc35815_regs __iomem *tr =
1232		(struct tc35815_regs __iomem *)dev->base_addr;
1233
1234	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1235	       dev->name, tc_readl(&tr->Tx_Stat));
1236
1237	/* Try to restart the adaptor. */
1238	tc35815_schedule_restart(dev);
1239	dev->stats.tx_errors++;
1240}
1241
1242/*
1243 * Open/initialize the controller. This is called (in the current kernel)
1244 * sometime after booting when the 'ifconfig' program is run.
1245 *
1246 * This routine should set everything up anew at each open, even
1247 * registers that "should" only need to be set once at boot, so that
1248 * there is non-reboot way to recover if something goes wrong.
1249 */
1250static int
1251tc35815_open(struct net_device *dev)
1252{
1253	struct tc35815_local *lp = netdev_priv(dev);
1254
1255	/*
1256	 * This is used if the interrupt line can turned off (shared).
1257	 * See 3c503.c for an example of selecting the IRQ at config-time.
1258	 */
1259	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1260			dev->name, dev))
1261		return -EAGAIN;
1262
1263	tc35815_chip_reset(dev);
1264
1265	if (tc35815_init_queues(dev) != 0) {
1266		free_irq(dev->irq, dev);
1267		return -EAGAIN;
1268	}
1269
1270	napi_enable(&lp->napi);
1271
1272	/* Reset the hardware here. Don't forget to set the station address. */
1273	spin_lock_irq(&lp->lock);
1274	tc35815_chip_init(dev);
1275	spin_unlock_irq(&lp->lock);
1276
1277	netif_carrier_off(dev);
1278	/* schedule a link state check */
1279	phy_start(lp->phy_dev);
1280
1281	/* We are now ready to accept transmit requeusts from
1282	 * the queueing layer of the networking.
1283	 */
1284	netif_start_queue(dev);
1285
1286	return 0;
1287}
1288
1289/* This will only be invoked if your driver is _not_ in XOFF state.
1290 * What this means is that you need not check it, and that this
1291 * invariant will hold if you make sure that the netif_*_queue()
1292 * calls are done at the proper times.
1293 */
1294static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1295{
1296	struct tc35815_local *lp = netdev_priv(dev);
1297	struct TxFD *txfd;
1298	unsigned long flags;
1299
1300	/* If some error occurs while trying to transmit this
1301	 * packet, you should return '1' from this function.
1302	 * In such a case you _may not_ do anything to the
1303	 * SKB, it is still owned by the network queueing
1304	 * layer when an error is returned.  This means you
1305	 * may not modify any SKB fields, you may not free
1306	 * the SKB, etc.
1307	 */
1308
1309	/* This is the most common case for modern hardware.
1310	 * The spinlock protects this code from the TX complete
1311	 * hardware interrupt handler.  Queue flow control is
1312	 * thus managed under this lock as well.
1313	 */
1314	spin_lock_irqsave(&lp->lock, flags);
1315
1316	/* failsafe... (handle txdone now if half of FDs are used) */
1317	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1318	    TX_FD_NUM / 2)
1319		tc35815_txdone(dev);
1320
1321	if (netif_msg_pktdata(lp))
1322		print_eth(skb->data);
1323#ifdef DEBUG
1324	if (lp->tx_skbs[lp->tfd_start].skb) {
1325		printk("%s: tx_skbs conflict.\n", dev->name);
1326		panic_queues(dev);
1327	}
1328#else
1329	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1330#endif
1331	lp->tx_skbs[lp->tfd_start].skb = skb;
1332	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1333
1334	/*add to ring */
1335	txfd = &lp->tfd_base[lp->tfd_start];
1336	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1337	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1338	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1339	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1340
1341	if (lp->tfd_start == lp->tfd_end) {
1342		struct tc35815_regs __iomem *tr =
1343			(struct tc35815_regs __iomem *)dev->base_addr;
1344		/* Start DMA Transmitter. */
1345		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1346		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1347		if (netif_msg_tx_queued(lp)) {
1348			printk("%s: starting TxFD.\n", dev->name);
1349			dump_txfd(txfd);
1350		}
1351		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1352	} else {
1353		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1354		if (netif_msg_tx_queued(lp)) {
1355			printk("%s: queueing TxFD.\n", dev->name);
1356			dump_txfd(txfd);
1357		}
1358	}
1359	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1360
1361	/* If we just used up the very last entry in the
1362	 * TX ring on this device, tell the queueing
1363	 * layer to send no more.
1364	 */
1365	if (tc35815_tx_full(dev)) {
1366		if (netif_msg_tx_queued(lp))
1367			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1368		netif_stop_queue(dev);
1369	}
1370
1371	/* When the TX completion hw interrupt arrives, this
1372	 * is when the transmit statistics are updated.
1373	 */
1374
1375	spin_unlock_irqrestore(&lp->lock, flags);
1376	return NETDEV_TX_OK;
1377}
1378
1379#define FATAL_ERROR_INT \
1380	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1381static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1382{
1383	static int count;
1384	printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1385	       dev->name, status);
1386	if (status & Int_IntPCI)
1387		printk(" IntPCI");
1388	if (status & Int_DmParErr)
1389		printk(" DmParErr");
1390	if (status & Int_IntNRAbt)
1391		printk(" IntNRAbt");
1392	printk("\n");
1393	if (count++ > 100)
1394		panic("%s: Too many fatal errors.", dev->name);
1395	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1396	/* Try to restart the adaptor. */
1397	tc35815_schedule_restart(dev);
1398}
1399
1400static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1401{
1402	struct tc35815_local *lp = netdev_priv(dev);
1403	int ret = -1;
1404
1405	/* Fatal errors... */
1406	if (status & FATAL_ERROR_INT) {
1407		tc35815_fatal_error_interrupt(dev, status);
1408		return 0;
1409	}
1410	/* recoverable errors */
1411	if (status & Int_IntFDAEx) {
1412		if (netif_msg_rx_err(lp))
1413			dev_warn(&dev->dev,
1414				 "Free Descriptor Area Exhausted (%#x).\n",
1415				 status);
1416		dev->stats.rx_dropped++;
1417		ret = 0;
1418	}
1419	if (status & Int_IntBLEx) {
1420		if (netif_msg_rx_err(lp))
1421			dev_warn(&dev->dev,
1422				 "Buffer List Exhausted (%#x).\n",
1423				 status);
1424		dev->stats.rx_dropped++;
1425		ret = 0;
1426	}
1427	if (status & Int_IntExBD) {
1428		if (netif_msg_rx_err(lp))
1429			dev_warn(&dev->dev,
1430				 "Excessive Buffer Descriptiors (%#x).\n",
1431				 status);
1432		dev->stats.rx_length_errors++;
1433		ret = 0;
1434	}
1435
1436	/* normal notification */
1437	if (status & Int_IntMacRx) {
1438		/* Got a packet(s). */
1439		ret = tc35815_rx(dev, limit);
1440		lp->lstats.rx_ints++;
1441	}
1442	if (status & Int_IntMacTx) {
1443		/* Transmit complete. */
1444		lp->lstats.tx_ints++;
1445		spin_lock_irq(&lp->lock);
1446		tc35815_txdone(dev);
1447		spin_unlock_irq(&lp->lock);
1448		if (ret < 0)
1449			ret = 0;
1450	}
1451	return ret;
1452}
1453
1454/*
1455 * The typical workload of the driver:
1456 * Handle the network interface interrupts.
1457 */
1458static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1459{
1460	struct net_device *dev = dev_id;
1461	struct tc35815_local *lp = netdev_priv(dev);
1462	struct tc35815_regs __iomem *tr =
1463		(struct tc35815_regs __iomem *)dev->base_addr;
1464	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1465
1466	if (!(dmactl & DMA_IntMask)) {
1467		/* disable interrupts */
1468		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1469		if (napi_schedule_prep(&lp->napi))
1470			__napi_schedule(&lp->napi);
1471		else {
1472			printk(KERN_ERR "%s: interrupt taken in poll\n",
1473			       dev->name);
1474			BUG();
1475		}
1476		(void)tc_readl(&tr->Int_Src);	/* flush */
1477		return IRQ_HANDLED;
1478	}
1479	return IRQ_NONE;
1480}
1481
1482#ifdef CONFIG_NET_POLL_CONTROLLER
1483static void tc35815_poll_controller(struct net_device *dev)
1484{
1485	disable_irq(dev->irq);
1486	tc35815_interrupt(dev->irq, dev);
1487	enable_irq(dev->irq);
1488}
1489#endif
1490
1491/* We have a good packet(s), get it/them out of the buffers. */
1492static int
1493tc35815_rx(struct net_device *dev, int limit)
1494{
1495	struct tc35815_local *lp = netdev_priv(dev);
1496	unsigned int fdctl;
1497	int i;
1498	int received = 0;
1499
1500	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1501		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1502		int pkt_len = fdctl & FD_FDLength_MASK;
1503		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1504#ifdef DEBUG
1505		struct RxFD *next_rfd;
1506#endif
1507#if (RX_CTL_CMD & Rx_StripCRC) == 0
1508		pkt_len -= ETH_FCS_LEN;
1509#endif
1510
1511		if (netif_msg_rx_status(lp))
1512			dump_rxfd(lp->rfd_cur);
1513		if (status & Rx_Good) {
1514			struct sk_buff *skb;
1515			unsigned char *data;
1516			int cur_bd;
1517
1518			if (--limit < 0)
1519				break;
1520			BUG_ON(bd_count > 1);
1521			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1522				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1523#ifdef DEBUG
1524			if (cur_bd >= RX_BUF_NUM) {
1525				printk("%s: invalid BDID.\n", dev->name);
1526				panic_queues(dev);
1527			}
1528			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1529			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1530			if (!lp->rx_skbs[cur_bd].skb) {
1531				printk("%s: NULL skb.\n", dev->name);
1532				panic_queues(dev);
1533			}
1534#else
1535			BUG_ON(cur_bd >= RX_BUF_NUM);
1536#endif
1537			skb = lp->rx_skbs[cur_bd].skb;
1538			prefetch(skb->data);
1539			lp->rx_skbs[cur_bd].skb = NULL;
1540			pci_unmap_single(lp->pci_dev,
1541					 lp->rx_skbs[cur_bd].skb_dma,
1542					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1543			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1544				memmove(skb->data, skb->data - NET_IP_ALIGN,
1545					pkt_len);
1546			data = skb_put(skb, pkt_len);
1547			if (netif_msg_pktdata(lp))
1548				print_eth(data);
1549			skb->protocol = eth_type_trans(skb, dev);
1550			netif_receive_skb(skb);
1551			received++;
1552			dev->stats.rx_packets++;
1553			dev->stats.rx_bytes += pkt_len;
1554		} else {
1555			dev->stats.rx_errors++;
1556			if (netif_msg_rx_err(lp))
1557				dev_info(&dev->dev, "Rx error (status %x)\n",
1558					 status & Rx_Stat_Mask);
1559			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1560			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1561				status &= ~(Rx_LongErr|Rx_CRCErr);
1562				status |= Rx_Over;
1563			}
1564			if (status & Rx_LongErr)
1565				dev->stats.rx_length_errors++;
1566			if (status & Rx_Over)
1567				dev->stats.rx_fifo_errors++;
1568			if (status & Rx_CRCErr)
1569				dev->stats.rx_crc_errors++;
1570			if (status & Rx_Align)
1571				dev->stats.rx_frame_errors++;
1572		}
1573
1574		if (bd_count > 0) {
1575			/* put Free Buffer back to controller */
1576			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1577			unsigned char id =
1578				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1579#ifdef DEBUG
1580			if (id >= RX_BUF_NUM) {
1581				printk("%s: invalid BDID.\n", dev->name);
1582				panic_queues(dev);
1583			}
1584#else
1585			BUG_ON(id >= RX_BUF_NUM);
1586#endif
1587			/* free old buffers */
1588			lp->fbl_count--;
1589			while (lp->fbl_count < RX_BUF_NUM)
1590			{
1591				unsigned char curid =
1592					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1593				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1594#ifdef DEBUG
1595				bdctl = le32_to_cpu(bd->BDCtl);
1596				if (bdctl & BD_CownsBD) {
1597					printk("%s: Freeing invalid BD.\n",
1598					       dev->name);
1599					panic_queues(dev);
1600				}
1601#endif
1602				/* pass BD to controller */
1603				if (!lp->rx_skbs[curid].skb) {
1604					lp->rx_skbs[curid].skb =
1605						alloc_rxbuf_skb(dev,
1606								lp->pci_dev,
1607								&lp->rx_skbs[curid].skb_dma);
1608					if (!lp->rx_skbs[curid].skb)
1609						break; /* try on next reception */
1610					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1611				}
1612				/* Note: BDLength was modified by chip. */
1613				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1614							(curid << BD_RxBDID_SHIFT) |
1615							RX_BUF_SIZE);
1616				lp->fbl_count++;
1617			}
1618		}
1619
1620		/* put RxFD back to controller */
1621#ifdef DEBUG
1622		next_rfd = fd_bus_to_virt(lp,
1623					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1624		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1625			printk("%s: RxFD FDNext invalid.\n", dev->name);
1626			panic_queues(dev);
1627		}
1628#endif
1629		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1630			/* pass FD to controller */
1631#ifdef DEBUG
1632			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1633#else
1634			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1635#endif
1636			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1637			lp->rfd_cur++;
1638		}
1639		if (lp->rfd_cur > lp->rfd_limit)
1640			lp->rfd_cur = lp->rfd_base;
1641#ifdef DEBUG
1642		if (lp->rfd_cur != next_rfd)
1643			printk("rfd_cur = %p, next_rfd %p\n",
1644			       lp->rfd_cur, next_rfd);
1645#endif
1646	}
1647
1648	return received;
1649}
1650
1651static int tc35815_poll(struct napi_struct *napi, int budget)
1652{
1653	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1654	struct net_device *dev = lp->dev;
1655	struct tc35815_regs __iomem *tr =
1656		(struct tc35815_regs __iomem *)dev->base_addr;
1657	int received = 0, handled;
1658	u32 status;
1659
1660	spin_lock(&lp->rx_lock);
1661	status = tc_readl(&tr->Int_Src);
1662	do {
1663		/* BLEx, FDAEx will be cleared later */
1664		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1665			  &tr->Int_Src);	/* write to clear */
1666
1667		handled = tc35815_do_interrupt(dev, status, budget - received);
1668		if (status & (Int_BLEx | Int_FDAEx))
1669			tc_writel(status & (Int_BLEx | Int_FDAEx),
1670				  &tr->Int_Src);
1671		if (handled >= 0) {
1672			received += handled;
1673			if (received >= budget)
1674				break;
1675		}
1676		status = tc_readl(&tr->Int_Src);
1677	} while (status);
1678	spin_unlock(&lp->rx_lock);
1679
1680	if (received < budget) {
1681		napi_complete(napi);
1682		/* enable interrupts */
1683		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1684	}
1685	return received;
1686}
1687
1688#define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1689
1690static void
1691tc35815_check_tx_stat(struct net_device *dev, int status)
1692{
1693	struct tc35815_local *lp = netdev_priv(dev);
1694	const char *msg = NULL;
1695
1696	/* count collisions */
1697	if (status & Tx_ExColl)
1698		dev->stats.collisions += 16;
1699	if (status & Tx_TxColl_MASK)
1700		dev->stats.collisions += status & Tx_TxColl_MASK;
1701
1702	/* TX4939 does not have NCarr */
1703	if (lp->chiptype == TC35815_TX4939)
1704		status &= ~Tx_NCarr;
1705	/* WORKAROUND: ignore LostCrS in full duplex operation */
1706	if (!lp->link || lp->duplex == DUPLEX_FULL)
1707		status &= ~Tx_NCarr;
1708
1709	if (!(status & TX_STA_ERR)) {
1710		/* no error. */
1711		dev->stats.tx_packets++;
1712		return;
1713	}
1714
1715	dev->stats.tx_errors++;
1716	if (status & Tx_ExColl) {
1717		dev->stats.tx_aborted_errors++;
1718		msg = "Excessive Collision.";
1719	}
1720	if (status & Tx_Under) {
1721		dev->stats.tx_fifo_errors++;
1722		msg = "Tx FIFO Underrun.";
1723		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1724			lp->lstats.tx_underrun++;
1725			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1726				struct tc35815_regs __iomem *tr =
1727					(struct tc35815_regs __iomem *)dev->base_addr;
1728				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1729				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1730			}
1731		}
1732	}
1733	if (status & Tx_Defer) {
1734		dev->stats.tx_fifo_errors++;
1735		msg = "Excessive Deferral.";
1736	}
1737	if (status & Tx_NCarr) {
1738		dev->stats.tx_carrier_errors++;
1739		msg = "Lost Carrier Sense.";
1740	}
1741	if (status & Tx_LateColl) {
1742		dev->stats.tx_aborted_errors++;
1743		msg = "Late Collision.";
1744	}
1745	if (status & Tx_TxPar) {
1746		dev->stats.tx_fifo_errors++;
1747		msg = "Transmit Parity Error.";
1748	}
1749	if (status & Tx_SQErr) {
1750		dev->stats.tx_heartbeat_errors++;
1751		msg = "Signal Quality Error.";
1752	}
1753	if (msg && netif_msg_tx_err(lp))
1754		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1755}
1756
1757/* This handles TX complete events posted by the device
1758 * via interrupts.
1759 */
1760static void
1761tc35815_txdone(struct net_device *dev)
1762{
1763	struct tc35815_local *lp = netdev_priv(dev);
1764	struct TxFD *txfd;
1765	unsigned int fdctl;
1766
1767	txfd = &lp->tfd_base[lp->tfd_end];
1768	while (lp->tfd_start != lp->tfd_end &&
1769	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1770		int status = le32_to_cpu(txfd->fd.FDStat);
1771		struct sk_buff *skb;
1772		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1773		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1774
1775		if (netif_msg_tx_done(lp)) {
1776			printk("%s: complete TxFD.\n", dev->name);
1777			dump_txfd(txfd);
1778		}
1779		tc35815_check_tx_stat(dev, status);
1780
1781		skb = fdsystem != 0xffffffff ?
1782			lp->tx_skbs[fdsystem].skb : NULL;
1783#ifdef DEBUG
1784		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1785			printk("%s: tx_skbs mismatch.\n", dev->name);
1786			panic_queues(dev);
1787		}
1788#else
1789		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1790#endif
1791		if (skb) {
1792			dev->stats.tx_bytes += skb->len;
1793			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1794			lp->tx_skbs[lp->tfd_end].skb = NULL;
1795			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1796			dev_kfree_skb_any(skb);
1797		}
1798		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1799
1800		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1801		txfd = &lp->tfd_base[lp->tfd_end];
1802#ifdef DEBUG
1803		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1804			printk("%s: TxFD FDNext invalid.\n", dev->name);
1805			panic_queues(dev);
1806		}
1807#endif
1808		if (fdnext & FD_Next_EOL) {
1809			/* DMA Transmitter has been stopping... */
1810			if (lp->tfd_end != lp->tfd_start) {
1811				struct tc35815_regs __iomem *tr =
1812					(struct tc35815_regs __iomem *)dev->base_addr;
1813				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1814				struct TxFD *txhead = &lp->tfd_base[head];
1815				int qlen = (lp->tfd_start + TX_FD_NUM
1816					    - lp->tfd_end) % TX_FD_NUM;
1817
1818#ifdef DEBUG
1819				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1820					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1821					panic_queues(dev);
1822				}
1823#endif
1824				/* log max queue length */
1825				if (lp->lstats.max_tx_qlen < qlen)
1826					lp->lstats.max_tx_qlen = qlen;
1827
1828
1829				/* start DMA Transmitter again */
1830				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1831				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1832				if (netif_msg_tx_queued(lp)) {
1833					printk("%s: start TxFD on queue.\n",
1834					       dev->name);
1835					dump_txfd(txfd);
1836				}
1837				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1838			}
1839			break;
1840		}
1841	}
1842
1843	/* If we had stopped the queue due to a "tx full"
1844	 * condition, and space has now been made available,
1845	 * wake up the queue.
1846	 */
1847	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1848		netif_wake_queue(dev);
1849}
1850
1851/* The inverse routine to tc35815_open(). */
1852static int
1853tc35815_close(struct net_device *dev)
1854{
1855	struct tc35815_local *lp = netdev_priv(dev);
1856
1857	netif_stop_queue(dev);
1858	napi_disable(&lp->napi);
1859	if (lp->phy_dev)
1860		phy_stop(lp->phy_dev);
1861	cancel_work_sync(&lp->restart_work);
1862
1863	/* Flush the Tx and disable Rx here. */
1864	tc35815_chip_reset(dev);
1865	free_irq(dev->irq, dev);
1866
1867	tc35815_free_queues(dev);
1868
1869	return 0;
1870
1871}
1872
1873/*
1874 * Get the current statistics.
1875 * This may be called with the card open or closed.
1876 */
1877static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1878{
1879	struct tc35815_regs __iomem *tr =
1880		(struct tc35815_regs __iomem *)dev->base_addr;
1881	if (netif_running(dev))
1882		/* Update the statistics from the device registers. */
1883		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1884
1885	return &dev->stats;
1886}
1887
1888static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1889{
1890	struct tc35815_local *lp = netdev_priv(dev);
1891	struct tc35815_regs __iomem *tr =
1892		(struct tc35815_regs __iomem *)dev->base_addr;
1893	int cam_index = index * 6;
1894	u32 cam_data;
1895	u32 saved_addr;
1896
1897	saved_addr = tc_readl(&tr->CAM_Adr);
1898
1899	if (netif_msg_hw(lp))
1900		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1901			dev->name, index, addr);
1902	if (index & 1) {
1903		/* read modify write */
1904		tc_writel(cam_index - 2, &tr->CAM_Adr);
1905		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1906		cam_data |= addr[0] << 8 | addr[1];
1907		tc_writel(cam_data, &tr->CAM_Data);
1908		/* write whole word */
1909		tc_writel(cam_index + 2, &tr->CAM_Adr);
1910		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1911		tc_writel(cam_data, &tr->CAM_Data);
1912	} else {
1913		/* write whole word */
1914		tc_writel(cam_index, &tr->CAM_Adr);
1915		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1916		tc_writel(cam_data, &tr->CAM_Data);
1917		/* read modify write */
1918		tc_writel(cam_index + 4, &tr->CAM_Adr);
1919		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1920		cam_data |= addr[4] << 24 | (addr[5] << 16);
1921		tc_writel(cam_data, &tr->CAM_Data);
1922	}
1923
1924	tc_writel(saved_addr, &tr->CAM_Adr);
1925}
1926
1927
1928/*
1929 * Set or clear the multicast filter for this adaptor.
1930 * num_addrs == -1	Promiscuous mode, receive all packets
1931 * num_addrs == 0	Normal mode, clear multicast list
1932 * num_addrs > 0	Multicast mode, receive normal and MC packets,
1933 *			and do best-effort filtering.
1934 */
1935static void
1936tc35815_set_multicast_list(struct net_device *dev)
1937{
1938	struct tc35815_regs __iomem *tr =
1939		(struct tc35815_regs __iomem *)dev->base_addr;
1940
1941	if (dev->flags & IFF_PROMISC) {
1942		/* With some (all?) 100MHalf HUB, controller will hang
1943		 * if we enabled promiscuous mode before linkup... */
1944		struct tc35815_local *lp = netdev_priv(dev);
1945
1946		if (!lp->link)
1947			return;
1948		/* Enable promiscuous mode */
1949		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1950	} else if ((dev->flags & IFF_ALLMULTI) ||
1951		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1952		/* CAM 0, 1, 20 are reserved. */
1953		/* Disable promiscuous mode, use normal mode. */
1954		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1955	} else if (!netdev_mc_empty(dev)) {
1956		struct netdev_hw_addr *ha;
1957		int i;
1958		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1959
1960		tc_writel(0, &tr->CAM_Ctl);
1961		/* Walk the address list, and load the filter */
1962		i = 0;
1963		netdev_for_each_mc_addr(ha, dev) {
1964			/* entry 0,1 is reserved. */
1965			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1966			ena_bits |= CAM_Ena_Bit(i + 2);
1967			i++;
1968		}
1969		tc_writel(ena_bits, &tr->CAM_Ena);
1970		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1971	} else {
1972		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1973		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1974	}
1975}
1976
1977static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1978{
1979	struct tc35815_local *lp = netdev_priv(dev);
1980	strcpy(info->driver, MODNAME);
1981	strcpy(info->version, DRV_VERSION);
1982	strcpy(info->bus_info, pci_name(lp->pci_dev));
1983}
1984
1985static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1986{
1987	struct tc35815_local *lp = netdev_priv(dev);
1988
1989	if (!lp->phy_dev)
1990		return -ENODEV;
1991	return phy_ethtool_gset(lp->phy_dev, cmd);
1992}
1993
1994static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1995{
1996	struct tc35815_local *lp = netdev_priv(dev);
1997
1998	if (!lp->phy_dev)
1999		return -ENODEV;
2000	return phy_ethtool_sset(lp->phy_dev, cmd);
2001}
2002
2003static u32 tc35815_get_msglevel(struct net_device *dev)
2004{
2005	struct tc35815_local *lp = netdev_priv(dev);
2006	return lp->msg_enable;
2007}
2008
2009static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2010{
2011	struct tc35815_local *lp = netdev_priv(dev);
2012	lp->msg_enable = datum;
2013}
2014
2015static int tc35815_get_sset_count(struct net_device *dev, int sset)
2016{
2017	struct tc35815_local *lp = netdev_priv(dev);
2018
2019	switch (sset) {
2020	case ETH_SS_STATS:
2021		return sizeof(lp->lstats) / sizeof(int);
2022	default:
2023		return -EOPNOTSUPP;
2024	}
2025}
2026
2027static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2028{
2029	struct tc35815_local *lp = netdev_priv(dev);
2030	data[0] = lp->lstats.max_tx_qlen;
2031	data[1] = lp->lstats.tx_ints;
2032	data[2] = lp->lstats.rx_ints;
2033	data[3] = lp->lstats.tx_underrun;
2034}
2035
2036static struct {
2037	const char str[ETH_GSTRING_LEN];
2038} ethtool_stats_keys[] = {
2039	{ "max_tx_qlen" },
2040	{ "tx_ints" },
2041	{ "rx_ints" },
2042	{ "tx_underrun" },
2043};
2044
2045static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2046{
2047	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2048}
2049
2050static const struct ethtool_ops tc35815_ethtool_ops = {
2051	.get_drvinfo		= tc35815_get_drvinfo,
2052	.get_settings		= tc35815_get_settings,
2053	.set_settings		= tc35815_set_settings,
2054	.get_link		= ethtool_op_get_link,
2055	.get_msglevel		= tc35815_get_msglevel,
2056	.set_msglevel		= tc35815_set_msglevel,
2057	.get_strings		= tc35815_get_strings,
2058	.get_sset_count		= tc35815_get_sset_count,
2059	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2060};
2061
2062static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2063{
2064	struct tc35815_local *lp = netdev_priv(dev);
2065
2066	if (!netif_running(dev))
2067		return -EINVAL;
2068	if (!lp->phy_dev)
2069		return -ENODEV;
2070	return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2071}
2072
2073static void tc35815_chip_reset(struct net_device *dev)
2074{
2075	struct tc35815_regs __iomem *tr =
2076		(struct tc35815_regs __iomem *)dev->base_addr;
2077	int i;
2078	/* reset the controller */
2079	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2080	udelay(4); /* 3200ns */
2081	i = 0;
2082	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2083		if (i++ > 100) {
2084			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2085			break;
2086		}
2087		mdelay(1);
2088	}
2089	tc_writel(0, &tr->MAC_Ctl);
2090
2091	/* initialize registers to default value */
2092	tc_writel(0, &tr->DMA_Ctl);
2093	tc_writel(0, &tr->TxThrsh);
2094	tc_writel(0, &tr->TxPollCtr);
2095	tc_writel(0, &tr->RxFragSize);
2096	tc_writel(0, &tr->Int_En);
2097	tc_writel(0, &tr->FDA_Bas);
2098	tc_writel(0, &tr->FDA_Lim);
2099	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2100	tc_writel(0, &tr->CAM_Ctl);
2101	tc_writel(0, &tr->Tx_Ctl);
2102	tc_writel(0, &tr->Rx_Ctl);
2103	tc_writel(0, &tr->CAM_Ena);
2104	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2105
2106	/* initialize internal SRAM */
2107	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2108	for (i = 0; i < 0x1000; i += 4) {
2109		tc_writel(i, &tr->CAM_Adr);
2110		tc_writel(0, &tr->CAM_Data);
2111	}
2112	tc_writel(0, &tr->DMA_Ctl);
2113}
2114
2115static void tc35815_chip_init(struct net_device *dev)
2116{
2117	struct tc35815_local *lp = netdev_priv(dev);
2118	struct tc35815_regs __iomem *tr =
2119		(struct tc35815_regs __iomem *)dev->base_addr;
2120	unsigned long txctl = TX_CTL_CMD;
2121
2122	/* load station address to CAM */
2123	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2124
2125	/* Enable CAM (broadcast and unicast) */
2126	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2127	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2128
2129	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2130	if (HAVE_DMA_RXALIGN(lp))
2131		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2132	else
2133		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2134	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2135	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2136	tc_writel(INT_EN_CMD, &tr->Int_En);
2137
2138	/* set queues */
2139	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2140	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2141		  &tr->FDA_Lim);
2142	/*
2143	 * Activation method:
2144	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2145	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2146	 */
2147	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2148	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2149
2150	/* start MAC transmitter */
2151	/* TX4939 does not have EnLCarr */
2152	if (lp->chiptype == TC35815_TX4939)
2153		txctl &= ~Tx_EnLCarr;
2154	/* WORKAROUND: ignore LostCrS in full duplex operation */
2155	if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2156		txctl &= ~Tx_EnLCarr;
2157	tc_writel(txctl, &tr->Tx_Ctl);
2158}
2159
2160#ifdef CONFIG_PM
2161static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2162{
2163	struct net_device *dev = pci_get_drvdata(pdev);
2164	struct tc35815_local *lp = netdev_priv(dev);
2165	unsigned long flags;
2166
2167	pci_save_state(pdev);
2168	if (!netif_running(dev))
2169		return 0;
2170	netif_device_detach(dev);
2171	if (lp->phy_dev)
2172		phy_stop(lp->phy_dev);
2173	spin_lock_irqsave(&lp->lock, flags);
2174	tc35815_chip_reset(dev);
2175	spin_unlock_irqrestore(&lp->lock, flags);
2176	pci_set_power_state(pdev, PCI_D3hot);
2177	return 0;
2178}
2179
2180static int tc35815_resume(struct pci_dev *pdev)
2181{
2182	struct net_device *dev = pci_get_drvdata(pdev);
2183	struct tc35815_local *lp = netdev_priv(dev);
2184
2185	pci_restore_state(pdev);
2186	if (!netif_running(dev))
2187		return 0;
2188	pci_set_power_state(pdev, PCI_D0);
2189	tc35815_restart(dev);
2190	netif_carrier_off(dev);
2191	if (lp->phy_dev)
2192		phy_start(lp->phy_dev);
2193	netif_device_attach(dev);
2194	return 0;
2195}
2196#endif /* CONFIG_PM */
2197
2198static struct pci_driver tc35815_pci_driver = {
2199	.name		= MODNAME,
2200	.id_table	= tc35815_pci_tbl,
2201	.probe		= tc35815_init_one,
2202	.remove		= __devexit_p(tc35815_remove_one),
2203#ifdef CONFIG_PM
2204	.suspend	= tc35815_suspend,
2205	.resume		= tc35815_resume,
2206#endif
2207};
2208
2209module_param_named(speed, options.speed, int, 0);
2210MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2211module_param_named(duplex, options.duplex, int, 0);
2212MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2213
2214static int __init tc35815_init_module(void)
2215{
2216	return pci_register_driver(&tc35815_pci_driver);
2217}
2218
2219static void __exit tc35815_cleanup_module(void)
2220{
2221	pci_unregister_driver(&tc35815_pci_driver);
2222}
2223
2224module_init(tc35815_init_module);
2225module_exit(tc35815_cleanup_module);
2226
2227MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2228MODULE_LICENSE("GPL");