Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/****************************************************************************
   2 * Driver for Solarflare Solarstorm network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2010 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/tcp.h>
  13#include <linux/ip.h>
  14#include <linux/in.h>
  15#include <linux/ipv6.h>
  16#include <linux/slab.h>
  17#include <net/ipv6.h>
  18#include <linux/if_ether.h>
  19#include <linux/highmem.h>
  20#include "net_driver.h"
  21#include "efx.h"
  22#include "nic.h"
  23#include "workarounds.h"
  24
  25/*
  26 * TX descriptor ring full threshold
  27 *
  28 * The tx_queue descriptor ring fill-level must fall below this value
  29 * before we restart the netif queue
  30 */
  31#define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
  32
  33static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
  34			       struct efx_tx_buffer *buffer)
  35{
  36	if (buffer->unmap_len) {
  37		struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
  38		dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
  39					 buffer->unmap_len);
  40		if (buffer->unmap_single)
  41			pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
  42					 PCI_DMA_TODEVICE);
  43		else
  44			pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
  45				       PCI_DMA_TODEVICE);
  46		buffer->unmap_len = 0;
  47		buffer->unmap_single = false;
  48	}
  49
  50	if (buffer->skb) {
  51		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
  52		buffer->skb = NULL;
  53		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
  54			   "TX queue %d transmission id %x complete\n",
  55			   tx_queue->queue, tx_queue->read_count);
  56	}
  57}
  58
  59/**
  60 * struct efx_tso_header - a DMA mapped buffer for packet headers
  61 * @next: Linked list of free ones.
  62 *	The list is protected by the TX queue lock.
  63 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
  64 * @dma_addr: The DMA address of the header below.
  65 *
  66 * This controls the memory used for a TSO header.  Use TSOH_DATA()
  67 * to find the packet header data.  Use TSOH_SIZE() to calculate the
  68 * total size required for a given packet header length.  TSO headers
  69 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
  70 */
  71struct efx_tso_header {
  72	union {
  73		struct efx_tso_header *next;
  74		size_t unmap_len;
  75	};
  76	dma_addr_t dma_addr;
  77};
  78
  79static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
  80			       struct sk_buff *skb);
  81static void efx_fini_tso(struct efx_tx_queue *tx_queue);
  82static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
  83			       struct efx_tso_header *tsoh);
  84
  85static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
  86			  struct efx_tx_buffer *buffer)
  87{
  88	if (buffer->tsoh) {
  89		if (likely(!buffer->tsoh->unmap_len)) {
  90			buffer->tsoh->next = tx_queue->tso_headers_free;
  91			tx_queue->tso_headers_free = buffer->tsoh;
  92		} else {
  93			efx_tsoh_heap_free(tx_queue, buffer->tsoh);
  94		}
  95		buffer->tsoh = NULL;
  96	}
  97}
  98
  99
 100static inline unsigned
 101efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
 102{
 103	/* Depending on the NIC revision, we can use descriptor
 104	 * lengths up to 8K or 8K-1.  However, since PCI Express
 105	 * devices must split read requests at 4K boundaries, there is
 106	 * little benefit from using descriptors that cross those
 107	 * boundaries and we keep things simple by not doing so.
 108	 */
 109	unsigned len = (~dma_addr & 0xfff) + 1;
 110
 111	/* Work around hardware bug for unaligned buffers. */
 112	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
 113		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
 114
 115	return len;
 116}
 117
 118/*
 119 * Add a socket buffer to a TX queue
 120 *
 121 * This maps all fragments of a socket buffer for DMA and adds them to
 122 * the TX queue.  The queue's insert pointer will be incremented by
 123 * the number of fragments in the socket buffer.
 124 *
 125 * If any DMA mapping fails, any mapped fragments will be unmapped,
 126 * the queue's insert pointer will be restored to its original value.
 127 *
 128 * This function is split out from efx_hard_start_xmit to allow the
 129 * loopback test to direct packets via specific TX queues.
 130 *
 131 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
 132 * You must hold netif_tx_lock() to call this function.
 133 */
 134netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
 135{
 136	struct efx_nic *efx = tx_queue->efx;
 137	struct pci_dev *pci_dev = efx->pci_dev;
 138	struct efx_tx_buffer *buffer;
 139	skb_frag_t *fragment;
 140	struct page *page;
 141	int page_offset;
 142	unsigned int len, unmap_len = 0, fill_level, insert_ptr;
 143	dma_addr_t dma_addr, unmap_addr = 0;
 144	unsigned int dma_len;
 145	bool unmap_single;
 146	int q_space, i = 0;
 147	netdev_tx_t rc = NETDEV_TX_OK;
 148
 149	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
 150
 151	if (skb_shinfo(skb)->gso_size)
 152		return efx_enqueue_skb_tso(tx_queue, skb);
 153
 154	/* Get size of the initial fragment */
 155	len = skb_headlen(skb);
 156
 157	/* Pad if necessary */
 158	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
 159		EFX_BUG_ON_PARANOID(skb->data_len);
 160		len = 32 + 1;
 161		if (skb_pad(skb, len - skb->len))
 162			return NETDEV_TX_OK;
 163	}
 164
 165	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
 166	q_space = efx->txq_entries - 1 - fill_level;
 167
 168	/* Map for DMA.  Use pci_map_single rather than pci_map_page
 169	 * since this is more efficient on machines with sparse
 170	 * memory.
 171	 */
 172	unmap_single = true;
 173	dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
 174
 175	/* Process all fragments */
 176	while (1) {
 177		if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
 178			goto pci_err;
 179
 180		/* Store fields for marking in the per-fragment final
 181		 * descriptor */
 182		unmap_len = len;
 183		unmap_addr = dma_addr;
 184
 185		/* Add to TX queue, splitting across DMA boundaries */
 186		do {
 187			if (unlikely(q_space-- <= 0)) {
 188				/* It might be that completions have
 189				 * happened since the xmit path last
 190				 * checked.  Update the xmit path's
 191				 * copy of read_count.
 192				 */
 193				netif_tx_stop_queue(tx_queue->core_txq);
 194				/* This memory barrier protects the
 195				 * change of queue state from the access
 196				 * of read_count. */
 197				smp_mb();
 198				tx_queue->old_read_count =
 199					ACCESS_ONCE(tx_queue->read_count);
 200				fill_level = (tx_queue->insert_count
 201					      - tx_queue->old_read_count);
 202				q_space = efx->txq_entries - 1 - fill_level;
 203				if (unlikely(q_space-- <= 0)) {
 204					rc = NETDEV_TX_BUSY;
 205					goto unwind;
 206				}
 207				smp_mb();
 208				if (likely(!efx->loopback_selftest))
 209					netif_tx_start_queue(
 210						tx_queue->core_txq);
 211			}
 212
 213			insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
 214			buffer = &tx_queue->buffer[insert_ptr];
 215			efx_tsoh_free(tx_queue, buffer);
 216			EFX_BUG_ON_PARANOID(buffer->tsoh);
 217			EFX_BUG_ON_PARANOID(buffer->skb);
 218			EFX_BUG_ON_PARANOID(buffer->len);
 219			EFX_BUG_ON_PARANOID(!buffer->continuation);
 220			EFX_BUG_ON_PARANOID(buffer->unmap_len);
 221
 222			dma_len = efx_max_tx_len(efx, dma_addr);
 223			if (likely(dma_len >= len))
 224				dma_len = len;
 225
 226			/* Fill out per descriptor fields */
 227			buffer->len = dma_len;
 228			buffer->dma_addr = dma_addr;
 229			len -= dma_len;
 230			dma_addr += dma_len;
 231			++tx_queue->insert_count;
 232		} while (len);
 233
 234		/* Transfer ownership of the unmapping to the final buffer */
 235		buffer->unmap_single = unmap_single;
 236		buffer->unmap_len = unmap_len;
 237		unmap_len = 0;
 238
 239		/* Get address and size of next fragment */
 240		if (i >= skb_shinfo(skb)->nr_frags)
 241			break;
 242		fragment = &skb_shinfo(skb)->frags[i];
 243		len = fragment->size;
 244		page = fragment->page;
 245		page_offset = fragment->page_offset;
 246		i++;
 247		/* Map for DMA */
 248		unmap_single = false;
 249		dma_addr = pci_map_page(pci_dev, page, page_offset, len,
 250					PCI_DMA_TODEVICE);
 251	}
 252
 253	/* Transfer ownership of the skb to the final buffer */
 254	buffer->skb = skb;
 255	buffer->continuation = false;
 256
 257	/* Pass off to hardware */
 258	efx_nic_push_buffers(tx_queue);
 259
 260	return NETDEV_TX_OK;
 261
 262 pci_err:
 263	netif_err(efx, tx_err, efx->net_dev,
 264		  " TX queue %d could not map skb with %d bytes %d "
 265		  "fragments for DMA\n", tx_queue->queue, skb->len,
 266		  skb_shinfo(skb)->nr_frags + 1);
 267
 268	/* Mark the packet as transmitted, and free the SKB ourselves */
 269	dev_kfree_skb_any(skb);
 270
 271 unwind:
 272	/* Work backwards until we hit the original insert pointer value */
 273	while (tx_queue->insert_count != tx_queue->write_count) {
 274		--tx_queue->insert_count;
 275		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
 276		buffer = &tx_queue->buffer[insert_ptr];
 277		efx_dequeue_buffer(tx_queue, buffer);
 278		buffer->len = 0;
 279	}
 280
 281	/* Free the fragment we were mid-way through pushing */
 282	if (unmap_len) {
 283		if (unmap_single)
 284			pci_unmap_single(pci_dev, unmap_addr, unmap_len,
 285					 PCI_DMA_TODEVICE);
 286		else
 287			pci_unmap_page(pci_dev, unmap_addr, unmap_len,
 288				       PCI_DMA_TODEVICE);
 289	}
 290
 291	return rc;
 292}
 293
 294/* Remove packets from the TX queue
 295 *
 296 * This removes packets from the TX queue, up to and including the
 297 * specified index.
 298 */
 299static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
 300				unsigned int index)
 301{
 302	struct efx_nic *efx = tx_queue->efx;
 303	unsigned int stop_index, read_ptr;
 304
 305	stop_index = (index + 1) & tx_queue->ptr_mask;
 306	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 307
 308	while (read_ptr != stop_index) {
 309		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 310		if (unlikely(buffer->len == 0)) {
 311			netif_err(efx, tx_err, efx->net_dev,
 312				  "TX queue %d spurious TX completion id %x\n",
 313				  tx_queue->queue, read_ptr);
 314			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
 315			return;
 316		}
 317
 318		efx_dequeue_buffer(tx_queue, buffer);
 319		buffer->continuation = true;
 320		buffer->len = 0;
 321
 322		++tx_queue->read_count;
 323		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 324	}
 325}
 326
 327/* Initiate a packet transmission.  We use one channel per CPU
 328 * (sharing when we have more CPUs than channels).  On Falcon, the TX
 329 * completion events will be directed back to the CPU that transmitted
 330 * the packet, which should be cache-efficient.
 331 *
 332 * Context: non-blocking.
 333 * Note that returning anything other than NETDEV_TX_OK will cause the
 334 * OS to free the skb.
 335 */
 336netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
 337				      struct net_device *net_dev)
 338{
 339	struct efx_nic *efx = netdev_priv(net_dev);
 340	struct efx_tx_queue *tx_queue;
 341	unsigned index, type;
 342
 343	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
 344
 345	index = skb_get_queue_mapping(skb);
 346	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
 347	if (index >= efx->n_tx_channels) {
 348		index -= efx->n_tx_channels;
 349		type |= EFX_TXQ_TYPE_HIGHPRI;
 350	}
 351	tx_queue = efx_get_tx_queue(efx, index, type);
 352
 353	return efx_enqueue_skb(tx_queue, skb);
 354}
 355
 356void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
 357{
 358	struct efx_nic *efx = tx_queue->efx;
 359
 360	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
 361	tx_queue->core_txq =
 362		netdev_get_tx_queue(efx->net_dev,
 363				    tx_queue->queue / EFX_TXQ_TYPES +
 364				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 365				     efx->n_tx_channels : 0));
 366}
 367
 368int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
 369{
 370	struct efx_nic *efx = netdev_priv(net_dev);
 371	struct efx_channel *channel;
 372	struct efx_tx_queue *tx_queue;
 373	unsigned tc;
 374	int rc;
 375
 376	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
 377		return -EINVAL;
 378
 379	if (num_tc == net_dev->num_tc)
 380		return 0;
 381
 382	for (tc = 0; tc < num_tc; tc++) {
 383		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
 384		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
 385	}
 386
 387	if (num_tc > net_dev->num_tc) {
 388		/* Initialise high-priority queues as necessary */
 389		efx_for_each_channel(channel, efx) {
 390			efx_for_each_possible_channel_tx_queue(tx_queue,
 391							       channel) {
 392				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
 393					continue;
 394				if (!tx_queue->buffer) {
 395					rc = efx_probe_tx_queue(tx_queue);
 396					if (rc)
 397						return rc;
 398				}
 399				if (!tx_queue->initialised)
 400					efx_init_tx_queue(tx_queue);
 401				efx_init_tx_queue_core_txq(tx_queue);
 402			}
 403		}
 404	} else {
 405		/* Reduce number of classes before number of queues */
 406		net_dev->num_tc = num_tc;
 407	}
 408
 409	rc = netif_set_real_num_tx_queues(net_dev,
 410					  max_t(int, num_tc, 1) *
 411					  efx->n_tx_channels);
 412	if (rc)
 413		return rc;
 414
 415	/* Do not destroy high-priority queues when they become
 416	 * unused.  We would have to flush them first, and it is
 417	 * fairly difficult to flush a subset of TX queues.  Leave
 418	 * it to efx_fini_channels().
 419	 */
 420
 421	net_dev->num_tc = num_tc;
 422	return 0;
 423}
 424
 425void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
 426{
 427	unsigned fill_level;
 428	struct efx_nic *efx = tx_queue->efx;
 429
 430	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
 431
 432	efx_dequeue_buffers(tx_queue, index);
 433
 434	/* See if we need to restart the netif queue.  This barrier
 435	 * separates the update of read_count from the test of the
 436	 * queue state. */
 437	smp_mb();
 438	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
 439	    likely(efx->port_enabled) &&
 440	    likely(netif_device_present(efx->net_dev))) {
 441		fill_level = tx_queue->insert_count - tx_queue->read_count;
 442		if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
 443			EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
 444			netif_tx_wake_queue(tx_queue->core_txq);
 445		}
 446	}
 447
 448	/* Check whether the hardware queue is now empty */
 449	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
 450		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
 451		if (tx_queue->read_count == tx_queue->old_write_count) {
 452			smp_mb();
 453			tx_queue->empty_read_count =
 454				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
 455		}
 456	}
 457}
 458
 459int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
 460{
 461	struct efx_nic *efx = tx_queue->efx;
 462	unsigned int entries;
 463	int i, rc;
 464
 465	/* Create the smallest power-of-two aligned ring */
 466	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
 467	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 468	tx_queue->ptr_mask = entries - 1;
 469
 470	netif_dbg(efx, probe, efx->net_dev,
 471		  "creating TX queue %d size %#x mask %#x\n",
 472		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 473
 474	/* Allocate software ring */
 475	tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
 476				   GFP_KERNEL);
 477	if (!tx_queue->buffer)
 478		return -ENOMEM;
 479	for (i = 0; i <= tx_queue->ptr_mask; ++i)
 480		tx_queue->buffer[i].continuation = true;
 481
 482	/* Allocate hardware ring */
 483	rc = efx_nic_probe_tx(tx_queue);
 484	if (rc)
 485		goto fail;
 486
 487	return 0;
 488
 489 fail:
 490	kfree(tx_queue->buffer);
 491	tx_queue->buffer = NULL;
 492	return rc;
 493}
 494
 495void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
 496{
 497	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 498		  "initialising TX queue %d\n", tx_queue->queue);
 499
 500	tx_queue->insert_count = 0;
 501	tx_queue->write_count = 0;
 502	tx_queue->old_write_count = 0;
 503	tx_queue->read_count = 0;
 504	tx_queue->old_read_count = 0;
 505	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
 506
 507	/* Set up TX descriptor ring */
 508	efx_nic_init_tx(tx_queue);
 509
 510	tx_queue->initialised = true;
 511}
 512
 513void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
 514{
 515	struct efx_tx_buffer *buffer;
 516
 517	if (!tx_queue->buffer)
 518		return;
 519
 520	/* Free any buffers left in the ring */
 521	while (tx_queue->read_count != tx_queue->write_count) {
 522		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
 523		efx_dequeue_buffer(tx_queue, buffer);
 524		buffer->continuation = true;
 525		buffer->len = 0;
 526
 527		++tx_queue->read_count;
 528	}
 529}
 530
 531void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
 532{
 533	if (!tx_queue->initialised)
 534		return;
 535
 536	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 537		  "shutting down TX queue %d\n", tx_queue->queue);
 538
 539	tx_queue->initialised = false;
 540
 541	/* Flush TX queue, remove descriptor ring */
 542	efx_nic_fini_tx(tx_queue);
 543
 544	efx_release_tx_buffers(tx_queue);
 545
 546	/* Free up TSO header cache */
 547	efx_fini_tso(tx_queue);
 548}
 549
 550void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
 551{
 552	if (!tx_queue->buffer)
 553		return;
 554
 555	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 556		  "destroying TX queue %d\n", tx_queue->queue);
 557	efx_nic_remove_tx(tx_queue);
 558
 559	kfree(tx_queue->buffer);
 560	tx_queue->buffer = NULL;
 561}
 562
 563
 564/* Efx TCP segmentation acceleration.
 565 *
 566 * Why?  Because by doing it here in the driver we can go significantly
 567 * faster than the GSO.
 568 *
 569 * Requires TX checksum offload support.
 570 */
 571
 572/* Number of bytes inserted at the start of a TSO header buffer,
 573 * similar to NET_IP_ALIGN.
 574 */
 575#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 576#define TSOH_OFFSET	0
 577#else
 578#define TSOH_OFFSET	NET_IP_ALIGN
 579#endif
 580
 581#define TSOH_BUFFER(tsoh)	((u8 *)(tsoh + 1) + TSOH_OFFSET)
 582
 583/* Total size of struct efx_tso_header, buffer and padding */
 584#define TSOH_SIZE(hdr_len)					\
 585	(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
 586
 587/* Size of blocks on free list.  Larger blocks must be allocated from
 588 * the heap.
 589 */
 590#define TSOH_STD_SIZE		128
 591
 592#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
 593#define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
 594#define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
 595#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
 596#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
 597
 598/**
 599 * struct tso_state - TSO state for an SKB
 600 * @out_len: Remaining length in current segment
 601 * @seqnum: Current sequence number
 602 * @ipv4_id: Current IPv4 ID, host endian
 603 * @packet_space: Remaining space in current packet
 604 * @dma_addr: DMA address of current position
 605 * @in_len: Remaining length in current SKB fragment
 606 * @unmap_len: Length of SKB fragment
 607 * @unmap_addr: DMA address of SKB fragment
 608 * @unmap_single: DMA single vs page mapping flag
 609 * @protocol: Network protocol (after any VLAN header)
 610 * @header_len: Number of bytes of header
 611 * @full_packet_size: Number of bytes to put in each outgoing segment
 612 *
 613 * The state used during segmentation.  It is put into this data structure
 614 * just to make it easy to pass into inline functions.
 615 */
 616struct tso_state {
 617	/* Output position */
 618	unsigned out_len;
 619	unsigned seqnum;
 620	unsigned ipv4_id;
 621	unsigned packet_space;
 622
 623	/* Input position */
 624	dma_addr_t dma_addr;
 625	unsigned in_len;
 626	unsigned unmap_len;
 627	dma_addr_t unmap_addr;
 628	bool unmap_single;
 629
 630	__be16 protocol;
 631	unsigned header_len;
 632	int full_packet_size;
 633};
 634
 635
 636/*
 637 * Verify that our various assumptions about sk_buffs and the conditions
 638 * under which TSO will be attempted hold true.  Return the protocol number.
 639 */
 640static __be16 efx_tso_check_protocol(struct sk_buff *skb)
 641{
 642	__be16 protocol = skb->protocol;
 643
 644	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
 645			    protocol);
 646	if (protocol == htons(ETH_P_8021Q)) {
 647		/* Find the encapsulated protocol; reset network header
 648		 * and transport header based on that. */
 649		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
 650		protocol = veh->h_vlan_encapsulated_proto;
 651		skb_set_network_header(skb, sizeof(*veh));
 652		if (protocol == htons(ETH_P_IP))
 653			skb_set_transport_header(skb, sizeof(*veh) +
 654						 4 * ip_hdr(skb)->ihl);
 655		else if (protocol == htons(ETH_P_IPV6))
 656			skb_set_transport_header(skb, sizeof(*veh) +
 657						 sizeof(struct ipv6hdr));
 658	}
 659
 660	if (protocol == htons(ETH_P_IP)) {
 661		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
 662	} else {
 663		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
 664		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
 665	}
 666	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
 667			     + (tcp_hdr(skb)->doff << 2u)) >
 668			    skb_headlen(skb));
 669
 670	return protocol;
 671}
 672
 673
 674/*
 675 * Allocate a page worth of efx_tso_header structures, and string them
 676 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
 677 */
 678static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
 679{
 680
 681	struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
 682	struct efx_tso_header *tsoh;
 683	dma_addr_t dma_addr;
 684	u8 *base_kva, *kva;
 685
 686	base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
 687	if (base_kva == NULL) {
 688		netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
 689			  "Unable to allocate page for TSO headers\n");
 690		return -ENOMEM;
 691	}
 692
 693	/* pci_alloc_consistent() allocates pages. */
 694	EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
 695
 696	for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
 697		tsoh = (struct efx_tso_header *)kva;
 698		tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
 699		tsoh->next = tx_queue->tso_headers_free;
 700		tx_queue->tso_headers_free = tsoh;
 701	}
 702
 703	return 0;
 704}
 705
 706
 707/* Free up a TSO header, and all others in the same page. */
 708static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
 709				struct efx_tso_header *tsoh,
 710				struct pci_dev *pci_dev)
 711{
 712	struct efx_tso_header **p;
 713	unsigned long base_kva;
 714	dma_addr_t base_dma;
 715
 716	base_kva = (unsigned long)tsoh & PAGE_MASK;
 717	base_dma = tsoh->dma_addr & PAGE_MASK;
 718
 719	p = &tx_queue->tso_headers_free;
 720	while (*p != NULL) {
 721		if (((unsigned long)*p & PAGE_MASK) == base_kva)
 722			*p = (*p)->next;
 723		else
 724			p = &(*p)->next;
 725	}
 726
 727	pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
 728}
 729
 730static struct efx_tso_header *
 731efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
 732{
 733	struct efx_tso_header *tsoh;
 734
 735	tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
 736	if (unlikely(!tsoh))
 737		return NULL;
 738
 739	tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
 740					TSOH_BUFFER(tsoh), header_len,
 741					PCI_DMA_TODEVICE);
 742	if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
 743					   tsoh->dma_addr))) {
 744		kfree(tsoh);
 745		return NULL;
 746	}
 747
 748	tsoh->unmap_len = header_len;
 749	return tsoh;
 750}
 751
 752static void
 753efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
 754{
 755	pci_unmap_single(tx_queue->efx->pci_dev,
 756			 tsoh->dma_addr, tsoh->unmap_len,
 757			 PCI_DMA_TODEVICE);
 758	kfree(tsoh);
 759}
 760
 761/**
 762 * efx_tx_queue_insert - push descriptors onto the TX queue
 763 * @tx_queue:		Efx TX queue
 764 * @dma_addr:		DMA address of fragment
 765 * @len:		Length of fragment
 766 * @final_buffer:	The final buffer inserted into the queue
 767 *
 768 * Push descriptors onto the TX queue.  Return 0 on success or 1 if
 769 * @tx_queue full.
 770 */
 771static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
 772			       dma_addr_t dma_addr, unsigned len,
 773			       struct efx_tx_buffer **final_buffer)
 774{
 775	struct efx_tx_buffer *buffer;
 776	struct efx_nic *efx = tx_queue->efx;
 777	unsigned dma_len, fill_level, insert_ptr;
 778	int q_space;
 779
 780	EFX_BUG_ON_PARANOID(len <= 0);
 781
 782	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
 783	/* -1 as there is no way to represent all descriptors used */
 784	q_space = efx->txq_entries - 1 - fill_level;
 785
 786	while (1) {
 787		if (unlikely(q_space-- <= 0)) {
 788			/* It might be that completions have happened
 789			 * since the xmit path last checked.  Update
 790			 * the xmit path's copy of read_count.
 791			 */
 792			netif_tx_stop_queue(tx_queue->core_txq);
 793			/* This memory barrier protects the change of
 794			 * queue state from the access of read_count. */
 795			smp_mb();
 796			tx_queue->old_read_count =
 797				ACCESS_ONCE(tx_queue->read_count);
 798			fill_level = (tx_queue->insert_count
 799				      - tx_queue->old_read_count);
 800			q_space = efx->txq_entries - 1 - fill_level;
 801			if (unlikely(q_space-- <= 0)) {
 802				*final_buffer = NULL;
 803				return 1;
 804			}
 805			smp_mb();
 806			netif_tx_start_queue(tx_queue->core_txq);
 807		}
 808
 809		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
 810		buffer = &tx_queue->buffer[insert_ptr];
 811		++tx_queue->insert_count;
 812
 813		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
 814				    tx_queue->read_count >=
 815				    efx->txq_entries);
 816
 817		efx_tsoh_free(tx_queue, buffer);
 818		EFX_BUG_ON_PARANOID(buffer->len);
 819		EFX_BUG_ON_PARANOID(buffer->unmap_len);
 820		EFX_BUG_ON_PARANOID(buffer->skb);
 821		EFX_BUG_ON_PARANOID(!buffer->continuation);
 822		EFX_BUG_ON_PARANOID(buffer->tsoh);
 823
 824		buffer->dma_addr = dma_addr;
 825
 826		dma_len = efx_max_tx_len(efx, dma_addr);
 827
 828		/* If there is enough space to send then do so */
 829		if (dma_len >= len)
 830			break;
 831
 832		buffer->len = dma_len; /* Don't set the other members */
 833		dma_addr += dma_len;
 834		len -= dma_len;
 835	}
 836
 837	EFX_BUG_ON_PARANOID(!len);
 838	buffer->len = len;
 839	*final_buffer = buffer;
 840	return 0;
 841}
 842
 843
 844/*
 845 * Put a TSO header into the TX queue.
 846 *
 847 * This is special-cased because we know that it is small enough to fit in
 848 * a single fragment, and we know it doesn't cross a page boundary.  It
 849 * also allows us to not worry about end-of-packet etc.
 850 */
 851static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
 852			       struct efx_tso_header *tsoh, unsigned len)
 853{
 854	struct efx_tx_buffer *buffer;
 855
 856	buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
 857	efx_tsoh_free(tx_queue, buffer);
 858	EFX_BUG_ON_PARANOID(buffer->len);
 859	EFX_BUG_ON_PARANOID(buffer->unmap_len);
 860	EFX_BUG_ON_PARANOID(buffer->skb);
 861	EFX_BUG_ON_PARANOID(!buffer->continuation);
 862	EFX_BUG_ON_PARANOID(buffer->tsoh);
 863	buffer->len = len;
 864	buffer->dma_addr = tsoh->dma_addr;
 865	buffer->tsoh = tsoh;
 866
 867	++tx_queue->insert_count;
 868}
 869
 870
 871/* Remove descriptors put into a tx_queue. */
 872static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
 873{
 874	struct efx_tx_buffer *buffer;
 875	dma_addr_t unmap_addr;
 876
 877	/* Work backwards until we hit the original insert pointer value */
 878	while (tx_queue->insert_count != tx_queue->write_count) {
 879		--tx_queue->insert_count;
 880		buffer = &tx_queue->buffer[tx_queue->insert_count &
 881					   tx_queue->ptr_mask];
 882		efx_tsoh_free(tx_queue, buffer);
 883		EFX_BUG_ON_PARANOID(buffer->skb);
 884		if (buffer->unmap_len) {
 885			unmap_addr = (buffer->dma_addr + buffer->len -
 886				      buffer->unmap_len);
 887			if (buffer->unmap_single)
 888				pci_unmap_single(tx_queue->efx->pci_dev,
 889						 unmap_addr, buffer->unmap_len,
 890						 PCI_DMA_TODEVICE);
 891			else
 892				pci_unmap_page(tx_queue->efx->pci_dev,
 893					       unmap_addr, buffer->unmap_len,
 894					       PCI_DMA_TODEVICE);
 895			buffer->unmap_len = 0;
 896		}
 897		buffer->len = 0;
 898		buffer->continuation = true;
 899	}
 900}
 901
 902
 903/* Parse the SKB header and initialise state. */
 904static void tso_start(struct tso_state *st, const struct sk_buff *skb)
 905{
 906	/* All ethernet/IP/TCP headers combined size is TCP header size
 907	 * plus offset of TCP header relative to start of packet.
 908	 */
 909	st->header_len = ((tcp_hdr(skb)->doff << 2u)
 910			  + PTR_DIFF(tcp_hdr(skb), skb->data));
 911	st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
 912
 913	if (st->protocol == htons(ETH_P_IP))
 914		st->ipv4_id = ntohs(ip_hdr(skb)->id);
 915	else
 916		st->ipv4_id = 0;
 917	st->seqnum = ntohl(tcp_hdr(skb)->seq);
 918
 919	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
 920	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
 921	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
 922
 923	st->packet_space = st->full_packet_size;
 924	st->out_len = skb->len - st->header_len;
 925	st->unmap_len = 0;
 926	st->unmap_single = false;
 927}
 928
 929static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
 930			    skb_frag_t *frag)
 931{
 932	st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
 933				      frag->page_offset, frag->size,
 934				      PCI_DMA_TODEVICE);
 935	if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
 936		st->unmap_single = false;
 937		st->unmap_len = frag->size;
 938		st->in_len = frag->size;
 939		st->dma_addr = st->unmap_addr;
 940		return 0;
 941	}
 942	return -ENOMEM;
 943}
 944
 945static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
 946				 const struct sk_buff *skb)
 947{
 948	int hl = st->header_len;
 949	int len = skb_headlen(skb) - hl;
 950
 951	st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
 952					len, PCI_DMA_TODEVICE);
 953	if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
 954		st->unmap_single = true;
 955		st->unmap_len = len;
 956		st->in_len = len;
 957		st->dma_addr = st->unmap_addr;
 958		return 0;
 959	}
 960	return -ENOMEM;
 961}
 962
 963
 964/**
 965 * tso_fill_packet_with_fragment - form descriptors for the current fragment
 966 * @tx_queue:		Efx TX queue
 967 * @skb:		Socket buffer
 968 * @st:			TSO state
 969 *
 970 * Form descriptors for the current fragment, until we reach the end
 971 * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
 972 * space in @tx_queue.
 973 */
 974static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
 975					 const struct sk_buff *skb,
 976					 struct tso_state *st)
 977{
 978	struct efx_tx_buffer *buffer;
 979	int n, end_of_packet, rc;
 980
 981	if (st->in_len == 0)
 982		return 0;
 983	if (st->packet_space == 0)
 984		return 0;
 985
 986	EFX_BUG_ON_PARANOID(st->in_len <= 0);
 987	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
 988
 989	n = min(st->in_len, st->packet_space);
 990
 991	st->packet_space -= n;
 992	st->out_len -= n;
 993	st->in_len -= n;
 994
 995	rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
 996	if (likely(rc == 0)) {
 997		if (st->out_len == 0)
 998			/* Transfer ownership of the skb */
 999			buffer->skb = skb;
1000
1001		end_of_packet = st->out_len == 0 || st->packet_space == 0;
1002		buffer->continuation = !end_of_packet;
1003
1004		if (st->in_len == 0) {
1005			/* Transfer ownership of the pci mapping */
1006			buffer->unmap_len = st->unmap_len;
1007			buffer->unmap_single = st->unmap_single;
1008			st->unmap_len = 0;
1009		}
1010	}
1011
1012	st->dma_addr += n;
1013	return rc;
1014}
1015
1016
1017/**
1018 * tso_start_new_packet - generate a new header and prepare for the new packet
1019 * @tx_queue:		Efx TX queue
1020 * @skb:		Socket buffer
1021 * @st:			TSO state
1022 *
1023 * Generate a new header and prepare for the new packet.  Return 0 on
1024 * success, or -1 if failed to alloc header.
1025 */
1026static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1027				const struct sk_buff *skb,
1028				struct tso_state *st)
1029{
1030	struct efx_tso_header *tsoh;
1031	struct tcphdr *tsoh_th;
1032	unsigned ip_length;
1033	u8 *header;
1034
1035	/* Allocate a DMA-mapped header buffer. */
1036	if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1037		if (tx_queue->tso_headers_free == NULL) {
1038			if (efx_tsoh_block_alloc(tx_queue))
1039				return -1;
1040		}
1041		EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1042		tsoh = tx_queue->tso_headers_free;
1043		tx_queue->tso_headers_free = tsoh->next;
1044		tsoh->unmap_len = 0;
1045	} else {
1046		tx_queue->tso_long_headers++;
1047		tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1048		if (unlikely(!tsoh))
1049			return -1;
1050	}
1051
1052	header = TSOH_BUFFER(tsoh);
1053	tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1054
1055	/* Copy and update the headers. */
1056	memcpy(header, skb->data, st->header_len);
1057
1058	tsoh_th->seq = htonl(st->seqnum);
1059	st->seqnum += skb_shinfo(skb)->gso_size;
1060	if (st->out_len > skb_shinfo(skb)->gso_size) {
1061		/* This packet will not finish the TSO burst. */
1062		ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1063		tsoh_th->fin = 0;
1064		tsoh_th->psh = 0;
1065	} else {
1066		/* This packet will be the last in the TSO burst. */
1067		ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1068		tsoh_th->fin = tcp_hdr(skb)->fin;
1069		tsoh_th->psh = tcp_hdr(skb)->psh;
1070	}
1071
1072	if (st->protocol == htons(ETH_P_IP)) {
1073		struct iphdr *tsoh_iph =
1074			(struct iphdr *)(header + SKB_IPV4_OFF(skb));
1075
1076		tsoh_iph->tot_len = htons(ip_length);
1077
1078		/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1079		tsoh_iph->id = htons(st->ipv4_id);
1080		st->ipv4_id++;
1081	} else {
1082		struct ipv6hdr *tsoh_iph =
1083			(struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1084
1085		tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1086	}
1087
1088	st->packet_space = skb_shinfo(skb)->gso_size;
1089	++tx_queue->tso_packets;
1090
1091	/* Form a descriptor for this header. */
1092	efx_tso_put_header(tx_queue, tsoh, st->header_len);
1093
1094	return 0;
1095}
1096
1097
1098/**
1099 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1100 * @tx_queue:		Efx TX queue
1101 * @skb:		Socket buffer
1102 *
1103 * Context: You must hold netif_tx_lock() to call this function.
1104 *
1105 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1106 * @skb was not enqueued.  In all cases @skb is consumed.  Return
1107 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1108 */
1109static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1110			       struct sk_buff *skb)
1111{
1112	struct efx_nic *efx = tx_queue->efx;
1113	int frag_i, rc, rc2 = NETDEV_TX_OK;
1114	struct tso_state state;
1115
1116	/* Find the packet protocol and sanity-check it */
1117	state.protocol = efx_tso_check_protocol(skb);
1118
1119	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1120
1121	tso_start(&state, skb);
1122
1123	/* Assume that skb header area contains exactly the headers, and
1124	 * all payload is in the frag list.
1125	 */
1126	if (skb_headlen(skb) == state.header_len) {
1127		/* Grab the first payload fragment. */
1128		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1129		frag_i = 0;
1130		rc = tso_get_fragment(&state, efx,
1131				      skb_shinfo(skb)->frags + frag_i);
1132		if (rc)
1133			goto mem_err;
1134	} else {
1135		rc = tso_get_head_fragment(&state, efx, skb);
1136		if (rc)
1137			goto mem_err;
1138		frag_i = -1;
1139	}
1140
1141	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1142		goto mem_err;
1143
1144	while (1) {
1145		rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1146		if (unlikely(rc)) {
1147			rc2 = NETDEV_TX_BUSY;
1148			goto unwind;
1149		}
1150
1151		/* Move onto the next fragment? */
1152		if (state.in_len == 0) {
1153			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1154				/* End of payload reached. */
1155				break;
1156			rc = tso_get_fragment(&state, efx,
1157					      skb_shinfo(skb)->frags + frag_i);
1158			if (rc)
1159				goto mem_err;
1160		}
1161
1162		/* Start at new packet? */
1163		if (state.packet_space == 0 &&
1164		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1165			goto mem_err;
1166	}
1167
1168	/* Pass off to hardware */
1169	efx_nic_push_buffers(tx_queue);
1170
1171	tx_queue->tso_bursts++;
1172	return NETDEV_TX_OK;
1173
1174 mem_err:
1175	netif_err(efx, tx_err, efx->net_dev,
1176		  "Out of memory for TSO headers, or PCI mapping error\n");
1177	dev_kfree_skb_any(skb);
1178
1179 unwind:
1180	/* Free the DMA mapping we were in the process of writing out */
1181	if (state.unmap_len) {
1182		if (state.unmap_single)
1183			pci_unmap_single(efx->pci_dev, state.unmap_addr,
1184					 state.unmap_len, PCI_DMA_TODEVICE);
1185		else
1186			pci_unmap_page(efx->pci_dev, state.unmap_addr,
1187				       state.unmap_len, PCI_DMA_TODEVICE);
1188	}
1189
1190	efx_enqueue_unwind(tx_queue);
1191	return rc2;
1192}
1193
1194
1195/*
1196 * Free up all TSO datastructures associated with tx_queue. This
1197 * routine should be called only once the tx_queue is both empty and
1198 * will no longer be used.
1199 */
1200static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1201{
1202	unsigned i;
1203
1204	if (tx_queue->buffer) {
1205		for (i = 0; i <= tx_queue->ptr_mask; ++i)
1206			efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1207	}
1208
1209	while (tx_queue->tso_headers_free != NULL)
1210		efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1211				    tx_queue->efx->pci_dev);
1212}