Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/****************************************************************************
   2 * Driver for Solarflare Solarstorm network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2011 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/pci.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/delay.h>
  16#include <linux/notifier.h>
  17#include <linux/ip.h>
  18#include <linux/tcp.h>
  19#include <linux/in.h>
  20#include <linux/crc32.h>
  21#include <linux/ethtool.h>
  22#include <linux/topology.h>
  23#include <linux/gfp.h>
  24#include <linux/cpu_rmap.h>
  25#include "net_driver.h"
  26#include "efx.h"
  27#include "nic.h"
  28
  29#include "mcdi.h"
  30#include "workarounds.h"
  31
  32/**************************************************************************
  33 *
  34 * Type name strings
  35 *
  36 **************************************************************************
  37 */
  38
  39/* Loopback mode names (see LOOPBACK_MODE()) */
  40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  41const char *efx_loopback_mode_names[] = {
  42	[LOOPBACK_NONE]		= "NONE",
  43	[LOOPBACK_DATA]		= "DATAPATH",
  44	[LOOPBACK_GMAC]		= "GMAC",
  45	[LOOPBACK_XGMII]	= "XGMII",
  46	[LOOPBACK_XGXS]		= "XGXS",
  47	[LOOPBACK_XAUI]  	= "XAUI",
  48	[LOOPBACK_GMII] 	= "GMII",
  49	[LOOPBACK_SGMII] 	= "SGMII",
  50	[LOOPBACK_XGBR]		= "XGBR",
  51	[LOOPBACK_XFI]		= "XFI",
  52	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
  53	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
  54	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
  55	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
  56	[LOOPBACK_GPHY]		= "GPHY",
  57	[LOOPBACK_PHYXS]	= "PHYXS",
  58	[LOOPBACK_PCS]	 	= "PCS",
  59	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
  60	[LOOPBACK_XPORT]	= "XPORT",
  61	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
  62	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
  63	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  64	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  65	[LOOPBACK_GMII_WS] 	= "GMII_WS",
  66	[LOOPBACK_XFI_WS]	= "XFI_WS",
  67	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
  68	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
  69};
  70
  71const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  72const char *efx_reset_type_names[] = {
  73	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
  74	[RESET_TYPE_ALL]           = "ALL",
  75	[RESET_TYPE_WORLD]         = "WORLD",
  76	[RESET_TYPE_DISABLE]       = "DISABLE",
  77	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
  78	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
  79	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
  80	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
  81	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
  82	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
  83	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
  84};
  85
  86#define EFX_MAX_MTU (9 * 1024)
  87
  88/* Reset workqueue. If any NIC has a hardware failure then a reset will be
  89 * queued onto this work queue. This is not a per-nic work queue, because
  90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  91 */
  92static struct workqueue_struct *reset_workqueue;
  93
  94/**************************************************************************
  95 *
  96 * Configurable values
  97 *
  98 *************************************************************************/
  99
 100/*
 101 * Use separate channels for TX and RX events
 102 *
 103 * Set this to 1 to use separate channels for TX and RX. It allows us
 104 * to control interrupt affinity separately for TX and RX.
 105 *
 106 * This is only used in MSI-X interrupt mode
 107 */
 108static unsigned int separate_tx_channels;
 109module_param(separate_tx_channels, uint, 0444);
 110MODULE_PARM_DESC(separate_tx_channels,
 111		 "Use separate channels for TX and RX");
 112
 113/* This is the weight assigned to each of the (per-channel) virtual
 114 * NAPI devices.
 115 */
 116static int napi_weight = 64;
 117
 118/* This is the time (in jiffies) between invocations of the hardware
 119 * monitor.  On Falcon-based NICs, this will:
 120 * - Check the on-board hardware monitor;
 121 * - Poll the link state and reconfigure the hardware as necessary.
 122 */
 123static unsigned int efx_monitor_interval = 1 * HZ;
 124
 125/* This controls whether or not the driver will initialise devices
 126 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 127 * such devices will be initialised with a random locally-generated
 128 * MAC address.  This allows for loading the sfc_mtd driver to
 129 * reprogram the flash, even if the flash contents (including the MAC
 130 * address) have previously been erased.
 131 */
 132static unsigned int allow_bad_hwaddr;
 133
 134/* Initial interrupt moderation settings.  They can be modified after
 135 * module load with ethtool.
 136 *
 137 * The default for RX should strike a balance between increasing the
 138 * round-trip latency and reducing overhead.
 139 */
 140static unsigned int rx_irq_mod_usec = 60;
 141
 142/* Initial interrupt moderation settings.  They can be modified after
 143 * module load with ethtool.
 144 *
 145 * This default is chosen to ensure that a 10G link does not go idle
 146 * while a TX queue is stopped after it has become full.  A queue is
 147 * restarted when it drops below half full.  The time this takes (assuming
 148 * worst case 3 descriptors per packet and 1024 descriptors) is
 149 *   512 / 3 * 1.2 = 205 usec.
 150 */
 151static unsigned int tx_irq_mod_usec = 150;
 152
 153/* This is the first interrupt mode to try out of:
 154 * 0 => MSI-X
 155 * 1 => MSI
 156 * 2 => legacy
 157 */
 158static unsigned int interrupt_mode;
 159
 160/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 161 * i.e. the number of CPUs among which we may distribute simultaneous
 162 * interrupt handling.
 163 *
 164 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 165 * The default (0) means to assign an interrupt to each package (level II cache)
 166 */
 167static unsigned int rss_cpus;
 168module_param(rss_cpus, uint, 0444);
 169MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 170
 171static int phy_flash_cfg;
 172module_param(phy_flash_cfg, int, 0644);
 173MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 174
 175static unsigned irq_adapt_low_thresh = 10000;
 176module_param(irq_adapt_low_thresh, uint, 0644);
 177MODULE_PARM_DESC(irq_adapt_low_thresh,
 178		 "Threshold score for reducing IRQ moderation");
 179
 180static unsigned irq_adapt_high_thresh = 20000;
 181module_param(irq_adapt_high_thresh, uint, 0644);
 182MODULE_PARM_DESC(irq_adapt_high_thresh,
 183		 "Threshold score for increasing IRQ moderation");
 184
 185static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 186			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
 187			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
 188			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
 189module_param(debug, uint, 0);
 190MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
 191
 192/**************************************************************************
 193 *
 194 * Utility functions and prototypes
 195 *
 196 *************************************************************************/
 197
 198static void efx_remove_channels(struct efx_nic *efx);
 199static void efx_remove_port(struct efx_nic *efx);
 200static void efx_init_napi(struct efx_nic *efx);
 201static void efx_fini_napi(struct efx_nic *efx);
 202static void efx_fini_napi_channel(struct efx_channel *channel);
 203static void efx_fini_struct(struct efx_nic *efx);
 204static void efx_start_all(struct efx_nic *efx);
 205static void efx_stop_all(struct efx_nic *efx);
 206
 207#define EFX_ASSERT_RESET_SERIALISED(efx)		\
 208	do {						\
 209		if ((efx->state == STATE_RUNNING) ||	\
 210		    (efx->state == STATE_DISABLED))	\
 211			ASSERT_RTNL();			\
 212	} while (0)
 213
 214/**************************************************************************
 215 *
 216 * Event queue processing
 217 *
 218 *************************************************************************/
 219
 220/* Process channel's event queue
 221 *
 222 * This function is responsible for processing the event queue of a
 223 * single channel.  The caller must guarantee that this function will
 224 * never be concurrently called more than once on the same channel,
 225 * though different channels may be being processed concurrently.
 226 */
 227static int efx_process_channel(struct efx_channel *channel, int budget)
 228{
 229	struct efx_nic *efx = channel->efx;
 230	int spent;
 231
 232	if (unlikely(efx->reset_pending || !channel->enabled))
 233		return 0;
 234
 235	spent = efx_nic_process_eventq(channel, budget);
 236	if (spent == 0)
 237		return 0;
 238
 239	/* Deliver last RX packet. */
 240	if (channel->rx_pkt) {
 241		__efx_rx_packet(channel, channel->rx_pkt,
 242				channel->rx_pkt_csummed);
 243		channel->rx_pkt = NULL;
 244	}
 245
 246	efx_rx_strategy(channel);
 247
 248	efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
 249
 250	return spent;
 251}
 252
 253/* Mark channel as finished processing
 254 *
 255 * Note that since we will not receive further interrupts for this
 256 * channel before we finish processing and call the eventq_read_ack()
 257 * method, there is no need to use the interrupt hold-off timers.
 258 */
 259static inline void efx_channel_processed(struct efx_channel *channel)
 260{
 261	/* The interrupt handler for this channel may set work_pending
 262	 * as soon as we acknowledge the events we've seen.  Make sure
 263	 * it's cleared before then. */
 264	channel->work_pending = false;
 265	smp_wmb();
 266
 267	efx_nic_eventq_read_ack(channel);
 268}
 269
 270/* NAPI poll handler
 271 *
 272 * NAPI guarantees serialisation of polls of the same device, which
 273 * provides the guarantee required by efx_process_channel().
 274 */
 275static int efx_poll(struct napi_struct *napi, int budget)
 276{
 277	struct efx_channel *channel =
 278		container_of(napi, struct efx_channel, napi_str);
 279	struct efx_nic *efx = channel->efx;
 280	int spent;
 281
 282	netif_vdbg(efx, intr, efx->net_dev,
 283		   "channel %d NAPI poll executing on CPU %d\n",
 284		   channel->channel, raw_smp_processor_id());
 285
 286	spent = efx_process_channel(channel, budget);
 287
 288	if (spent < budget) {
 289		if (channel->channel < efx->n_rx_channels &&
 290		    efx->irq_rx_adaptive &&
 291		    unlikely(++channel->irq_count == 1000)) {
 292			if (unlikely(channel->irq_mod_score <
 293				     irq_adapt_low_thresh)) {
 294				if (channel->irq_moderation > 1) {
 295					channel->irq_moderation -= 1;
 296					efx->type->push_irq_moderation(channel);
 297				}
 298			} else if (unlikely(channel->irq_mod_score >
 299					    irq_adapt_high_thresh)) {
 300				if (channel->irq_moderation <
 301				    efx->irq_rx_moderation) {
 302					channel->irq_moderation += 1;
 303					efx->type->push_irq_moderation(channel);
 304				}
 305			}
 306			channel->irq_count = 0;
 307			channel->irq_mod_score = 0;
 308		}
 309
 310		efx_filter_rfs_expire(channel);
 311
 312		/* There is no race here; although napi_disable() will
 313		 * only wait for napi_complete(), this isn't a problem
 314		 * since efx_channel_processed() will have no effect if
 315		 * interrupts have already been disabled.
 316		 */
 317		napi_complete(napi);
 318		efx_channel_processed(channel);
 319	}
 320
 321	return spent;
 322}
 323
 324/* Process the eventq of the specified channel immediately on this CPU
 325 *
 326 * Disable hardware generated interrupts, wait for any existing
 327 * processing to finish, then directly poll (and ack ) the eventq.
 328 * Finally reenable NAPI and interrupts.
 329 *
 330 * This is for use only during a loopback self-test.  It must not
 331 * deliver any packets up the stack as this can result in deadlock.
 332 */
 333void efx_process_channel_now(struct efx_channel *channel)
 334{
 335	struct efx_nic *efx = channel->efx;
 336
 337	BUG_ON(channel->channel >= efx->n_channels);
 338	BUG_ON(!channel->enabled);
 339	BUG_ON(!efx->loopback_selftest);
 340
 341	/* Disable interrupts and wait for ISRs to complete */
 342	efx_nic_disable_interrupts(efx);
 343	if (efx->legacy_irq) {
 344		synchronize_irq(efx->legacy_irq);
 345		efx->legacy_irq_enabled = false;
 346	}
 347	if (channel->irq)
 348		synchronize_irq(channel->irq);
 349
 350	/* Wait for any NAPI processing to complete */
 351	napi_disable(&channel->napi_str);
 352
 353	/* Poll the channel */
 354	efx_process_channel(channel, channel->eventq_mask + 1);
 355
 356	/* Ack the eventq. This may cause an interrupt to be generated
 357	 * when they are reenabled */
 358	efx_channel_processed(channel);
 359
 360	napi_enable(&channel->napi_str);
 361	if (efx->legacy_irq)
 362		efx->legacy_irq_enabled = true;
 363	efx_nic_enable_interrupts(efx);
 364}
 365
 366/* Create event queue
 367 * Event queue memory allocations are done only once.  If the channel
 368 * is reset, the memory buffer will be reused; this guards against
 369 * errors during channel reset and also simplifies interrupt handling.
 370 */
 371static int efx_probe_eventq(struct efx_channel *channel)
 372{
 373	struct efx_nic *efx = channel->efx;
 374	unsigned long entries;
 375
 376	netif_dbg(channel->efx, probe, channel->efx->net_dev,
 377		  "chan %d create event queue\n", channel->channel);
 378
 379	/* Build an event queue with room for one event per tx and rx buffer,
 380	 * plus some extra for link state events and MCDI completions. */
 381	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
 382	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
 383	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
 384
 385	return efx_nic_probe_eventq(channel);
 386}
 387
 388/* Prepare channel's event queue */
 389static void efx_init_eventq(struct efx_channel *channel)
 390{
 391	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 392		  "chan %d init event queue\n", channel->channel);
 393
 394	channel->eventq_read_ptr = 0;
 395
 396	efx_nic_init_eventq(channel);
 397}
 398
 399static void efx_fini_eventq(struct efx_channel *channel)
 400{
 401	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 402		  "chan %d fini event queue\n", channel->channel);
 403
 404	efx_nic_fini_eventq(channel);
 405}
 406
 407static void efx_remove_eventq(struct efx_channel *channel)
 408{
 409	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 410		  "chan %d remove event queue\n", channel->channel);
 411
 412	efx_nic_remove_eventq(channel);
 413}
 414
 415/**************************************************************************
 416 *
 417 * Channel handling
 418 *
 419 *************************************************************************/
 420
 421/* Allocate and initialise a channel structure, optionally copying
 422 * parameters (but not resources) from an old channel structure. */
 423static struct efx_channel *
 424efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
 425{
 426	struct efx_channel *channel;
 427	struct efx_rx_queue *rx_queue;
 428	struct efx_tx_queue *tx_queue;
 429	int j;
 430
 431	if (old_channel) {
 432		channel = kmalloc(sizeof(*channel), GFP_KERNEL);
 433		if (!channel)
 434			return NULL;
 435
 436		*channel = *old_channel;
 437
 438		channel->napi_dev = NULL;
 439		memset(&channel->eventq, 0, sizeof(channel->eventq));
 440
 441		rx_queue = &channel->rx_queue;
 442		rx_queue->buffer = NULL;
 443		memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
 444
 445		for (j = 0; j < EFX_TXQ_TYPES; j++) {
 446			tx_queue = &channel->tx_queue[j];
 447			if (tx_queue->channel)
 448				tx_queue->channel = channel;
 449			tx_queue->buffer = NULL;
 450			memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
 451		}
 452	} else {
 453		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
 454		if (!channel)
 455			return NULL;
 456
 457		channel->efx = efx;
 458		channel->channel = i;
 459
 460		for (j = 0; j < EFX_TXQ_TYPES; j++) {
 461			tx_queue = &channel->tx_queue[j];
 462			tx_queue->efx = efx;
 463			tx_queue->queue = i * EFX_TXQ_TYPES + j;
 464			tx_queue->channel = channel;
 465		}
 466	}
 467
 468	rx_queue = &channel->rx_queue;
 469	rx_queue->efx = efx;
 470	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 471		    (unsigned long)rx_queue);
 472
 473	return channel;
 474}
 475
 476static int efx_probe_channel(struct efx_channel *channel)
 477{
 478	struct efx_tx_queue *tx_queue;
 479	struct efx_rx_queue *rx_queue;
 480	int rc;
 481
 482	netif_dbg(channel->efx, probe, channel->efx->net_dev,
 483		  "creating channel %d\n", channel->channel);
 484
 485	rc = efx_probe_eventq(channel);
 486	if (rc)
 487		goto fail1;
 488
 489	efx_for_each_channel_tx_queue(tx_queue, channel) {
 490		rc = efx_probe_tx_queue(tx_queue);
 491		if (rc)
 492			goto fail2;
 493	}
 494
 495	efx_for_each_channel_rx_queue(rx_queue, channel) {
 496		rc = efx_probe_rx_queue(rx_queue);
 497		if (rc)
 498			goto fail3;
 499	}
 500
 501	channel->n_rx_frm_trunc = 0;
 502
 503	return 0;
 504
 505 fail3:
 506	efx_for_each_channel_rx_queue(rx_queue, channel)
 507		efx_remove_rx_queue(rx_queue);
 508 fail2:
 509	efx_for_each_channel_tx_queue(tx_queue, channel)
 510		efx_remove_tx_queue(tx_queue);
 511 fail1:
 512	return rc;
 513}
 514
 515
 516static void efx_set_channel_names(struct efx_nic *efx)
 517{
 518	struct efx_channel *channel;
 519	const char *type = "";
 520	int number;
 521
 522	efx_for_each_channel(channel, efx) {
 523		number = channel->channel;
 524		if (efx->n_channels > efx->n_rx_channels) {
 525			if (channel->channel < efx->n_rx_channels) {
 526				type = "-rx";
 527			} else {
 528				type = "-tx";
 529				number -= efx->n_rx_channels;
 530			}
 531		}
 532		snprintf(efx->channel_name[channel->channel],
 533			 sizeof(efx->channel_name[0]),
 534			 "%s%s-%d", efx->name, type, number);
 535	}
 536}
 537
 538static int efx_probe_channels(struct efx_nic *efx)
 539{
 540	struct efx_channel *channel;
 541	int rc;
 542
 543	/* Restart special buffer allocation */
 544	efx->next_buffer_table = 0;
 545
 546	efx_for_each_channel(channel, efx) {
 547		rc = efx_probe_channel(channel);
 548		if (rc) {
 549			netif_err(efx, probe, efx->net_dev,
 550				  "failed to create channel %d\n",
 551				  channel->channel);
 552			goto fail;
 553		}
 554	}
 555	efx_set_channel_names(efx);
 556
 557	return 0;
 558
 559fail:
 560	efx_remove_channels(efx);
 561	return rc;
 562}
 563
 564/* Channels are shutdown and reinitialised whilst the NIC is running
 565 * to propagate configuration changes (mtu, checksum offload), or
 566 * to clear hardware error conditions
 567 */
 568static void efx_init_channels(struct efx_nic *efx)
 569{
 570	struct efx_tx_queue *tx_queue;
 571	struct efx_rx_queue *rx_queue;
 572	struct efx_channel *channel;
 573
 574	/* Calculate the rx buffer allocation parameters required to
 575	 * support the current MTU, including padding for header
 576	 * alignment and overruns.
 577	 */
 578	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
 579			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 580			      efx->type->rx_buffer_hash_size +
 581			      efx->type->rx_buffer_padding);
 582	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
 583					 sizeof(struct efx_rx_page_state));
 584
 585	/* Initialise the channels */
 586	efx_for_each_channel(channel, efx) {
 587		netif_dbg(channel->efx, drv, channel->efx->net_dev,
 588			  "init chan %d\n", channel->channel);
 589
 590		efx_init_eventq(channel);
 591
 592		efx_for_each_channel_tx_queue(tx_queue, channel)
 593			efx_init_tx_queue(tx_queue);
 594
 595		/* The rx buffer allocation strategy is MTU dependent */
 596		efx_rx_strategy(channel);
 597
 598		efx_for_each_channel_rx_queue(rx_queue, channel)
 599			efx_init_rx_queue(rx_queue);
 600
 601		WARN_ON(channel->rx_pkt != NULL);
 602		efx_rx_strategy(channel);
 603	}
 604}
 605
 606/* This enables event queue processing and packet transmission.
 607 *
 608 * Note that this function is not allowed to fail, since that would
 609 * introduce too much complexity into the suspend/resume path.
 610 */
 611static void efx_start_channel(struct efx_channel *channel)
 612{
 613	struct efx_rx_queue *rx_queue;
 614
 615	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
 616		  "starting chan %d\n", channel->channel);
 617
 618	/* The interrupt handler for this channel may set work_pending
 619	 * as soon as we enable it.  Make sure it's cleared before
 620	 * then.  Similarly, make sure it sees the enabled flag set. */
 621	channel->work_pending = false;
 622	channel->enabled = true;
 623	smp_wmb();
 624
 625	/* Fill the queues before enabling NAPI */
 626	efx_for_each_channel_rx_queue(rx_queue, channel)
 627		efx_fast_push_rx_descriptors(rx_queue);
 628
 629	napi_enable(&channel->napi_str);
 630}
 631
 632/* This disables event queue processing and packet transmission.
 633 * This function does not guarantee that all queue processing
 634 * (e.g. RX refill) is complete.
 635 */
 636static void efx_stop_channel(struct efx_channel *channel)
 637{
 638	if (!channel->enabled)
 639		return;
 640
 641	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
 642		  "stop chan %d\n", channel->channel);
 643
 644	channel->enabled = false;
 645	napi_disable(&channel->napi_str);
 646}
 647
 648static void efx_fini_channels(struct efx_nic *efx)
 649{
 650	struct efx_channel *channel;
 651	struct efx_tx_queue *tx_queue;
 652	struct efx_rx_queue *rx_queue;
 653	int rc;
 654
 655	EFX_ASSERT_RESET_SERIALISED(efx);
 656	BUG_ON(efx->port_enabled);
 657
 658	rc = efx_nic_flush_queues(efx);
 659	if (rc && EFX_WORKAROUND_7803(efx)) {
 660		/* Schedule a reset to recover from the flush failure. The
 661		 * descriptor caches reference memory we're about to free,
 662		 * but falcon_reconfigure_mac_wrapper() won't reconnect
 663		 * the MACs because of the pending reset. */
 664		netif_err(efx, drv, efx->net_dev,
 665			  "Resetting to recover from flush failure\n");
 666		efx_schedule_reset(efx, RESET_TYPE_ALL);
 667	} else if (rc) {
 668		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
 669	} else {
 670		netif_dbg(efx, drv, efx->net_dev,
 671			  "successfully flushed all queues\n");
 672	}
 673
 674	efx_for_each_channel(channel, efx) {
 675		netif_dbg(channel->efx, drv, channel->efx->net_dev,
 676			  "shut down chan %d\n", channel->channel);
 677
 678		efx_for_each_channel_rx_queue(rx_queue, channel)
 679			efx_fini_rx_queue(rx_queue);
 680		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 681			efx_fini_tx_queue(tx_queue);
 682		efx_fini_eventq(channel);
 683	}
 684}
 685
 686static void efx_remove_channel(struct efx_channel *channel)
 687{
 688	struct efx_tx_queue *tx_queue;
 689	struct efx_rx_queue *rx_queue;
 690
 691	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 692		  "destroy chan %d\n", channel->channel);
 693
 694	efx_for_each_channel_rx_queue(rx_queue, channel)
 695		efx_remove_rx_queue(rx_queue);
 696	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 697		efx_remove_tx_queue(tx_queue);
 698	efx_remove_eventq(channel);
 699}
 700
 701static void efx_remove_channels(struct efx_nic *efx)
 702{
 703	struct efx_channel *channel;
 704
 705	efx_for_each_channel(channel, efx)
 706		efx_remove_channel(channel);
 707}
 708
 709int
 710efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
 711{
 712	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
 713	u32 old_rxq_entries, old_txq_entries;
 714	unsigned i;
 715	int rc;
 716
 717	efx_stop_all(efx);
 718	efx_fini_channels(efx);
 719
 720	/* Clone channels */
 721	memset(other_channel, 0, sizeof(other_channel));
 722	for (i = 0; i < efx->n_channels; i++) {
 723		channel = efx_alloc_channel(efx, i, efx->channel[i]);
 724		if (!channel) {
 725			rc = -ENOMEM;
 726			goto out;
 727		}
 728		other_channel[i] = channel;
 729	}
 730
 731	/* Swap entry counts and channel pointers */
 732	old_rxq_entries = efx->rxq_entries;
 733	old_txq_entries = efx->txq_entries;
 734	efx->rxq_entries = rxq_entries;
 735	efx->txq_entries = txq_entries;
 736	for (i = 0; i < efx->n_channels; i++) {
 737		channel = efx->channel[i];
 738		efx->channel[i] = other_channel[i];
 739		other_channel[i] = channel;
 740	}
 741
 742	rc = efx_probe_channels(efx);
 743	if (rc)
 744		goto rollback;
 745
 746	efx_init_napi(efx);
 747
 748	/* Destroy old channels */
 749	for (i = 0; i < efx->n_channels; i++) {
 750		efx_fini_napi_channel(other_channel[i]);
 751		efx_remove_channel(other_channel[i]);
 752	}
 753out:
 754	/* Free unused channel structures */
 755	for (i = 0; i < efx->n_channels; i++)
 756		kfree(other_channel[i]);
 757
 758	efx_init_channels(efx);
 759	efx_start_all(efx);
 760	return rc;
 761
 762rollback:
 763	/* Swap back */
 764	efx->rxq_entries = old_rxq_entries;
 765	efx->txq_entries = old_txq_entries;
 766	for (i = 0; i < efx->n_channels; i++) {
 767		channel = efx->channel[i];
 768		efx->channel[i] = other_channel[i];
 769		other_channel[i] = channel;
 770	}
 771	goto out;
 772}
 773
 774void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
 775{
 776	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
 777}
 778
 779/**************************************************************************
 780 *
 781 * Port handling
 782 *
 783 **************************************************************************/
 784
 785/* This ensures that the kernel is kept informed (via
 786 * netif_carrier_on/off) of the link status, and also maintains the
 787 * link status's stop on the port's TX queue.
 788 */
 789void efx_link_status_changed(struct efx_nic *efx)
 790{
 791	struct efx_link_state *link_state = &efx->link_state;
 792
 793	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 794	 * that no events are triggered between unregister_netdev() and the
 795	 * driver unloading. A more general condition is that NETDEV_CHANGE
 796	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
 797	if (!netif_running(efx->net_dev))
 798		return;
 799
 800	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 801		efx->n_link_state_changes++;
 802
 803		if (link_state->up)
 804			netif_carrier_on(efx->net_dev);
 805		else
 806			netif_carrier_off(efx->net_dev);
 807	}
 808
 809	/* Status message for kernel log */
 810	if (link_state->up) {
 811		netif_info(efx, link, efx->net_dev,
 812			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
 813			   link_state->speed, link_state->fd ? "full" : "half",
 814			   efx->net_dev->mtu,
 815			   (efx->promiscuous ? " [PROMISC]" : ""));
 816	} else {
 817		netif_info(efx, link, efx->net_dev, "link down\n");
 818	}
 819
 820}
 821
 822void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
 823{
 824	efx->link_advertising = advertising;
 825	if (advertising) {
 826		if (advertising & ADVERTISED_Pause)
 827			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
 828		else
 829			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
 830		if (advertising & ADVERTISED_Asym_Pause)
 831			efx->wanted_fc ^= EFX_FC_TX;
 832	}
 833}
 834
 835void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
 836{
 837	efx->wanted_fc = wanted_fc;
 838	if (efx->link_advertising) {
 839		if (wanted_fc & EFX_FC_RX)
 840			efx->link_advertising |= (ADVERTISED_Pause |
 841						  ADVERTISED_Asym_Pause);
 842		else
 843			efx->link_advertising &= ~(ADVERTISED_Pause |
 844						   ADVERTISED_Asym_Pause);
 845		if (wanted_fc & EFX_FC_TX)
 846			efx->link_advertising ^= ADVERTISED_Asym_Pause;
 847	}
 848}
 849
 850static void efx_fini_port(struct efx_nic *efx);
 851
 852/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 853 * the MAC appropriately. All other PHY configuration changes are pushed
 854 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 855 * through efx_monitor().
 856 *
 857 * Callers must hold the mac_lock
 858 */
 859int __efx_reconfigure_port(struct efx_nic *efx)
 860{
 861	enum efx_phy_mode phy_mode;
 862	int rc;
 863
 864	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 865
 866	/* Serialise the promiscuous flag with efx_set_multicast_list. */
 867	if (efx_dev_registered(efx)) {
 868		netif_addr_lock_bh(efx->net_dev);
 869		netif_addr_unlock_bh(efx->net_dev);
 870	}
 871
 872	/* Disable PHY transmit in mac level loopbacks */
 873	phy_mode = efx->phy_mode;
 874	if (LOOPBACK_INTERNAL(efx))
 875		efx->phy_mode |= PHY_MODE_TX_DISABLED;
 876	else
 877		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
 878
 879	rc = efx->type->reconfigure_port(efx);
 880
 881	if (rc)
 882		efx->phy_mode = phy_mode;
 883
 884	return rc;
 885}
 886
 887/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 888 * disabled. */
 889int efx_reconfigure_port(struct efx_nic *efx)
 890{
 891	int rc;
 892
 893	EFX_ASSERT_RESET_SERIALISED(efx);
 894
 895	mutex_lock(&efx->mac_lock);
 896	rc = __efx_reconfigure_port(efx);
 897	mutex_unlock(&efx->mac_lock);
 898
 899	return rc;
 900}
 901
 902/* Asynchronous work item for changing MAC promiscuity and multicast
 903 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 904 * MAC directly. */
 905static void efx_mac_work(struct work_struct *data)
 906{
 907	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
 908
 909	mutex_lock(&efx->mac_lock);
 910	if (efx->port_enabled) {
 911		efx->type->push_multicast_hash(efx);
 912		efx->mac_op->reconfigure(efx);
 913	}
 914	mutex_unlock(&efx->mac_lock);
 915}
 916
 917static int efx_probe_port(struct efx_nic *efx)
 918{
 919	unsigned char *perm_addr;
 920	int rc;
 921
 922	netif_dbg(efx, probe, efx->net_dev, "create port\n");
 923
 924	if (phy_flash_cfg)
 925		efx->phy_mode = PHY_MODE_SPECIAL;
 926
 927	/* Connect up MAC/PHY operations table */
 928	rc = efx->type->probe_port(efx);
 929	if (rc)
 930		return rc;
 931
 932	/* Sanity check MAC address */
 933	perm_addr = efx->net_dev->perm_addr;
 934	if (is_valid_ether_addr(perm_addr)) {
 935		memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
 936	} else {
 937		netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
 938			  perm_addr);
 939		if (!allow_bad_hwaddr) {
 940			rc = -EINVAL;
 941			goto err;
 942		}
 943		random_ether_addr(efx->net_dev->dev_addr);
 944		netif_info(efx, probe, efx->net_dev,
 945			   "using locally-generated MAC %pM\n",
 946			   efx->net_dev->dev_addr);
 947	}
 948
 949	return 0;
 950
 951 err:
 952	efx->type->remove_port(efx);
 953	return rc;
 954}
 955
 956static int efx_init_port(struct efx_nic *efx)
 957{
 958	int rc;
 959
 960	netif_dbg(efx, drv, efx->net_dev, "init port\n");
 961
 962	mutex_lock(&efx->mac_lock);
 963
 964	rc = efx->phy_op->init(efx);
 965	if (rc)
 966		goto fail1;
 967
 968	efx->port_initialized = true;
 969
 970	/* Reconfigure the MAC before creating dma queues (required for
 971	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
 972	efx->mac_op->reconfigure(efx);
 973
 974	/* Ensure the PHY advertises the correct flow control settings */
 975	rc = efx->phy_op->reconfigure(efx);
 976	if (rc)
 977		goto fail2;
 978
 979	mutex_unlock(&efx->mac_lock);
 980	return 0;
 981
 982fail2:
 983	efx->phy_op->fini(efx);
 984fail1:
 985	mutex_unlock(&efx->mac_lock);
 986	return rc;
 987}
 988
 989static void efx_start_port(struct efx_nic *efx)
 990{
 991	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
 992	BUG_ON(efx->port_enabled);
 993
 994	mutex_lock(&efx->mac_lock);
 995	efx->port_enabled = true;
 996
 997	/* efx_mac_work() might have been scheduled after efx_stop_port(),
 998	 * and then cancelled by efx_flush_all() */
 999	efx->type->push_multicast_hash(efx);
1000	efx->mac_op->reconfigure(efx);
1001
1002	mutex_unlock(&efx->mac_lock);
1003}
1004
1005/* Prevent efx_mac_work() and efx_monitor() from working */
1006static void efx_stop_port(struct efx_nic *efx)
1007{
1008	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1009
1010	mutex_lock(&efx->mac_lock);
1011	efx->port_enabled = false;
1012	mutex_unlock(&efx->mac_lock);
1013
1014	/* Serialise against efx_set_multicast_list() */
1015	if (efx_dev_registered(efx)) {
1016		netif_addr_lock_bh(efx->net_dev);
1017		netif_addr_unlock_bh(efx->net_dev);
1018	}
1019}
1020
1021static void efx_fini_port(struct efx_nic *efx)
1022{
1023	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1024
1025	if (!efx->port_initialized)
1026		return;
1027
1028	efx->phy_op->fini(efx);
1029	efx->port_initialized = false;
1030
1031	efx->link_state.up = false;
1032	efx_link_status_changed(efx);
1033}
1034
1035static void efx_remove_port(struct efx_nic *efx)
1036{
1037	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1038
1039	efx->type->remove_port(efx);
1040}
1041
1042/**************************************************************************
1043 *
1044 * NIC handling
1045 *
1046 **************************************************************************/
1047
1048/* This configures the PCI device to enable I/O and DMA. */
1049static int efx_init_io(struct efx_nic *efx)
1050{
1051	struct pci_dev *pci_dev = efx->pci_dev;
1052	dma_addr_t dma_mask = efx->type->max_dma_mask;
1053	int rc;
1054
1055	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1056
1057	rc = pci_enable_device(pci_dev);
1058	if (rc) {
1059		netif_err(efx, probe, efx->net_dev,
1060			  "failed to enable PCI device\n");
1061		goto fail1;
1062	}
1063
1064	pci_set_master(pci_dev);
1065
1066	/* Set the PCI DMA mask.  Try all possibilities from our
1067	 * genuine mask down to 32 bits, because some architectures
1068	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1069	 * masks event though they reject 46 bit masks.
1070	 */
1071	while (dma_mask > 0x7fffffffUL) {
1072		if (pci_dma_supported(pci_dev, dma_mask) &&
1073		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1074			break;
1075		dma_mask >>= 1;
1076	}
1077	if (rc) {
1078		netif_err(efx, probe, efx->net_dev,
1079			  "could not find a suitable DMA mask\n");
1080		goto fail2;
1081	}
1082	netif_dbg(efx, probe, efx->net_dev,
1083		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1084	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1085	if (rc) {
1086		/* pci_set_consistent_dma_mask() is not *allowed* to
1087		 * fail with a mask that pci_set_dma_mask() accepted,
1088		 * but just in case...
1089		 */
1090		netif_err(efx, probe, efx->net_dev,
1091			  "failed to set consistent DMA mask\n");
1092		goto fail2;
1093	}
1094
1095	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1096	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1097	if (rc) {
1098		netif_err(efx, probe, efx->net_dev,
1099			  "request for memory BAR failed\n");
1100		rc = -EIO;
1101		goto fail3;
1102	}
1103	efx->membase = ioremap_nocache(efx->membase_phys,
1104				       efx->type->mem_map_size);
1105	if (!efx->membase) {
1106		netif_err(efx, probe, efx->net_dev,
1107			  "could not map memory BAR at %llx+%x\n",
1108			  (unsigned long long)efx->membase_phys,
1109			  efx->type->mem_map_size);
1110		rc = -ENOMEM;
1111		goto fail4;
1112	}
1113	netif_dbg(efx, probe, efx->net_dev,
1114		  "memory BAR at %llx+%x (virtual %p)\n",
1115		  (unsigned long long)efx->membase_phys,
1116		  efx->type->mem_map_size, efx->membase);
1117
1118	return 0;
1119
1120 fail4:
1121	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1122 fail3:
1123	efx->membase_phys = 0;
1124 fail2:
1125	pci_disable_device(efx->pci_dev);
1126 fail1:
1127	return rc;
1128}
1129
1130static void efx_fini_io(struct efx_nic *efx)
1131{
1132	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1133
1134	if (efx->membase) {
1135		iounmap(efx->membase);
1136		efx->membase = NULL;
1137	}
1138
1139	if (efx->membase_phys) {
1140		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1141		efx->membase_phys = 0;
1142	}
1143
1144	pci_disable_device(efx->pci_dev);
1145}
1146
1147/* Get number of channels wanted.  Each channel will have its own IRQ,
1148 * 1 RX queue and/or 2 TX queues. */
1149static int efx_wanted_channels(void)
1150{
1151	cpumask_var_t core_mask;
1152	int count;
1153	int cpu;
1154
1155	if (rss_cpus)
1156		return rss_cpus;
1157
1158	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
1159		printk(KERN_WARNING
1160		       "sfc: RSS disabled due to allocation failure\n");
1161		return 1;
1162	}
1163
1164	count = 0;
1165	for_each_online_cpu(cpu) {
1166		if (!cpumask_test_cpu(cpu, core_mask)) {
1167			++count;
1168			cpumask_or(core_mask, core_mask,
1169				   topology_core_cpumask(cpu));
1170		}
1171	}
1172
1173	free_cpumask_var(core_mask);
1174	return count;
1175}
1176
1177static int
1178efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1179{
1180#ifdef CONFIG_RFS_ACCEL
1181	int i, rc;
1182
1183	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1184	if (!efx->net_dev->rx_cpu_rmap)
1185		return -ENOMEM;
1186	for (i = 0; i < efx->n_rx_channels; i++) {
1187		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1188				      xentries[i].vector);
1189		if (rc) {
1190			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1191			efx->net_dev->rx_cpu_rmap = NULL;
1192			return rc;
1193		}
1194	}
1195#endif
1196	return 0;
1197}
1198
1199/* Probe the number and type of interrupts we are able to obtain, and
1200 * the resulting numbers of channels and RX queues.
1201 */
1202static int efx_probe_interrupts(struct efx_nic *efx)
1203{
1204	int max_channels =
1205		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1206	int rc, i;
1207
1208	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1209		struct msix_entry xentries[EFX_MAX_CHANNELS];
1210		int n_channels;
1211
1212		n_channels = efx_wanted_channels();
1213		if (separate_tx_channels)
1214			n_channels *= 2;
1215		n_channels = min(n_channels, max_channels);
1216
1217		for (i = 0; i < n_channels; i++)
1218			xentries[i].entry = i;
1219		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1220		if (rc > 0) {
1221			netif_err(efx, drv, efx->net_dev,
1222				  "WARNING: Insufficient MSI-X vectors"
1223				  " available (%d < %d).\n", rc, n_channels);
1224			netif_err(efx, drv, efx->net_dev,
1225				  "WARNING: Performance may be reduced.\n");
1226			EFX_BUG_ON_PARANOID(rc >= n_channels);
1227			n_channels = rc;
1228			rc = pci_enable_msix(efx->pci_dev, xentries,
1229					     n_channels);
1230		}
1231
1232		if (rc == 0) {
1233			efx->n_channels = n_channels;
1234			if (separate_tx_channels) {
1235				efx->n_tx_channels =
1236					max(efx->n_channels / 2, 1U);
1237				efx->n_rx_channels =
1238					max(efx->n_channels -
1239					    efx->n_tx_channels, 1U);
1240			} else {
1241				efx->n_tx_channels = efx->n_channels;
1242				efx->n_rx_channels = efx->n_channels;
1243			}
1244			rc = efx_init_rx_cpu_rmap(efx, xentries);
1245			if (rc) {
1246				pci_disable_msix(efx->pci_dev);
1247				return rc;
1248			}
1249			for (i = 0; i < n_channels; i++)
1250				efx_get_channel(efx, i)->irq =
1251					xentries[i].vector;
1252		} else {
1253			/* Fall back to single channel MSI */
1254			efx->interrupt_mode = EFX_INT_MODE_MSI;
1255			netif_err(efx, drv, efx->net_dev,
1256				  "could not enable MSI-X\n");
1257		}
1258	}
1259
1260	/* Try single interrupt MSI */
1261	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1262		efx->n_channels = 1;
1263		efx->n_rx_channels = 1;
1264		efx->n_tx_channels = 1;
1265		rc = pci_enable_msi(efx->pci_dev);
1266		if (rc == 0) {
1267			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1268		} else {
1269			netif_err(efx, drv, efx->net_dev,
1270				  "could not enable MSI\n");
1271			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1272		}
1273	}
1274
1275	/* Assume legacy interrupts */
1276	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1277		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1278		efx->n_rx_channels = 1;
1279		efx->n_tx_channels = 1;
1280		efx->legacy_irq = efx->pci_dev->irq;
1281	}
1282
1283	return 0;
1284}
1285
1286static void efx_remove_interrupts(struct efx_nic *efx)
1287{
1288	struct efx_channel *channel;
1289
1290	/* Remove MSI/MSI-X interrupts */
1291	efx_for_each_channel(channel, efx)
1292		channel->irq = 0;
1293	pci_disable_msi(efx->pci_dev);
1294	pci_disable_msix(efx->pci_dev);
1295
1296	/* Remove legacy interrupt */
1297	efx->legacy_irq = 0;
1298}
1299
1300static void efx_set_channels(struct efx_nic *efx)
1301{
1302	struct efx_channel *channel;
1303	struct efx_tx_queue *tx_queue;
1304
1305	efx->tx_channel_offset =
1306		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1307
1308	/* We need to adjust the TX queue numbers if we have separate
1309	 * RX-only and TX-only channels.
1310	 */
1311	efx_for_each_channel(channel, efx) {
1312		efx_for_each_channel_tx_queue(tx_queue, channel)
1313			tx_queue->queue -= (efx->tx_channel_offset *
1314					    EFX_TXQ_TYPES);
1315	}
1316}
1317
1318static int efx_probe_nic(struct efx_nic *efx)
1319{
1320	size_t i;
1321	int rc;
1322
1323	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1324
1325	/* Carry out hardware-type specific initialisation */
1326	rc = efx->type->probe(efx);
1327	if (rc)
1328		return rc;
1329
1330	/* Determine the number of channels and queues by trying to hook
1331	 * in MSI-X interrupts. */
1332	rc = efx_probe_interrupts(efx);
1333	if (rc)
1334		goto fail;
1335
1336	if (efx->n_channels > 1)
1337		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1338	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1339		efx->rx_indir_table[i] = i % efx->n_rx_channels;
1340
1341	efx_set_channels(efx);
1342	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1343	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1344
1345	/* Initialise the interrupt moderation settings */
1346	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1347
1348	return 0;
1349
1350fail:
1351	efx->type->remove(efx);
1352	return rc;
1353}
1354
1355static void efx_remove_nic(struct efx_nic *efx)
1356{
1357	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1358
1359	efx_remove_interrupts(efx);
1360	efx->type->remove(efx);
1361}
1362
1363/**************************************************************************
1364 *
1365 * NIC startup/shutdown
1366 *
1367 *************************************************************************/
1368
1369static int efx_probe_all(struct efx_nic *efx)
1370{
1371	int rc;
1372
1373	rc = efx_probe_nic(efx);
1374	if (rc) {
1375		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1376		goto fail1;
1377	}
1378
1379	rc = efx_probe_port(efx);
1380	if (rc) {
1381		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1382		goto fail2;
1383	}
1384
1385	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1386	rc = efx_probe_channels(efx);
1387	if (rc)
1388		goto fail3;
1389
1390	rc = efx_probe_filters(efx);
1391	if (rc) {
1392		netif_err(efx, probe, efx->net_dev,
1393			  "failed to create filter tables\n");
1394		goto fail4;
1395	}
1396
1397	return 0;
1398
1399 fail4:
1400	efx_remove_channels(efx);
1401 fail3:
1402	efx_remove_port(efx);
1403 fail2:
1404	efx_remove_nic(efx);
1405 fail1:
1406	return rc;
1407}
1408
1409/* Called after previous invocation(s) of efx_stop_all, restarts the
1410 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1411 * and ensures that the port is scheduled to be reconfigured.
1412 * This function is safe to call multiple times when the NIC is in any
1413 * state. */
1414static void efx_start_all(struct efx_nic *efx)
1415{
1416	struct efx_channel *channel;
1417
1418	EFX_ASSERT_RESET_SERIALISED(efx);
1419
1420	/* Check that it is appropriate to restart the interface. All
1421	 * of these flags are safe to read under just the rtnl lock */
1422	if (efx->port_enabled)
1423		return;
1424	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1425		return;
1426	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1427		return;
1428
1429	/* Mark the port as enabled so port reconfigurations can start, then
1430	 * restart the transmit interface early so the watchdog timer stops */
1431	efx_start_port(efx);
1432
1433	if (efx_dev_registered(efx) && netif_device_present(efx->net_dev))
1434		netif_tx_wake_all_queues(efx->net_dev);
1435
1436	efx_for_each_channel(channel, efx)
1437		efx_start_channel(channel);
1438
1439	if (efx->legacy_irq)
1440		efx->legacy_irq_enabled = true;
1441	efx_nic_enable_interrupts(efx);
1442
1443	/* Switch to event based MCDI completions after enabling interrupts.
1444	 * If a reset has been scheduled, then we need to stay in polled mode.
1445	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1446	 * reset_pending [modified from an atomic context], we instead guarantee
1447	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1448	efx_mcdi_mode_event(efx);
1449	if (efx->reset_pending)
1450		efx_mcdi_mode_poll(efx);
1451
1452	/* Start the hardware monitor if there is one. Otherwise (we're link
1453	 * event driven), we have to poll the PHY because after an event queue
1454	 * flush, we could have a missed a link state change */
1455	if (efx->type->monitor != NULL) {
1456		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1457				   efx_monitor_interval);
1458	} else {
1459		mutex_lock(&efx->mac_lock);
1460		if (efx->phy_op->poll(efx))
1461			efx_link_status_changed(efx);
1462		mutex_unlock(&efx->mac_lock);
1463	}
1464
1465	efx->type->start_stats(efx);
1466}
1467
1468/* Flush all delayed work. Should only be called when no more delayed work
1469 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1470 * since we're holding the rtnl_lock at this point. */
1471static void efx_flush_all(struct efx_nic *efx)
1472{
1473	/* Make sure the hardware monitor is stopped */
1474	cancel_delayed_work_sync(&efx->monitor_work);
1475	/* Stop scheduled port reconfigurations */
1476	cancel_work_sync(&efx->mac_work);
1477}
1478
1479/* Quiesce hardware and software without bringing the link down.
1480 * Safe to call multiple times, when the nic and interface is in any
1481 * state. The caller is guaranteed to subsequently be in a position
1482 * to modify any hardware and software state they see fit without
1483 * taking locks. */
1484static void efx_stop_all(struct efx_nic *efx)
1485{
1486	struct efx_channel *channel;
1487
1488	EFX_ASSERT_RESET_SERIALISED(efx);
1489
1490	/* port_enabled can be read safely under the rtnl lock */
1491	if (!efx->port_enabled)
1492		return;
1493
1494	efx->type->stop_stats(efx);
1495
1496	/* Switch to MCDI polling on Siena before disabling interrupts */
1497	efx_mcdi_mode_poll(efx);
1498
1499	/* Disable interrupts and wait for ISR to complete */
1500	efx_nic_disable_interrupts(efx);
1501	if (efx->legacy_irq) {
1502		synchronize_irq(efx->legacy_irq);
1503		efx->legacy_irq_enabled = false;
1504	}
1505	efx_for_each_channel(channel, efx) {
1506		if (channel->irq)
1507			synchronize_irq(channel->irq);
1508	}
1509
1510	/* Stop all NAPI processing and synchronous rx refills */
1511	efx_for_each_channel(channel, efx)
1512		efx_stop_channel(channel);
1513
1514	/* Stop all asynchronous port reconfigurations. Since all
1515	 * event processing has already been stopped, there is no
1516	 * window to loose phy events */
1517	efx_stop_port(efx);
1518
1519	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1520	efx_flush_all(efx);
1521
1522	/* Stop the kernel transmit interface late, so the watchdog
1523	 * timer isn't ticking over the flush */
1524	if (efx_dev_registered(efx)) {
1525		netif_tx_stop_all_queues(efx->net_dev);
1526		netif_tx_lock_bh(efx->net_dev);
1527		netif_tx_unlock_bh(efx->net_dev);
1528	}
1529}
1530
1531static void efx_remove_all(struct efx_nic *efx)
1532{
1533	efx_remove_filters(efx);
1534	efx_remove_channels(efx);
1535	efx_remove_port(efx);
1536	efx_remove_nic(efx);
1537}
1538
1539/**************************************************************************
1540 *
1541 * Interrupt moderation
1542 *
1543 **************************************************************************/
1544
1545static unsigned irq_mod_ticks(int usecs, int resolution)
1546{
1547	if (usecs <= 0)
1548		return 0; /* cannot receive interrupts ahead of time :-) */
1549	if (usecs < resolution)
1550		return 1; /* never round down to 0 */
1551	return usecs / resolution;
1552}
1553
1554/* Set interrupt moderation parameters */
1555void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1556			     bool rx_adaptive)
1557{
1558	struct efx_channel *channel;
1559	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1560	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1561
1562	EFX_ASSERT_RESET_SERIALISED(efx);
1563
1564	efx->irq_rx_adaptive = rx_adaptive;
1565	efx->irq_rx_moderation = rx_ticks;
1566	efx_for_each_channel(channel, efx) {
1567		if (efx_channel_has_rx_queue(channel))
1568			channel->irq_moderation = rx_ticks;
1569		else if (efx_channel_has_tx_queues(channel))
1570			channel->irq_moderation = tx_ticks;
1571	}
1572}
1573
1574/**************************************************************************
1575 *
1576 * Hardware monitor
1577 *
1578 **************************************************************************/
1579
1580/* Run periodically off the general workqueue */
1581static void efx_monitor(struct work_struct *data)
1582{
1583	struct efx_nic *efx = container_of(data, struct efx_nic,
1584					   monitor_work.work);
1585
1586	netif_vdbg(efx, timer, efx->net_dev,
1587		   "hardware monitor executing on CPU %d\n",
1588		   raw_smp_processor_id());
1589	BUG_ON(efx->type->monitor == NULL);
1590
1591	/* If the mac_lock is already held then it is likely a port
1592	 * reconfiguration is already in place, which will likely do
1593	 * most of the work of monitor() anyway. */
1594	if (mutex_trylock(&efx->mac_lock)) {
1595		if (efx->port_enabled)
1596			efx->type->monitor(efx);
1597		mutex_unlock(&efx->mac_lock);
1598	}
1599
1600	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1601			   efx_monitor_interval);
1602}
1603
1604/**************************************************************************
1605 *
1606 * ioctls
1607 *
1608 *************************************************************************/
1609
1610/* Net device ioctl
1611 * Context: process, rtnl_lock() held.
1612 */
1613static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1614{
1615	struct efx_nic *efx = netdev_priv(net_dev);
1616	struct mii_ioctl_data *data = if_mii(ifr);
1617
1618	EFX_ASSERT_RESET_SERIALISED(efx);
1619
1620	/* Convert phy_id from older PRTAD/DEVAD format */
1621	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1622	    (data->phy_id & 0xfc00) == 0x0400)
1623		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1624
1625	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1626}
1627
1628/**************************************************************************
1629 *
1630 * NAPI interface
1631 *
1632 **************************************************************************/
1633
1634static void efx_init_napi(struct efx_nic *efx)
1635{
1636	struct efx_channel *channel;
1637
1638	efx_for_each_channel(channel, efx) {
1639		channel->napi_dev = efx->net_dev;
1640		netif_napi_add(channel->napi_dev, &channel->napi_str,
1641			       efx_poll, napi_weight);
1642	}
1643}
1644
1645static void efx_fini_napi_channel(struct efx_channel *channel)
1646{
1647	if (channel->napi_dev)
1648		netif_napi_del(&channel->napi_str);
1649	channel->napi_dev = NULL;
1650}
1651
1652static void efx_fini_napi(struct efx_nic *efx)
1653{
1654	struct efx_channel *channel;
1655
1656	efx_for_each_channel(channel, efx)
1657		efx_fini_napi_channel(channel);
1658}
1659
1660/**************************************************************************
1661 *
1662 * Kernel netpoll interface
1663 *
1664 *************************************************************************/
1665
1666#ifdef CONFIG_NET_POLL_CONTROLLER
1667
1668/* Although in the common case interrupts will be disabled, this is not
1669 * guaranteed. However, all our work happens inside the NAPI callback,
1670 * so no locking is required.
1671 */
1672static void efx_netpoll(struct net_device *net_dev)
1673{
1674	struct efx_nic *efx = netdev_priv(net_dev);
1675	struct efx_channel *channel;
1676
1677	efx_for_each_channel(channel, efx)
1678		efx_schedule_channel(channel);
1679}
1680
1681#endif
1682
1683/**************************************************************************
1684 *
1685 * Kernel net device interface
1686 *
1687 *************************************************************************/
1688
1689/* Context: process, rtnl_lock() held. */
1690static int efx_net_open(struct net_device *net_dev)
1691{
1692	struct efx_nic *efx = netdev_priv(net_dev);
1693	EFX_ASSERT_RESET_SERIALISED(efx);
1694
1695	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1696		  raw_smp_processor_id());
1697
1698	if (efx->state == STATE_DISABLED)
1699		return -EIO;
1700	if (efx->phy_mode & PHY_MODE_SPECIAL)
1701		return -EBUSY;
1702	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1703		return -EIO;
1704
1705	/* Notify the kernel of the link state polled during driver load,
1706	 * before the monitor starts running */
1707	efx_link_status_changed(efx);
1708
1709	efx_start_all(efx);
1710	return 0;
1711}
1712
1713/* Context: process, rtnl_lock() held.
1714 * Note that the kernel will ignore our return code; this method
1715 * should really be a void.
1716 */
1717static int efx_net_stop(struct net_device *net_dev)
1718{
1719	struct efx_nic *efx = netdev_priv(net_dev);
1720
1721	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1722		  raw_smp_processor_id());
1723
1724	if (efx->state != STATE_DISABLED) {
1725		/* Stop the device and flush all the channels */
1726		efx_stop_all(efx);
1727		efx_fini_channels(efx);
1728		efx_init_channels(efx);
1729	}
1730
1731	return 0;
1732}
1733
1734/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1735static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1736{
1737	struct efx_nic *efx = netdev_priv(net_dev);
1738	struct efx_mac_stats *mac_stats = &efx->mac_stats;
1739
1740	spin_lock_bh(&efx->stats_lock);
1741	efx->type->update_stats(efx);
1742	spin_unlock_bh(&efx->stats_lock);
1743
1744	stats->rx_packets = mac_stats->rx_packets;
1745	stats->tx_packets = mac_stats->tx_packets;
1746	stats->rx_bytes = mac_stats->rx_bytes;
1747	stats->tx_bytes = mac_stats->tx_bytes;
1748	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1749	stats->multicast = mac_stats->rx_multicast;
1750	stats->collisions = mac_stats->tx_collision;
1751	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1752				   mac_stats->rx_length_error);
1753	stats->rx_crc_errors = mac_stats->rx_bad;
1754	stats->rx_frame_errors = mac_stats->rx_align_error;
1755	stats->rx_fifo_errors = mac_stats->rx_overflow;
1756	stats->rx_missed_errors = mac_stats->rx_missed;
1757	stats->tx_window_errors = mac_stats->tx_late_collision;
1758
1759	stats->rx_errors = (stats->rx_length_errors +
1760			    stats->rx_crc_errors +
1761			    stats->rx_frame_errors +
1762			    mac_stats->rx_symbol_error);
1763	stats->tx_errors = (stats->tx_window_errors +
1764			    mac_stats->tx_bad);
1765
1766	return stats;
1767}
1768
1769/* Context: netif_tx_lock held, BHs disabled. */
1770static void efx_watchdog(struct net_device *net_dev)
1771{
1772	struct efx_nic *efx = netdev_priv(net_dev);
1773
1774	netif_err(efx, tx_err, efx->net_dev,
1775		  "TX stuck with port_enabled=%d: resetting channels\n",
1776		  efx->port_enabled);
1777
1778	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1779}
1780
1781
1782/* Context: process, rtnl_lock() held. */
1783static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1784{
1785	struct efx_nic *efx = netdev_priv(net_dev);
1786	int rc = 0;
1787
1788	EFX_ASSERT_RESET_SERIALISED(efx);
1789
1790	if (new_mtu > EFX_MAX_MTU)
1791		return -EINVAL;
1792
1793	efx_stop_all(efx);
1794
1795	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1796
1797	efx_fini_channels(efx);
1798
1799	mutex_lock(&efx->mac_lock);
1800	/* Reconfigure the MAC before enabling the dma queues so that
1801	 * the RX buffers don't overflow */
1802	net_dev->mtu = new_mtu;
1803	efx->mac_op->reconfigure(efx);
1804	mutex_unlock(&efx->mac_lock);
1805
1806	efx_init_channels(efx);
1807
1808	efx_start_all(efx);
1809	return rc;
1810}
1811
1812static int efx_set_mac_address(struct net_device *net_dev, void *data)
1813{
1814	struct efx_nic *efx = netdev_priv(net_dev);
1815	struct sockaddr *addr = data;
1816	char *new_addr = addr->sa_data;
1817
1818	EFX_ASSERT_RESET_SERIALISED(efx);
1819
1820	if (!is_valid_ether_addr(new_addr)) {
1821		netif_err(efx, drv, efx->net_dev,
1822			  "invalid ethernet MAC address requested: %pM\n",
1823			  new_addr);
1824		return -EINVAL;
1825	}
1826
1827	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1828
1829	/* Reconfigure the MAC */
1830	mutex_lock(&efx->mac_lock);
1831	efx->mac_op->reconfigure(efx);
1832	mutex_unlock(&efx->mac_lock);
1833
1834	return 0;
1835}
1836
1837/* Context: netif_addr_lock held, BHs disabled. */
1838static void efx_set_multicast_list(struct net_device *net_dev)
1839{
1840	struct efx_nic *efx = netdev_priv(net_dev);
1841	struct netdev_hw_addr *ha;
1842	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1843	u32 crc;
1844	int bit;
1845
1846	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1847
1848	/* Build multicast hash table */
1849	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1850		memset(mc_hash, 0xff, sizeof(*mc_hash));
1851	} else {
1852		memset(mc_hash, 0x00, sizeof(*mc_hash));
1853		netdev_for_each_mc_addr(ha, net_dev) {
1854			crc = ether_crc_le(ETH_ALEN, ha->addr);
1855			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1856			set_bit_le(bit, mc_hash->byte);
1857		}
1858
1859		/* Broadcast packets go through the multicast hash filter.
1860		 * ether_crc_le() of the broadcast address is 0xbe2612ff
1861		 * so we always add bit 0xff to the mask.
1862		 */
1863		set_bit_le(0xff, mc_hash->byte);
1864	}
1865
1866	if (efx->port_enabled)
1867		queue_work(efx->workqueue, &efx->mac_work);
1868	/* Otherwise efx_start_port() will do this */
1869}
1870
1871static int efx_set_features(struct net_device *net_dev, u32 data)
1872{
1873	struct efx_nic *efx = netdev_priv(net_dev);
1874
1875	/* If disabling RX n-tuple filtering, clear existing filters */
1876	if (net_dev->features & ~data & NETIF_F_NTUPLE)
1877		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1878
1879	return 0;
1880}
1881
1882static const struct net_device_ops efx_netdev_ops = {
1883	.ndo_open		= efx_net_open,
1884	.ndo_stop		= efx_net_stop,
1885	.ndo_get_stats64	= efx_net_stats,
1886	.ndo_tx_timeout		= efx_watchdog,
1887	.ndo_start_xmit		= efx_hard_start_xmit,
1888	.ndo_validate_addr	= eth_validate_addr,
1889	.ndo_do_ioctl		= efx_ioctl,
1890	.ndo_change_mtu		= efx_change_mtu,
1891	.ndo_set_mac_address	= efx_set_mac_address,
1892	.ndo_set_multicast_list = efx_set_multicast_list,
1893	.ndo_set_features	= efx_set_features,
1894#ifdef CONFIG_NET_POLL_CONTROLLER
1895	.ndo_poll_controller = efx_netpoll,
1896#endif
1897	.ndo_setup_tc		= efx_setup_tc,
1898#ifdef CONFIG_RFS_ACCEL
1899	.ndo_rx_flow_steer	= efx_filter_rfs,
1900#endif
1901};
1902
1903static void efx_update_name(struct efx_nic *efx)
1904{
1905	strcpy(efx->name, efx->net_dev->name);
1906	efx_mtd_rename(efx);
1907	efx_set_channel_names(efx);
1908}
1909
1910static int efx_netdev_event(struct notifier_block *this,
1911			    unsigned long event, void *ptr)
1912{
1913	struct net_device *net_dev = ptr;
1914
1915	if (net_dev->netdev_ops == &efx_netdev_ops &&
1916	    event == NETDEV_CHANGENAME)
1917		efx_update_name(netdev_priv(net_dev));
1918
1919	return NOTIFY_DONE;
1920}
1921
1922static struct notifier_block efx_netdev_notifier = {
1923	.notifier_call = efx_netdev_event,
1924};
1925
1926static ssize_t
1927show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1928{
1929	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1930	return sprintf(buf, "%d\n", efx->phy_type);
1931}
1932static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1933
1934static int efx_register_netdev(struct efx_nic *efx)
1935{
1936	struct net_device *net_dev = efx->net_dev;
1937	struct efx_channel *channel;
1938	int rc;
1939
1940	net_dev->watchdog_timeo = 5 * HZ;
1941	net_dev->irq = efx->pci_dev->irq;
1942	net_dev->netdev_ops = &efx_netdev_ops;
1943	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1944
1945	/* Clear MAC statistics */
1946	efx->mac_op->update_stats(efx);
1947	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1948
1949	rtnl_lock();
1950
1951	rc = dev_alloc_name(net_dev, net_dev->name);
1952	if (rc < 0)
1953		goto fail_locked;
1954	efx_update_name(efx);
1955
1956	rc = register_netdevice(net_dev);
1957	if (rc)
1958		goto fail_locked;
1959
1960	efx_for_each_channel(channel, efx) {
1961		struct efx_tx_queue *tx_queue;
1962		efx_for_each_channel_tx_queue(tx_queue, channel)
1963			efx_init_tx_queue_core_txq(tx_queue);
1964	}
1965
1966	/* Always start with carrier off; PHY events will detect the link */
1967	netif_carrier_off(efx->net_dev);
1968
1969	rtnl_unlock();
1970
1971	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1972	if (rc) {
1973		netif_err(efx, drv, efx->net_dev,
1974			  "failed to init net dev attributes\n");
1975		goto fail_registered;
1976	}
1977
1978	return 0;
1979
1980fail_locked:
1981	rtnl_unlock();
1982	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1983	return rc;
1984
1985fail_registered:
1986	unregister_netdev(net_dev);
1987	return rc;
1988}
1989
1990static void efx_unregister_netdev(struct efx_nic *efx)
1991{
1992	struct efx_channel *channel;
1993	struct efx_tx_queue *tx_queue;
1994
1995	if (!efx->net_dev)
1996		return;
1997
1998	BUG_ON(netdev_priv(efx->net_dev) != efx);
1999
2000	/* Free up any skbs still remaining. This has to happen before
2001	 * we try to unregister the netdev as running their destructors
2002	 * may be needed to get the device ref. count to 0. */
2003	efx_for_each_channel(channel, efx) {
2004		efx_for_each_channel_tx_queue(tx_queue, channel)
2005			efx_release_tx_buffers(tx_queue);
2006	}
2007
2008	if (efx_dev_registered(efx)) {
2009		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2010		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2011		unregister_netdev(efx->net_dev);
2012	}
2013}
2014
2015/**************************************************************************
2016 *
2017 * Device reset and suspend
2018 *
2019 **************************************************************************/
2020
2021/* Tears down the entire software state and most of the hardware state
2022 * before reset.  */
2023void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2024{
2025	EFX_ASSERT_RESET_SERIALISED(efx);
2026
2027	efx_stop_all(efx);
2028	mutex_lock(&efx->mac_lock);
2029
2030	efx_fini_channels(efx);
2031	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2032		efx->phy_op->fini(efx);
2033	efx->type->fini(efx);
2034}
2035
2036/* This function will always ensure that the locks acquired in
2037 * efx_reset_down() are released. A failure return code indicates
2038 * that we were unable to reinitialise the hardware, and the
2039 * driver should be disabled. If ok is false, then the rx and tx
2040 * engines are not restarted, pending a RESET_DISABLE. */
2041int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2042{
2043	int rc;
2044
2045	EFX_ASSERT_RESET_SERIALISED(efx);
2046
2047	rc = efx->type->init(efx);
2048	if (rc) {
2049		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2050		goto fail;
2051	}
2052
2053	if (!ok)
2054		goto fail;
2055
2056	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2057		rc = efx->phy_op->init(efx);
2058		if (rc)
2059			goto fail;
2060		if (efx->phy_op->reconfigure(efx))
2061			netif_err(efx, drv, efx->net_dev,
2062				  "could not restore PHY settings\n");
2063	}
2064
2065	efx->mac_op->reconfigure(efx);
2066
2067	efx_init_channels(efx);
2068	efx_restore_filters(efx);
2069
2070	mutex_unlock(&efx->mac_lock);
2071
2072	efx_start_all(efx);
2073
2074	return 0;
2075
2076fail:
2077	efx->port_initialized = false;
2078
2079	mutex_unlock(&efx->mac_lock);
2080
2081	return rc;
2082}
2083
2084/* Reset the NIC using the specified method.  Note that the reset may
2085 * fail, in which case the card will be left in an unusable state.
2086 *
2087 * Caller must hold the rtnl_lock.
2088 */
2089int efx_reset(struct efx_nic *efx, enum reset_type method)
2090{
2091	int rc, rc2;
2092	bool disabled;
2093
2094	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2095		   RESET_TYPE(method));
2096
2097	netif_device_detach(efx->net_dev);
2098	efx_reset_down(efx, method);
2099
2100	rc = efx->type->reset(efx, method);
2101	if (rc) {
2102		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2103		goto out;
2104	}
2105
2106	/* Clear flags for the scopes we covered.  We assume the NIC and
2107	 * driver are now quiescent so that there is no race here.
2108	 */
2109	efx->reset_pending &= -(1 << (method + 1));
2110
2111	/* Reinitialise bus-mastering, which may have been turned off before
2112	 * the reset was scheduled. This is still appropriate, even in the
2113	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2114	 * can respond to requests. */
2115	pci_set_master(efx->pci_dev);
2116
2117out:
2118	/* Leave device stopped if necessary */
2119	disabled = rc || method == RESET_TYPE_DISABLE;
2120	rc2 = efx_reset_up(efx, method, !disabled);
2121	if (rc2) {
2122		disabled = true;
2123		if (!rc)
2124			rc = rc2;
2125	}
2126
2127	if (disabled) {
2128		dev_close(efx->net_dev);
2129		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2130		efx->state = STATE_DISABLED;
2131	} else {
2132		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2133		netif_device_attach(efx->net_dev);
2134	}
2135	return rc;
2136}
2137
2138/* The worker thread exists so that code that cannot sleep can
2139 * schedule a reset for later.
2140 */
2141static void efx_reset_work(struct work_struct *data)
2142{
2143	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2144	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2145
2146	if (!pending)
2147		return;
2148
2149	/* If we're not RUNNING then don't reset. Leave the reset_pending
2150	 * flags set so that efx_pci_probe_main will be retried */
2151	if (efx->state != STATE_RUNNING) {
2152		netif_info(efx, drv, efx->net_dev,
2153			   "scheduled reset quenched. NIC not RUNNING\n");
2154		return;
2155	}
2156
2157	rtnl_lock();
2158	(void)efx_reset(efx, fls(pending) - 1);
2159	rtnl_unlock();
2160}
2161
2162void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2163{
2164	enum reset_type method;
2165
2166	switch (type) {
2167	case RESET_TYPE_INVISIBLE:
2168	case RESET_TYPE_ALL:
2169	case RESET_TYPE_WORLD:
2170	case RESET_TYPE_DISABLE:
2171		method = type;
2172		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2173			  RESET_TYPE(method));
2174		break;
2175	default:
2176		method = efx->type->map_reset_reason(type);
2177		netif_dbg(efx, drv, efx->net_dev,
2178			  "scheduling %s reset for %s\n",
2179			  RESET_TYPE(method), RESET_TYPE(type));
2180		break;
2181	}
2182
2183	set_bit(method, &efx->reset_pending);
2184
2185	/* efx_process_channel() will no longer read events once a
2186	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2187	efx_mcdi_mode_poll(efx);
2188
2189	queue_work(reset_workqueue, &efx->reset_work);
2190}
2191
2192/**************************************************************************
2193 *
2194 * List of NICs we support
2195 *
2196 **************************************************************************/
2197
2198/* PCI device ID table */
2199static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2200	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
2201	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2202	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
2203	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2204	{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
2205	 .driver_data = (unsigned long) &siena_a0_nic_type},
2206	{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
2207	 .driver_data = (unsigned long) &siena_a0_nic_type},
2208	{0}			/* end of list */
2209};
2210
2211/**************************************************************************
2212 *
2213 * Dummy PHY/MAC operations
2214 *
2215 * Can be used for some unimplemented operations
2216 * Needed so all function pointers are valid and do not have to be tested
2217 * before use
2218 *
2219 **************************************************************************/
2220int efx_port_dummy_op_int(struct efx_nic *efx)
2221{
2222	return 0;
2223}
2224void efx_port_dummy_op_void(struct efx_nic *efx) {}
2225
2226static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2227{
2228	return false;
2229}
2230
2231static const struct efx_phy_operations efx_dummy_phy_operations = {
2232	.init		 = efx_port_dummy_op_int,
2233	.reconfigure	 = efx_port_dummy_op_int,
2234	.poll		 = efx_port_dummy_op_poll,
2235	.fini		 = efx_port_dummy_op_void,
2236};
2237
2238/**************************************************************************
2239 *
2240 * Data housekeeping
2241 *
2242 **************************************************************************/
2243
2244/* This zeroes out and then fills in the invariants in a struct
2245 * efx_nic (including all sub-structures).
2246 */
2247static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2248			   struct pci_dev *pci_dev, struct net_device *net_dev)
2249{
2250	int i;
2251
2252	/* Initialise common structures */
2253	memset(efx, 0, sizeof(*efx));
2254	spin_lock_init(&efx->biu_lock);
2255#ifdef CONFIG_SFC_MTD
2256	INIT_LIST_HEAD(&efx->mtd_list);
2257#endif
2258	INIT_WORK(&efx->reset_work, efx_reset_work);
2259	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2260	efx->pci_dev = pci_dev;
2261	efx->msg_enable = debug;
2262	efx->state = STATE_INIT;
2263	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2264
2265	efx->net_dev = net_dev;
2266	spin_lock_init(&efx->stats_lock);
2267	mutex_init(&efx->mac_lock);
2268	efx->mac_op = type->default_mac_ops;
2269	efx->phy_op = &efx_dummy_phy_operations;
2270	efx->mdio.dev = net_dev;
2271	INIT_WORK(&efx->mac_work, efx_mac_work);
2272
2273	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2274		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2275		if (!efx->channel[i])
2276			goto fail;
2277	}
2278
2279	efx->type = type;
2280
2281	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2282
2283	/* Higher numbered interrupt modes are less capable! */
2284	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2285				  interrupt_mode);
2286
2287	/* Would be good to use the net_dev name, but we're too early */
2288	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2289		 pci_name(pci_dev));
2290	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2291	if (!efx->workqueue)
2292		goto fail;
2293
2294	return 0;
2295
2296fail:
2297	efx_fini_struct(efx);
2298	return -ENOMEM;
2299}
2300
2301static void efx_fini_struct(struct efx_nic *efx)
2302{
2303	int i;
2304
2305	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2306		kfree(efx->channel[i]);
2307
2308	if (efx->workqueue) {
2309		destroy_workqueue(efx->workqueue);
2310		efx->workqueue = NULL;
2311	}
2312}
2313
2314/**************************************************************************
2315 *
2316 * PCI interface
2317 *
2318 **************************************************************************/
2319
2320/* Main body of final NIC shutdown code
2321 * This is called only at module unload (or hotplug removal).
2322 */
2323static void efx_pci_remove_main(struct efx_nic *efx)
2324{
2325#ifdef CONFIG_RFS_ACCEL
2326	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2327	efx->net_dev->rx_cpu_rmap = NULL;
2328#endif
2329	efx_nic_fini_interrupt(efx);
2330	efx_fini_channels(efx);
2331	efx_fini_port(efx);
2332	efx->type->fini(efx);
2333	efx_fini_napi(efx);
2334	efx_remove_all(efx);
2335}
2336
2337/* Final NIC shutdown
2338 * This is called only at module unload (or hotplug removal).
2339 */
2340static void efx_pci_remove(struct pci_dev *pci_dev)
2341{
2342	struct efx_nic *efx;
2343
2344	efx = pci_get_drvdata(pci_dev);
2345	if (!efx)
2346		return;
2347
2348	/* Mark the NIC as fini, then stop the interface */
2349	rtnl_lock();
2350	efx->state = STATE_FINI;
2351	dev_close(efx->net_dev);
2352
2353	/* Allow any queued efx_resets() to complete */
2354	rtnl_unlock();
2355
2356	efx_unregister_netdev(efx);
2357
2358	efx_mtd_remove(efx);
2359
2360	/* Wait for any scheduled resets to complete. No more will be
2361	 * scheduled from this point because efx_stop_all() has been
2362	 * called, we are no longer registered with driverlink, and
2363	 * the net_device's have been removed. */
2364	cancel_work_sync(&efx->reset_work);
2365
2366	efx_pci_remove_main(efx);
2367
2368	efx_fini_io(efx);
2369	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2370
2371	pci_set_drvdata(pci_dev, NULL);
2372	efx_fini_struct(efx);
2373	free_netdev(efx->net_dev);
2374};
2375
2376/* Main body of NIC initialisation
2377 * This is called at module load (or hotplug insertion, theoretically).
2378 */
2379static int efx_pci_probe_main(struct efx_nic *efx)
2380{
2381	int rc;
2382
2383	/* Do start-of-day initialisation */
2384	rc = efx_probe_all(efx);
2385	if (rc)
2386		goto fail1;
2387
2388	efx_init_napi(efx);
2389
2390	rc = efx->type->init(efx);
2391	if (rc) {
2392		netif_err(efx, probe, efx->net_dev,
2393			  "failed to initialise NIC\n");
2394		goto fail3;
2395	}
2396
2397	rc = efx_init_port(efx);
2398	if (rc) {
2399		netif_err(efx, probe, efx->net_dev,
2400			  "failed to initialise port\n");
2401		goto fail4;
2402	}
2403
2404	efx_init_channels(efx);
2405
2406	rc = efx_nic_init_interrupt(efx);
2407	if (rc)
2408		goto fail5;
2409
2410	return 0;
2411
2412 fail5:
2413	efx_fini_channels(efx);
2414	efx_fini_port(efx);
2415 fail4:
2416	efx->type->fini(efx);
2417 fail3:
2418	efx_fini_napi(efx);
2419	efx_remove_all(efx);
2420 fail1:
2421	return rc;
2422}
2423
2424/* NIC initialisation
2425 *
2426 * This is called at module load (or hotplug insertion,
2427 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
2428 * sets up and registers the network devices with the kernel and hooks
2429 * the interrupt service routine.  It does not prepare the device for
2430 * transmission; this is left to the first time one of the network
2431 * interfaces is brought up (i.e. efx_net_open).
2432 */
2433static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2434				   const struct pci_device_id *entry)
2435{
2436	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2437	struct net_device *net_dev;
2438	struct efx_nic *efx;
2439	int i, rc;
2440
2441	/* Allocate and initialise a struct net_device and struct efx_nic */
2442	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2443				     EFX_MAX_RX_QUEUES);
2444	if (!net_dev)
2445		return -ENOMEM;
2446	net_dev->features |= (type->offload_features | NETIF_F_SG |
2447			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2448			      NETIF_F_RXCSUM);
2449	if (type->offload_features & NETIF_F_V6_CSUM)
2450		net_dev->features |= NETIF_F_TSO6;
2451	/* Mask for features that also apply to VLAN devices */
2452	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2453				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2454				   NETIF_F_RXCSUM);
2455	/* All offloads can be toggled */
2456	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2457	efx = netdev_priv(net_dev);
2458	pci_set_drvdata(pci_dev, efx);
2459	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2460	rc = efx_init_struct(efx, type, pci_dev, net_dev);
2461	if (rc)
2462		goto fail1;
2463
2464	netif_info(efx, probe, efx->net_dev,
2465		   "Solarflare NIC detected\n");
2466
2467	/* Set up basic I/O (BAR mappings etc) */
2468	rc = efx_init_io(efx);
2469	if (rc)
2470		goto fail2;
2471
2472	/* No serialisation is required with the reset path because
2473	 * we're in STATE_INIT. */
2474	for (i = 0; i < 5; i++) {
2475		rc = efx_pci_probe_main(efx);
2476
2477		/* Serialise against efx_reset(). No more resets will be
2478		 * scheduled since efx_stop_all() has been called, and we
2479		 * have not and never have been registered with either
2480		 * the rtnetlink or driverlink layers. */
2481		cancel_work_sync(&efx->reset_work);
2482
2483		if (rc == 0) {
2484			if (efx->reset_pending) {
2485				/* If there was a scheduled reset during
2486				 * probe, the NIC is probably hosed anyway */
2487				efx_pci_remove_main(efx);
2488				rc = -EIO;
2489			} else {
2490				break;
2491			}
2492		}
2493
2494		/* Retry if a recoverably reset event has been scheduled */
2495		if (efx->reset_pending &
2496		    ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
2497		    !efx->reset_pending)
2498			goto fail3;
2499
2500		efx->reset_pending = 0;
2501	}
2502
2503	if (rc) {
2504		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2505		goto fail4;
2506	}
2507
2508	/* Switch to the running state before we expose the device to the OS,
2509	 * so that dev_open()|efx_start_all() will actually start the device */
2510	efx->state = STATE_RUNNING;
2511
2512	rc = efx_register_netdev(efx);
2513	if (rc)
2514		goto fail5;
2515
2516	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2517
2518	rtnl_lock();
2519	efx_mtd_probe(efx); /* allowed to fail */
2520	rtnl_unlock();
2521	return 0;
2522
2523 fail5:
2524	efx_pci_remove_main(efx);
2525 fail4:
2526 fail3:
2527	efx_fini_io(efx);
2528 fail2:
2529	efx_fini_struct(efx);
2530 fail1:
2531	WARN_ON(rc > 0);
2532	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2533	free_netdev(net_dev);
2534	return rc;
2535}
2536
2537static int efx_pm_freeze(struct device *dev)
2538{
2539	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2540
2541	efx->state = STATE_FINI;
2542
2543	netif_device_detach(efx->net_dev);
2544
2545	efx_stop_all(efx);
2546	efx_fini_channels(efx);
2547
2548	return 0;
2549}
2550
2551static int efx_pm_thaw(struct device *dev)
2552{
2553	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2554
2555	efx->state = STATE_INIT;
2556
2557	efx_init_channels(efx);
2558
2559	mutex_lock(&efx->mac_lock);
2560	efx->phy_op->reconfigure(efx);
2561	mutex_unlock(&efx->mac_lock);
2562
2563	efx_start_all(efx);
2564
2565	netif_device_attach(efx->net_dev);
2566
2567	efx->state = STATE_RUNNING;
2568
2569	efx->type->resume_wol(efx);
2570
2571	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2572	queue_work(reset_workqueue, &efx->reset_work);
2573
2574	return 0;
2575}
2576
2577static int efx_pm_poweroff(struct device *dev)
2578{
2579	struct pci_dev *pci_dev = to_pci_dev(dev);
2580	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2581
2582	efx->type->fini(efx);
2583
2584	efx->reset_pending = 0;
2585
2586	pci_save_state(pci_dev);
2587	return pci_set_power_state(pci_dev, PCI_D3hot);
2588}
2589
2590/* Used for both resume and restore */
2591static int efx_pm_resume(struct device *dev)
2592{
2593	struct pci_dev *pci_dev = to_pci_dev(dev);
2594	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2595	int rc;
2596
2597	rc = pci_set_power_state(pci_dev, PCI_D0);
2598	if (rc)
2599		return rc;
2600	pci_restore_state(pci_dev);
2601	rc = pci_enable_device(pci_dev);
2602	if (rc)
2603		return rc;
2604	pci_set_master(efx->pci_dev);
2605	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2606	if (rc)
2607		return rc;
2608	rc = efx->type->init(efx);
2609	if (rc)
2610		return rc;
2611	efx_pm_thaw(dev);
2612	return 0;
2613}
2614
2615static int efx_pm_suspend(struct device *dev)
2616{
2617	int rc;
2618
2619	efx_pm_freeze(dev);
2620	rc = efx_pm_poweroff(dev);
2621	if (rc)
2622		efx_pm_resume(dev);
2623	return rc;
2624}
2625
2626static struct dev_pm_ops efx_pm_ops = {
2627	.suspend	= efx_pm_suspend,
2628	.resume		= efx_pm_resume,
2629	.freeze		= efx_pm_freeze,
2630	.thaw		= efx_pm_thaw,
2631	.poweroff	= efx_pm_poweroff,
2632	.restore	= efx_pm_resume,
2633};
2634
2635static struct pci_driver efx_pci_driver = {
2636	.name		= KBUILD_MODNAME,
2637	.id_table	= efx_pci_table,
2638	.probe		= efx_pci_probe,
2639	.remove		= efx_pci_remove,
2640	.driver.pm	= &efx_pm_ops,
2641};
2642
2643/**************************************************************************
2644 *
2645 * Kernel module interface
2646 *
2647 *************************************************************************/
2648
2649module_param(interrupt_mode, uint, 0444);
2650MODULE_PARM_DESC(interrupt_mode,
2651		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2652
2653static int __init efx_init_module(void)
2654{
2655	int rc;
2656
2657	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2658
2659	rc = register_netdevice_notifier(&efx_netdev_notifier);
2660	if (rc)
2661		goto err_notifier;
2662
2663	reset_workqueue = create_singlethread_workqueue("sfc_reset");
2664	if (!reset_workqueue) {
2665		rc = -ENOMEM;
2666		goto err_reset;
2667	}
2668
2669	rc = pci_register_driver(&efx_pci_driver);
2670	if (rc < 0)
2671		goto err_pci;
2672
2673	return 0;
2674
2675 err_pci:
2676	destroy_workqueue(reset_workqueue);
2677 err_reset:
2678	unregister_netdevice_notifier(&efx_netdev_notifier);
2679 err_notifier:
2680	return rc;
2681}
2682
2683static void __exit efx_exit_module(void)
2684{
2685	printk(KERN_INFO "Solarflare NET driver unloading\n");
2686
2687	pci_unregister_driver(&efx_pci_driver);
2688	destroy_workqueue(reset_workqueue);
2689	unregister_netdevice_notifier(&efx_netdev_notifier);
2690
2691}
2692
2693module_init(efx_init_module);
2694module_exit(efx_exit_module);
2695
2696MODULE_AUTHOR("Solarflare Communications and "
2697	      "Michael Brown <mbrown@fensystems.co.uk>");
2698MODULE_DESCRIPTION("Solarflare Communications network driver");
2699MODULE_LICENSE("GPL");
2700MODULE_DEVICE_TABLE(pci, efx_pci_table);