Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/module.h>
  29#include <linux/types.h>
  30#include <linux/init.h>
  31#include <linux/bitops.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pagemap.h>
  34#include <linux/netdevice.h>
  35#include <linux/ipv6.h>
  36#include <linux/slab.h>
  37#include <net/checksum.h>
  38#include <net/ip6_checksum.h>
  39#include <linux/net_tstamp.h>
  40#include <linux/mii.h>
  41#include <linux/ethtool.h>
  42#include <linux/if_vlan.h>
  43#include <linux/pci.h>
  44#include <linux/pci-aspm.h>
  45#include <linux/delay.h>
  46#include <linux/interrupt.h>
  47#include <linux/if_ether.h>
  48#include <linux/aer.h>
  49#include <linux/prefetch.h>
  50#ifdef CONFIG_IGB_DCA
  51#include <linux/dca.h>
  52#endif
  53#include "igb.h"
  54
  55#define MAJ 3
  56#define MIN 0
  57#define BUILD 6
  58#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  59__stringify(BUILD) "-k"
  60char igb_driver_name[] = "igb";
  61char igb_driver_version[] = DRV_VERSION;
  62static const char igb_driver_string[] =
  63				"Intel(R) Gigabit Ethernet Network Driver";
  64static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
  65
  66static const struct e1000_info *igb_info_tbl[] = {
  67	[board_82575] = &e1000_82575_info,
  68};
  69
  70static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
  71	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  72	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  73	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  74	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  75	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
  92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
  93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
  94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
  95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
  96	/* required last entry */
  97	{0, }
  98};
  99
 100MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 101
 102void igb_reset(struct igb_adapter *);
 103static int igb_setup_all_tx_resources(struct igb_adapter *);
 104static int igb_setup_all_rx_resources(struct igb_adapter *);
 105static void igb_free_all_tx_resources(struct igb_adapter *);
 106static void igb_free_all_rx_resources(struct igb_adapter *);
 107static void igb_setup_mrqc(struct igb_adapter *);
 108static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 109static void __devexit igb_remove(struct pci_dev *pdev);
 110static void igb_init_hw_timer(struct igb_adapter *adapter);
 111static int igb_sw_init(struct igb_adapter *);
 112static int igb_open(struct net_device *);
 113static int igb_close(struct net_device *);
 114static void igb_configure_tx(struct igb_adapter *);
 115static void igb_configure_rx(struct igb_adapter *);
 116static void igb_clean_all_tx_rings(struct igb_adapter *);
 117static void igb_clean_all_rx_rings(struct igb_adapter *);
 118static void igb_clean_tx_ring(struct igb_ring *);
 119static void igb_clean_rx_ring(struct igb_ring *);
 120static void igb_set_rx_mode(struct net_device *);
 121static void igb_update_phy_info(unsigned long);
 122static void igb_watchdog(unsigned long);
 123static void igb_watchdog_task(struct work_struct *);
 124static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
 125static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
 126						 struct rtnl_link_stats64 *stats);
 127static int igb_change_mtu(struct net_device *, int);
 128static int igb_set_mac(struct net_device *, void *);
 129static void igb_set_uta(struct igb_adapter *adapter);
 130static irqreturn_t igb_intr(int irq, void *);
 131static irqreturn_t igb_intr_msi(int irq, void *);
 132static irqreturn_t igb_msix_other(int irq, void *);
 133static irqreturn_t igb_msix_ring(int irq, void *);
 134#ifdef CONFIG_IGB_DCA
 135static void igb_update_dca(struct igb_q_vector *);
 136static void igb_setup_dca(struct igb_adapter *);
 137#endif /* CONFIG_IGB_DCA */
 138static bool igb_clean_tx_irq(struct igb_q_vector *);
 139static int igb_poll(struct napi_struct *, int);
 140static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
 141static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 142static void igb_tx_timeout(struct net_device *);
 143static void igb_reset_task(struct work_struct *);
 144static void igb_vlan_mode(struct net_device *netdev, u32 features);
 145static void igb_vlan_rx_add_vid(struct net_device *, u16);
 146static void igb_vlan_rx_kill_vid(struct net_device *, u16);
 147static void igb_restore_vlan(struct igb_adapter *);
 148static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
 149static void igb_ping_all_vfs(struct igb_adapter *);
 150static void igb_msg_task(struct igb_adapter *);
 151static void igb_vmm_control(struct igb_adapter *);
 152static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 153static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 154static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 155static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 156			       int vf, u16 vlan, u8 qos);
 157static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
 158static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 159				 struct ifla_vf_info *ivi);
 160static void igb_check_vf_rate_limit(struct igb_adapter *);
 161
 162#ifdef CONFIG_PM
 163static int igb_suspend(struct pci_dev *, pm_message_t);
 164static int igb_resume(struct pci_dev *);
 165#endif
 166static void igb_shutdown(struct pci_dev *);
 167#ifdef CONFIG_IGB_DCA
 168static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 169static struct notifier_block dca_notifier = {
 170	.notifier_call	= igb_notify_dca,
 171	.next		= NULL,
 172	.priority	= 0
 173};
 174#endif
 175#ifdef CONFIG_NET_POLL_CONTROLLER
 176/* for netdump / net console */
 177static void igb_netpoll(struct net_device *);
 178#endif
 179#ifdef CONFIG_PCI_IOV
 180static unsigned int max_vfs = 0;
 181module_param(max_vfs, uint, 0);
 182MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
 183                 "per physical function");
 184#endif /* CONFIG_PCI_IOV */
 185
 186static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 187		     pci_channel_state_t);
 188static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 189static void igb_io_resume(struct pci_dev *);
 190
 191static struct pci_error_handlers igb_err_handler = {
 192	.error_detected = igb_io_error_detected,
 193	.slot_reset = igb_io_slot_reset,
 194	.resume = igb_io_resume,
 195};
 196
 197
 198static struct pci_driver igb_driver = {
 199	.name     = igb_driver_name,
 200	.id_table = igb_pci_tbl,
 201	.probe    = igb_probe,
 202	.remove   = __devexit_p(igb_remove),
 203#ifdef CONFIG_PM
 204	/* Power Management Hooks */
 205	.suspend  = igb_suspend,
 206	.resume   = igb_resume,
 207#endif
 208	.shutdown = igb_shutdown,
 209	.err_handler = &igb_err_handler
 210};
 211
 212MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 213MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 214MODULE_LICENSE("GPL");
 215MODULE_VERSION(DRV_VERSION);
 216
 217struct igb_reg_info {
 218	u32 ofs;
 219	char *name;
 220};
 221
 222static const struct igb_reg_info igb_reg_info_tbl[] = {
 223
 224	/* General Registers */
 225	{E1000_CTRL, "CTRL"},
 226	{E1000_STATUS, "STATUS"},
 227	{E1000_CTRL_EXT, "CTRL_EXT"},
 228
 229	/* Interrupt Registers */
 230	{E1000_ICR, "ICR"},
 231
 232	/* RX Registers */
 233	{E1000_RCTL, "RCTL"},
 234	{E1000_RDLEN(0), "RDLEN"},
 235	{E1000_RDH(0), "RDH"},
 236	{E1000_RDT(0), "RDT"},
 237	{E1000_RXDCTL(0), "RXDCTL"},
 238	{E1000_RDBAL(0), "RDBAL"},
 239	{E1000_RDBAH(0), "RDBAH"},
 240
 241	/* TX Registers */
 242	{E1000_TCTL, "TCTL"},
 243	{E1000_TDBAL(0), "TDBAL"},
 244	{E1000_TDBAH(0), "TDBAH"},
 245	{E1000_TDLEN(0), "TDLEN"},
 246	{E1000_TDH(0), "TDH"},
 247	{E1000_TDT(0), "TDT"},
 248	{E1000_TXDCTL(0), "TXDCTL"},
 249	{E1000_TDFH, "TDFH"},
 250	{E1000_TDFT, "TDFT"},
 251	{E1000_TDFHS, "TDFHS"},
 252	{E1000_TDFPC, "TDFPC"},
 253
 254	/* List Terminator */
 255	{}
 256};
 257
 258/*
 259 * igb_regdump - register printout routine
 260 */
 261static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 262{
 263	int n = 0;
 264	char rname[16];
 265	u32 regs[8];
 266
 267	switch (reginfo->ofs) {
 268	case E1000_RDLEN(0):
 269		for (n = 0; n < 4; n++)
 270			regs[n] = rd32(E1000_RDLEN(n));
 271		break;
 272	case E1000_RDH(0):
 273		for (n = 0; n < 4; n++)
 274			regs[n] = rd32(E1000_RDH(n));
 275		break;
 276	case E1000_RDT(0):
 277		for (n = 0; n < 4; n++)
 278			regs[n] = rd32(E1000_RDT(n));
 279		break;
 280	case E1000_RXDCTL(0):
 281		for (n = 0; n < 4; n++)
 282			regs[n] = rd32(E1000_RXDCTL(n));
 283		break;
 284	case E1000_RDBAL(0):
 285		for (n = 0; n < 4; n++)
 286			regs[n] = rd32(E1000_RDBAL(n));
 287		break;
 288	case E1000_RDBAH(0):
 289		for (n = 0; n < 4; n++)
 290			regs[n] = rd32(E1000_RDBAH(n));
 291		break;
 292	case E1000_TDBAL(0):
 293		for (n = 0; n < 4; n++)
 294			regs[n] = rd32(E1000_RDBAL(n));
 295		break;
 296	case E1000_TDBAH(0):
 297		for (n = 0; n < 4; n++)
 298			regs[n] = rd32(E1000_TDBAH(n));
 299		break;
 300	case E1000_TDLEN(0):
 301		for (n = 0; n < 4; n++)
 302			regs[n] = rd32(E1000_TDLEN(n));
 303		break;
 304	case E1000_TDH(0):
 305		for (n = 0; n < 4; n++)
 306			regs[n] = rd32(E1000_TDH(n));
 307		break;
 308	case E1000_TDT(0):
 309		for (n = 0; n < 4; n++)
 310			regs[n] = rd32(E1000_TDT(n));
 311		break;
 312	case E1000_TXDCTL(0):
 313		for (n = 0; n < 4; n++)
 314			regs[n] = rd32(E1000_TXDCTL(n));
 315		break;
 316	default:
 317		printk(KERN_INFO "%-15s %08x\n",
 318			reginfo->name, rd32(reginfo->ofs));
 319		return;
 320	}
 321
 322	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 323	printk(KERN_INFO "%-15s ", rname);
 324	for (n = 0; n < 4; n++)
 325		printk(KERN_CONT "%08x ", regs[n]);
 326	printk(KERN_CONT "\n");
 327}
 328
 329/*
 330 * igb_dump - Print registers, tx-rings and rx-rings
 331 */
 332static void igb_dump(struct igb_adapter *adapter)
 333{
 334	struct net_device *netdev = adapter->netdev;
 335	struct e1000_hw *hw = &adapter->hw;
 336	struct igb_reg_info *reginfo;
 337	int n = 0;
 338	struct igb_ring *tx_ring;
 339	union e1000_adv_tx_desc *tx_desc;
 340	struct my_u0 { u64 a; u64 b; } *u0;
 341	struct igb_buffer *buffer_info;
 342	struct igb_ring *rx_ring;
 343	union e1000_adv_rx_desc *rx_desc;
 344	u32 staterr;
 345	int i = 0;
 346
 347	if (!netif_msg_hw(adapter))
 348		return;
 349
 350	/* Print netdevice Info */
 351	if (netdev) {
 352		dev_info(&adapter->pdev->dev, "Net device Info\n");
 353		printk(KERN_INFO "Device Name     state            "
 354			"trans_start      last_rx\n");
 355		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
 356		netdev->name,
 357		netdev->state,
 358		netdev->trans_start,
 359		netdev->last_rx);
 360	}
 361
 362	/* Print Registers */
 363	dev_info(&adapter->pdev->dev, "Register Dump\n");
 364	printk(KERN_INFO " Register Name   Value\n");
 365	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 366	     reginfo->name; reginfo++) {
 367		igb_regdump(hw, reginfo);
 368	}
 369
 370	/* Print TX Ring Summary */
 371	if (!netdev || !netif_running(netdev))
 372		goto exit;
 373
 374	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 375	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
 376		" leng ntw timestamp\n");
 377	for (n = 0; n < adapter->num_tx_queues; n++) {
 378		tx_ring = adapter->tx_ring[n];
 379		buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 380		printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
 381			   n, tx_ring->next_to_use, tx_ring->next_to_clean,
 382			   (u64)buffer_info->dma,
 383			   buffer_info->length,
 384			   buffer_info->next_to_watch,
 385			   (u64)buffer_info->time_stamp);
 386	}
 387
 388	/* Print TX Rings */
 389	if (!netif_msg_tx_done(adapter))
 390		goto rx_ring_summary;
 391
 392	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 393
 394	/* Transmit Descriptor Formats
 395	 *
 396	 * Advanced Transmit Descriptor
 397	 *   +--------------------------------------------------------------+
 398	 * 0 |         Buffer Address [63:0]                                |
 399	 *   +--------------------------------------------------------------+
 400	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 401	 *   +--------------------------------------------------------------+
 402	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
 403	 */
 404
 405	for (n = 0; n < adapter->num_tx_queues; n++) {
 406		tx_ring = adapter->tx_ring[n];
 407		printk(KERN_INFO "------------------------------------\n");
 408		printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 409		printk(KERN_INFO "------------------------------------\n");
 410		printk(KERN_INFO "T [desc]     [address 63:0  ] "
 411			"[PlPOCIStDDM Ln] [bi->dma       ] "
 412			"leng  ntw timestamp        bi->skb\n");
 413
 414		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 415			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
 416			buffer_info = &tx_ring->buffer_info[i];
 417			u0 = (struct my_u0 *)tx_desc;
 418			printk(KERN_INFO "T [0x%03X]    %016llX %016llX %016llX"
 419				" %04X  %3X %016llX %p", i,
 420				le64_to_cpu(u0->a),
 421				le64_to_cpu(u0->b),
 422				(u64)buffer_info->dma,
 423				buffer_info->length,
 424				buffer_info->next_to_watch,
 425				(u64)buffer_info->time_stamp,
 426				buffer_info->skb);
 427			if (i == tx_ring->next_to_use &&
 428				i == tx_ring->next_to_clean)
 429				printk(KERN_CONT " NTC/U\n");
 430			else if (i == tx_ring->next_to_use)
 431				printk(KERN_CONT " NTU\n");
 432			else if (i == tx_ring->next_to_clean)
 433				printk(KERN_CONT " NTC\n");
 434			else
 435				printk(KERN_CONT "\n");
 436
 437			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
 438				print_hex_dump(KERN_INFO, "",
 439					DUMP_PREFIX_ADDRESS,
 440					16, 1, phys_to_virt(buffer_info->dma),
 441					buffer_info->length, true);
 442		}
 443	}
 444
 445	/* Print RX Rings Summary */
 446rx_ring_summary:
 447	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 448	printk(KERN_INFO "Queue [NTU] [NTC]\n");
 449	for (n = 0; n < adapter->num_rx_queues; n++) {
 450		rx_ring = adapter->rx_ring[n];
 451		printk(KERN_INFO " %5d %5X %5X\n", n,
 452			   rx_ring->next_to_use, rx_ring->next_to_clean);
 453	}
 454
 455	/* Print RX Rings */
 456	if (!netif_msg_rx_status(adapter))
 457		goto exit;
 458
 459	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 460
 461	/* Advanced Receive Descriptor (Read) Format
 462	 *    63                                           1        0
 463	 *    +-----------------------------------------------------+
 464	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 465	 *    +----------------------------------------------+------+
 466	 *  8 |       Header Buffer Address [63:1]           |  DD  |
 467	 *    +-----------------------------------------------------+
 468	 *
 469	 *
 470	 * Advanced Receive Descriptor (Write-Back) Format
 471	 *
 472	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
 473	 *   +------------------------------------------------------+
 474	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 475	 *   | Checksum   Ident  |   |           |    | Type | Type |
 476	 *   +------------------------------------------------------+
 477	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 478	 *   +------------------------------------------------------+
 479	 *   63       48 47    32 31            20 19               0
 480	 */
 481
 482	for (n = 0; n < adapter->num_rx_queues; n++) {
 483		rx_ring = adapter->rx_ring[n];
 484		printk(KERN_INFO "------------------------------------\n");
 485		printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 486		printk(KERN_INFO "------------------------------------\n");
 487		printk(KERN_INFO "R  [desc]      [ PktBuf     A0] "
 488			"[  HeadBuf   DD] [bi->dma       ] [bi->skb] "
 489			"<-- Adv Rx Read format\n");
 490		printk(KERN_INFO "RWB[desc]      [PcsmIpSHl PtRs] "
 491			"[vl er S cks ln] ---------------- [bi->skb] "
 492			"<-- Adv Rx Write-Back format\n");
 493
 494		for (i = 0; i < rx_ring->count; i++) {
 495			buffer_info = &rx_ring->buffer_info[i];
 496			rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
 497			u0 = (struct my_u0 *)rx_desc;
 498			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 499			if (staterr & E1000_RXD_STAT_DD) {
 500				/* Descriptor Done */
 501				printk(KERN_INFO "RWB[0x%03X]     %016llX "
 502					"%016llX ---------------- %p", i,
 503					le64_to_cpu(u0->a),
 504					le64_to_cpu(u0->b),
 505					buffer_info->skb);
 506			} else {
 507				printk(KERN_INFO "R  [0x%03X]     %016llX "
 508					"%016llX %016llX %p", i,
 509					le64_to_cpu(u0->a),
 510					le64_to_cpu(u0->b),
 511					(u64)buffer_info->dma,
 512					buffer_info->skb);
 513
 514				if (netif_msg_pktdata(adapter)) {
 515					print_hex_dump(KERN_INFO, "",
 516						DUMP_PREFIX_ADDRESS,
 517						16, 1,
 518						phys_to_virt(buffer_info->dma),
 519						rx_ring->rx_buffer_len, true);
 520					if (rx_ring->rx_buffer_len
 521						< IGB_RXBUFFER_1024)
 522						print_hex_dump(KERN_INFO, "",
 523						  DUMP_PREFIX_ADDRESS,
 524						  16, 1,
 525						  phys_to_virt(
 526						    buffer_info->page_dma +
 527						    buffer_info->page_offset),
 528						  PAGE_SIZE/2, true);
 529				}
 530			}
 531
 532			if (i == rx_ring->next_to_use)
 533				printk(KERN_CONT " NTU\n");
 534			else if (i == rx_ring->next_to_clean)
 535				printk(KERN_CONT " NTC\n");
 536			else
 537				printk(KERN_CONT "\n");
 538
 539		}
 540	}
 541
 542exit:
 543	return;
 544}
 545
 546
 547/**
 548 * igb_read_clock - read raw cycle counter (to be used by time counter)
 549 */
 550static cycle_t igb_read_clock(const struct cyclecounter *tc)
 551{
 552	struct igb_adapter *adapter =
 553		container_of(tc, struct igb_adapter, cycles);
 554	struct e1000_hw *hw = &adapter->hw;
 555	u64 stamp = 0;
 556	int shift = 0;
 557
 558	/*
 559	 * The timestamp latches on lowest register read. For the 82580
 560	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
 561	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
 562	 */
 563	if (hw->mac.type == e1000_82580) {
 564		stamp = rd32(E1000_SYSTIMR) >> 8;
 565		shift = IGB_82580_TSYNC_SHIFT;
 566	}
 567
 568	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
 569	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
 570	return stamp;
 571}
 572
 573/**
 574 * igb_get_hw_dev - return device
 575 * used by hardware layer to print debugging information
 576 **/
 577struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 578{
 579	struct igb_adapter *adapter = hw->back;
 580	return adapter->netdev;
 581}
 582
 583/**
 584 * igb_init_module - Driver Registration Routine
 585 *
 586 * igb_init_module is the first routine called when the driver is
 587 * loaded. All it does is register with the PCI subsystem.
 588 **/
 589static int __init igb_init_module(void)
 590{
 591	int ret;
 592	printk(KERN_INFO "%s - version %s\n",
 593	       igb_driver_string, igb_driver_version);
 594
 595	printk(KERN_INFO "%s\n", igb_copyright);
 596
 597#ifdef CONFIG_IGB_DCA
 598	dca_register_notify(&dca_notifier);
 599#endif
 600	ret = pci_register_driver(&igb_driver);
 601	return ret;
 602}
 603
 604module_init(igb_init_module);
 605
 606/**
 607 * igb_exit_module - Driver Exit Cleanup Routine
 608 *
 609 * igb_exit_module is called just before the driver is removed
 610 * from memory.
 611 **/
 612static void __exit igb_exit_module(void)
 613{
 614#ifdef CONFIG_IGB_DCA
 615	dca_unregister_notify(&dca_notifier);
 616#endif
 617	pci_unregister_driver(&igb_driver);
 618}
 619
 620module_exit(igb_exit_module);
 621
 622#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 623/**
 624 * igb_cache_ring_register - Descriptor ring to register mapping
 625 * @adapter: board private structure to initialize
 626 *
 627 * Once we know the feature-set enabled for the device, we'll cache
 628 * the register offset the descriptor ring is assigned to.
 629 **/
 630static void igb_cache_ring_register(struct igb_adapter *adapter)
 631{
 632	int i = 0, j = 0;
 633	u32 rbase_offset = adapter->vfs_allocated_count;
 634
 635	switch (adapter->hw.mac.type) {
 636	case e1000_82576:
 637		/* The queues are allocated for virtualization such that VF 0
 638		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 639		 * In order to avoid collision we start at the first free queue
 640		 * and continue consuming queues in the same sequence
 641		 */
 642		if (adapter->vfs_allocated_count) {
 643			for (; i < adapter->rss_queues; i++)
 644				adapter->rx_ring[i]->reg_idx = rbase_offset +
 645				                               Q_IDX_82576(i);
 646		}
 647	case e1000_82575:
 648	case e1000_82580:
 649	case e1000_i350:
 650	default:
 651		for (; i < adapter->num_rx_queues; i++)
 652			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 653		for (; j < adapter->num_tx_queues; j++)
 654			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 655		break;
 656	}
 657}
 658
 659static void igb_free_queues(struct igb_adapter *adapter)
 660{
 661	int i;
 662
 663	for (i = 0; i < adapter->num_tx_queues; i++) {
 664		kfree(adapter->tx_ring[i]);
 665		adapter->tx_ring[i] = NULL;
 666	}
 667	for (i = 0; i < adapter->num_rx_queues; i++) {
 668		kfree(adapter->rx_ring[i]);
 669		adapter->rx_ring[i] = NULL;
 670	}
 671	adapter->num_rx_queues = 0;
 672	adapter->num_tx_queues = 0;
 673}
 674
 675/**
 676 * igb_alloc_queues - Allocate memory for all rings
 677 * @adapter: board private structure to initialize
 678 *
 679 * We allocate one ring per queue at run-time since we don't know the
 680 * number of queues at compile-time.
 681 **/
 682static int igb_alloc_queues(struct igb_adapter *adapter)
 683{
 684	struct igb_ring *ring;
 685	int i;
 686
 687	for (i = 0; i < adapter->num_tx_queues; i++) {
 688		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
 689		if (!ring)
 690			goto err;
 691		ring->count = adapter->tx_ring_count;
 692		ring->queue_index = i;
 693		ring->dev = &adapter->pdev->dev;
 694		ring->netdev = adapter->netdev;
 695		/* For 82575, context index must be unique per ring. */
 696		if (adapter->hw.mac.type == e1000_82575)
 697			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
 698		adapter->tx_ring[i] = ring;
 699	}
 700
 701	for (i = 0; i < adapter->num_rx_queues; i++) {
 702		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
 703		if (!ring)
 704			goto err;
 705		ring->count = adapter->rx_ring_count;
 706		ring->queue_index = i;
 707		ring->dev = &adapter->pdev->dev;
 708		ring->netdev = adapter->netdev;
 709		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
 710		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
 711		/* set flag indicating ring supports SCTP checksum offload */
 712		if (adapter->hw.mac.type >= e1000_82576)
 713			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
 714		adapter->rx_ring[i] = ring;
 715	}
 716
 717	igb_cache_ring_register(adapter);
 718
 719	return 0;
 720
 721err:
 722	igb_free_queues(adapter);
 723
 724	return -ENOMEM;
 725}
 726
 727#define IGB_N0_QUEUE -1
 728static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 729{
 730	u32 msixbm = 0;
 731	struct igb_adapter *adapter = q_vector->adapter;
 732	struct e1000_hw *hw = &adapter->hw;
 733	u32 ivar, index;
 734	int rx_queue = IGB_N0_QUEUE;
 735	int tx_queue = IGB_N0_QUEUE;
 736
 737	if (q_vector->rx_ring)
 738		rx_queue = q_vector->rx_ring->reg_idx;
 739	if (q_vector->tx_ring)
 740		tx_queue = q_vector->tx_ring->reg_idx;
 741
 742	switch (hw->mac.type) {
 743	case e1000_82575:
 744		/* The 82575 assigns vectors using a bitmask, which matches the
 745		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
 746		   or more queues to a vector, we write the appropriate bits
 747		   into the MSIXBM register for that vector. */
 748		if (rx_queue > IGB_N0_QUEUE)
 749			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 750		if (tx_queue > IGB_N0_QUEUE)
 751			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 752		if (!adapter->msix_entries && msix_vector == 0)
 753			msixbm |= E1000_EIMS_OTHER;
 754		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 755		q_vector->eims_value = msixbm;
 756		break;
 757	case e1000_82576:
 758		/* 82576 uses a table-based method for assigning vectors.
 759		   Each queue has a single entry in the table to which we write
 760		   a vector number along with a "valid" bit.  Sadly, the layout
 761		   of the table is somewhat counterintuitive. */
 762		if (rx_queue > IGB_N0_QUEUE) {
 763			index = (rx_queue & 0x7);
 764			ivar = array_rd32(E1000_IVAR0, index);
 765			if (rx_queue < 8) {
 766				/* vector goes into low byte of register */
 767				ivar = ivar & 0xFFFFFF00;
 768				ivar |= msix_vector | E1000_IVAR_VALID;
 769			} else {
 770				/* vector goes into third byte of register */
 771				ivar = ivar & 0xFF00FFFF;
 772				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 773			}
 774			array_wr32(E1000_IVAR0, index, ivar);
 775		}
 776		if (tx_queue > IGB_N0_QUEUE) {
 777			index = (tx_queue & 0x7);
 778			ivar = array_rd32(E1000_IVAR0, index);
 779			if (tx_queue < 8) {
 780				/* vector goes into second byte of register */
 781				ivar = ivar & 0xFFFF00FF;
 782				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 783			} else {
 784				/* vector goes into high byte of register */
 785				ivar = ivar & 0x00FFFFFF;
 786				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 787			}
 788			array_wr32(E1000_IVAR0, index, ivar);
 789		}
 790		q_vector->eims_value = 1 << msix_vector;
 791		break;
 792	case e1000_82580:
 793	case e1000_i350:
 794		/* 82580 uses the same table-based approach as 82576 but has fewer
 795		   entries as a result we carry over for queues greater than 4. */
 796		if (rx_queue > IGB_N0_QUEUE) {
 797			index = (rx_queue >> 1);
 798			ivar = array_rd32(E1000_IVAR0, index);
 799			if (rx_queue & 0x1) {
 800				/* vector goes into third byte of register */
 801				ivar = ivar & 0xFF00FFFF;
 802				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 803			} else {
 804				/* vector goes into low byte of register */
 805				ivar = ivar & 0xFFFFFF00;
 806				ivar |= msix_vector | E1000_IVAR_VALID;
 807			}
 808			array_wr32(E1000_IVAR0, index, ivar);
 809		}
 810		if (tx_queue > IGB_N0_QUEUE) {
 811			index = (tx_queue >> 1);
 812			ivar = array_rd32(E1000_IVAR0, index);
 813			if (tx_queue & 0x1) {
 814				/* vector goes into high byte of register */
 815				ivar = ivar & 0x00FFFFFF;
 816				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 817			} else {
 818				/* vector goes into second byte of register */
 819				ivar = ivar & 0xFFFF00FF;
 820				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 821			}
 822			array_wr32(E1000_IVAR0, index, ivar);
 823		}
 824		q_vector->eims_value = 1 << msix_vector;
 825		break;
 826	default:
 827		BUG();
 828		break;
 829	}
 830
 831	/* add q_vector eims value to global eims_enable_mask */
 832	adapter->eims_enable_mask |= q_vector->eims_value;
 833
 834	/* configure q_vector to set itr on first interrupt */
 835	q_vector->set_itr = 1;
 836}
 837
 838/**
 839 * igb_configure_msix - Configure MSI-X hardware
 840 *
 841 * igb_configure_msix sets up the hardware to properly
 842 * generate MSI-X interrupts.
 843 **/
 844static void igb_configure_msix(struct igb_adapter *adapter)
 845{
 846	u32 tmp;
 847	int i, vector = 0;
 848	struct e1000_hw *hw = &adapter->hw;
 849
 850	adapter->eims_enable_mask = 0;
 851
 852	/* set vector for other causes, i.e. link changes */
 853	switch (hw->mac.type) {
 854	case e1000_82575:
 855		tmp = rd32(E1000_CTRL_EXT);
 856		/* enable MSI-X PBA support*/
 857		tmp |= E1000_CTRL_EXT_PBA_CLR;
 858
 859		/* Auto-Mask interrupts upon ICR read. */
 860		tmp |= E1000_CTRL_EXT_EIAME;
 861		tmp |= E1000_CTRL_EXT_IRCA;
 862
 863		wr32(E1000_CTRL_EXT, tmp);
 864
 865		/* enable msix_other interrupt */
 866		array_wr32(E1000_MSIXBM(0), vector++,
 867		                      E1000_EIMS_OTHER);
 868		adapter->eims_other = E1000_EIMS_OTHER;
 869
 870		break;
 871
 872	case e1000_82576:
 873	case e1000_82580:
 874	case e1000_i350:
 875		/* Turn on MSI-X capability first, or our settings
 876		 * won't stick.  And it will take days to debug. */
 877		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 878		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
 879		                E1000_GPIE_NSICR);
 880
 881		/* enable msix_other interrupt */
 882		adapter->eims_other = 1 << vector;
 883		tmp = (vector++ | E1000_IVAR_VALID) << 8;
 884
 885		wr32(E1000_IVAR_MISC, tmp);
 886		break;
 887	default:
 888		/* do nothing, since nothing else supports MSI-X */
 889		break;
 890	} /* switch (hw->mac.type) */
 891
 892	adapter->eims_enable_mask |= adapter->eims_other;
 893
 894	for (i = 0; i < adapter->num_q_vectors; i++)
 895		igb_assign_vector(adapter->q_vector[i], vector++);
 896
 897	wrfl();
 898}
 899
 900/**
 901 * igb_request_msix - Initialize MSI-X interrupts
 902 *
 903 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 904 * kernel.
 905 **/
 906static int igb_request_msix(struct igb_adapter *adapter)
 907{
 908	struct net_device *netdev = adapter->netdev;
 909	struct e1000_hw *hw = &adapter->hw;
 910	int i, err = 0, vector = 0;
 911
 912	err = request_irq(adapter->msix_entries[vector].vector,
 913	                  igb_msix_other, 0, netdev->name, adapter);
 914	if (err)
 915		goto out;
 916	vector++;
 917
 918	for (i = 0; i < adapter->num_q_vectors; i++) {
 919		struct igb_q_vector *q_vector = adapter->q_vector[i];
 920
 921		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
 922
 923		if (q_vector->rx_ring && q_vector->tx_ring)
 924			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 925			        q_vector->rx_ring->queue_index);
 926		else if (q_vector->tx_ring)
 927			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 928			        q_vector->tx_ring->queue_index);
 929		else if (q_vector->rx_ring)
 930			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 931			        q_vector->rx_ring->queue_index);
 932		else
 933			sprintf(q_vector->name, "%s-unused", netdev->name);
 934
 935		err = request_irq(adapter->msix_entries[vector].vector,
 936		                  igb_msix_ring, 0, q_vector->name,
 937		                  q_vector);
 938		if (err)
 939			goto out;
 940		vector++;
 941	}
 942
 943	igb_configure_msix(adapter);
 944	return 0;
 945out:
 946	return err;
 947}
 948
 949static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
 950{
 951	if (adapter->msix_entries) {
 952		pci_disable_msix(adapter->pdev);
 953		kfree(adapter->msix_entries);
 954		adapter->msix_entries = NULL;
 955	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
 956		pci_disable_msi(adapter->pdev);
 957	}
 958}
 959
 960/**
 961 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 962 * @adapter: board private structure to initialize
 963 *
 964 * This function frees the memory allocated to the q_vectors.  In addition if
 965 * NAPI is enabled it will delete any references to the NAPI struct prior
 966 * to freeing the q_vector.
 967 **/
 968static void igb_free_q_vectors(struct igb_adapter *adapter)
 969{
 970	int v_idx;
 971
 972	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
 973		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
 974		adapter->q_vector[v_idx] = NULL;
 975		if (!q_vector)
 976			continue;
 977		netif_napi_del(&q_vector->napi);
 978		kfree(q_vector);
 979	}
 980	adapter->num_q_vectors = 0;
 981}
 982
 983/**
 984 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 985 *
 986 * This function resets the device so that it has 0 rx queues, tx queues, and
 987 * MSI-X interrupts allocated.
 988 */
 989static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
 990{
 991	igb_free_queues(adapter);
 992	igb_free_q_vectors(adapter);
 993	igb_reset_interrupt_capability(adapter);
 994}
 995
 996/**
 997 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 998 *
 999 * Attempt to configure interrupts using the best available
1000 * capabilities of the hardware and kernel.
1001 **/
1002static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1003{
1004	int err;
1005	int numvecs, i;
1006
1007	/* Number of supported queues. */
1008	adapter->num_rx_queues = adapter->rss_queues;
1009	if (adapter->vfs_allocated_count)
1010		adapter->num_tx_queues = 1;
1011	else
1012		adapter->num_tx_queues = adapter->rss_queues;
1013
1014	/* start with one vector for every rx queue */
1015	numvecs = adapter->num_rx_queues;
1016
1017	/* if tx handler is separate add 1 for every tx queue */
1018	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1019		numvecs += adapter->num_tx_queues;
1020
1021	/* store the number of vectors reserved for queues */
1022	adapter->num_q_vectors = numvecs;
1023
1024	/* add 1 vector for link status interrupts */
1025	numvecs++;
1026	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1027					GFP_KERNEL);
1028	if (!adapter->msix_entries)
1029		goto msi_only;
1030
1031	for (i = 0; i < numvecs; i++)
1032		adapter->msix_entries[i].entry = i;
1033
1034	err = pci_enable_msix(adapter->pdev,
1035			      adapter->msix_entries,
1036			      numvecs);
1037	if (err == 0)
1038		goto out;
1039
1040	igb_reset_interrupt_capability(adapter);
1041
1042	/* If we can't do MSI-X, try MSI */
1043msi_only:
1044#ifdef CONFIG_PCI_IOV
1045	/* disable SR-IOV for non MSI-X configurations */
1046	if (adapter->vf_data) {
1047		struct e1000_hw *hw = &adapter->hw;
1048		/* disable iov and allow time for transactions to clear */
1049		pci_disable_sriov(adapter->pdev);
1050		msleep(500);
1051
1052		kfree(adapter->vf_data);
1053		adapter->vf_data = NULL;
1054		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1055		wrfl();
1056		msleep(100);
1057		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1058	}
1059#endif
1060	adapter->vfs_allocated_count = 0;
1061	adapter->rss_queues = 1;
1062	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1063	adapter->num_rx_queues = 1;
1064	adapter->num_tx_queues = 1;
1065	adapter->num_q_vectors = 1;
1066	if (!pci_enable_msi(adapter->pdev))
1067		adapter->flags |= IGB_FLAG_HAS_MSI;
1068out:
1069	/* Notify the stack of the (possibly) reduced queue counts. */
1070	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1071	return netif_set_real_num_rx_queues(adapter->netdev,
1072					    adapter->num_rx_queues);
1073}
1074
1075/**
1076 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1077 * @adapter: board private structure to initialize
1078 *
1079 * We allocate one q_vector per queue interrupt.  If allocation fails we
1080 * return -ENOMEM.
1081 **/
1082static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1083{
1084	struct igb_q_vector *q_vector;
1085	struct e1000_hw *hw = &adapter->hw;
1086	int v_idx;
1087
1088	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1089		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1090		if (!q_vector)
1091			goto err_out;
1092		q_vector->adapter = adapter;
1093		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1094		q_vector->itr_val = IGB_START_ITR;
1095		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1096		adapter->q_vector[v_idx] = q_vector;
1097	}
1098	return 0;
1099
1100err_out:
1101	igb_free_q_vectors(adapter);
1102	return -ENOMEM;
1103}
1104
1105static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1106                                      int ring_idx, int v_idx)
1107{
1108	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1109
1110	q_vector->rx_ring = adapter->rx_ring[ring_idx];
1111	q_vector->rx_ring->q_vector = q_vector;
1112	q_vector->itr_val = adapter->rx_itr_setting;
1113	if (q_vector->itr_val && q_vector->itr_val <= 3)
1114		q_vector->itr_val = IGB_START_ITR;
1115}
1116
1117static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1118                                      int ring_idx, int v_idx)
1119{
1120	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1121
1122	q_vector->tx_ring = adapter->tx_ring[ring_idx];
1123	q_vector->tx_ring->q_vector = q_vector;
1124	q_vector->itr_val = adapter->tx_itr_setting;
1125	if (q_vector->itr_val && q_vector->itr_val <= 3)
1126		q_vector->itr_val = IGB_START_ITR;
1127}
1128
1129/**
1130 * igb_map_ring_to_vector - maps allocated queues to vectors
1131 *
1132 * This function maps the recently allocated queues to vectors.
1133 **/
1134static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1135{
1136	int i;
1137	int v_idx = 0;
1138
1139	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1140	    (adapter->num_q_vectors < adapter->num_tx_queues))
1141		return -ENOMEM;
1142
1143	if (adapter->num_q_vectors >=
1144	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
1145		for (i = 0; i < adapter->num_rx_queues; i++)
1146			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1147		for (i = 0; i < adapter->num_tx_queues; i++)
1148			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1149	} else {
1150		for (i = 0; i < adapter->num_rx_queues; i++) {
1151			if (i < adapter->num_tx_queues)
1152				igb_map_tx_ring_to_vector(adapter, i, v_idx);
1153			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1154		}
1155		for (; i < adapter->num_tx_queues; i++)
1156			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1157	}
1158	return 0;
1159}
1160
1161/**
1162 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1163 *
1164 * This function initializes the interrupts and allocates all of the queues.
1165 **/
1166static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1167{
1168	struct pci_dev *pdev = adapter->pdev;
1169	int err;
1170
1171	err = igb_set_interrupt_capability(adapter);
1172	if (err)
1173		return err;
1174
1175	err = igb_alloc_q_vectors(adapter);
1176	if (err) {
1177		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1178		goto err_alloc_q_vectors;
1179	}
1180
1181	err = igb_alloc_queues(adapter);
1182	if (err) {
1183		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1184		goto err_alloc_queues;
1185	}
1186
1187	err = igb_map_ring_to_vector(adapter);
1188	if (err) {
1189		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1190		goto err_map_queues;
1191	}
1192
1193
1194	return 0;
1195err_map_queues:
1196	igb_free_queues(adapter);
1197err_alloc_queues:
1198	igb_free_q_vectors(adapter);
1199err_alloc_q_vectors:
1200	igb_reset_interrupt_capability(adapter);
1201	return err;
1202}
1203
1204/**
1205 * igb_request_irq - initialize interrupts
1206 *
1207 * Attempts to configure interrupts using the best available
1208 * capabilities of the hardware and kernel.
1209 **/
1210static int igb_request_irq(struct igb_adapter *adapter)
1211{
1212	struct net_device *netdev = adapter->netdev;
1213	struct pci_dev *pdev = adapter->pdev;
1214	int err = 0;
1215
1216	if (adapter->msix_entries) {
1217		err = igb_request_msix(adapter);
1218		if (!err)
1219			goto request_done;
1220		/* fall back to MSI */
1221		igb_clear_interrupt_scheme(adapter);
1222		if (!pci_enable_msi(adapter->pdev))
1223			adapter->flags |= IGB_FLAG_HAS_MSI;
1224		igb_free_all_tx_resources(adapter);
1225		igb_free_all_rx_resources(adapter);
1226		adapter->num_tx_queues = 1;
1227		adapter->num_rx_queues = 1;
1228		adapter->num_q_vectors = 1;
1229		err = igb_alloc_q_vectors(adapter);
1230		if (err) {
1231			dev_err(&pdev->dev,
1232			        "Unable to allocate memory for vectors\n");
1233			goto request_done;
1234		}
1235		err = igb_alloc_queues(adapter);
1236		if (err) {
1237			dev_err(&pdev->dev,
1238			        "Unable to allocate memory for queues\n");
1239			igb_free_q_vectors(adapter);
1240			goto request_done;
1241		}
1242		igb_setup_all_tx_resources(adapter);
1243		igb_setup_all_rx_resources(adapter);
1244	} else {
1245		igb_assign_vector(adapter->q_vector[0], 0);
1246	}
1247
1248	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1249		err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1250				  netdev->name, adapter);
1251		if (!err)
1252			goto request_done;
1253
1254		/* fall back to legacy interrupts */
1255		igb_reset_interrupt_capability(adapter);
1256		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1257	}
1258
1259	err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1260			  netdev->name, adapter);
1261
1262	if (err)
1263		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1264			err);
1265
1266request_done:
1267	return err;
1268}
1269
1270static void igb_free_irq(struct igb_adapter *adapter)
1271{
1272	if (adapter->msix_entries) {
1273		int vector = 0, i;
1274
1275		free_irq(adapter->msix_entries[vector++].vector, adapter);
1276
1277		for (i = 0; i < adapter->num_q_vectors; i++) {
1278			struct igb_q_vector *q_vector = adapter->q_vector[i];
1279			free_irq(adapter->msix_entries[vector++].vector,
1280			         q_vector);
1281		}
1282	} else {
1283		free_irq(adapter->pdev->irq, adapter);
1284	}
1285}
1286
1287/**
1288 * igb_irq_disable - Mask off interrupt generation on the NIC
1289 * @adapter: board private structure
1290 **/
1291static void igb_irq_disable(struct igb_adapter *adapter)
1292{
1293	struct e1000_hw *hw = &adapter->hw;
1294
1295	/*
1296	 * we need to be careful when disabling interrupts.  The VFs are also
1297	 * mapped into these registers and so clearing the bits can cause
1298	 * issues on the VF drivers so we only need to clear what we set
1299	 */
1300	if (adapter->msix_entries) {
1301		u32 regval = rd32(E1000_EIAM);
1302		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1303		wr32(E1000_EIMC, adapter->eims_enable_mask);
1304		regval = rd32(E1000_EIAC);
1305		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1306	}
1307
1308	wr32(E1000_IAM, 0);
1309	wr32(E1000_IMC, ~0);
1310	wrfl();
1311	if (adapter->msix_entries) {
1312		int i;
1313		for (i = 0; i < adapter->num_q_vectors; i++)
1314			synchronize_irq(adapter->msix_entries[i].vector);
1315	} else {
1316		synchronize_irq(adapter->pdev->irq);
1317	}
1318}
1319
1320/**
1321 * igb_irq_enable - Enable default interrupt generation settings
1322 * @adapter: board private structure
1323 **/
1324static void igb_irq_enable(struct igb_adapter *adapter)
1325{
1326	struct e1000_hw *hw = &adapter->hw;
1327
1328	if (adapter->msix_entries) {
1329		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1330		u32 regval = rd32(E1000_EIAC);
1331		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1332		regval = rd32(E1000_EIAM);
1333		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1334		wr32(E1000_EIMS, adapter->eims_enable_mask);
1335		if (adapter->vfs_allocated_count) {
1336			wr32(E1000_MBVFIMR, 0xFF);
1337			ims |= E1000_IMS_VMMB;
1338		}
1339		if (adapter->hw.mac.type == e1000_82580)
1340			ims |= E1000_IMS_DRSTA;
1341
1342		wr32(E1000_IMS, ims);
1343	} else {
1344		wr32(E1000_IMS, IMS_ENABLE_MASK |
1345				E1000_IMS_DRSTA);
1346		wr32(E1000_IAM, IMS_ENABLE_MASK |
1347				E1000_IMS_DRSTA);
1348	}
1349}
1350
1351static void igb_update_mng_vlan(struct igb_adapter *adapter)
1352{
1353	struct e1000_hw *hw = &adapter->hw;
1354	u16 vid = adapter->hw.mng_cookie.vlan_id;
1355	u16 old_vid = adapter->mng_vlan_id;
1356
1357	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1358		/* add VID to filter table */
1359		igb_vfta_set(hw, vid, true);
1360		adapter->mng_vlan_id = vid;
1361	} else {
1362		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1363	}
1364
1365	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1366	    (vid != old_vid) &&
1367	    !test_bit(old_vid, adapter->active_vlans)) {
1368		/* remove VID from filter table */
1369		igb_vfta_set(hw, old_vid, false);
1370	}
1371}
1372
1373/**
1374 * igb_release_hw_control - release control of the h/w to f/w
1375 * @adapter: address of board private structure
1376 *
1377 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1378 * For ASF and Pass Through versions of f/w this means that the
1379 * driver is no longer loaded.
1380 *
1381 **/
1382static void igb_release_hw_control(struct igb_adapter *adapter)
1383{
1384	struct e1000_hw *hw = &adapter->hw;
1385	u32 ctrl_ext;
1386
1387	/* Let firmware take over control of h/w */
1388	ctrl_ext = rd32(E1000_CTRL_EXT);
1389	wr32(E1000_CTRL_EXT,
1390			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1391}
1392
1393/**
1394 * igb_get_hw_control - get control of the h/w from f/w
1395 * @adapter: address of board private structure
1396 *
1397 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1398 * For ASF and Pass Through versions of f/w this means that
1399 * the driver is loaded.
1400 *
1401 **/
1402static void igb_get_hw_control(struct igb_adapter *adapter)
1403{
1404	struct e1000_hw *hw = &adapter->hw;
1405	u32 ctrl_ext;
1406
1407	/* Let firmware know the driver has taken over */
1408	ctrl_ext = rd32(E1000_CTRL_EXT);
1409	wr32(E1000_CTRL_EXT,
1410			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1411}
1412
1413/**
1414 * igb_configure - configure the hardware for RX and TX
1415 * @adapter: private board structure
1416 **/
1417static void igb_configure(struct igb_adapter *adapter)
1418{
1419	struct net_device *netdev = adapter->netdev;
1420	int i;
1421
1422	igb_get_hw_control(adapter);
1423	igb_set_rx_mode(netdev);
1424
1425	igb_restore_vlan(adapter);
1426
1427	igb_setup_tctl(adapter);
1428	igb_setup_mrqc(adapter);
1429	igb_setup_rctl(adapter);
1430
1431	igb_configure_tx(adapter);
1432	igb_configure_rx(adapter);
1433
1434	igb_rx_fifo_flush_82575(&adapter->hw);
1435
1436	/* call igb_desc_unused which always leaves
1437	 * at least 1 descriptor unused to make sure
1438	 * next_to_use != next_to_clean */
1439	for (i = 0; i < adapter->num_rx_queues; i++) {
1440		struct igb_ring *ring = adapter->rx_ring[i];
1441		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1442	}
1443}
1444
1445/**
1446 * igb_power_up_link - Power up the phy/serdes link
1447 * @adapter: address of board private structure
1448 **/
1449void igb_power_up_link(struct igb_adapter *adapter)
1450{
1451	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1452		igb_power_up_phy_copper(&adapter->hw);
1453	else
1454		igb_power_up_serdes_link_82575(&adapter->hw);
1455}
1456
1457/**
1458 * igb_power_down_link - Power down the phy/serdes link
1459 * @adapter: address of board private structure
1460 */
1461static void igb_power_down_link(struct igb_adapter *adapter)
1462{
1463	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1464		igb_power_down_phy_copper_82575(&adapter->hw);
1465	else
1466		igb_shutdown_serdes_link_82575(&adapter->hw);
1467}
1468
1469/**
1470 * igb_up - Open the interface and prepare it to handle traffic
1471 * @adapter: board private structure
1472 **/
1473int igb_up(struct igb_adapter *adapter)
1474{
1475	struct e1000_hw *hw = &adapter->hw;
1476	int i;
1477
1478	/* hardware has been reset, we need to reload some things */
1479	igb_configure(adapter);
1480
1481	clear_bit(__IGB_DOWN, &adapter->state);
1482
1483	for (i = 0; i < adapter->num_q_vectors; i++) {
1484		struct igb_q_vector *q_vector = adapter->q_vector[i];
1485		napi_enable(&q_vector->napi);
1486	}
1487	if (adapter->msix_entries)
1488		igb_configure_msix(adapter);
1489	else
1490		igb_assign_vector(adapter->q_vector[0], 0);
1491
1492	/* Clear any pending interrupts. */
1493	rd32(E1000_ICR);
1494	igb_irq_enable(adapter);
1495
1496	/* notify VFs that reset has been completed */
1497	if (adapter->vfs_allocated_count) {
1498		u32 reg_data = rd32(E1000_CTRL_EXT);
1499		reg_data |= E1000_CTRL_EXT_PFRSTD;
1500		wr32(E1000_CTRL_EXT, reg_data);
1501	}
1502
1503	netif_tx_start_all_queues(adapter->netdev);
1504
1505	/* start the watchdog. */
1506	hw->mac.get_link_status = 1;
1507	schedule_work(&adapter->watchdog_task);
1508
1509	return 0;
1510}
1511
1512void igb_down(struct igb_adapter *adapter)
1513{
1514	struct net_device *netdev = adapter->netdev;
1515	struct e1000_hw *hw = &adapter->hw;
1516	u32 tctl, rctl;
1517	int i;
1518
1519	/* signal that we're down so the interrupt handler does not
1520	 * reschedule our watchdog timer */
1521	set_bit(__IGB_DOWN, &adapter->state);
1522
1523	/* disable receives in the hardware */
1524	rctl = rd32(E1000_RCTL);
1525	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1526	/* flush and sleep below */
1527
1528	netif_tx_stop_all_queues(netdev);
1529
1530	/* disable transmits in the hardware */
1531	tctl = rd32(E1000_TCTL);
1532	tctl &= ~E1000_TCTL_EN;
1533	wr32(E1000_TCTL, tctl);
1534	/* flush both disables and wait for them to finish */
1535	wrfl();
1536	msleep(10);
1537
1538	for (i = 0; i < adapter->num_q_vectors; i++) {
1539		struct igb_q_vector *q_vector = adapter->q_vector[i];
1540		napi_disable(&q_vector->napi);
1541	}
1542
1543	igb_irq_disable(adapter);
1544
1545	del_timer_sync(&adapter->watchdog_timer);
1546	del_timer_sync(&adapter->phy_info_timer);
1547
1548	netif_carrier_off(netdev);
1549
1550	/* record the stats before reset*/
1551	spin_lock(&adapter->stats64_lock);
1552	igb_update_stats(adapter, &adapter->stats64);
1553	spin_unlock(&adapter->stats64_lock);
1554
1555	adapter->link_speed = 0;
1556	adapter->link_duplex = 0;
1557
1558	if (!pci_channel_offline(adapter->pdev))
1559		igb_reset(adapter);
1560	igb_clean_all_tx_rings(adapter);
1561	igb_clean_all_rx_rings(adapter);
1562#ifdef CONFIG_IGB_DCA
1563
1564	/* since we reset the hardware DCA settings were cleared */
1565	igb_setup_dca(adapter);
1566#endif
1567}
1568
1569void igb_reinit_locked(struct igb_adapter *adapter)
1570{
1571	WARN_ON(in_interrupt());
1572	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1573		msleep(1);
1574	igb_down(adapter);
1575	igb_up(adapter);
1576	clear_bit(__IGB_RESETTING, &adapter->state);
1577}
1578
1579void igb_reset(struct igb_adapter *adapter)
1580{
1581	struct pci_dev *pdev = adapter->pdev;
1582	struct e1000_hw *hw = &adapter->hw;
1583	struct e1000_mac_info *mac = &hw->mac;
1584	struct e1000_fc_info *fc = &hw->fc;
1585	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1586	u16 hwm;
1587
1588	/* Repartition Pba for greater than 9k mtu
1589	 * To take effect CTRL.RST is required.
1590	 */
1591	switch (mac->type) {
1592	case e1000_i350:
1593	case e1000_82580:
1594		pba = rd32(E1000_RXPBS);
1595		pba = igb_rxpbs_adjust_82580(pba);
1596		break;
1597	case e1000_82576:
1598		pba = rd32(E1000_RXPBS);
1599		pba &= E1000_RXPBS_SIZE_MASK_82576;
1600		break;
1601	case e1000_82575:
1602	default:
1603		pba = E1000_PBA_34K;
1604		break;
1605	}
1606
1607	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1608	    (mac->type < e1000_82576)) {
1609		/* adjust PBA for jumbo frames */
1610		wr32(E1000_PBA, pba);
1611
1612		/* To maintain wire speed transmits, the Tx FIFO should be
1613		 * large enough to accommodate two full transmit packets,
1614		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1615		 * the Rx FIFO should be large enough to accommodate at least
1616		 * one full receive packet and is similarly rounded up and
1617		 * expressed in KB. */
1618		pba = rd32(E1000_PBA);
1619		/* upper 16 bits has Tx packet buffer allocation size in KB */
1620		tx_space = pba >> 16;
1621		/* lower 16 bits has Rx packet buffer allocation size in KB */
1622		pba &= 0xffff;
1623		/* the tx fifo also stores 16 bytes of information about the tx
1624		 * but don't include ethernet FCS because hardware appends it */
1625		min_tx_space = (adapter->max_frame_size +
1626				sizeof(union e1000_adv_tx_desc) -
1627				ETH_FCS_LEN) * 2;
1628		min_tx_space = ALIGN(min_tx_space, 1024);
1629		min_tx_space >>= 10;
1630		/* software strips receive CRC, so leave room for it */
1631		min_rx_space = adapter->max_frame_size;
1632		min_rx_space = ALIGN(min_rx_space, 1024);
1633		min_rx_space >>= 10;
1634
1635		/* If current Tx allocation is less than the min Tx FIFO size,
1636		 * and the min Tx FIFO size is less than the current Rx FIFO
1637		 * allocation, take space away from current Rx allocation */
1638		if (tx_space < min_tx_space &&
1639		    ((min_tx_space - tx_space) < pba)) {
1640			pba = pba - (min_tx_space - tx_space);
1641
1642			/* if short on rx space, rx wins and must trump tx
1643			 * adjustment */
1644			if (pba < min_rx_space)
1645				pba = min_rx_space;
1646		}
1647		wr32(E1000_PBA, pba);
1648	}
1649
1650	/* flow control settings */
1651	/* The high water mark must be low enough to fit one full frame
1652	 * (or the size used for early receive) above it in the Rx FIFO.
1653	 * Set it to the lower of:
1654	 * - 90% of the Rx FIFO size, or
1655	 * - the full Rx FIFO size minus one full frame */
1656	hwm = min(((pba << 10) * 9 / 10),
1657			((pba << 10) - 2 * adapter->max_frame_size));
1658
1659	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
1660	fc->low_water = fc->high_water - 16;
1661	fc->pause_time = 0xFFFF;
1662	fc->send_xon = 1;
1663	fc->current_mode = fc->requested_mode;
1664
1665	/* disable receive for all VFs and wait one second */
1666	if (adapter->vfs_allocated_count) {
1667		int i;
1668		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1669			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1670
1671		/* ping all the active vfs to let them know we are going down */
1672		igb_ping_all_vfs(adapter);
1673
1674		/* disable transmits and receives */
1675		wr32(E1000_VFRE, 0);
1676		wr32(E1000_VFTE, 0);
1677	}
1678
1679	/* Allow time for pending master requests to run */
1680	hw->mac.ops.reset_hw(hw);
1681	wr32(E1000_WUC, 0);
1682
1683	if (hw->mac.ops.init_hw(hw))
1684		dev_err(&pdev->dev, "Hardware Error\n");
1685	if (hw->mac.type > e1000_82580) {
1686		if (adapter->flags & IGB_FLAG_DMAC) {
1687			u32 reg;
1688
1689			/*
1690			 * DMA Coalescing high water mark needs to be higher
1691			 * than * the * Rx threshold.  The Rx threshold is
1692			 * currently * pba - 6, so we * should use a high water
1693			 * mark of pba * - 4. */
1694			hwm = (pba - 4) << 10;
1695
1696			reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1697			       & E1000_DMACR_DMACTHR_MASK);
1698
1699			/* transition to L0x or L1 if available..*/
1700			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1701
1702			/* watchdog timer= +-1000 usec in 32usec intervals */
1703			reg |= (1000 >> 5);
1704			wr32(E1000_DMACR, reg);
1705
1706			/* no lower threshold to disable coalescing(smart fifb)
1707			 * -UTRESH=0*/
1708			wr32(E1000_DMCRTRH, 0);
1709
1710			/* set hwm to PBA -  2 * max frame size */
1711			wr32(E1000_FCRTC, hwm);
1712
1713			/*
1714			 * This sets the time to wait before requesting tran-
1715			 * sition to * low power state to number of usecs needed
1716			 * to receive 1 512 * byte frame at gigabit line rate
1717			 */
1718			reg = rd32(E1000_DMCTLX);
1719			reg |= IGB_DMCTLX_DCFLUSH_DIS;
1720
1721			/* Delay 255 usec before entering Lx state. */
1722			reg |= 0xFF;
1723			wr32(E1000_DMCTLX, reg);
1724
1725			/* free space in Tx packet buffer to wake from DMAC */
1726			wr32(E1000_DMCTXTH,
1727			     (IGB_MIN_TXPBSIZE -
1728			     (IGB_TX_BUF_4096 + adapter->max_frame_size))
1729			     >> 6);
1730
1731			/* make low power state decision controlled by DMAC */
1732			reg = rd32(E1000_PCIEMISC);
1733			reg |= E1000_PCIEMISC_LX_DECISION;
1734			wr32(E1000_PCIEMISC, reg);
1735		} /* end if IGB_FLAG_DMAC set */
1736	}
1737	if (hw->mac.type == e1000_82580) {
1738		u32 reg = rd32(E1000_PCIEMISC);
1739		wr32(E1000_PCIEMISC,
1740		                reg & ~E1000_PCIEMISC_LX_DECISION);
1741	}
1742	if (!netif_running(adapter->netdev))
1743		igb_power_down_link(adapter);
1744
1745	igb_update_mng_vlan(adapter);
1746
1747	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1748	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1749
1750	igb_get_phy_info(hw);
1751}
1752
1753static u32 igb_fix_features(struct net_device *netdev, u32 features)
1754{
1755	/*
1756	 * Since there is no support for separate rx/tx vlan accel
1757	 * enable/disable make sure tx flag is always in same state as rx.
1758	 */
1759	if (features & NETIF_F_HW_VLAN_RX)
1760		features |= NETIF_F_HW_VLAN_TX;
1761	else
1762		features &= ~NETIF_F_HW_VLAN_TX;
1763
1764	return features;
1765}
1766
1767static int igb_set_features(struct net_device *netdev, u32 features)
1768{
1769	struct igb_adapter *adapter = netdev_priv(netdev);
1770	int i;
1771	u32 changed = netdev->features ^ features;
1772
1773	for (i = 0; i < adapter->num_rx_queues; i++) {
1774		if (features & NETIF_F_RXCSUM)
1775			adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
1776		else
1777			adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
1778	}
1779
1780	if (changed & NETIF_F_HW_VLAN_RX)
1781		igb_vlan_mode(netdev, features);
1782
1783	return 0;
1784}
1785
1786static const struct net_device_ops igb_netdev_ops = {
1787	.ndo_open		= igb_open,
1788	.ndo_stop		= igb_close,
1789	.ndo_start_xmit		= igb_xmit_frame_adv,
1790	.ndo_get_stats64	= igb_get_stats64,
1791	.ndo_set_rx_mode	= igb_set_rx_mode,
1792	.ndo_set_multicast_list	= igb_set_rx_mode,
1793	.ndo_set_mac_address	= igb_set_mac,
1794	.ndo_change_mtu		= igb_change_mtu,
1795	.ndo_do_ioctl		= igb_ioctl,
1796	.ndo_tx_timeout		= igb_tx_timeout,
1797	.ndo_validate_addr	= eth_validate_addr,
1798	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1799	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1800	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1801	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1802	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1803	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1804#ifdef CONFIG_NET_POLL_CONTROLLER
1805	.ndo_poll_controller	= igb_netpoll,
1806#endif
1807	.ndo_fix_features	= igb_fix_features,
1808	.ndo_set_features	= igb_set_features,
1809};
1810
1811/**
1812 * igb_probe - Device Initialization Routine
1813 * @pdev: PCI device information struct
1814 * @ent: entry in igb_pci_tbl
1815 *
1816 * Returns 0 on success, negative on failure
1817 *
1818 * igb_probe initializes an adapter identified by a pci_dev structure.
1819 * The OS initialization, configuring of the adapter private structure,
1820 * and a hardware reset occur.
1821 **/
1822static int __devinit igb_probe(struct pci_dev *pdev,
1823			       const struct pci_device_id *ent)
1824{
1825	struct net_device *netdev;
1826	struct igb_adapter *adapter;
1827	struct e1000_hw *hw;
1828	u16 eeprom_data = 0;
1829	s32 ret_val;
1830	static int global_quad_port_a; /* global quad port a indication */
1831	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1832	unsigned long mmio_start, mmio_len;
1833	int err, pci_using_dac;
1834	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1835	u8 part_str[E1000_PBANUM_LENGTH];
1836
1837	/* Catch broken hardware that put the wrong VF device ID in
1838	 * the PCIe SR-IOV capability.
1839	 */
1840	if (pdev->is_virtfn) {
1841		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1842		     pci_name(pdev), pdev->vendor, pdev->device);
1843		return -EINVAL;
1844	}
1845
1846	err = pci_enable_device_mem(pdev);
1847	if (err)
1848		return err;
1849
1850	pci_using_dac = 0;
1851	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1852	if (!err) {
1853		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1854		if (!err)
1855			pci_using_dac = 1;
1856	} else {
1857		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1858		if (err) {
1859			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1860			if (err) {
1861				dev_err(&pdev->dev, "No usable DMA "
1862					"configuration, aborting\n");
1863				goto err_dma;
1864			}
1865		}
1866	}
1867
1868	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1869	                                   IORESOURCE_MEM),
1870	                                   igb_driver_name);
1871	if (err)
1872		goto err_pci_reg;
1873
1874	pci_enable_pcie_error_reporting(pdev);
1875
1876	pci_set_master(pdev);
1877	pci_save_state(pdev);
1878
1879	err = -ENOMEM;
1880	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1881	                           IGB_ABS_MAX_TX_QUEUES);
1882	if (!netdev)
1883		goto err_alloc_etherdev;
1884
1885	SET_NETDEV_DEV(netdev, &pdev->dev);
1886
1887	pci_set_drvdata(pdev, netdev);
1888	adapter = netdev_priv(netdev);
1889	adapter->netdev = netdev;
1890	adapter->pdev = pdev;
1891	hw = &adapter->hw;
1892	hw->back = adapter;
1893	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1894
1895	mmio_start = pci_resource_start(pdev, 0);
1896	mmio_len = pci_resource_len(pdev, 0);
1897
1898	err = -EIO;
1899	hw->hw_addr = ioremap(mmio_start, mmio_len);
1900	if (!hw->hw_addr)
1901		goto err_ioremap;
1902
1903	netdev->netdev_ops = &igb_netdev_ops;
1904	igb_set_ethtool_ops(netdev);
1905	netdev->watchdog_timeo = 5 * HZ;
1906
1907	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1908
1909	netdev->mem_start = mmio_start;
1910	netdev->mem_end = mmio_start + mmio_len;
1911
1912	/* PCI config space info */
1913	hw->vendor_id = pdev->vendor;
1914	hw->device_id = pdev->device;
1915	hw->revision_id = pdev->revision;
1916	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1917	hw->subsystem_device_id = pdev->subsystem_device;
1918
1919	/* Copy the default MAC, PHY and NVM function pointers */
1920	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1921	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1922	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1923	/* Initialize skew-specific constants */
1924	err = ei->get_invariants(hw);
1925	if (err)
1926		goto err_sw_init;
1927
1928	/* setup the private structure */
1929	err = igb_sw_init(adapter);
1930	if (err)
1931		goto err_sw_init;
1932
1933	igb_get_bus_info_pcie(hw);
1934
1935	hw->phy.autoneg_wait_to_complete = false;
1936
1937	/* Copper options */
1938	if (hw->phy.media_type == e1000_media_type_copper) {
1939		hw->phy.mdix = AUTO_ALL_MODES;
1940		hw->phy.disable_polarity_correction = false;
1941		hw->phy.ms_type = e1000_ms_hw_default;
1942	}
1943
1944	if (igb_check_reset_block(hw))
1945		dev_info(&pdev->dev,
1946			"PHY reset is blocked due to SOL/IDER session.\n");
1947
1948	netdev->hw_features = NETIF_F_SG |
1949			   NETIF_F_IP_CSUM |
1950			   NETIF_F_IPV6_CSUM |
1951			   NETIF_F_TSO |
1952			   NETIF_F_TSO6 |
1953			   NETIF_F_RXCSUM |
1954			   NETIF_F_HW_VLAN_RX;
1955
1956	netdev->features = netdev->hw_features |
1957			   NETIF_F_HW_VLAN_TX |
1958			   NETIF_F_HW_VLAN_FILTER;
1959
1960	netdev->vlan_features |= NETIF_F_TSO;
1961	netdev->vlan_features |= NETIF_F_TSO6;
1962	netdev->vlan_features |= NETIF_F_IP_CSUM;
1963	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1964	netdev->vlan_features |= NETIF_F_SG;
1965
1966	if (pci_using_dac) {
1967		netdev->features |= NETIF_F_HIGHDMA;
1968		netdev->vlan_features |= NETIF_F_HIGHDMA;
1969	}
1970
1971	if (hw->mac.type >= e1000_82576) {
1972		netdev->hw_features |= NETIF_F_SCTP_CSUM;
1973		netdev->features |= NETIF_F_SCTP_CSUM;
1974	}
1975
1976	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1977
1978	/* before reading the NVM, reset the controller to put the device in a
1979	 * known good starting state */
1980	hw->mac.ops.reset_hw(hw);
1981
1982	/* make sure the NVM is good */
1983	if (hw->nvm.ops.validate(hw) < 0) {
1984		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1985		err = -EIO;
1986		goto err_eeprom;
1987	}
1988
1989	/* copy the MAC address out of the NVM */
1990	if (hw->mac.ops.read_mac_addr(hw))
1991		dev_err(&pdev->dev, "NVM Read Error\n");
1992
1993	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1994	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1995
1996	if (!is_valid_ether_addr(netdev->perm_addr)) {
1997		dev_err(&pdev->dev, "Invalid MAC Address\n");
1998		err = -EIO;
1999		goto err_eeprom;
2000	}
2001
2002	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2003	            (unsigned long) adapter);
2004	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2005	            (unsigned long) adapter);
2006
2007	INIT_WORK(&adapter->reset_task, igb_reset_task);
2008	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2009
2010	/* Initialize link properties that are user-changeable */
2011	adapter->fc_autoneg = true;
2012	hw->mac.autoneg = true;
2013	hw->phy.autoneg_advertised = 0x2f;
2014
2015	hw->fc.requested_mode = e1000_fc_default;
2016	hw->fc.current_mode = e1000_fc_default;
2017
2018	igb_validate_mdi_setting(hw);
2019
2020	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2021	 * enable the ACPI Magic Packet filter
2022	 */
2023
2024	if (hw->bus.func == 0)
2025		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2026	else if (hw->mac.type >= e1000_82580)
2027		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2028		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2029		                 &eeprom_data);
2030	else if (hw->bus.func == 1)
2031		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2032
2033	if (eeprom_data & eeprom_apme_mask)
2034		adapter->eeprom_wol |= E1000_WUFC_MAG;
2035
2036	/* now that we have the eeprom settings, apply the special cases where
2037	 * the eeprom may be wrong or the board simply won't support wake on
2038	 * lan on a particular port */
2039	switch (pdev->device) {
2040	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2041		adapter->eeprom_wol = 0;
2042		break;
2043	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2044	case E1000_DEV_ID_82576_FIBER:
2045	case E1000_DEV_ID_82576_SERDES:
2046		/* Wake events only supported on port A for dual fiber
2047		 * regardless of eeprom setting */
2048		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2049			adapter->eeprom_wol = 0;
2050		break;
2051	case E1000_DEV_ID_82576_QUAD_COPPER:
2052	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2053		/* if quad port adapter, disable WoL on all but port A */
2054		if (global_quad_port_a != 0)
2055			adapter->eeprom_wol = 0;
2056		else
2057			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2058		/* Reset for multiple quad port adapters */
2059		if (++global_quad_port_a == 4)
2060			global_quad_port_a = 0;
2061		break;
2062	}
2063
2064	/* initialize the wol settings based on the eeprom settings */
2065	adapter->wol = adapter->eeprom_wol;
2066	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2067
2068	/* reset the hardware with the new settings */
2069	igb_reset(adapter);
2070
2071	/* let the f/w know that the h/w is now under the control of the
2072	 * driver. */
2073	igb_get_hw_control(adapter);
2074
2075	strcpy(netdev->name, "eth%d");
2076	err = register_netdev(netdev);
2077	if (err)
2078		goto err_register;
2079
2080	igb_vlan_mode(netdev, netdev->features);
2081
2082	/* carrier off reporting is important to ethtool even BEFORE open */
2083	netif_carrier_off(netdev);
2084
2085#ifdef CONFIG_IGB_DCA
2086	if (dca_add_requester(&pdev->dev) == 0) {
2087		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2088		dev_info(&pdev->dev, "DCA enabled\n");
2089		igb_setup_dca(adapter);
2090	}
2091
2092#endif
2093	/* do hw tstamp init after resetting */
2094	igb_init_hw_timer(adapter);
2095
2096	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2097	/* print bus type/speed/width info */
2098	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2099		 netdev->name,
2100		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2101		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2102		                                            "unknown"),
2103		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2104		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2105		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2106		   "unknown"),
2107		 netdev->dev_addr);
2108
2109	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2110	if (ret_val)
2111		strcpy(part_str, "Unknown");
2112	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2113	dev_info(&pdev->dev,
2114		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2115		adapter->msix_entries ? "MSI-X" :
2116		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2117		adapter->num_rx_queues, adapter->num_tx_queues);
2118	switch (hw->mac.type) {
2119	case e1000_i350:
2120		igb_set_eee_i350(hw);
2121		break;
2122	default:
2123		break;
2124	}
2125	return 0;
2126
2127err_register:
2128	igb_release_hw_control(adapter);
2129err_eeprom:
2130	if (!igb_check_reset_block(hw))
2131		igb_reset_phy(hw);
2132
2133	if (hw->flash_address)
2134		iounmap(hw->flash_address);
2135err_sw_init:
2136	igb_clear_interrupt_scheme(adapter);
2137	iounmap(hw->hw_addr);
2138err_ioremap:
2139	free_netdev(netdev);
2140err_alloc_etherdev:
2141	pci_release_selected_regions(pdev,
2142	                             pci_select_bars(pdev, IORESOURCE_MEM));
2143err_pci_reg:
2144err_dma:
2145	pci_disable_device(pdev);
2146	return err;
2147}
2148
2149/**
2150 * igb_remove - Device Removal Routine
2151 * @pdev: PCI device information struct
2152 *
2153 * igb_remove is called by the PCI subsystem to alert the driver
2154 * that it should release a PCI device.  The could be caused by a
2155 * Hot-Plug event, or because the driver is going to be removed from
2156 * memory.
2157 **/
2158static void __devexit igb_remove(struct pci_dev *pdev)
2159{
2160	struct net_device *netdev = pci_get_drvdata(pdev);
2161	struct igb_adapter *adapter = netdev_priv(netdev);
2162	struct e1000_hw *hw = &adapter->hw;
2163
2164	/*
2165	 * The watchdog timer may be rescheduled, so explicitly
2166	 * disable watchdog from being rescheduled.
2167	 */
2168	set_bit(__IGB_DOWN, &adapter->state);
2169	del_timer_sync(&adapter->watchdog_timer);
2170	del_timer_sync(&adapter->phy_info_timer);
2171
2172	cancel_work_sync(&adapter->reset_task);
2173	cancel_work_sync(&adapter->watchdog_task);
2174
2175#ifdef CONFIG_IGB_DCA
2176	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2177		dev_info(&pdev->dev, "DCA disabled\n");
2178		dca_remove_requester(&pdev->dev);
2179		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2180		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2181	}
2182#endif
2183
2184	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2185	 * would have already happened in close and is redundant. */
2186	igb_release_hw_control(adapter);
2187
2188	unregister_netdev(netdev);
2189
2190	igb_clear_interrupt_scheme(adapter);
2191
2192#ifdef CONFIG_PCI_IOV
2193	/* reclaim resources allocated to VFs */
2194	if (adapter->vf_data) {
2195		/* disable iov and allow time for transactions to clear */
2196		pci_disable_sriov(pdev);
2197		msleep(500);
2198
2199		kfree(adapter->vf_data);
2200		adapter->vf_data = NULL;
2201		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2202		wrfl();
2203		msleep(100);
2204		dev_info(&pdev->dev, "IOV Disabled\n");
2205	}
2206#endif
2207
2208	iounmap(hw->hw_addr);
2209	if (hw->flash_address)
2210		iounmap(hw->flash_address);
2211	pci_release_selected_regions(pdev,
2212	                             pci_select_bars(pdev, IORESOURCE_MEM));
2213
2214	free_netdev(netdev);
2215
2216	pci_disable_pcie_error_reporting(pdev);
2217
2218	pci_disable_device(pdev);
2219}
2220
2221/**
2222 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2223 * @adapter: board private structure to initialize
2224 *
2225 * This function initializes the vf specific data storage and then attempts to
2226 * allocate the VFs.  The reason for ordering it this way is because it is much
2227 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2228 * the memory for the VFs.
2229 **/
2230static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2231{
2232#ifdef CONFIG_PCI_IOV
2233	struct pci_dev *pdev = adapter->pdev;
2234
2235	if (adapter->vfs_allocated_count) {
2236		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2237		                           sizeof(struct vf_data_storage),
2238		                           GFP_KERNEL);
2239		/* if allocation failed then we do not support SR-IOV */
2240		if (!adapter->vf_data) {
2241			adapter->vfs_allocated_count = 0;
2242			dev_err(&pdev->dev, "Unable to allocate memory for VF "
2243			        "Data Storage\n");
2244		}
2245	}
2246
2247	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2248		kfree(adapter->vf_data);
2249		adapter->vf_data = NULL;
2250#endif /* CONFIG_PCI_IOV */
2251		adapter->vfs_allocated_count = 0;
2252#ifdef CONFIG_PCI_IOV
2253	} else {
2254		unsigned char mac_addr[ETH_ALEN];
2255		int i;
2256		dev_info(&pdev->dev, "%d vfs allocated\n",
2257		         adapter->vfs_allocated_count);
2258		for (i = 0; i < adapter->vfs_allocated_count; i++) {
2259			random_ether_addr(mac_addr);
2260			igb_set_vf_mac(adapter, i, mac_addr);
2261		}
2262		/* DMA Coalescing is not supported in IOV mode. */
2263		if (adapter->flags & IGB_FLAG_DMAC)
2264			adapter->flags &= ~IGB_FLAG_DMAC;
2265	}
2266#endif /* CONFIG_PCI_IOV */
2267}
2268
2269
2270/**
2271 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2272 * @adapter: board private structure to initialize
2273 *
2274 * igb_init_hw_timer initializes the function pointer and values for the hw
2275 * timer found in hardware.
2276 **/
2277static void igb_init_hw_timer(struct igb_adapter *adapter)
2278{
2279	struct e1000_hw *hw = &adapter->hw;
2280
2281	switch (hw->mac.type) {
2282	case e1000_i350:
2283	case e1000_82580:
2284		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2285		adapter->cycles.read = igb_read_clock;
2286		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2287		adapter->cycles.mult = 1;
2288		/*
2289		 * The 82580 timesync updates the system timer every 8ns by 8ns
2290		 * and the value cannot be shifted.  Instead we need to shift
2291		 * the registers to generate a 64bit timer value.  As a result
2292		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2293		 * 24 in order to generate a larger value for synchronization.
2294		 */
2295		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2296		/* disable system timer temporarily by setting bit 31 */
2297		wr32(E1000_TSAUXC, 0x80000000);
2298		wrfl();
2299
2300		/* Set registers so that rollover occurs soon to test this. */
2301		wr32(E1000_SYSTIMR, 0x00000000);
2302		wr32(E1000_SYSTIML, 0x80000000);
2303		wr32(E1000_SYSTIMH, 0x000000FF);
2304		wrfl();
2305
2306		/* enable system timer by clearing bit 31 */
2307		wr32(E1000_TSAUXC, 0x0);
2308		wrfl();
2309
2310		timecounter_init(&adapter->clock,
2311				 &adapter->cycles,
2312				 ktime_to_ns(ktime_get_real()));
2313		/*
2314		 * Synchronize our NIC clock against system wall clock. NIC
2315		 * time stamp reading requires ~3us per sample, each sample
2316		 * was pretty stable even under load => only require 10
2317		 * samples for each offset comparison.
2318		 */
2319		memset(&adapter->compare, 0, sizeof(adapter->compare));
2320		adapter->compare.source = &adapter->clock;
2321		adapter->compare.target = ktime_get_real;
2322		adapter->compare.num_samples = 10;
2323		timecompare_update(&adapter->compare, 0);
2324		break;
2325	case e1000_82576:
2326		/*
2327		 * Initialize hardware timer: we keep it running just in case
2328		 * that some program needs it later on.
2329		 */
2330		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2331		adapter->cycles.read = igb_read_clock;
2332		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2333		adapter->cycles.mult = 1;
2334		/**
2335		 * Scale the NIC clock cycle by a large factor so that
2336		 * relatively small clock corrections can be added or
2337		 * subtracted at each clock tick. The drawbacks of a large
2338		 * factor are a) that the clock register overflows more quickly
2339		 * (not such a big deal) and b) that the increment per tick has
2340		 * to fit into 24 bits.  As a result we need to use a shift of
2341		 * 19 so we can fit a value of 16 into the TIMINCA register.
2342		 */
2343		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2344		wr32(E1000_TIMINCA,
2345		                (1 << E1000_TIMINCA_16NS_SHIFT) |
2346		                (16 << IGB_82576_TSYNC_SHIFT));
2347
2348		/* Set registers so that rollover occurs soon to test this. */
2349		wr32(E1000_SYSTIML, 0x00000000);
2350		wr32(E1000_SYSTIMH, 0xFF800000);
2351		wrfl();
2352
2353		timecounter_init(&adapter->clock,
2354				 &adapter->cycles,
2355				 ktime_to_ns(ktime_get_real()));
2356		/*
2357		 * Synchronize our NIC clock against system wall clock. NIC
2358		 * time stamp reading requires ~3us per sample, each sample
2359		 * was pretty stable even under load => only require 10
2360		 * samples for each offset comparison.
2361		 */
2362		memset(&adapter->compare, 0, sizeof(adapter->compare));
2363		adapter->compare.source = &adapter->clock;
2364		adapter->compare.target = ktime_get_real;
2365		adapter->compare.num_samples = 10;
2366		timecompare_update(&adapter->compare, 0);
2367		break;
2368	case e1000_82575:
2369		/* 82575 does not support timesync */
2370	default:
2371		break;
2372	}
2373
2374}
2375
2376/**
2377 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2378 * @adapter: board private structure to initialize
2379 *
2380 * igb_sw_init initializes the Adapter private data structure.
2381 * Fields are initialized based on PCI device information and
2382 * OS network device settings (MTU size).
2383 **/
2384static int __devinit igb_sw_init(struct igb_adapter *adapter)
2385{
2386	struct e1000_hw *hw = &adapter->hw;
2387	struct net_device *netdev = adapter->netdev;
2388	struct pci_dev *pdev = adapter->pdev;
2389
2390	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2391
2392	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2393	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2394	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2395	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2396
2397	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2398	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2399
2400	spin_lock_init(&adapter->stats64_lock);
2401#ifdef CONFIG_PCI_IOV
2402	switch (hw->mac.type) {
2403	case e1000_82576:
2404	case e1000_i350:
2405		if (max_vfs > 7) {
2406			dev_warn(&pdev->dev,
2407				 "Maximum of 7 VFs per PF, using max\n");
2408			adapter->vfs_allocated_count = 7;
2409		} else
2410			adapter->vfs_allocated_count = max_vfs;
2411		break;
2412	default:
2413		break;
2414	}
2415#endif /* CONFIG_PCI_IOV */
2416	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2417	/* i350 cannot do RSS and SR-IOV at the same time */
2418	if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2419		adapter->rss_queues = 1;
2420
2421	/*
2422	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2423	 * then we should combine the queues into a queue pair in order to
2424	 * conserve interrupts due to limited supply
2425	 */
2426	if ((adapter->rss_queues > 4) ||
2427	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2428		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2429
2430	/* This call may decrease the number of queues */
2431	if (igb_init_interrupt_scheme(adapter)) {
2432		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2433		return -ENOMEM;
2434	}
2435
2436	igb_probe_vfs(adapter);
2437
2438	/* Explicitly disable IRQ since the NIC can be in any state. */
2439	igb_irq_disable(adapter);
2440
2441	if (hw->mac.type == e1000_i350)
2442		adapter->flags &= ~IGB_FLAG_DMAC;
2443
2444	set_bit(__IGB_DOWN, &adapter->state);
2445	return 0;
2446}
2447
2448/**
2449 * igb_open - Called when a network interface is made active
2450 * @netdev: network interface device structure
2451 *
2452 * Returns 0 on success, negative value on failure
2453 *
2454 * The open entry point is called when a network interface is made
2455 * active by the system (IFF_UP).  At this point all resources needed
2456 * for transmit and receive operations are allocated, the interrupt
2457 * handler is registered with the OS, the watchdog timer is started,
2458 * and the stack is notified that the interface is ready.
2459 **/
2460static int igb_open(struct net_device *netdev)
2461{
2462	struct igb_adapter *adapter = netdev_priv(netdev);
2463	struct e1000_hw *hw = &adapter->hw;
2464	int err;
2465	int i;
2466
2467	/* disallow open during test */
2468	if (test_bit(__IGB_TESTING, &adapter->state))
2469		return -EBUSY;
2470
2471	netif_carrier_off(netdev);
2472
2473	/* allocate transmit descriptors */
2474	err = igb_setup_all_tx_resources(adapter);
2475	if (err)
2476		goto err_setup_tx;
2477
2478	/* allocate receive descriptors */
2479	err = igb_setup_all_rx_resources(adapter);
2480	if (err)
2481		goto err_setup_rx;
2482
2483	igb_power_up_link(adapter);
2484
2485	/* before we allocate an interrupt, we must be ready to handle it.
2486	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2487	 * as soon as we call pci_request_irq, so we have to setup our
2488	 * clean_rx handler before we do so.  */
2489	igb_configure(adapter);
2490
2491	err = igb_request_irq(adapter);
2492	if (err)
2493		goto err_req_irq;
2494
2495	/* From here on the code is the same as igb_up() */
2496	clear_bit(__IGB_DOWN, &adapter->state);
2497
2498	for (i = 0; i < adapter->num_q_vectors; i++) {
2499		struct igb_q_vector *q_vector = adapter->q_vector[i];
2500		napi_enable(&q_vector->napi);
2501	}
2502
2503	/* Clear any pending interrupts. */
2504	rd32(E1000_ICR);
2505
2506	igb_irq_enable(adapter);
2507
2508	/* notify VFs that reset has been completed */
2509	if (adapter->vfs_allocated_count) {
2510		u32 reg_data = rd32(E1000_CTRL_EXT);
2511		reg_data |= E1000_CTRL_EXT_PFRSTD;
2512		wr32(E1000_CTRL_EXT, reg_data);
2513	}
2514
2515	netif_tx_start_all_queues(netdev);
2516
2517	/* start the watchdog. */
2518	hw->mac.get_link_status = 1;
2519	schedule_work(&adapter->watchdog_task);
2520
2521	return 0;
2522
2523err_req_irq:
2524	igb_release_hw_control(adapter);
2525	igb_power_down_link(adapter);
2526	igb_free_all_rx_resources(adapter);
2527err_setup_rx:
2528	igb_free_all_tx_resources(adapter);
2529err_setup_tx:
2530	igb_reset(adapter);
2531
2532	return err;
2533}
2534
2535/**
2536 * igb_close - Disables a network interface
2537 * @netdev: network interface device structure
2538 *
2539 * Returns 0, this is not allowed to fail
2540 *
2541 * The close entry point is called when an interface is de-activated
2542 * by the OS.  The hardware is still under the driver's control, but
2543 * needs to be disabled.  A global MAC reset is issued to stop the
2544 * hardware, and all transmit and receive resources are freed.
2545 **/
2546static int igb_close(struct net_device *netdev)
2547{
2548	struct igb_adapter *adapter = netdev_priv(netdev);
2549
2550	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2551	igb_down(adapter);
2552
2553	igb_free_irq(adapter);
2554
2555	igb_free_all_tx_resources(adapter);
2556	igb_free_all_rx_resources(adapter);
2557
2558	return 0;
2559}
2560
2561/**
2562 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2563 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2564 *
2565 * Return 0 on success, negative on failure
2566 **/
2567int igb_setup_tx_resources(struct igb_ring *tx_ring)
2568{
2569	struct device *dev = tx_ring->dev;
2570	int size;
2571
2572	size = sizeof(struct igb_buffer) * tx_ring->count;
2573	tx_ring->buffer_info = vzalloc(size);
2574	if (!tx_ring->buffer_info)
2575		goto err;
2576
2577	/* round up to nearest 4K */
2578	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2579	tx_ring->size = ALIGN(tx_ring->size, 4096);
2580
2581	tx_ring->desc = dma_alloc_coherent(dev,
2582					   tx_ring->size,
2583					   &tx_ring->dma,
2584					   GFP_KERNEL);
2585
2586	if (!tx_ring->desc)
2587		goto err;
2588
2589	tx_ring->next_to_use = 0;
2590	tx_ring->next_to_clean = 0;
2591	return 0;
2592
2593err:
2594	vfree(tx_ring->buffer_info);
2595	dev_err(dev,
2596		"Unable to allocate memory for the transmit descriptor ring\n");
2597	return -ENOMEM;
2598}
2599
2600/**
2601 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2602 *				  (Descriptors) for all queues
2603 * @adapter: board private structure
2604 *
2605 * Return 0 on success, negative on failure
2606 **/
2607static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2608{
2609	struct pci_dev *pdev = adapter->pdev;
2610	int i, err = 0;
2611
2612	for (i = 0; i < adapter->num_tx_queues; i++) {
2613		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2614		if (err) {
2615			dev_err(&pdev->dev,
2616				"Allocation for Tx Queue %u failed\n", i);
2617			for (i--; i >= 0; i--)
2618				igb_free_tx_resources(adapter->tx_ring[i]);
2619			break;
2620		}
2621	}
2622
2623	for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2624		int r_idx = i % adapter->num_tx_queues;
2625		adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2626	}
2627	return err;
2628}
2629
2630/**
2631 * igb_setup_tctl - configure the transmit control registers
2632 * @adapter: Board private structure
2633 **/
2634void igb_setup_tctl(struct igb_adapter *adapter)
2635{
2636	struct e1000_hw *hw = &adapter->hw;
2637	u32 tctl;
2638
2639	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2640	wr32(E1000_TXDCTL(0), 0);
2641
2642	/* Program the Transmit Control Register */
2643	tctl = rd32(E1000_TCTL);
2644	tctl &= ~E1000_TCTL_CT;
2645	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2646		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2647
2648	igb_config_collision_dist(hw);
2649
2650	/* Enable transmits */
2651	tctl |= E1000_TCTL_EN;
2652
2653	wr32(E1000_TCTL, tctl);
2654}
2655
2656/**
2657 * igb_configure_tx_ring - Configure transmit ring after Reset
2658 * @adapter: board private structure
2659 * @ring: tx ring to configure
2660 *
2661 * Configure a transmit ring after a reset.
2662 **/
2663void igb_configure_tx_ring(struct igb_adapter *adapter,
2664                           struct igb_ring *ring)
2665{
2666	struct e1000_hw *hw = &adapter->hw;
2667	u32 txdctl;
2668	u64 tdba = ring->dma;
2669	int reg_idx = ring->reg_idx;
2670
2671	/* disable the queue */
2672	txdctl = rd32(E1000_TXDCTL(reg_idx));
2673	wr32(E1000_TXDCTL(reg_idx),
2674	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2675	wrfl();
2676	mdelay(10);
2677
2678	wr32(E1000_TDLEN(reg_idx),
2679	                ring->count * sizeof(union e1000_adv_tx_desc));
2680	wr32(E1000_TDBAL(reg_idx),
2681	                tdba & 0x00000000ffffffffULL);
2682	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2683
2684	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2685	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2686	writel(0, ring->head);
2687	writel(0, ring->tail);
2688
2689	txdctl |= IGB_TX_PTHRESH;
2690	txdctl |= IGB_TX_HTHRESH << 8;
2691	txdctl |= IGB_TX_WTHRESH << 16;
2692
2693	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2694	wr32(E1000_TXDCTL(reg_idx), txdctl);
2695}
2696
2697/**
2698 * igb_configure_tx - Configure transmit Unit after Reset
2699 * @adapter: board private structure
2700 *
2701 * Configure the Tx unit of the MAC after a reset.
2702 **/
2703static void igb_configure_tx(struct igb_adapter *adapter)
2704{
2705	int i;
2706
2707	for (i = 0; i < adapter->num_tx_queues; i++)
2708		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2709}
2710
2711/**
2712 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2713 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2714 *
2715 * Returns 0 on success, negative on failure
2716 **/
2717int igb_setup_rx_resources(struct igb_ring *rx_ring)
2718{
2719	struct device *dev = rx_ring->dev;
2720	int size, desc_len;
2721
2722	size = sizeof(struct igb_buffer) * rx_ring->count;
2723	rx_ring->buffer_info = vzalloc(size);
2724	if (!rx_ring->buffer_info)
2725		goto err;
2726
2727	desc_len = sizeof(union e1000_adv_rx_desc);
2728
2729	/* Round up to nearest 4K */
2730	rx_ring->size = rx_ring->count * desc_len;
2731	rx_ring->size = ALIGN(rx_ring->size, 4096);
2732
2733	rx_ring->desc = dma_alloc_coherent(dev,
2734					   rx_ring->size,
2735					   &rx_ring->dma,
2736					   GFP_KERNEL);
2737
2738	if (!rx_ring->desc)
2739		goto err;
2740
2741	rx_ring->next_to_clean = 0;
2742	rx_ring->next_to_use = 0;
2743
2744	return 0;
2745
2746err:
2747	vfree(rx_ring->buffer_info);
2748	rx_ring->buffer_info = NULL;
2749	dev_err(dev, "Unable to allocate memory for the receive descriptor"
2750		" ring\n");
2751	return -ENOMEM;
2752}
2753
2754/**
2755 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2756 *				  (Descriptors) for all queues
2757 * @adapter: board private structure
2758 *
2759 * Return 0 on success, negative on failure
2760 **/
2761static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2762{
2763	struct pci_dev *pdev = adapter->pdev;
2764	int i, err = 0;
2765
2766	for (i = 0; i < adapter->num_rx_queues; i++) {
2767		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2768		if (err) {
2769			dev_err(&pdev->dev,
2770				"Allocation for Rx Queue %u failed\n", i);
2771			for (i--; i >= 0; i--)
2772				igb_free_rx_resources(adapter->rx_ring[i]);
2773			break;
2774		}
2775	}
2776
2777	return err;
2778}
2779
2780/**
2781 * igb_setup_mrqc - configure the multiple receive queue control registers
2782 * @adapter: Board private structure
2783 **/
2784static void igb_setup_mrqc(struct igb_adapter *adapter)
2785{
2786	struct e1000_hw *hw = &adapter->hw;
2787	u32 mrqc, rxcsum;
2788	u32 j, num_rx_queues, shift = 0, shift2 = 0;
2789	union e1000_reta {
2790		u32 dword;
2791		u8  bytes[4];
2792	} reta;
2793	static const u8 rsshash[40] = {
2794		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2795		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2796		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2797		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2798
2799	/* Fill out hash function seeds */
2800	for (j = 0; j < 10; j++) {
2801		u32 rsskey = rsshash[(j * 4)];
2802		rsskey |= rsshash[(j * 4) + 1] << 8;
2803		rsskey |= rsshash[(j * 4) + 2] << 16;
2804		rsskey |= rsshash[(j * 4) + 3] << 24;
2805		array_wr32(E1000_RSSRK(0), j, rsskey);
2806	}
2807
2808	num_rx_queues = adapter->rss_queues;
2809
2810	if (adapter->vfs_allocated_count) {
2811		/* 82575 and 82576 supports 2 RSS queues for VMDq */
2812		switch (hw->mac.type) {
2813		case e1000_i350:
2814		case e1000_82580:
2815			num_rx_queues = 1;
2816			shift = 0;
2817			break;
2818		case e1000_82576:
2819			shift = 3;
2820			num_rx_queues = 2;
2821			break;
2822		case e1000_82575:
2823			shift = 2;
2824			shift2 = 6;
2825		default:
2826			break;
2827		}
2828	} else {
2829		if (hw->mac.type == e1000_82575)
2830			shift = 6;
2831	}
2832
2833	for (j = 0; j < (32 * 4); j++) {
2834		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2835		if (shift2)
2836			reta.bytes[j & 3] |= num_rx_queues << shift2;
2837		if ((j & 3) == 3)
2838			wr32(E1000_RETA(j >> 2), reta.dword);
2839	}
2840
2841	/*
2842	 * Disable raw packet checksumming so that RSS hash is placed in
2843	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2844	 * offloads as they are enabled by default
2845	 */
2846	rxcsum = rd32(E1000_RXCSUM);
2847	rxcsum |= E1000_RXCSUM_PCSD;
2848
2849	if (adapter->hw.mac.type >= e1000_82576)
2850		/* Enable Receive Checksum Offload for SCTP */
2851		rxcsum |= E1000_RXCSUM_CRCOFL;
2852
2853	/* Don't need to set TUOFL or IPOFL, they default to 1 */
2854	wr32(E1000_RXCSUM, rxcsum);
2855
2856	/* If VMDq is enabled then we set the appropriate mode for that, else
2857	 * we default to RSS so that an RSS hash is calculated per packet even
2858	 * if we are only using one queue */
2859	if (adapter->vfs_allocated_count) {
2860		if (hw->mac.type > e1000_82575) {
2861			/* Set the default pool for the PF's first queue */
2862			u32 vtctl = rd32(E1000_VT_CTL);
2863			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2864				   E1000_VT_CTL_DISABLE_DEF_POOL);
2865			vtctl |= adapter->vfs_allocated_count <<
2866				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2867			wr32(E1000_VT_CTL, vtctl);
2868		}
2869		if (adapter->rss_queues > 1)
2870			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2871		else
2872			mrqc = E1000_MRQC_ENABLE_VMDQ;
2873	} else {
2874		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2875	}
2876	igb_vmm_control(adapter);
2877
2878	/*
2879	 * Generate RSS hash based on TCP port numbers and/or
2880	 * IPv4/v6 src and dst addresses since UDP cannot be
2881	 * hashed reliably due to IP fragmentation
2882	 */
2883	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2884		E1000_MRQC_RSS_FIELD_IPV4_TCP |
2885		E1000_MRQC_RSS_FIELD_IPV6 |
2886		E1000_MRQC_RSS_FIELD_IPV6_TCP |
2887		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2888
2889	wr32(E1000_MRQC, mrqc);
2890}
2891
2892/**
2893 * igb_setup_rctl - configure the receive control registers
2894 * @adapter: Board private structure
2895 **/
2896void igb_setup_rctl(struct igb_adapter *adapter)
2897{
2898	struct e1000_hw *hw = &adapter->hw;
2899	u32 rctl;
2900
2901	rctl = rd32(E1000_RCTL);
2902
2903	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2904	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2905
2906	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2907		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2908
2909	/*
2910	 * enable stripping of CRC. It's unlikely this will break BMC
2911	 * redirection as it did with e1000. Newer features require
2912	 * that the HW strips the CRC.
2913	 */
2914	rctl |= E1000_RCTL_SECRC;
2915
2916	/* disable store bad packets and clear size bits. */
2917	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2918
2919	/* enable LPE to prevent packets larger than max_frame_size */
2920	rctl |= E1000_RCTL_LPE;
2921
2922	/* disable queue 0 to prevent tail write w/o re-config */
2923	wr32(E1000_RXDCTL(0), 0);
2924
2925	/* Attention!!!  For SR-IOV PF driver operations you must enable
2926	 * queue drop for all VF and PF queues to prevent head of line blocking
2927	 * if an un-trusted VF does not provide descriptors to hardware.
2928	 */
2929	if (adapter->vfs_allocated_count) {
2930		/* set all queue drop enable bits */
2931		wr32(E1000_QDE, ALL_QUEUES);
2932	}
2933
2934	wr32(E1000_RCTL, rctl);
2935}
2936
2937static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2938                                   int vfn)
2939{
2940	struct e1000_hw *hw = &adapter->hw;
2941	u32 vmolr;
2942
2943	/* if it isn't the PF check to see if VFs are enabled and
2944	 * increase the size to support vlan tags */
2945	if (vfn < adapter->vfs_allocated_count &&
2946	    adapter->vf_data[vfn].vlans_enabled)
2947		size += VLAN_TAG_SIZE;
2948
2949	vmolr = rd32(E1000_VMOLR(vfn));
2950	vmolr &= ~E1000_VMOLR_RLPML_MASK;
2951	vmolr |= size | E1000_VMOLR_LPE;
2952	wr32(E1000_VMOLR(vfn), vmolr);
2953
2954	return 0;
2955}
2956
2957/**
2958 * igb_rlpml_set - set maximum receive packet size
2959 * @adapter: board private structure
2960 *
2961 * Configure maximum receivable packet size.
2962 **/
2963static void igb_rlpml_set(struct igb_adapter *adapter)
2964{
2965	u32 max_frame_size;
2966	struct e1000_hw *hw = &adapter->hw;
2967	u16 pf_id = adapter->vfs_allocated_count;
2968
2969	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
2970
2971	/* if vfs are enabled we set RLPML to the largest possible request
2972	 * size and set the VMOLR RLPML to the size we need */
2973	if (pf_id) {
2974		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2975		max_frame_size = MAX_JUMBO_FRAME_SIZE;
2976	}
2977
2978	wr32(E1000_RLPML, max_frame_size);
2979}
2980
2981static inline void igb_set_vmolr(struct igb_adapter *adapter,
2982				 int vfn, bool aupe)
2983{
2984	struct e1000_hw *hw = &adapter->hw;
2985	u32 vmolr;
2986
2987	/*
2988	 * This register exists only on 82576 and newer so if we are older then
2989	 * we should exit and do nothing
2990	 */
2991	if (hw->mac.type < e1000_82576)
2992		return;
2993
2994	vmolr = rd32(E1000_VMOLR(vfn));
2995	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
2996	if (aupe)
2997		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
2998	else
2999		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3000
3001	/* clear all bits that might not be set */
3002	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3003
3004	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3005		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3006	/*
3007	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3008	 * multicast packets
3009	 */
3010	if (vfn <= adapter->vfs_allocated_count)
3011		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3012
3013	wr32(E1000_VMOLR(vfn), vmolr);
3014}
3015
3016/**
3017 * igb_configure_rx_ring - Configure a receive ring after Reset
3018 * @adapter: board private structure
3019 * @ring: receive ring to be configured
3020 *
3021 * Configure the Rx unit of the MAC after a reset.
3022 **/
3023void igb_configure_rx_ring(struct igb_adapter *adapter,
3024                           struct igb_ring *ring)
3025{
3026	struct e1000_hw *hw = &adapter->hw;
3027	u64 rdba = ring->dma;
3028	int reg_idx = ring->reg_idx;
3029	u32 srrctl, rxdctl;
3030
3031	/* disable the queue */
3032	rxdctl = rd32(E1000_RXDCTL(reg_idx));
3033	wr32(E1000_RXDCTL(reg_idx),
3034	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
3035
3036	/* Set DMA base address registers */
3037	wr32(E1000_RDBAL(reg_idx),
3038	     rdba & 0x00000000ffffffffULL);
3039	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3040	wr32(E1000_RDLEN(reg_idx),
3041	               ring->count * sizeof(union e1000_adv_rx_desc));
3042
3043	/* initialize head and tail */
3044	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
3045	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3046	writel(0, ring->head);
3047	writel(0, ring->tail);
3048
3049	/* set descriptor configuration */
3050	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
3051		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
3052		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3053#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3054		srrctl |= IGB_RXBUFFER_16384 >>
3055		          E1000_SRRCTL_BSIZEPKT_SHIFT;
3056#else
3057		srrctl |= (PAGE_SIZE / 2) >>
3058		          E1000_SRRCTL_BSIZEPKT_SHIFT;
3059#endif
3060		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3061	} else {
3062		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
3063		         E1000_SRRCTL_BSIZEPKT_SHIFT;
3064		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3065	}
3066	if (hw->mac.type == e1000_82580)
3067		srrctl |= E1000_SRRCTL_TIMESTAMP;
3068	/* Only set Drop Enable if we are supporting multiple queues */
3069	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3070		srrctl |= E1000_SRRCTL_DROP_EN;
3071
3072	wr32(E1000_SRRCTL(reg_idx), srrctl);
3073
3074	/* set filtering for VMDQ pools */
3075	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3076
3077	/* enable receive descriptor fetching */
3078	rxdctl = rd32(E1000_RXDCTL(reg_idx));
3079	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3080	rxdctl &= 0xFFF00000;
3081	rxdctl |= IGB_RX_PTHRESH;
3082	rxdctl |= IGB_RX_HTHRESH << 8;
3083	rxdctl |= IGB_RX_WTHRESH << 16;
3084	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3085}
3086
3087/**
3088 * igb_configure_rx - Configure receive Unit after Reset
3089 * @adapter: board private structure
3090 *
3091 * Configure the Rx unit of the MAC after a reset.
3092 **/
3093static void igb_configure_rx(struct igb_adapter *adapter)
3094{
3095	int i;
3096
3097	/* set UTA to appropriate mode */
3098	igb_set_uta(adapter);
3099
3100	/* set the correct pool for the PF default MAC address in entry 0 */
3101	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3102	                 adapter->vfs_allocated_count);
3103
3104	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3105	 * the Base and Length of the Rx Descriptor Ring */
3106	for (i = 0; i < adapter->num_rx_queues; i++)
3107		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3108}
3109
3110/**
3111 * igb_free_tx_resources - Free Tx Resources per Queue
3112 * @tx_ring: Tx descriptor ring for a specific queue
3113 *
3114 * Free all transmit software resources
3115 **/
3116void igb_free_tx_resources(struct igb_ring *tx_ring)
3117{
3118	igb_clean_tx_ring(tx_ring);
3119
3120	vfree(tx_ring->buffer_info);
3121	tx_ring->buffer_info = NULL;
3122
3123	/* if not set, then don't free */
3124	if (!tx_ring->desc)
3125		return;
3126
3127	dma_free_coherent(tx_ring->dev, tx_ring->size,
3128			  tx_ring->desc, tx_ring->dma);
3129
3130	tx_ring->desc = NULL;
3131}
3132
3133/**
3134 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3135 * @adapter: board private structure
3136 *
3137 * Free all transmit software resources
3138 **/
3139static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3140{
3141	int i;
3142
3143	for (i = 0; i < adapter->num_tx_queues; i++)
3144		igb_free_tx_resources(adapter->tx_ring[i]);
3145}
3146
3147void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3148				    struct igb_buffer *buffer_info)
3149{
3150	if (buffer_info->dma) {
3151		if (buffer_info->mapped_as_page)
3152			dma_unmap_page(tx_ring->dev,
3153					buffer_info->dma,
3154					buffer_info->length,
3155					DMA_TO_DEVICE);
3156		else
3157			dma_unmap_single(tx_ring->dev,
3158					buffer_info->dma,
3159					buffer_info->length,
3160					DMA_TO_DEVICE);
3161		buffer_info->dma = 0;
3162	}
3163	if (buffer_info->skb) {
3164		dev_kfree_skb_any(buffer_info->skb);
3165		buffer_info->skb = NULL;
3166	}
3167	buffer_info->time_stamp = 0;
3168	buffer_info->length = 0;
3169	buffer_info->next_to_watch = 0;
3170	buffer_info->mapped_as_page = false;
3171}
3172
3173/**
3174 * igb_clean_tx_ring - Free Tx Buffers
3175 * @tx_ring: ring to be cleaned
3176 **/
3177static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3178{
3179	struct igb_buffer *buffer_info;
3180	unsigned long size;
3181	unsigned int i;
3182
3183	if (!tx_ring->buffer_info)
3184		return;
3185	/* Free all the Tx ring sk_buffs */
3186
3187	for (i = 0; i < tx_ring->count; i++) {
3188		buffer_info = &tx_ring->buffer_info[i];
3189		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3190	}
3191
3192	size = sizeof(struct igb_buffer) * tx_ring->count;
3193	memset(tx_ring->buffer_info, 0, size);
3194
3195	/* Zero out the descriptor ring */
3196	memset(tx_ring->desc, 0, tx_ring->size);
3197
3198	tx_ring->next_to_use = 0;
3199	tx_ring->next_to_clean = 0;
3200}
3201
3202/**
3203 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3204 * @adapter: board private structure
3205 **/
3206static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3207{
3208	int i;
3209
3210	for (i = 0; i < adapter->num_tx_queues; i++)
3211		igb_clean_tx_ring(adapter->tx_ring[i]);
3212}
3213
3214/**
3215 * igb_free_rx_resources - Free Rx Resources
3216 * @rx_ring: ring to clean the resources from
3217 *
3218 * Free all receive software resources
3219 **/
3220void igb_free_rx_resources(struct igb_ring *rx_ring)
3221{
3222	igb_clean_rx_ring(rx_ring);
3223
3224	vfree(rx_ring->buffer_info);
3225	rx_ring->buffer_info = NULL;
3226
3227	/* if not set, then don't free */
3228	if (!rx_ring->desc)
3229		return;
3230
3231	dma_free_coherent(rx_ring->dev, rx_ring->size,
3232			  rx_ring->desc, rx_ring->dma);
3233
3234	rx_ring->desc = NULL;
3235}
3236
3237/**
3238 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3239 * @adapter: board private structure
3240 *
3241 * Free all receive software resources
3242 **/
3243static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3244{
3245	int i;
3246
3247	for (i = 0; i < adapter->num_rx_queues; i++)
3248		igb_free_rx_resources(adapter->rx_ring[i]);
3249}
3250
3251/**
3252 * igb_clean_rx_ring - Free Rx Buffers per Queue
3253 * @rx_ring: ring to free buffers from
3254 **/
3255static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3256{
3257	struct igb_buffer *buffer_info;
3258	unsigned long size;
3259	unsigned int i;
3260
3261	if (!rx_ring->buffer_info)
3262		return;
3263
3264	/* Free all the Rx ring sk_buffs */
3265	for (i = 0; i < rx_ring->count; i++) {
3266		buffer_info = &rx_ring->buffer_info[i];
3267		if (buffer_info->dma) {
3268			dma_unmap_single(rx_ring->dev,
3269			                 buffer_info->dma,
3270					 rx_ring->rx_buffer_len,
3271					 DMA_FROM_DEVICE);
3272			buffer_info->dma = 0;
3273		}
3274
3275		if (buffer_info->skb) {
3276			dev_kfree_skb(buffer_info->skb);
3277			buffer_info->skb = NULL;
3278		}
3279		if (buffer_info->page_dma) {
3280			dma_unmap_page(rx_ring->dev,
3281			               buffer_info->page_dma,
3282				       PAGE_SIZE / 2,
3283				       DMA_FROM_DEVICE);
3284			buffer_info->page_dma = 0;
3285		}
3286		if (buffer_info->page) {
3287			put_page(buffer_info->page);
3288			buffer_info->page = NULL;
3289			buffer_info->page_offset = 0;
3290		}
3291	}
3292
3293	size = sizeof(struct igb_buffer) * rx_ring->count;
3294	memset(rx_ring->buffer_info, 0, size);
3295
3296	/* Zero out the descriptor ring */
3297	memset(rx_ring->desc, 0, rx_ring->size);
3298
3299	rx_ring->next_to_clean = 0;
3300	rx_ring->next_to_use = 0;
3301}
3302
3303/**
3304 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3305 * @adapter: board private structure
3306 **/
3307static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3308{
3309	int i;
3310
3311	for (i = 0; i < adapter->num_rx_queues; i++)
3312		igb_clean_rx_ring(adapter->rx_ring[i]);
3313}
3314
3315/**
3316 * igb_set_mac - Change the Ethernet Address of the NIC
3317 * @netdev: network interface device structure
3318 * @p: pointer to an address structure
3319 *
3320 * Returns 0 on success, negative on failure
3321 **/
3322static int igb_set_mac(struct net_device *netdev, void *p)
3323{
3324	struct igb_adapter *adapter = netdev_priv(netdev);
3325	struct e1000_hw *hw = &adapter->hw;
3326	struct sockaddr *addr = p;
3327
3328	if (!is_valid_ether_addr(addr->sa_data))
3329		return -EADDRNOTAVAIL;
3330
3331	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3332	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3333
3334	/* set the correct pool for the new PF MAC address in entry 0 */
3335	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3336	                 adapter->vfs_allocated_count);
3337
3338	return 0;
3339}
3340
3341/**
3342 * igb_write_mc_addr_list - write multicast addresses to MTA
3343 * @netdev: network interface device structure
3344 *
3345 * Writes multicast address list to the MTA hash table.
3346 * Returns: -ENOMEM on failure
3347 *                0 on no addresses written
3348 *                X on writing X addresses to MTA
3349 **/
3350static int igb_write_mc_addr_list(struct net_device *netdev)
3351{
3352	struct igb_adapter *adapter = netdev_priv(netdev);
3353	struct e1000_hw *hw = &adapter->hw;
3354	struct netdev_hw_addr *ha;
3355	u8  *mta_list;
3356	int i;
3357
3358	if (netdev_mc_empty(netdev)) {
3359		/* nothing to program, so clear mc list */
3360		igb_update_mc_addr_list(hw, NULL, 0);
3361		igb_restore_vf_multicasts(adapter);
3362		return 0;
3363	}
3364
3365	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3366	if (!mta_list)
3367		return -ENOMEM;
3368
3369	/* The shared function expects a packed array of only addresses. */
3370	i = 0;
3371	netdev_for_each_mc_addr(ha, netdev)
3372		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3373
3374	igb_update_mc_addr_list(hw, mta_list, i);
3375	kfree(mta_list);
3376
3377	return netdev_mc_count(netdev);
3378}
3379
3380/**
3381 * igb_write_uc_addr_list - write unicast addresses to RAR table
3382 * @netdev: network interface device structure
3383 *
3384 * Writes unicast address list to the RAR table.
3385 * Returns: -ENOMEM on failure/insufficient address space
3386 *                0 on no addresses written
3387 *                X on writing X addresses to the RAR table
3388 **/
3389static int igb_write_uc_addr_list(struct net_device *netdev)
3390{
3391	struct igb_adapter *adapter = netdev_priv(netdev);
3392	struct e1000_hw *hw = &adapter->hw;
3393	unsigned int vfn = adapter->vfs_allocated_count;
3394	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3395	int count = 0;
3396
3397	/* return ENOMEM indicating insufficient memory for addresses */
3398	if (netdev_uc_count(netdev) > rar_entries)
3399		return -ENOMEM;
3400
3401	if (!netdev_uc_empty(netdev) && rar_entries) {
3402		struct netdev_hw_addr *ha;
3403
3404		netdev_for_each_uc_addr(ha, netdev) {
3405			if (!rar_entries)
3406				break;
3407			igb_rar_set_qsel(adapter, ha->addr,
3408			                 rar_entries--,
3409			                 vfn);
3410			count++;
3411		}
3412	}
3413	/* write the addresses in reverse order to avoid write combining */
3414	for (; rar_entries > 0 ; rar_entries--) {
3415		wr32(E1000_RAH(rar_entries), 0);
3416		wr32(E1000_RAL(rar_entries), 0);
3417	}
3418	wrfl();
3419
3420	return count;
3421}
3422
3423/**
3424 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3425 * @netdev: network interface device structure
3426 *
3427 * The set_rx_mode entry point is called whenever the unicast or multicast
3428 * address lists or the network interface flags are updated.  This routine is
3429 * responsible for configuring the hardware for proper unicast, multicast,
3430 * promiscuous mode, and all-multi behavior.
3431 **/
3432static void igb_set_rx_mode(struct net_device *netdev)
3433{
3434	struct igb_adapter *adapter = netdev_priv(netdev);
3435	struct e1000_hw *hw = &adapter->hw;
3436	unsigned int vfn = adapter->vfs_allocated_count;
3437	u32 rctl, vmolr = 0;
3438	int count;
3439
3440	/* Check for Promiscuous and All Multicast modes */
3441	rctl = rd32(E1000_RCTL);
3442
3443	/* clear the effected bits */
3444	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3445
3446	if (netdev->flags & IFF_PROMISC) {
3447		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3448		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3449	} else {
3450		if (netdev->flags & IFF_ALLMULTI) {
3451			rctl |= E1000_RCTL_MPE;
3452			vmolr |= E1000_VMOLR_MPME;
3453		} else {
3454			/*
3455			 * Write addresses to the MTA, if the attempt fails
3456			 * then we should just turn on promiscuous mode so
3457			 * that we can at least receive multicast traffic
3458			 */
3459			count = igb_write_mc_addr_list(netdev);
3460			if (count < 0) {
3461				rctl |= E1000_RCTL_MPE;
3462				vmolr |= E1000_VMOLR_MPME;
3463			} else if (count) {
3464				vmolr |= E1000_VMOLR_ROMPE;
3465			}
3466		}
3467		/*
3468		 * Write addresses to available RAR registers, if there is not
3469		 * sufficient space to store all the addresses then enable
3470		 * unicast promiscuous mode
3471		 */
3472		count = igb_write_uc_addr_list(netdev);
3473		if (count < 0) {
3474			rctl |= E1000_RCTL_UPE;
3475			vmolr |= E1000_VMOLR_ROPE;
3476		}
3477		rctl |= E1000_RCTL_VFE;
3478	}
3479	wr32(E1000_RCTL, rctl);
3480
3481	/*
3482	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3483	 * the VMOLR to enable the appropriate modes.  Without this workaround
3484	 * we will have issues with VLAN tag stripping not being done for frames
3485	 * that are only arriving because we are the default pool
3486	 */
3487	if (hw->mac.type < e1000_82576)
3488		return;
3489
3490	vmolr |= rd32(E1000_VMOLR(vfn)) &
3491	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3492	wr32(E1000_VMOLR(vfn), vmolr);
3493	igb_restore_vf_multicasts(adapter);
3494}
3495
3496static void igb_check_wvbr(struct igb_adapter *adapter)
3497{
3498	struct e1000_hw *hw = &adapter->hw;
3499	u32 wvbr = 0;
3500
3501	switch (hw->mac.type) {
3502	case e1000_82576:
3503	case e1000_i350:
3504		if (!(wvbr = rd32(E1000_WVBR)))
3505			return;
3506		break;
3507	default:
3508		break;
3509	}
3510
3511	adapter->wvbr |= wvbr;
3512}
3513
3514#define IGB_STAGGERED_QUEUE_OFFSET 8
3515
3516static void igb_spoof_check(struct igb_adapter *adapter)
3517{
3518	int j;
3519
3520	if (!adapter->wvbr)
3521		return;
3522
3523	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3524		if (adapter->wvbr & (1 << j) ||
3525		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3526			dev_warn(&adapter->pdev->dev,
3527				"Spoof event(s) detected on VF %d\n", j);
3528			adapter->wvbr &=
3529				~((1 << j) |
3530				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3531		}
3532	}
3533}
3534
3535/* Need to wait a few seconds after link up to get diagnostic information from
3536 * the phy */
3537static void igb_update_phy_info(unsigned long data)
3538{
3539	struct igb_adapter *adapter = (struct igb_adapter *) data;
3540	igb_get_phy_info(&adapter->hw);
3541}
3542
3543/**
3544 * igb_has_link - check shared code for link and determine up/down
3545 * @adapter: pointer to driver private info
3546 **/
3547bool igb_has_link(struct igb_adapter *adapter)
3548{
3549	struct e1000_hw *hw = &adapter->hw;
3550	bool link_active = false;
3551	s32 ret_val = 0;
3552
3553	/* get_link_status is set on LSC (link status) interrupt or
3554	 * rx sequence error interrupt.  get_link_status will stay
3555	 * false until the e1000_check_for_link establishes link
3556	 * for copper adapters ONLY
3557	 */
3558	switch (hw->phy.media_type) {
3559	case e1000_media_type_copper:
3560		if (hw->mac.get_link_status) {
3561			ret_val = hw->mac.ops.check_for_link(hw);
3562			link_active = !hw->mac.get_link_status;
3563		} else {
3564			link_active = true;
3565		}
3566		break;
3567	case e1000_media_type_internal_serdes:
3568		ret_val = hw->mac.ops.check_for_link(hw);
3569		link_active = hw->mac.serdes_has_link;
3570		break;
3571	default:
3572	case e1000_media_type_unknown:
3573		break;
3574	}
3575
3576	return link_active;
3577}
3578
3579static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3580{
3581	bool ret = false;
3582	u32 ctrl_ext, thstat;
3583
3584	/* check for thermal sensor event on i350, copper only */
3585	if (hw->mac.type == e1000_i350) {
3586		thstat = rd32(E1000_THSTAT);
3587		ctrl_ext = rd32(E1000_CTRL_EXT);
3588
3589		if ((hw->phy.media_type == e1000_media_type_copper) &&
3590		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3591			ret = !!(thstat & event);
3592		}
3593	}
3594
3595	return ret;
3596}
3597
3598/**
3599 * igb_watchdog - Timer Call-back
3600 * @data: pointer to adapter cast into an unsigned long
3601 **/
3602static void igb_watchdog(unsigned long data)
3603{
3604	struct igb_adapter *adapter = (struct igb_adapter *)data;
3605	/* Do the rest outside of interrupt context */
3606	schedule_work(&adapter->watchdog_task);
3607}
3608
3609static void igb_watchdog_task(struct work_struct *work)
3610{
3611	struct igb_adapter *adapter = container_of(work,
3612	                                           struct igb_adapter,
3613                                                   watchdog_task);
3614	struct e1000_hw *hw = &adapter->hw;
3615	struct net_device *netdev = adapter->netdev;
3616	u32 link;
3617	int i;
3618
3619	link = igb_has_link(adapter);
3620	if (link) {
3621		if (!netif_carrier_ok(netdev)) {
3622			u32 ctrl;
3623			hw->mac.ops.get_speed_and_duplex(hw,
3624			                                 &adapter->link_speed,
3625			                                 &adapter->link_duplex);
3626
3627			ctrl = rd32(E1000_CTRL);
3628			/* Links status message must follow this format */
3629			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3630				 "Flow Control: %s\n",
3631			       netdev->name,
3632			       adapter->link_speed,
3633			       adapter->link_duplex == FULL_DUPLEX ?
3634				 "Full Duplex" : "Half Duplex",
3635			       ((ctrl & E1000_CTRL_TFCE) &&
3636			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3637			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
3638			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3639
3640			/* check for thermal sensor event */
3641			if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3642				printk(KERN_INFO "igb: %s The network adapter "
3643						 "link speed was downshifted "
3644						 "because it overheated.\n",
3645						 netdev->name);
3646			}
3647
3648			/* adjust timeout factor according to speed/duplex */
3649			adapter->tx_timeout_factor = 1;
3650			switch (adapter->link_speed) {
3651			case SPEED_10:
3652				adapter->tx_timeout_factor = 14;
3653				break;
3654			case SPEED_100:
3655				/* maybe add some timeout factor ? */
3656				break;
3657			}
3658
3659			netif_carrier_on(netdev);
3660
3661			igb_ping_all_vfs(adapter);
3662			igb_check_vf_rate_limit(adapter);
3663
3664			/* link state has changed, schedule phy info update */
3665			if (!test_bit(__IGB_DOWN, &adapter->state))
3666				mod_timer(&adapter->phy_info_timer,
3667					  round_jiffies(jiffies + 2 * HZ));
3668		}
3669	} else {
3670		if (netif_carrier_ok(netdev)) {
3671			adapter->link_speed = 0;
3672			adapter->link_duplex = 0;
3673
3674			/* check for thermal sensor event */
3675			if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3676				printk(KERN_ERR "igb: %s The network adapter "
3677						"was stopped because it "
3678						"overheated.\n",
3679						netdev->name);
3680			}
3681
3682			/* Links status message must follow this format */
3683			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3684			       netdev->name);
3685			netif_carrier_off(netdev);
3686
3687			igb_ping_all_vfs(adapter);
3688
3689			/* link state has changed, schedule phy info update */
3690			if (!test_bit(__IGB_DOWN, &adapter->state))
3691				mod_timer(&adapter->phy_info_timer,
3692					  round_jiffies(jiffies + 2 * HZ));
3693		}
3694	}
3695
3696	spin_lock(&adapter->stats64_lock);
3697	igb_update_stats(adapter, &adapter->stats64);
3698	spin_unlock(&adapter->stats64_lock);
3699
3700	for (i = 0; i < adapter->num_tx_queues; i++) {
3701		struct igb_ring *tx_ring = adapter->tx_ring[i];
3702		if (!netif_carrier_ok(netdev)) {
3703			/* We've lost link, so the controller stops DMA,
3704			 * but we've got queued Tx work that's never going
3705			 * to get done, so reset controller to flush Tx.
3706			 * (Do the reset outside of interrupt context). */
3707			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3708				adapter->tx_timeout_count++;
3709				schedule_work(&adapter->reset_task);
3710				/* return immediately since reset is imminent */
3711				return;
3712			}
3713		}
3714
3715		/* Force detection of hung controller every watchdog period */
3716		tx_ring->detect_tx_hung = true;
3717	}
3718
3719	/* Cause software interrupt to ensure rx ring is cleaned */
3720	if (adapter->msix_entries) {
3721		u32 eics = 0;
3722		for (i = 0; i < adapter->num_q_vectors; i++) {
3723			struct igb_q_vector *q_vector = adapter->q_vector[i];
3724			eics |= q_vector->eims_value;
3725		}
3726		wr32(E1000_EICS, eics);
3727	} else {
3728		wr32(E1000_ICS, E1000_ICS_RXDMT0);
3729	}
3730
3731	igb_spoof_check(adapter);
3732
3733	/* Reset the timer */
3734	if (!test_bit(__IGB_DOWN, &adapter->state))
3735		mod_timer(&adapter->watchdog_timer,
3736			  round_jiffies(jiffies + 2 * HZ));
3737}
3738
3739enum latency_range {
3740	lowest_latency = 0,
3741	low_latency = 1,
3742	bulk_latency = 2,
3743	latency_invalid = 255
3744};
3745
3746/**
3747 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3748 *
3749 *      Stores a new ITR value based on strictly on packet size.  This
3750 *      algorithm is less sophisticated than that used in igb_update_itr,
3751 *      due to the difficulty of synchronizing statistics across multiple
3752 *      receive rings.  The divisors and thresholds used by this function
3753 *      were determined based on theoretical maximum wire speed and testing
3754 *      data, in order to minimize response time while increasing bulk
3755 *      throughput.
3756 *      This functionality is controlled by the InterruptThrottleRate module
3757 *      parameter (see igb_param.c)
3758 *      NOTE:  This function is called only when operating in a multiqueue
3759 *             receive environment.
3760 * @q_vector: pointer to q_vector
3761 **/
3762static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3763{
3764	int new_val = q_vector->itr_val;
3765	int avg_wire_size = 0;
3766	struct igb_adapter *adapter = q_vector->adapter;
3767	struct igb_ring *ring;
3768	unsigned int packets;
3769
3770	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3771	 * ints/sec - ITR timer value of 120 ticks.
3772	 */
3773	if (adapter->link_speed != SPEED_1000) {
3774		new_val = 976;
3775		goto set_itr_val;
3776	}
3777
3778	ring = q_vector->rx_ring;
3779	if (ring) {
3780		packets = ACCESS_ONCE(ring->total_packets);
3781
3782		if (packets)
3783			avg_wire_size = ring->total_bytes / packets;
3784	}
3785
3786	ring = q_vector->tx_ring;
3787	if (ring) {
3788		packets = ACCESS_ONCE(ring->total_packets);
3789
3790		if (packets)
3791			avg_wire_size = max_t(u32, avg_wire_size,
3792			                      ring->total_bytes / packets);
3793	}
3794
3795	/* if avg_wire_size isn't set no work was done */
3796	if (!avg_wire_size)
3797		goto clear_counts;
3798
3799	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3800	avg_wire_size += 24;
3801
3802	/* Don't starve jumbo frames */
3803	avg_wire_size = min(avg_wire_size, 3000);
3804
3805	/* Give a little boost to mid-size frames */
3806	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3807		new_val = avg_wire_size / 3;
3808	else
3809		new_val = avg_wire_size / 2;
3810
3811	/* when in itr mode 3 do not exceed 20K ints/sec */
3812	if (adapter->rx_itr_setting == 3 && new_val < 196)
3813		new_val = 196;
3814
3815set_itr_val:
3816	if (new_val != q_vector->itr_val) {
3817		q_vector->itr_val = new_val;
3818		q_vector->set_itr = 1;
3819	}
3820clear_counts:
3821	if (q_vector->rx_ring) {
3822		q_vector->rx_ring->total_bytes = 0;
3823		q_vector->rx_ring->total_packets = 0;
3824	}
3825	if (q_vector->tx_ring) {
3826		q_vector->tx_ring->total_bytes = 0;
3827		q_vector->tx_ring->total_packets = 0;
3828	}
3829}
3830
3831/**
3832 * igb_update_itr - update the dynamic ITR value based on statistics
3833 *      Stores a new ITR value based on packets and byte
3834 *      counts during the last interrupt.  The advantage of per interrupt
3835 *      computation is faster updates and more accurate ITR for the current
3836 *      traffic pattern.  Constants in this function were computed
3837 *      based on theoretical maximum wire speed and thresholds were set based
3838 *      on testing data as well as attempting to minimize response time
3839 *      while increasing bulk throughput.
3840 *      this functionality is controlled by the InterruptThrottleRate module
3841 *      parameter (see igb_param.c)
3842 *      NOTE:  These calculations are only valid when operating in a single-
3843 *             queue environment.
3844 * @adapter: pointer to adapter
3845 * @itr_setting: current q_vector->itr_val
3846 * @packets: the number of packets during this measurement interval
3847 * @bytes: the number of bytes during this measurement interval
3848 **/
3849static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3850				   int packets, int bytes)
3851{
3852	unsigned int retval = itr_setting;
3853
3854	if (packets == 0)
3855		goto update_itr_done;
3856
3857	switch (itr_setting) {
3858	case lowest_latency:
3859		/* handle TSO and jumbo frames */
3860		if (bytes/packets > 8000)
3861			retval = bulk_latency;
3862		else if ((packets < 5) && (bytes > 512))
3863			retval = low_latency;
3864		break;
3865	case low_latency:  /* 50 usec aka 20000 ints/s */
3866		if (bytes > 10000) {
3867			/* this if handles the TSO accounting */
3868			if (bytes/packets > 8000) {
3869				retval = bulk_latency;
3870			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3871				retval = bulk_latency;
3872			} else if ((packets > 35)) {
3873				retval = lowest_latency;
3874			}
3875		} else if (bytes/packets > 2000) {
3876			retval = bulk_latency;
3877		} else if (packets <= 2 && bytes < 512) {
3878			retval = lowest_latency;
3879		}
3880		break;
3881	case bulk_latency: /* 250 usec aka 4000 ints/s */
3882		if (bytes > 25000) {
3883			if (packets > 35)
3884				retval = low_latency;
3885		} else if (bytes < 1500) {
3886			retval = low_latency;
3887		}
3888		break;
3889	}
3890
3891update_itr_done:
3892	return retval;
3893}
3894
3895static void igb_set_itr(struct igb_adapter *adapter)
3896{
3897	struct igb_q_vector *q_vector = adapter->q_vector[0];
3898	u16 current_itr;
3899	u32 new_itr = q_vector->itr_val;
3900
3901	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3902	if (adapter->link_speed != SPEED_1000) {
3903		current_itr = 0;
3904		new_itr = 4000;
3905		goto set_itr_now;
3906	}
3907
3908	adapter->rx_itr = igb_update_itr(adapter,
3909				    adapter->rx_itr,
3910				    q_vector->rx_ring->total_packets,
3911				    q_vector->rx_ring->total_bytes);
3912
3913	adapter->tx_itr = igb_update_itr(adapter,
3914				    adapter->tx_itr,
3915				    q_vector->tx_ring->total_packets,
3916				    q_vector->tx_ring->total_bytes);
3917	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3918
3919	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3920	if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3921		current_itr = low_latency;
3922
3923	switch (current_itr) {
3924	/* counts and packets in update_itr are dependent on these numbers */
3925	case lowest_latency:
3926		new_itr = 56;  /* aka 70,000 ints/sec */
3927		break;
3928	case low_latency:
3929		new_itr = 196; /* aka 20,000 ints/sec */
3930		break;
3931	case bulk_latency:
3932		new_itr = 980; /* aka 4,000 ints/sec */
3933		break;
3934	default:
3935		break;
3936	}
3937
3938set_itr_now:
3939	q_vector->rx_ring->total_bytes = 0;
3940	q_vector->rx_ring->total_packets = 0;
3941	q_vector->tx_ring->total_bytes = 0;
3942	q_vector->tx_ring->total_packets = 0;
3943
3944	if (new_itr != q_vector->itr_val) {
3945		/* this attempts to bias the interrupt rate towards Bulk
3946		 * by adding intermediate steps when interrupt rate is
3947		 * increasing */
3948		new_itr = new_itr > q_vector->itr_val ?
3949		             max((new_itr * q_vector->itr_val) /
3950		                 (new_itr + (q_vector->itr_val >> 2)),
3951		                 new_itr) :
3952			     new_itr;
3953		/* Don't write the value here; it resets the adapter's
3954		 * internal timer, and causes us to delay far longer than
3955		 * we should between interrupts.  Instead, we write the ITR
3956		 * value at the beginning of the next interrupt so the timing
3957		 * ends up being correct.
3958		 */
3959		q_vector->itr_val = new_itr;
3960		q_vector->set_itr = 1;
3961	}
3962}
3963
3964#define IGB_TX_FLAGS_CSUM		0x00000001
3965#define IGB_TX_FLAGS_VLAN		0x00000002
3966#define IGB_TX_FLAGS_TSO		0x00000004
3967#define IGB_TX_FLAGS_IPV4		0x00000008
3968#define IGB_TX_FLAGS_TSTAMP		0x00000010
3969#define IGB_TX_FLAGS_VLAN_MASK		0xffff0000
3970#define IGB_TX_FLAGS_VLAN_SHIFT		        16
3971
3972static inline int igb_tso_adv(struct igb_ring *tx_ring,
3973			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3974{
3975	struct e1000_adv_tx_context_desc *context_desc;
3976	unsigned int i;
3977	int err;
3978	struct igb_buffer *buffer_info;
3979	u32 info = 0, tu_cmd = 0;
3980	u32 mss_l4len_idx;
3981	u8 l4len;
3982
3983	if (skb_header_cloned(skb)) {
3984		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3985		if (err)
3986			return err;
3987	}
3988
3989	l4len = tcp_hdrlen(skb);
3990	*hdr_len += l4len;
3991
3992	if (skb->protocol == htons(ETH_P_IP)) {
3993		struct iphdr *iph = ip_hdr(skb);
3994		iph->tot_len = 0;
3995		iph->check = 0;
3996		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3997							 iph->daddr, 0,
3998							 IPPROTO_TCP,
3999							 0);
4000	} else if (skb_is_gso_v6(skb)) {
4001		ipv6_hdr(skb)->payload_len = 0;
4002		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4003						       &ipv6_hdr(skb)->daddr,
4004						       0, IPPROTO_TCP, 0);
4005	}
4006
4007	i = tx_ring->next_to_use;
4008
4009	buffer_info = &tx_ring->buffer_info[i];
4010	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4011	/* VLAN MACLEN IPLEN */
4012	if (tx_flags & IGB_TX_FLAGS_VLAN)
4013		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
4014	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4015	*hdr_len += skb_network_offset(skb);
4016	info |= skb_network_header_len(skb);
4017	*hdr_len += skb_network_header_len(skb);
4018	context_desc->vlan_macip_lens = cpu_to_le32(info);
4019
4020	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4021	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4022
4023	if (skb->protocol == htons(ETH_P_IP))
4024		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
4025	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4026
4027	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4028
4029	/* MSS L4LEN IDX */
4030	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
4031	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
4032
4033	/* For 82575, context index must be unique per ring. */
4034	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
4035		mss_l4len_idx |= tx_ring->reg_idx << 4;
4036
4037	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4038	context_desc->seqnum_seed = 0;
4039
4040	buffer_info->time_stamp = jiffies;
4041	buffer_info->next_to_watch = i;
4042	buffer_info->dma = 0;
4043	i++;
4044	if (i == tx_ring->count)
4045		i = 0;
4046
4047	tx_ring->next_to_use = i;
4048
4049	return true;
4050}
4051
4052static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
4053				   struct sk_buff *skb, u32 tx_flags)
4054{
4055	struct e1000_adv_tx_context_desc *context_desc;
4056	struct device *dev = tx_ring->dev;
4057	struct igb_buffer *buffer_info;
4058	u32 info = 0, tu_cmd = 0;
4059	unsigned int i;
4060
4061	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
4062	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
4063		i = tx_ring->next_to_use;
4064		buffer_info = &tx_ring->buffer_info[i];
4065		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4066
4067		if (tx_flags & IGB_TX_FLAGS_VLAN)
4068			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
4069
4070		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4071		if (skb->ip_summed == CHECKSUM_PARTIAL)
4072			info |= skb_network_header_len(skb);
4073
4074		context_desc->vlan_macip_lens = cpu_to_le32(info);
4075
4076		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4077
4078		if (skb->ip_summed == CHECKSUM_PARTIAL) {
4079			__be16 protocol;
4080
4081			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
4082				const struct vlan_ethhdr *vhdr =
4083				          (const struct vlan_ethhdr*)skb->data;
4084
4085				protocol = vhdr->h_vlan_encapsulated_proto;
4086			} else {
4087				protocol = skb->protocol;
4088			}
4089
4090			switch (protocol) {
4091			case cpu_to_be16(ETH_P_IP):
4092				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
4093				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4094					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4095				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
4096					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4097				break;
4098			case cpu_to_be16(ETH_P_IPV6):
4099				/* XXX what about other V6 headers?? */
4100				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4101					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4102				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
4103					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4104				break;
4105			default:
4106				if (unlikely(net_ratelimit()))
4107					dev_warn(dev,
4108					    "partial checksum but proto=%x!\n",
4109					    skb->protocol);
4110				break;
4111			}
4112		}
4113
4114		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4115		context_desc->seqnum_seed = 0;
4116		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
4117			context_desc->mss_l4len_idx =
4118				cpu_to_le32(tx_ring->reg_idx << 4);
4119
4120		buffer_info->time_stamp = jiffies;
4121		buffer_info->next_to_watch = i;
4122		buffer_info->dma = 0;
4123
4124		i++;
4125		if (i == tx_ring->count)
4126			i = 0;
4127		tx_ring->next_to_use = i;
4128
4129		return true;
4130	}
4131	return false;
4132}
4133
4134#define IGB_MAX_TXD_PWR	16
4135#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4136
4137static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
4138				 unsigned int first)
4139{
4140	struct igb_buffer *buffer_info;
4141	struct device *dev = tx_ring->dev;
4142	unsigned int hlen = skb_headlen(skb);
4143	unsigned int count = 0, i;
4144	unsigned int f;
4145	u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
4146
4147	i = tx_ring->next_to_use;
4148
4149	buffer_info = &tx_ring->buffer_info[i];
4150	BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
4151	buffer_info->length = hlen;
4152	/* set time_stamp *before* dma to help avoid a possible race */
4153	buffer_info->time_stamp = jiffies;
4154	buffer_info->next_to_watch = i;
4155	buffer_info->dma = dma_map_single(dev, skb->data, hlen,
4156					  DMA_TO_DEVICE);
4157	if (dma_mapping_error(dev, buffer_info->dma))
4158		goto dma_error;
4159
4160	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4161		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4162		unsigned int len = frag->size;
4163
4164		count++;
4165		i++;
4166		if (i == tx_ring->count)
4167			i = 0;
4168
4169		buffer_info = &tx_ring->buffer_info[i];
4170		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4171		buffer_info->length = len;
4172		buffer_info->time_stamp = jiffies;
4173		buffer_info->next_to_watch = i;
4174		buffer_info->mapped_as_page = true;
4175		buffer_info->dma = dma_map_page(dev,
4176						frag->page,
4177						frag->page_offset,
4178						len,
4179						DMA_TO_DEVICE);
4180		if (dma_mapping_error(dev, buffer_info->dma))
4181			goto dma_error;
4182
4183	}
4184
4185	tx_ring->buffer_info[i].skb = skb;
4186	tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
4187	/* multiply data chunks by size of headers */
4188	tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
4189	tx_ring->buffer_info[i].gso_segs = gso_segs;
4190	tx_ring->buffer_info[first].next_to_watch = i;
4191
4192	return ++count;
4193
4194dma_error:
4195	dev_err(dev, "TX DMA map failed\n");
4196
4197	/* clear timestamp and dma mappings for failed buffer_info mapping */
4198	buffer_info->dma = 0;
4199	buffer_info->time_stamp = 0;
4200	buffer_info->length = 0;
4201	buffer_info->next_to_watch = 0;
4202	buffer_info->mapped_as_page = false;
4203
4204	/* clear timestamp and dma mappings for remaining portion of packet */
4205	while (count--) {
4206		if (i == 0)
4207			i = tx_ring->count;
4208		i--;
4209		buffer_info = &tx_ring->buffer_info[i];
4210		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4211	}
4212
4213	return 0;
4214}
4215
4216static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
4217				    u32 tx_flags, int count, u32 paylen,
4218				    u8 hdr_len)
4219{
4220	union e1000_adv_tx_desc *tx_desc;
4221	struct igb_buffer *buffer_info;
4222	u32 olinfo_status = 0, cmd_type_len;
4223	unsigned int i = tx_ring->next_to_use;
4224
4225	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4226			E1000_ADVTXD_DCMD_DEXT);
4227
4228	if (tx_flags & IGB_TX_FLAGS_VLAN)
4229		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4230
4231	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4232		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4233
4234	if (tx_flags & IGB_TX_FLAGS_TSO) {
4235		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4236
4237		/* insert tcp checksum */
4238		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4239
4240		/* insert ip checksum */
4241		if (tx_flags & IGB_TX_FLAGS_IPV4)
4242			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4243
4244	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4245		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4246	}
4247
4248	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4249	    (tx_flags & (IGB_TX_FLAGS_CSUM |
4250	                 IGB_TX_FLAGS_TSO |
4251			 IGB_TX_FLAGS_VLAN)))
4252		olinfo_status |= tx_ring->reg_idx << 4;
4253
4254	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4255
4256	do {
4257		buffer_info = &tx_ring->buffer_info[i];
4258		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4259		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4260		tx_desc->read.cmd_type_len =
4261			cpu_to_le32(cmd_type_len | buffer_info->length);
4262		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4263		count--;
4264		i++;
4265		if (i == tx_ring->count)
4266			i = 0;
4267	} while (count > 0);
4268
4269	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4270	/* Force memory writes to complete before letting h/w
4271	 * know there are new descriptors to fetch.  (Only
4272	 * applicable for weak-ordered memory model archs,
4273	 * such as IA-64). */
4274	wmb();
4275
4276	tx_ring->next_to_use = i;
4277	writel(i, tx_ring->tail);
4278	/* we need this if more than one processor can write to our tail
4279	 * at a time, it syncronizes IO on IA64/Altix systems */
4280	mmiowb();
4281}
4282
4283static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4284{
4285	struct net_device *netdev = tx_ring->netdev;
4286
4287	netif_stop_subqueue(netdev, tx_ring->queue_index);
4288
4289	/* Herbert's original patch had:
4290	 *  smp_mb__after_netif_stop_queue();
4291	 * but since that doesn't exist yet, just open code it. */
4292	smp_mb();
4293
4294	/* We need to check again in a case another CPU has just
4295	 * made room available. */
4296	if (igb_desc_unused(tx_ring) < size)
4297		return -EBUSY;
4298
4299	/* A reprieve! */
4300	netif_wake_subqueue(netdev, tx_ring->queue_index);
4301
4302	u64_stats_update_begin(&tx_ring->tx_syncp2);
4303	tx_ring->tx_stats.restart_queue2++;
4304	u64_stats_update_end(&tx_ring->tx_syncp2);
4305
4306	return 0;
4307}
4308
4309static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4310{
4311	if (igb_desc_unused(tx_ring) >= size)
4312		return 0;
4313	return __igb_maybe_stop_tx(tx_ring, size);
4314}
4315
4316netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4317				    struct igb_ring *tx_ring)
4318{
4319	int tso = 0, count;
4320	u32 tx_flags = 0;
4321	u16 first;
4322	u8 hdr_len = 0;
4323
4324	/* need: 1 descriptor per page,
4325	 *       + 2 desc gap to keep tail from touching head,
4326	 *       + 1 desc for skb->data,
4327	 *       + 1 desc for context descriptor,
4328	 * otherwise try next time */
4329	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4330		/* this is a hard error */
4331		return NETDEV_TX_BUSY;
4332	}
4333
4334	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4335		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4336		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4337	}
4338
4339	if (vlan_tx_tag_present(skb)) {
4340		tx_flags |= IGB_TX_FLAGS_VLAN;
4341		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4342	}
4343
4344	if (skb->protocol == htons(ETH_P_IP))
4345		tx_flags |= IGB_TX_FLAGS_IPV4;
4346
4347	first = tx_ring->next_to_use;
4348	if (skb_is_gso(skb)) {
4349		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
4350
4351		if (tso < 0) {
4352			dev_kfree_skb_any(skb);
4353			return NETDEV_TX_OK;
4354		}
4355	}
4356
4357	if (tso)
4358		tx_flags |= IGB_TX_FLAGS_TSO;
4359	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4360	         (skb->ip_summed == CHECKSUM_PARTIAL))
4361		tx_flags |= IGB_TX_FLAGS_CSUM;
4362
4363	/*
4364	 * count reflects descriptors mapped, if 0 or less then mapping error
4365	 * has occurred and we need to rewind the descriptor queue
4366	 */
4367	count = igb_tx_map_adv(tx_ring, skb, first);
4368	if (!count) {
4369		dev_kfree_skb_any(skb);
4370		tx_ring->buffer_info[first].time_stamp = 0;
4371		tx_ring->next_to_use = first;
4372		return NETDEV_TX_OK;
4373	}
4374
4375	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4376
4377	/* Make sure there is space in the ring for the next send. */
4378	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4379
4380	return NETDEV_TX_OK;
4381}
4382
4383static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4384				      struct net_device *netdev)
4385{
4386	struct igb_adapter *adapter = netdev_priv(netdev);
4387	struct igb_ring *tx_ring;
4388	int r_idx = 0;
4389
4390	if (test_bit(__IGB_DOWN, &adapter->state)) {
4391		dev_kfree_skb_any(skb);
4392		return NETDEV_TX_OK;
4393	}
4394
4395	if (skb->len <= 0) {
4396		dev_kfree_skb_any(skb);
4397		return NETDEV_TX_OK;
4398	}
4399
4400	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4401	tx_ring = adapter->multi_tx_table[r_idx];
4402
4403	/* This goes back to the question of how to logically map a tx queue
4404	 * to a flow.  Right now, performance is impacted slightly negatively
4405	 * if using multiple tx queues.  If the stack breaks away from a
4406	 * single qdisc implementation, we can look at this again. */
4407	return igb_xmit_frame_ring_adv(skb, tx_ring);
4408}
4409
4410/**
4411 * igb_tx_timeout - Respond to a Tx Hang
4412 * @netdev: network interface device structure
4413 **/
4414static void igb_tx_timeout(struct net_device *netdev)
4415{
4416	struct igb_adapter *adapter = netdev_priv(netdev);
4417	struct e1000_hw *hw = &adapter->hw;
4418
4419	/* Do the reset outside of interrupt context */
4420	adapter->tx_timeout_count++;
4421
4422	if (hw->mac.type == e1000_82580)
4423		hw->dev_spec._82575.global_device_reset = true;
4424
4425	schedule_work(&adapter->reset_task);
4426	wr32(E1000_EICS,
4427	     (adapter->eims_enable_mask & ~adapter->eims_other));
4428}
4429
4430static void igb_reset_task(struct work_struct *work)
4431{
4432	struct igb_adapter *adapter;
4433	adapter = container_of(work, struct igb_adapter, reset_task);
4434
4435	igb_dump(adapter);
4436	netdev_err(adapter->netdev, "Reset adapter\n");
4437	igb_reinit_locked(adapter);
4438}
4439
4440/**
4441 * igb_get_stats64 - Get System Network Statistics
4442 * @netdev: network interface device structure
4443 * @stats: rtnl_link_stats64 pointer
4444 *
4445 **/
4446static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4447						 struct rtnl_link_stats64 *stats)
4448{
4449	struct igb_adapter *adapter = netdev_priv(netdev);
4450
4451	spin_lock(&adapter->stats64_lock);
4452	igb_update_stats(adapter, &adapter->stats64);
4453	memcpy(stats, &adapter->stats64, sizeof(*stats));
4454	spin_unlock(&adapter->stats64_lock);
4455
4456	return stats;
4457}
4458
4459/**
4460 * igb_change_mtu - Change the Maximum Transfer Unit
4461 * @netdev: network interface device structure
4462 * @new_mtu: new value for maximum frame size
4463 *
4464 * Returns 0 on success, negative on failure
4465 **/
4466static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4467{
4468	struct igb_adapter *adapter = netdev_priv(netdev);
4469	struct pci_dev *pdev = adapter->pdev;
4470	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4471	u32 rx_buffer_len, i;
4472
4473	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4474		dev_err(&pdev->dev, "Invalid MTU setting\n");
4475		return -EINVAL;
4476	}
4477
4478	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4479		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4480		return -EINVAL;
4481	}
4482
4483	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4484		msleep(1);
4485
4486	/* igb_down has a dependency on max_frame_size */
4487	adapter->max_frame_size = max_frame;
4488
4489	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4490	 * means we reserve 2 more, this pushes us to allocate from the next
4491	 * larger slab size.
4492	 * i.e. RXBUFFER_2048 --> size-4096 slab
4493	 */
4494
4495	if (adapter->hw.mac.type == e1000_82580)
4496		max_frame += IGB_TS_HDR_LEN;
4497
4498	if (max_frame <= IGB_RXBUFFER_1024)
4499		rx_buffer_len = IGB_RXBUFFER_1024;
4500	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4501		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
4502	else
4503		rx_buffer_len = IGB_RXBUFFER_128;
4504
4505	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4506	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4507		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4508
4509	if ((adapter->hw.mac.type == e1000_82580) &&
4510	    (rx_buffer_len == IGB_RXBUFFER_128))
4511		rx_buffer_len += IGB_RXBUFFER_64;
4512
4513	if (netif_running(netdev))
4514		igb_down(adapter);
4515
4516	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4517		 netdev->mtu, new_mtu);
4518	netdev->mtu = new_mtu;
4519
4520	for (i = 0; i < adapter->num_rx_queues; i++)
4521		adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4522
4523	if (netif_running(netdev))
4524		igb_up(adapter);
4525	else
4526		igb_reset(adapter);
4527
4528	clear_bit(__IGB_RESETTING, &adapter->state);
4529
4530	return 0;
4531}
4532
4533/**
4534 * igb_update_stats - Update the board statistics counters
4535 * @adapter: board private structure
4536 **/
4537
4538void igb_update_stats(struct igb_adapter *adapter,
4539		      struct rtnl_link_stats64 *net_stats)
4540{
4541	struct e1000_hw *hw = &adapter->hw;
4542	struct pci_dev *pdev = adapter->pdev;
4543	u32 reg, mpc;
4544	u16 phy_tmp;
4545	int i;
4546	u64 bytes, packets;
4547	unsigned int start;
4548	u64 _bytes, _packets;
4549
4550#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4551
4552	/*
4553	 * Prevent stats update while adapter is being reset, or if the pci
4554	 * connection is down.
4555	 */
4556	if (adapter->link_speed == 0)
4557		return;
4558	if (pci_channel_offline(pdev))
4559		return;
4560
4561	bytes = 0;
4562	packets = 0;
4563	for (i = 0; i < adapter->num_rx_queues; i++) {
4564		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4565		struct igb_ring *ring = adapter->rx_ring[i];
4566
4567		ring->rx_stats.drops += rqdpc_tmp;
4568		net_stats->rx_fifo_errors += rqdpc_tmp;
4569
4570		do {
4571			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4572			_bytes = ring->rx_stats.bytes;
4573			_packets = ring->rx_stats.packets;
4574		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4575		bytes += _bytes;
4576		packets += _packets;
4577	}
4578
4579	net_stats->rx_bytes = bytes;
4580	net_stats->rx_packets = packets;
4581
4582	bytes = 0;
4583	packets = 0;
4584	for (i = 0; i < adapter->num_tx_queues; i++) {
4585		struct igb_ring *ring = adapter->tx_ring[i];
4586		do {
4587			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4588			_bytes = ring->tx_stats.bytes;
4589			_packets = ring->tx_stats.packets;
4590		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4591		bytes += _bytes;
4592		packets += _packets;
4593	}
4594	net_stats->tx_bytes = bytes;
4595	net_stats->tx_packets = packets;
4596
4597	/* read stats registers */
4598	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4599	adapter->stats.gprc += rd32(E1000_GPRC);
4600	adapter->stats.gorc += rd32(E1000_GORCL);
4601	rd32(E1000_GORCH); /* clear GORCL */
4602	adapter->stats.bprc += rd32(E1000_BPRC);
4603	adapter->stats.mprc += rd32(E1000_MPRC);
4604	adapter->stats.roc += rd32(E1000_ROC);
4605
4606	adapter->stats.prc64 += rd32(E1000_PRC64);
4607	adapter->stats.prc127 += rd32(E1000_PRC127);
4608	adapter->stats.prc255 += rd32(E1000_PRC255);
4609	adapter->stats.prc511 += rd32(E1000_PRC511);
4610	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4611	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4612	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4613	adapter->stats.sec += rd32(E1000_SEC);
4614
4615	mpc = rd32(E1000_MPC);
4616	adapter->stats.mpc += mpc;
4617	net_stats->rx_fifo_errors += mpc;
4618	adapter->stats.scc += rd32(E1000_SCC);
4619	adapter->stats.ecol += rd32(E1000_ECOL);
4620	adapter->stats.mcc += rd32(E1000_MCC);
4621	adapter->stats.latecol += rd32(E1000_LATECOL);
4622	adapter->stats.dc += rd32(E1000_DC);
4623	adapter->stats.rlec += rd32(E1000_RLEC);
4624	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4625	adapter->stats.xontxc += rd32(E1000_XONTXC);
4626	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4627	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4628	adapter->stats.fcruc += rd32(E1000_FCRUC);
4629	adapter->stats.gptc += rd32(E1000_GPTC);
4630	adapter->stats.gotc += rd32(E1000_GOTCL);
4631	rd32(E1000_GOTCH); /* clear GOTCL */
4632	adapter->stats.rnbc += rd32(E1000_RNBC);
4633	adapter->stats.ruc += rd32(E1000_RUC);
4634	adapter->stats.rfc += rd32(E1000_RFC);
4635	adapter->stats.rjc += rd32(E1000_RJC);
4636	adapter->stats.tor += rd32(E1000_TORH);
4637	adapter->stats.tot += rd32(E1000_TOTH);
4638	adapter->stats.tpr += rd32(E1000_TPR);
4639
4640	adapter->stats.ptc64 += rd32(E1000_PTC64);
4641	adapter->stats.ptc127 += rd32(E1000_PTC127);
4642	adapter->stats.ptc255 += rd32(E1000_PTC255);
4643	adapter->stats.ptc511 += rd32(E1000_PTC511);
4644	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4645	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4646
4647	adapter->stats.mptc += rd32(E1000_MPTC);
4648	adapter->stats.bptc += rd32(E1000_BPTC);
4649
4650	adapter->stats.tpt += rd32(E1000_TPT);
4651	adapter->stats.colc += rd32(E1000_COLC);
4652
4653	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4654	/* read internal phy specific stats */
4655	reg = rd32(E1000_CTRL_EXT);
4656	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4657		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4658		adapter->stats.tncrs += rd32(E1000_TNCRS);
4659	}
4660
4661	adapter->stats.tsctc += rd32(E1000_TSCTC);
4662	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4663
4664	adapter->stats.iac += rd32(E1000_IAC);
4665	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4666	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4667	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4668	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4669	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4670	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4671	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4672	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4673
4674	/* Fill out the OS statistics structure */
4675	net_stats->multicast = adapter->stats.mprc;
4676	net_stats->collisions = adapter->stats.colc;
4677
4678	/* Rx Errors */
4679
4680	/* RLEC on some newer hardware can be incorrect so build
4681	 * our own version based on RUC and ROC */
4682	net_stats->rx_errors = adapter->stats.rxerrc +
4683		adapter->stats.crcerrs + adapter->stats.algnerrc +
4684		adapter->stats.ruc + adapter->stats.roc +
4685		adapter->stats.cexterr;
4686	net_stats->rx_length_errors = adapter->stats.ruc +
4687				      adapter->stats.roc;
4688	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4689	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4690	net_stats->rx_missed_errors = adapter->stats.mpc;
4691
4692	/* Tx Errors */
4693	net_stats->tx_errors = adapter->stats.ecol +
4694			       adapter->stats.latecol;
4695	net_stats->tx_aborted_errors = adapter->stats.ecol;
4696	net_stats->tx_window_errors = adapter->stats.latecol;
4697	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4698
4699	/* Tx Dropped needs to be maintained elsewhere */
4700
4701	/* Phy Stats */
4702	if (hw->phy.media_type == e1000_media_type_copper) {
4703		if ((adapter->link_speed == SPEED_1000) &&
4704		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4705			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4706			adapter->phy_stats.idle_errors += phy_tmp;
4707		}
4708	}
4709
4710	/* Management Stats */
4711	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4712	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4713	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4714
4715	/* OS2BMC Stats */
4716	reg = rd32(E1000_MANC);
4717	if (reg & E1000_MANC_EN_BMC2OS) {
4718		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4719		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4720		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4721		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4722	}
4723}
4724
4725static irqreturn_t igb_msix_other(int irq, void *data)
4726{
4727	struct igb_adapter *adapter = data;
4728	struct e1000_hw *hw = &adapter->hw;
4729	u32 icr = rd32(E1000_ICR);
4730	/* reading ICR causes bit 31 of EICR to be cleared */
4731
4732	if (icr & E1000_ICR_DRSTA)
4733		schedule_work(&adapter->reset_task);
4734
4735	if (icr & E1000_ICR_DOUTSYNC) {
4736		/* HW is reporting DMA is out of sync */
4737		adapter->stats.doosync++;
4738		/* The DMA Out of Sync is also indication of a spoof event
4739		 * in IOV mode. Check the Wrong VM Behavior register to
4740		 * see if it is really a spoof event. */
4741		igb_check_wvbr(adapter);
4742	}
4743
4744	/* Check for a mailbox event */
4745	if (icr & E1000_ICR_VMMB)
4746		igb_msg_task(adapter);
4747
4748	if (icr & E1000_ICR_LSC) {
4749		hw->mac.get_link_status = 1;
4750		/* guard against interrupt when we're going down */
4751		if (!test_bit(__IGB_DOWN, &adapter->state))
4752			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4753	}
4754
4755	if (adapter->vfs_allocated_count)
4756		wr32(E1000_IMS, E1000_IMS_LSC |
4757				E1000_IMS_VMMB |
4758				E1000_IMS_DOUTSYNC);
4759	else
4760		wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4761	wr32(E1000_EIMS, adapter->eims_other);
4762
4763	return IRQ_HANDLED;
4764}
4765
4766static void igb_write_itr(struct igb_q_vector *q_vector)
4767{
4768	struct igb_adapter *adapter = q_vector->adapter;
4769	u32 itr_val = q_vector->itr_val & 0x7FFC;
4770
4771	if (!q_vector->set_itr)
4772		return;
4773
4774	if (!itr_val)
4775		itr_val = 0x4;
4776
4777	if (adapter->hw.mac.type == e1000_82575)
4778		itr_val |= itr_val << 16;
4779	else
4780		itr_val |= 0x8000000;
4781
4782	writel(itr_val, q_vector->itr_register);
4783	q_vector->set_itr = 0;
4784}
4785
4786static irqreturn_t igb_msix_ring(int irq, void *data)
4787{
4788	struct igb_q_vector *q_vector = data;
4789
4790	/* Write the ITR value calculated from the previous interrupt. */
4791	igb_write_itr(q_vector);
4792
4793	napi_schedule(&q_vector->napi);
4794
4795	return IRQ_HANDLED;
4796}
4797
4798#ifdef CONFIG_IGB_DCA
4799static void igb_update_dca(struct igb_q_vector *q_vector)
4800{
4801	struct igb_adapter *adapter = q_vector->adapter;
4802	struct e1000_hw *hw = &adapter->hw;
4803	int cpu = get_cpu();
4804
4805	if (q_vector->cpu == cpu)
4806		goto out_no_update;
4807
4808	if (q_vector->tx_ring) {
4809		int q = q_vector->tx_ring->reg_idx;
4810		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4811		if (hw->mac.type == e1000_82575) {
4812			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4813			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4814		} else {
4815			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4816			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4817			              E1000_DCA_TXCTRL_CPUID_SHIFT;
4818		}
4819		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4820		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4821	}
4822	if (q_vector->rx_ring) {
4823		int q = q_vector->rx_ring->reg_idx;
4824		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4825		if (hw->mac.type == e1000_82575) {
4826			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4827			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4828		} else {
4829			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4830			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4831			              E1000_DCA_RXCTRL_CPUID_SHIFT;
4832		}
4833		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4834		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4835		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4836		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4837	}
4838	q_vector->cpu = cpu;
4839out_no_update:
4840	put_cpu();
4841}
4842
4843static void igb_setup_dca(struct igb_adapter *adapter)
4844{
4845	struct e1000_hw *hw = &adapter->hw;
4846	int i;
4847
4848	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4849		return;
4850
4851	/* Always use CB2 mode, difference is masked in the CB driver. */
4852	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4853
4854	for (i = 0; i < adapter->num_q_vectors; i++) {
4855		adapter->q_vector[i]->cpu = -1;
4856		igb_update_dca(adapter->q_vector[i]);
4857	}
4858}
4859
4860static int __igb_notify_dca(struct device *dev, void *data)
4861{
4862	struct net_device *netdev = dev_get_drvdata(dev);
4863	struct igb_adapter *adapter = netdev_priv(netdev);
4864	struct pci_dev *pdev = adapter->pdev;
4865	struct e1000_hw *hw = &adapter->hw;
4866	unsigned long event = *(unsigned long *)data;
4867
4868	switch (event) {
4869	case DCA_PROVIDER_ADD:
4870		/* if already enabled, don't do it again */
4871		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4872			break;
4873		if (dca_add_requester(dev) == 0) {
4874			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4875			dev_info(&pdev->dev, "DCA enabled\n");
4876			igb_setup_dca(adapter);
4877			break;
4878		}
4879		/* Fall Through since DCA is disabled. */
4880	case DCA_PROVIDER_REMOVE:
4881		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4882			/* without this a class_device is left
4883			 * hanging around in the sysfs model */
4884			dca_remove_requester(dev);
4885			dev_info(&pdev->dev, "DCA disabled\n");
4886			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4887			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4888		}
4889		break;
4890	}
4891
4892	return 0;
4893}
4894
4895static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4896                          void *p)
4897{
4898	int ret_val;
4899
4900	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4901	                                 __igb_notify_dca);
4902
4903	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4904}
4905#endif /* CONFIG_IGB_DCA */
4906
4907static void igb_ping_all_vfs(struct igb_adapter *adapter)
4908{
4909	struct e1000_hw *hw = &adapter->hw;
4910	u32 ping;
4911	int i;
4912
4913	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4914		ping = E1000_PF_CONTROL_MSG;
4915		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4916			ping |= E1000_VT_MSGTYPE_CTS;
4917		igb_write_mbx(hw, &ping, 1, i);
4918	}
4919}
4920
4921static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4922{
4923	struct e1000_hw *hw = &adapter->hw;
4924	u32 vmolr = rd32(E1000_VMOLR(vf));
4925	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4926
4927	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4928	                    IGB_VF_FLAG_MULTI_PROMISC);
4929	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4930
4931	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4932		vmolr |= E1000_VMOLR_MPME;
4933		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4934		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4935	} else {
4936		/*
4937		 * if we have hashes and we are clearing a multicast promisc
4938		 * flag we need to write the hashes to the MTA as this step
4939		 * was previously skipped
4940		 */
4941		if (vf_data->num_vf_mc_hashes > 30) {
4942			vmolr |= E1000_VMOLR_MPME;
4943		} else if (vf_data->num_vf_mc_hashes) {
4944			int j;
4945			vmolr |= E1000_VMOLR_ROMPE;
4946			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4947				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4948		}
4949	}
4950
4951	wr32(E1000_VMOLR(vf), vmolr);
4952
4953	/* there are flags left unprocessed, likely not supported */
4954	if (*msgbuf & E1000_VT_MSGINFO_MASK)
4955		return -EINVAL;
4956
4957	return 0;
4958
4959}
4960
4961static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4962				  u32 *msgbuf, u32 vf)
4963{
4964	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4965	u16 *hash_list = (u16 *)&msgbuf[1];
4966	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4967	int i;
4968
4969	/* salt away the number of multicast addresses assigned
4970	 * to this VF for later use to restore when the PF multi cast
4971	 * list changes
4972	 */
4973	vf_data->num_vf_mc_hashes = n;
4974
4975	/* only up to 30 hash values supported */
4976	if (n > 30)
4977		n = 30;
4978
4979	/* store the hashes for later use */
4980	for (i = 0; i < n; i++)
4981		vf_data->vf_mc_hashes[i] = hash_list[i];
4982
4983	/* Flush and reset the mta with the new values */
4984	igb_set_rx_mode(adapter->netdev);
4985
4986	return 0;
4987}
4988
4989static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4990{
4991	struct e1000_hw *hw = &adapter->hw;
4992	struct vf_data_storage *vf_data;
4993	int i, j;
4994
4995	for (i = 0; i < adapter->vfs_allocated_count; i++) {
4996		u32 vmolr = rd32(E1000_VMOLR(i));
4997		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4998
4999		vf_data = &adapter->vf_data[i];
5000
5001		if ((vf_data->num_vf_mc_hashes > 30) ||
5002		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5003			vmolr |= E1000_VMOLR_MPME;
5004		} else if (vf_data->num_vf_mc_hashes) {
5005			vmolr |= E1000_VMOLR_ROMPE;
5006			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5007				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5008		}
5009		wr32(E1000_VMOLR(i), vmolr);
5010	}
5011}
5012
5013static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5014{
5015	struct e1000_hw *hw = &adapter->hw;
5016	u32 pool_mask, reg, vid;
5017	int i;
5018
5019	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5020
5021	/* Find the vlan filter for this id */
5022	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5023		reg = rd32(E1000_VLVF(i));
5024
5025		/* remove the vf from the pool */
5026		reg &= ~pool_mask;
5027
5028		/* if pool is empty then remove entry from vfta */
5029		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5030		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5031			reg = 0;
5032			vid = reg & E1000_VLVF_VLANID_MASK;
5033			igb_vfta_set(hw, vid, false);
5034		}
5035
5036		wr32(E1000_VLVF(i), reg);
5037	}
5038
5039	adapter->vf_data[vf].vlans_enabled = 0;
5040}
5041
5042static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5043{
5044	struct e1000_hw *hw = &adapter->hw;
5045	u32 reg, i;
5046
5047	/* The vlvf table only exists on 82576 hardware and newer */
5048	if (hw->mac.type < e1000_82576)
5049		return -1;
5050
5051	/* we only need to do this if VMDq is enabled */
5052	if (!adapter->vfs_allocated_count)
5053		return -1;
5054
5055	/* Find the vlan filter for this id */
5056	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5057		reg = rd32(E1000_VLVF(i));
5058		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5059		    vid == (reg & E1000_VLVF_VLANID_MASK))
5060			break;
5061	}
5062
5063	if (add) {
5064		if (i == E1000_VLVF_ARRAY_SIZE) {
5065			/* Did not find a matching VLAN ID entry that was
5066			 * enabled.  Search for a free filter entry, i.e.
5067			 * one without the enable bit set
5068			 */
5069			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5070				reg = rd32(E1000_VLVF(i));
5071				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5072					break;
5073			}
5074		}
5075		if (i < E1000_VLVF_ARRAY_SIZE) {
5076			/* Found an enabled/available entry */
5077			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5078
5079			/* if !enabled we need to set this up in vfta */
5080			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5081				/* add VID to filter table */
5082				igb_vfta_set(hw, vid, true);
5083				reg |= E1000_VLVF_VLANID_ENABLE;
5084			}
5085			reg &= ~E1000_VLVF_VLANID_MASK;
5086			reg |= vid;
5087			wr32(E1000_VLVF(i), reg);
5088
5089			/* do not modify RLPML for PF devices */
5090			if (vf >= adapter->vfs_allocated_count)
5091				return 0;
5092
5093			if (!adapter->vf_data[vf].vlans_enabled) {
5094				u32 size;
5095				reg = rd32(E1000_VMOLR(vf));
5096				size = reg & E1000_VMOLR_RLPML_MASK;
5097				size += 4;
5098				reg &= ~E1000_VMOLR_RLPML_MASK;
5099				reg |= size;
5100				wr32(E1000_VMOLR(vf), reg);
5101			}
5102
5103			adapter->vf_data[vf].vlans_enabled++;
5104			return 0;
5105		}
5106	} else {
5107		if (i < E1000_VLVF_ARRAY_SIZE) {
5108			/* remove vf from the pool */
5109			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5110			/* if pool is empty then remove entry from vfta */
5111			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5112				reg = 0;
5113				igb_vfta_set(hw, vid, false);
5114			}
5115			wr32(E1000_VLVF(i), reg);
5116
5117			/* do not modify RLPML for PF devices */
5118			if (vf >= adapter->vfs_allocated_count)
5119				return 0;
5120
5121			adapter->vf_data[vf].vlans_enabled--;
5122			if (!adapter->vf_data[vf].vlans_enabled) {
5123				u32 size;
5124				reg = rd32(E1000_VMOLR(vf));
5125				size = reg & E1000_VMOLR_RLPML_MASK;
5126				size -= 4;
5127				reg &= ~E1000_VMOLR_RLPML_MASK;
5128				reg |= size;
5129				wr32(E1000_VMOLR(vf), reg);
5130			}
5131		}
5132	}
5133	return 0;
5134}
5135
5136static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5137{
5138	struct e1000_hw *hw = &adapter->hw;
5139
5140	if (vid)
5141		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5142	else
5143		wr32(E1000_VMVIR(vf), 0);
5144}
5145
5146static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5147			       int vf, u16 vlan, u8 qos)
5148{
5149	int err = 0;
5150	struct igb_adapter *adapter = netdev_priv(netdev);
5151
5152	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5153		return -EINVAL;
5154	if (vlan || qos) {
5155		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5156		if (err)
5157			goto out;
5158		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5159		igb_set_vmolr(adapter, vf, !vlan);
5160		adapter->vf_data[vf].pf_vlan = vlan;
5161		adapter->vf_data[vf].pf_qos = qos;
5162		dev_info(&adapter->pdev->dev,
5163			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5164		if (test_bit(__IGB_DOWN, &adapter->state)) {
5165			dev_warn(&adapter->pdev->dev,
5166				 "The VF VLAN has been set,"
5167				 " but the PF device is not up.\n");
5168			dev_warn(&adapter->pdev->dev,
5169				 "Bring the PF device up before"
5170				 " attempting to use the VF device.\n");
5171		}
5172	} else {
5173		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5174				   false, vf);
5175		igb_set_vmvir(adapter, vlan, vf);
5176		igb_set_vmolr(adapter, vf, true);
5177		adapter->vf_data[vf].pf_vlan = 0;
5178		adapter->vf_data[vf].pf_qos = 0;
5179       }
5180out:
5181       return err;
5182}
5183
5184static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5185{
5186	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5187	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5188
5189	return igb_vlvf_set(adapter, vid, add, vf);
5190}
5191
5192static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5193{
5194	/* clear flags - except flag that indicates PF has set the MAC */
5195	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5196	adapter->vf_data[vf].last_nack = jiffies;
5197
5198	/* reset offloads to defaults */
5199	igb_set_vmolr(adapter, vf, true);
5200
5201	/* reset vlans for device */
5202	igb_clear_vf_vfta(adapter, vf);
5203	if (adapter->vf_data[vf].pf_vlan)
5204		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5205				    adapter->vf_data[vf].pf_vlan,
5206				    adapter->vf_data[vf].pf_qos);
5207	else
5208		igb_clear_vf_vfta(adapter, vf);
5209
5210	/* reset multicast table array for vf */
5211	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5212
5213	/* Flush and reset the mta with the new values */
5214	igb_set_rx_mode(adapter->netdev);
5215}
5216
5217static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5218{
5219	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5220
5221	/* generate a new mac address as we were hotplug removed/added */
5222	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5223		random_ether_addr(vf_mac);
5224
5225	/* process remaining reset events */
5226	igb_vf_reset(adapter, vf);
5227}
5228
5229static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5230{
5231	struct e1000_hw *hw = &adapter->hw;
5232	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5233	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5234	u32 reg, msgbuf[3];
5235	u8 *addr = (u8 *)(&msgbuf[1]);
5236
5237	/* process all the same items cleared in a function level reset */
5238	igb_vf_reset(adapter, vf);
5239
5240	/* set vf mac address */
5241	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5242
5243	/* enable transmit and receive for vf */
5244	reg = rd32(E1000_VFTE);
5245	wr32(E1000_VFTE, reg | (1 << vf));
5246	reg = rd32(E1000_VFRE);
5247	wr32(E1000_VFRE, reg | (1 << vf));
5248
5249	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5250
5251	/* reply to reset with ack and vf mac address */
5252	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5253	memcpy(addr, vf_mac, 6);
5254	igb_write_mbx(hw, msgbuf, 3, vf);
5255}
5256
5257static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5258{
5259	/*
5260	 * The VF MAC Address is stored in a packed array of bytes
5261	 * starting at the second 32 bit word of the msg array
5262	 */
5263	unsigned char *addr = (char *)&msg[1];
5264	int err = -1;
5265
5266	if (is_valid_ether_addr(addr))
5267		err = igb_set_vf_mac(adapter, vf, addr);
5268
5269	return err;
5270}
5271
5272static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5273{
5274	struct e1000_hw *hw = &adapter->hw;
5275	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5276	u32 msg = E1000_VT_MSGTYPE_NACK;
5277
5278	/* if device isn't clear to send it shouldn't be reading either */
5279	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5280	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5281		igb_write_mbx(hw, &msg, 1, vf);
5282		vf_data->last_nack = jiffies;
5283	}
5284}
5285
5286static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5287{
5288	struct pci_dev *pdev = adapter->pdev;
5289	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5290	struct e1000_hw *hw = &adapter->hw;
5291	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5292	s32 retval;
5293
5294	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5295
5296	if (retval) {
5297		/* if receive failed revoke VF CTS stats and restart init */
5298		dev_err(&pdev->dev, "Error receiving message from VF\n");
5299		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5300		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5301			return;
5302		goto out;
5303	}
5304
5305	/* this is a message we already processed, do nothing */
5306	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5307		return;
5308
5309	/*
5310	 * until the vf completes a reset it should not be
5311	 * allowed to start any configuration.
5312	 */
5313
5314	if (msgbuf[0] == E1000_VF_RESET) {
5315		igb_vf_reset_msg(adapter, vf);
5316		return;
5317	}
5318
5319	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5320		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5321			return;
5322		retval = -1;
5323		goto out;
5324	}
5325
5326	switch ((msgbuf[0] & 0xFFFF)) {
5327	case E1000_VF_SET_MAC_ADDR:
5328		retval = -EINVAL;
5329		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5330			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5331		else
5332			dev_warn(&pdev->dev,
5333				 "VF %d attempted to override administratively "
5334				 "set MAC address\nReload the VF driver to "
5335				 "resume operations\n", vf);
5336		break;
5337	case E1000_VF_SET_PROMISC:
5338		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5339		break;
5340	case E1000_VF_SET_MULTICAST:
5341		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5342		break;
5343	case E1000_VF_SET_LPE:
5344		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5345		break;
5346	case E1000_VF_SET_VLAN:
5347		retval = -1;
5348		if (vf_data->pf_vlan)
5349			dev_warn(&pdev->dev,
5350				 "VF %d attempted to override administratively "
5351				 "set VLAN tag\nReload the VF driver to "
5352				 "resume operations\n", vf);
5353		else
5354			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5355		break;
5356	default:
5357		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5358		retval = -1;
5359		break;
5360	}
5361
5362	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5363out:
5364	/* notify the VF of the results of what it sent us */
5365	if (retval)
5366		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5367	else
5368		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5369
5370	igb_write_mbx(hw, msgbuf, 1, vf);
5371}
5372
5373static void igb_msg_task(struct igb_adapter *adapter)
5374{
5375	struct e1000_hw *hw = &adapter->hw;
5376	u32 vf;
5377
5378	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5379		/* process any reset requests */
5380		if (!igb_check_for_rst(hw, vf))
5381			igb_vf_reset_event(adapter, vf);
5382
5383		/* process any messages pending */
5384		if (!igb_check_for_msg(hw, vf))
5385			igb_rcv_msg_from_vf(adapter, vf);
5386
5387		/* process any acks */
5388		if (!igb_check_for_ack(hw, vf))
5389			igb_rcv_ack_from_vf(adapter, vf);
5390	}
5391}
5392
5393/**
5394 *  igb_set_uta - Set unicast filter table address
5395 *  @adapter: board private structure
5396 *
5397 *  The unicast table address is a register array of 32-bit registers.
5398 *  The table is meant to be used in a way similar to how the MTA is used
5399 *  however due to certain limitations in the hardware it is necessary to
5400 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5401 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5402 **/
5403static void igb_set_uta(struct igb_adapter *adapter)
5404{
5405	struct e1000_hw *hw = &adapter->hw;
5406	int i;
5407
5408	/* The UTA table only exists on 82576 hardware and newer */
5409	if (hw->mac.type < e1000_82576)
5410		return;
5411
5412	/* we only need to do this if VMDq is enabled */
5413	if (!adapter->vfs_allocated_count)
5414		return;
5415
5416	for (i = 0; i < hw->mac.uta_reg_count; i++)
5417		array_wr32(E1000_UTA, i, ~0);
5418}
5419
5420/**
5421 * igb_intr_msi - Interrupt Handler
5422 * @irq: interrupt number
5423 * @data: pointer to a network interface device structure
5424 **/
5425static irqreturn_t igb_intr_msi(int irq, void *data)
5426{
5427	struct igb_adapter *adapter = data;
5428	struct igb_q_vector *q_vector = adapter->q_vector[0];
5429	struct e1000_hw *hw = &adapter->hw;
5430	/* read ICR disables interrupts using IAM */
5431	u32 icr = rd32(E1000_ICR);
5432
5433	igb_write_itr(q_vector);
5434
5435	if (icr & E1000_ICR_DRSTA)
5436		schedule_work(&adapter->reset_task);
5437
5438	if (icr & E1000_ICR_DOUTSYNC) {
5439		/* HW is reporting DMA is out of sync */
5440		adapter->stats.doosync++;
5441	}
5442
5443	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5444		hw->mac.get_link_status = 1;
5445		if (!test_bit(__IGB_DOWN, &adapter->state))
5446			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5447	}
5448
5449	napi_schedule(&q_vector->napi);
5450
5451	return IRQ_HANDLED;
5452}
5453
5454/**
5455 * igb_intr - Legacy Interrupt Handler
5456 * @irq: interrupt number
5457 * @data: pointer to a network interface device structure
5458 **/
5459static irqreturn_t igb_intr(int irq, void *data)
5460{
5461	struct igb_adapter *adapter = data;
5462	struct igb_q_vector *q_vector = adapter->q_vector[0];
5463	struct e1000_hw *hw = &adapter->hw;
5464	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5465	 * need for the IMC write */
5466	u32 icr = rd32(E1000_ICR);
5467	if (!icr)
5468		return IRQ_NONE;  /* Not our interrupt */
5469
5470	igb_write_itr(q_vector);
5471
5472	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5473	 * not set, then the adapter didn't send an interrupt */
5474	if (!(icr & E1000_ICR_INT_ASSERTED))
5475		return IRQ_NONE;
5476
5477	if (icr & E1000_ICR_DRSTA)
5478		schedule_work(&adapter->reset_task);
5479
5480	if (icr & E1000_ICR_DOUTSYNC) {
5481		/* HW is reporting DMA is out of sync */
5482		adapter->stats.doosync++;
5483	}
5484
5485	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5486		hw->mac.get_link_status = 1;
5487		/* guard against interrupt when we're going down */
5488		if (!test_bit(__IGB_DOWN, &adapter->state))
5489			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5490	}
5491
5492	napi_schedule(&q_vector->napi);
5493
5494	return IRQ_HANDLED;
5495}
5496
5497static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5498{
5499	struct igb_adapter *adapter = q_vector->adapter;
5500	struct e1000_hw *hw = &adapter->hw;
5501
5502	if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5503	    (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5504		if (!adapter->msix_entries)
5505			igb_set_itr(adapter);
5506		else
5507			igb_update_ring_itr(q_vector);
5508	}
5509
5510	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5511		if (adapter->msix_entries)
5512			wr32(E1000_EIMS, q_vector->eims_value);
5513		else
5514			igb_irq_enable(adapter);
5515	}
5516}
5517
5518/**
5519 * igb_poll - NAPI Rx polling callback
5520 * @napi: napi polling structure
5521 * @budget: count of how many packets we should handle
5522 **/
5523static int igb_poll(struct napi_struct *napi, int budget)
5524{
5525	struct igb_q_vector *q_vector = container_of(napi,
5526	                                             struct igb_q_vector,
5527	                                             napi);
5528	int tx_clean_complete = 1, work_done = 0;
5529
5530#ifdef CONFIG_IGB_DCA
5531	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5532		igb_update_dca(q_vector);
5533#endif
5534	if (q_vector->tx_ring)
5535		tx_clean_complete = igb_clean_tx_irq(q_vector);
5536
5537	if (q_vector->rx_ring)
5538		igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5539
5540	if (!tx_clean_complete)
5541		work_done = budget;
5542
5543	/* If not enough Rx work done, exit the polling mode */
5544	if (work_done < budget) {
5545		napi_complete(napi);
5546		igb_ring_irq_enable(q_vector);
5547	}
5548
5549	return work_done;
5550}
5551
5552/**
5553 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5554 * @adapter: board private structure
5555 * @shhwtstamps: timestamp structure to update
5556 * @regval: unsigned 64bit system time value.
5557 *
5558 * We need to convert the system time value stored in the RX/TXSTMP registers
5559 * into a hwtstamp which can be used by the upper level timestamping functions
5560 */
5561static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5562                                   struct skb_shared_hwtstamps *shhwtstamps,
5563                                   u64 regval)
5564{
5565	u64 ns;
5566
5567	/*
5568	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5569	 * 24 to match clock shift we setup earlier.
5570	 */
5571	if (adapter->hw.mac.type == e1000_82580)
5572		regval <<= IGB_82580_TSYNC_SHIFT;
5573
5574	ns = timecounter_cyc2time(&adapter->clock, regval);
5575	timecompare_update(&adapter->compare, ns);
5576	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5577	shhwtstamps->hwtstamp = ns_to_ktime(ns);
5578	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5579}
5580
5581/**
5582 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5583 * @q_vector: pointer to q_vector containing needed info
5584 * @buffer: pointer to igb_buffer structure
5585 *
5586 * If we were asked to do hardware stamping and such a time stamp is
5587 * available, then it must have been for this skb here because we only
5588 * allow only one such packet into the queue.
5589 */
5590static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5591{
5592	struct igb_adapter *adapter = q_vector->adapter;
5593	struct e1000_hw *hw = &adapter->hw;
5594	struct skb_shared_hwtstamps shhwtstamps;
5595	u64 regval;
5596
5597	/* if skb does not support hw timestamp or TX stamp not valid exit */
5598	if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5599	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5600		return;
5601
5602	regval = rd32(E1000_TXSTMPL);
5603	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5604
5605	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5606	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5607}
5608
5609/**
5610 * igb_clean_tx_irq - Reclaim resources after transmit completes
5611 * @q_vector: pointer to q_vector containing needed info
5612 * returns true if ring is completely cleaned
5613 **/
5614static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5615{
5616	struct igb_adapter *adapter = q_vector->adapter;
5617	struct igb_ring *tx_ring = q_vector->tx_ring;
5618	struct net_device *netdev = tx_ring->netdev;
5619	struct e1000_hw *hw = &adapter->hw;
5620	struct igb_buffer *buffer_info;
5621	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5622	unsigned int total_bytes = 0, total_packets = 0;
5623	unsigned int i, eop, count = 0;
5624	bool cleaned = false;
5625
5626	i = tx_ring->next_to_clean;
5627	eop = tx_ring->buffer_info[i].next_to_watch;
5628	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5629
5630	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5631	       (count < tx_ring->count)) {
5632		rmb();	/* read buffer_info after eop_desc status */
5633		for (cleaned = false; !cleaned; count++) {
5634			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5635			buffer_info = &tx_ring->buffer_info[i];
5636			cleaned = (i == eop);
5637
5638			if (buffer_info->skb) {
5639				total_bytes += buffer_info->bytecount;
5640				/* gso_segs is currently only valid for tcp */
5641				total_packets += buffer_info->gso_segs;
5642				igb_tx_hwtstamp(q_vector, buffer_info);
5643			}
5644
5645			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
5646			tx_desc->wb.status = 0;
5647
5648			i++;
5649			if (i == tx_ring->count)
5650				i = 0;
5651		}
5652		eop = tx_ring->buffer_info[i].next_to_watch;
5653		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5654	}
5655
5656	tx_ring->next_to_clean = i;
5657
5658	if (unlikely(count &&
5659		     netif_carrier_ok(netdev) &&
5660		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5661		/* Make sure that anybody stopping the queue after this
5662		 * sees the new next_to_clean.
5663		 */
5664		smp_mb();
5665		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5666		    !(test_bit(__IGB_DOWN, &adapter->state))) {
5667			netif_wake_subqueue(netdev, tx_ring->queue_index);
5668
5669			u64_stats_update_begin(&tx_ring->tx_syncp);
5670			tx_ring->tx_stats.restart_queue++;
5671			u64_stats_update_end(&tx_ring->tx_syncp);
5672		}
5673	}
5674
5675	if (tx_ring->detect_tx_hung) {
5676		/* Detect a transmit hang in hardware, this serializes the
5677		 * check with the clearing of time_stamp and movement of i */
5678		tx_ring->detect_tx_hung = false;
5679		if (tx_ring->buffer_info[i].time_stamp &&
5680		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5681			       (adapter->tx_timeout_factor * HZ)) &&
5682		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5683
5684			/* detected Tx unit hang */
5685			dev_err(tx_ring->dev,
5686				"Detected Tx Unit Hang\n"
5687				"  Tx Queue             <%d>\n"
5688				"  TDH                  <%x>\n"
5689				"  TDT                  <%x>\n"
5690				"  next_to_use          <%x>\n"
5691				"  next_to_clean        <%x>\n"
5692				"buffer_info[next_to_clean]\n"
5693				"  time_stamp           <%lx>\n"
5694				"  next_to_watch        <%x>\n"
5695				"  jiffies              <%lx>\n"
5696				"  desc.status          <%x>\n",
5697				tx_ring->queue_index,
5698				readl(tx_ring->head),
5699				readl(tx_ring->tail),
5700				tx_ring->next_to_use,
5701				tx_ring->next_to_clean,
5702				tx_ring->buffer_info[eop].time_stamp,
5703				eop,
5704				jiffies,
5705				eop_desc->wb.status);
5706			netif_stop_subqueue(netdev, tx_ring->queue_index);
5707		}
5708	}
5709	tx_ring->total_bytes += total_bytes;
5710	tx_ring->total_packets += total_packets;
5711	u64_stats_update_begin(&tx_ring->tx_syncp);
5712	tx_ring->tx_stats.bytes += total_bytes;
5713	tx_ring->tx_stats.packets += total_packets;
5714	u64_stats_update_end(&tx_ring->tx_syncp);
5715	return count < tx_ring->count;
5716}
5717
5718static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5719				       u32 status_err, struct sk_buff *skb)
5720{
5721	skb_checksum_none_assert(skb);
5722
5723	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
5724	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5725	     (status_err & E1000_RXD_STAT_IXSM))
5726		return;
5727
5728	/* TCP/UDP checksum error bit is set */
5729	if (status_err &
5730	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5731		/*
5732		 * work around errata with sctp packets where the TCPE aka
5733		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5734		 * packets, (aka let the stack check the crc32c)
5735		 */
5736		if ((skb->len == 60) &&
5737		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5738			u64_stats_update_begin(&ring->rx_syncp);
5739			ring->rx_stats.csum_err++;
5740			u64_stats_update_end(&ring->rx_syncp);
5741		}
5742		/* let the stack verify checksum errors */
5743		return;
5744	}
5745	/* It must be a TCP or UDP packet with a valid checksum */
5746	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5747		skb->ip_summed = CHECKSUM_UNNECESSARY;
5748
5749	dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5750}
5751
5752static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5753                                   struct sk_buff *skb)
5754{
5755	struct igb_adapter *adapter = q_vector->adapter;
5756	struct e1000_hw *hw = &adapter->hw;
5757	u64 regval;
5758
5759	/*
5760	 * If this bit is set, then the RX registers contain the time stamp. No
5761	 * other packet will be time stamped until we read these registers, so
5762	 * read the registers to make them available again. Because only one
5763	 * packet can be time stamped at a time, we know that the register
5764	 * values must belong to this one here and therefore we don't need to
5765	 * compare any of the additional attributes stored for it.
5766	 *
5767	 * If nothing went wrong, then it should have a shared tx_flags that we
5768	 * can turn into a skb_shared_hwtstamps.
5769	 */
5770	if (staterr & E1000_RXDADV_STAT_TSIP) {
5771		u32 *stamp = (u32 *)skb->data;
5772		regval = le32_to_cpu(*(stamp + 2));
5773		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5774		skb_pull(skb, IGB_TS_HDR_LEN);
5775	} else {
5776		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5777			return;
5778
5779		regval = rd32(E1000_RXSTMPL);
5780		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5781	}
5782
5783	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5784}
5785static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5786                               union e1000_adv_rx_desc *rx_desc)
5787{
5788	/* HW will not DMA in data larger than the given buffer, even if it
5789	 * parses the (NFS, of course) header to be larger.  In that case, it
5790	 * fills the header buffer and spills the rest into the page.
5791	 */
5792	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5793	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5794	if (hlen > rx_ring->rx_buffer_len)
5795		hlen = rx_ring->rx_buffer_len;
5796	return hlen;
5797}
5798
5799static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5800                                 int *work_done, int budget)
5801{
5802	struct igb_ring *rx_ring = q_vector->rx_ring;
5803	struct net_device *netdev = rx_ring->netdev;
5804	struct device *dev = rx_ring->dev;
5805	union e1000_adv_rx_desc *rx_desc , *next_rxd;
5806	struct igb_buffer *buffer_info , *next_buffer;
5807	struct sk_buff *skb;
5808	bool cleaned = false;
5809	int cleaned_count = 0;
5810	int current_node = numa_node_id();
5811	unsigned int total_bytes = 0, total_packets = 0;
5812	unsigned int i;
5813	u32 staterr;
5814	u16 length;
5815
5816	i = rx_ring->next_to_clean;
5817	buffer_info = &rx_ring->buffer_info[i];
5818	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5819	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5820
5821	while (staterr & E1000_RXD_STAT_DD) {
5822		if (*work_done >= budget)
5823			break;
5824		(*work_done)++;
5825		rmb(); /* read descriptor and rx_buffer_info after status DD */
5826
5827		skb = buffer_info->skb;
5828		prefetch(skb->data - NET_IP_ALIGN);
5829		buffer_info->skb = NULL;
5830
5831		i++;
5832		if (i == rx_ring->count)
5833			i = 0;
5834
5835		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5836		prefetch(next_rxd);
5837		next_buffer = &rx_ring->buffer_info[i];
5838
5839		length = le16_to_cpu(rx_desc->wb.upper.length);
5840		cleaned = true;
5841		cleaned_count++;
5842
5843		if (buffer_info->dma) {
5844			dma_unmap_single(dev, buffer_info->dma,
5845					 rx_ring->rx_buffer_len,
5846					 DMA_FROM_DEVICE);
5847			buffer_info->dma = 0;
5848			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5849				skb_put(skb, length);
5850				goto send_up;
5851			}
5852			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5853		}
5854
5855		if (length) {
5856			dma_unmap_page(dev, buffer_info->page_dma,
5857				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
5858			buffer_info->page_dma = 0;
5859
5860			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5861						buffer_info->page,
5862						buffer_info->page_offset,
5863						length);
5864
5865			if ((page_count(buffer_info->page) != 1) ||
5866			    (page_to_nid(buffer_info->page) != current_node))
5867				buffer_info->page = NULL;
5868			else
5869				get_page(buffer_info->page);
5870
5871			skb->len += length;
5872			skb->data_len += length;
5873			skb->truesize += length;
5874		}
5875
5876		if (!(staterr & E1000_RXD_STAT_EOP)) {
5877			buffer_info->skb = next_buffer->skb;
5878			buffer_info->dma = next_buffer->dma;
5879			next_buffer->skb = skb;
5880			next_buffer->dma = 0;
5881			goto next_desc;
5882		}
5883send_up:
5884		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5885			dev_kfree_skb_irq(skb);
5886			goto next_desc;
5887		}
5888
5889		if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5890			igb_rx_hwtstamp(q_vector, staterr, skb);
5891		total_bytes += skb->len;
5892		total_packets++;
5893
5894		igb_rx_checksum_adv(rx_ring, staterr, skb);
5895
5896		skb->protocol = eth_type_trans(skb, netdev);
5897		skb_record_rx_queue(skb, rx_ring->queue_index);
5898
5899		if (staterr & E1000_RXD_STAT_VP) {
5900			u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
5901
5902			__vlan_hwaccel_put_tag(skb, vid);
5903		}
5904		napi_gro_receive(&q_vector->napi, skb);
5905
5906next_desc:
5907		rx_desc->wb.upper.status_error = 0;
5908
5909		/* return some buffers to hardware, one at a time is too slow */
5910		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5911			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5912			cleaned_count = 0;
5913		}
5914
5915		/* use prefetched values */
5916		rx_desc = next_rxd;
5917		buffer_info = next_buffer;
5918		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5919	}
5920
5921	rx_ring->next_to_clean = i;
5922	cleaned_count = igb_desc_unused(rx_ring);
5923
5924	if (cleaned_count)
5925		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5926
5927	rx_ring->total_packets += total_packets;
5928	rx_ring->total_bytes += total_bytes;
5929	u64_stats_update_begin(&rx_ring->rx_syncp);
5930	rx_ring->rx_stats.packets += total_packets;
5931	rx_ring->rx_stats.bytes += total_bytes;
5932	u64_stats_update_end(&rx_ring->rx_syncp);
5933	return cleaned;
5934}
5935
5936/**
5937 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5938 * @adapter: address of board private structure
5939 **/
5940void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5941{
5942	struct net_device *netdev = rx_ring->netdev;
5943	union e1000_adv_rx_desc *rx_desc;
5944	struct igb_buffer *buffer_info;
5945	struct sk_buff *skb;
5946	unsigned int i;
5947	int bufsz;
5948
5949	i = rx_ring->next_to_use;
5950	buffer_info = &rx_ring->buffer_info[i];
5951
5952	bufsz = rx_ring->rx_buffer_len;
5953
5954	while (cleaned_count--) {
5955		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5956
5957		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5958			if (!buffer_info->page) {
5959				buffer_info->page = netdev_alloc_page(netdev);
5960				if (unlikely(!buffer_info->page)) {
5961					u64_stats_update_begin(&rx_ring->rx_syncp);
5962					rx_ring->rx_stats.alloc_failed++;
5963					u64_stats_update_end(&rx_ring->rx_syncp);
5964					goto no_buffers;
5965				}
5966				buffer_info->page_offset = 0;
5967			} else {
5968				buffer_info->page_offset ^= PAGE_SIZE / 2;
5969			}
5970			buffer_info->page_dma =
5971				dma_map_page(rx_ring->dev, buffer_info->page,
5972					     buffer_info->page_offset,
5973					     PAGE_SIZE / 2,
5974					     DMA_FROM_DEVICE);
5975			if (dma_mapping_error(rx_ring->dev,
5976					      buffer_info->page_dma)) {
5977				buffer_info->page_dma = 0;
5978				u64_stats_update_begin(&rx_ring->rx_syncp);
5979				rx_ring->rx_stats.alloc_failed++;
5980				u64_stats_update_end(&rx_ring->rx_syncp);
5981				goto no_buffers;
5982			}
5983		}
5984
5985		skb = buffer_info->skb;
5986		if (!skb) {
5987			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5988			if (unlikely(!skb)) {
5989				u64_stats_update_begin(&rx_ring->rx_syncp);
5990				rx_ring->rx_stats.alloc_failed++;
5991				u64_stats_update_end(&rx_ring->rx_syncp);
5992				goto no_buffers;
5993			}
5994
5995			buffer_info->skb = skb;
5996		}
5997		if (!buffer_info->dma) {
5998			buffer_info->dma = dma_map_single(rx_ring->dev,
5999			                                  skb->data,
6000							  bufsz,
6001							  DMA_FROM_DEVICE);
6002			if (dma_mapping_error(rx_ring->dev,
6003					      buffer_info->dma)) {
6004				buffer_info->dma = 0;
6005				u64_stats_update_begin(&rx_ring->rx_syncp);
6006				rx_ring->rx_stats.alloc_failed++;
6007				u64_stats_update_end(&rx_ring->rx_syncp);
6008				goto no_buffers;
6009			}
6010		}
6011		/* Refresh the desc even if buffer_addrs didn't change because
6012		 * each write-back erases this info. */
6013		if (bufsz < IGB_RXBUFFER_1024) {
6014			rx_desc->read.pkt_addr =
6015			     cpu_to_le64(buffer_info->page_dma);
6016			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
6017		} else {
6018			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
6019			rx_desc->read.hdr_addr = 0;
6020		}
6021
6022		i++;
6023		if (i == rx_ring->count)
6024			i = 0;
6025		buffer_info = &rx_ring->buffer_info[i];
6026	}
6027
6028no_buffers:
6029	if (rx_ring->next_to_use != i) {
6030		rx_ring->next_to_use = i;
6031		if (i == 0)
6032			i = (rx_ring->count - 1);
6033		else
6034			i--;
6035
6036		/* Force memory writes to complete before letting h/w
6037		 * know there are new descriptors to fetch.  (Only
6038		 * applicable for weak-ordered memory model archs,
6039		 * such as IA-64). */
6040		wmb();
6041		writel(i, rx_ring->tail);
6042	}
6043}
6044
6045/**
6046 * igb_mii_ioctl -
6047 * @netdev:
6048 * @ifreq:
6049 * @cmd:
6050 **/
6051static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6052{
6053	struct igb_adapter *adapter = netdev_priv(netdev);
6054	struct mii_ioctl_data *data = if_mii(ifr);
6055
6056	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6057		return -EOPNOTSUPP;
6058
6059	switch (cmd) {
6060	case SIOCGMIIPHY:
6061		data->phy_id = adapter->hw.phy.addr;
6062		break;
6063	case SIOCGMIIREG:
6064		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6065		                     &data->val_out))
6066			return -EIO;
6067		break;
6068	case SIOCSMIIREG:
6069	default:
6070		return -EOPNOTSUPP;
6071	}
6072	return 0;
6073}
6074
6075/**
6076 * igb_hwtstamp_ioctl - control hardware time stamping
6077 * @netdev:
6078 * @ifreq:
6079 * @cmd:
6080 *
6081 * Outgoing time stamping can be enabled and disabled. Play nice and
6082 * disable it when requested, although it shouldn't case any overhead
6083 * when no packet needs it. At most one packet in the queue may be
6084 * marked for time stamping, otherwise it would be impossible to tell
6085 * for sure to which packet the hardware time stamp belongs.
6086 *
6087 * Incoming time stamping has to be configured via the hardware
6088 * filters. Not all combinations are supported, in particular event
6089 * type has to be specified. Matching the kind of event packet is
6090 * not supported, with the exception of "all V2 events regardless of
6091 * level 2 or 4".
6092 *
6093 **/
6094static int igb_hwtstamp_ioctl(struct net_device *netdev,
6095			      struct ifreq *ifr, int cmd)
6096{
6097	struct igb_adapter *adapter = netdev_priv(netdev);
6098	struct e1000_hw *hw = &adapter->hw;
6099	struct hwtstamp_config config;
6100	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6101	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6102	u32 tsync_rx_cfg = 0;
6103	bool is_l4 = false;
6104	bool is_l2 = false;
6105	u32 regval;
6106
6107	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6108		return -EFAULT;
6109
6110	/* reserved for future extensions */
6111	if (config.flags)
6112		return -EINVAL;
6113
6114	switch (config.tx_type) {
6115	case HWTSTAMP_TX_OFF:
6116		tsync_tx_ctl = 0;
6117	case HWTSTAMP_TX_ON:
6118		break;
6119	default:
6120		return -ERANGE;
6121	}
6122
6123	switch (config.rx_filter) {
6124	case HWTSTAMP_FILTER_NONE:
6125		tsync_rx_ctl = 0;
6126		break;
6127	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6128	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6129	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6130	case HWTSTAMP_FILTER_ALL:
6131		/*
6132		 * register TSYNCRXCFG must be set, therefore it is not
6133		 * possible to time stamp both Sync and Delay_Req messages
6134		 * => fall back to time stamping all packets
6135		 */
6136		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6137		config.rx_filter = HWTSTAMP_FILTER_ALL;
6138		break;
6139	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6140		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6141		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6142		is_l4 = true;
6143		break;
6144	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6145		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6146		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6147		is_l4 = true;
6148		break;
6149	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6150	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6151		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6152		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6153		is_l2 = true;
6154		is_l4 = true;
6155		config.rx_filter = HWTSTAMP_FILTER_SOME;
6156		break;
6157	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6158	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6159		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6160		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6161		is_l2 = true;
6162		is_l4 = true;
6163		config.rx_filter = HWTSTAMP_FILTER_SOME;
6164		break;
6165	case HWTSTAMP_FILTER_PTP_V2_EVENT:
6166	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6167	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6168		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6169		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6170		is_l2 = true;
6171		break;
6172	default:
6173		return -ERANGE;
6174	}
6175
6176	if (hw->mac.type == e1000_82575) {
6177		if (tsync_rx_ctl | tsync_tx_ctl)
6178			return -EINVAL;
6179		return 0;
6180	}
6181
6182	/*
6183	 * Per-packet timestamping only works if all packets are
6184	 * timestamped, so enable timestamping in all packets as
6185	 * long as one rx filter was configured.
6186	 */
6187	if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6188		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6189		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6190	}
6191
6192	/* enable/disable TX */
6193	regval = rd32(E1000_TSYNCTXCTL);
6194	regval &= ~E1000_TSYNCTXCTL_ENABLED;
6195	regval |= tsync_tx_ctl;
6196	wr32(E1000_TSYNCTXCTL, regval);
6197
6198	/* enable/disable RX */
6199	regval = rd32(E1000_TSYNCRXCTL);
6200	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6201	regval |= tsync_rx_ctl;
6202	wr32(E1000_TSYNCRXCTL, regval);
6203
6204	/* define which PTP packets are time stamped */
6205	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6206
6207	/* define ethertype filter for timestamped packets */
6208	if (is_l2)
6209		wr32(E1000_ETQF(3),
6210		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6211		                 E1000_ETQF_1588 | /* enable timestamping */
6212		                 ETH_P_1588));     /* 1588 eth protocol type */
6213	else
6214		wr32(E1000_ETQF(3), 0);
6215
6216#define PTP_PORT 319
6217	/* L4 Queue Filter[3]: filter by destination port and protocol */
6218	if (is_l4) {
6219		u32 ftqf = (IPPROTO_UDP /* UDP */
6220			| E1000_FTQF_VF_BP /* VF not compared */
6221			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6222			| E1000_FTQF_MASK); /* mask all inputs */
6223		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6224
6225		wr32(E1000_IMIR(3), htons(PTP_PORT));
6226		wr32(E1000_IMIREXT(3),
6227		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6228		if (hw->mac.type == e1000_82576) {
6229			/* enable source port check */
6230			wr32(E1000_SPQF(3), htons(PTP_PORT));
6231			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6232		}
6233		wr32(E1000_FTQF(3), ftqf);
6234	} else {
6235		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6236	}
6237	wrfl();
6238
6239	adapter->hwtstamp_config = config;
6240
6241	/* clear TX/RX time stamp registers, just to be sure */
6242	regval = rd32(E1000_TXSTMPH);
6243	regval = rd32(E1000_RXSTMPH);
6244
6245	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6246		-EFAULT : 0;
6247}
6248
6249/**
6250 * igb_ioctl -
6251 * @netdev:
6252 * @ifreq:
6253 * @cmd:
6254 **/
6255static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6256{
6257	switch (cmd) {
6258	case SIOCGMIIPHY:
6259	case SIOCGMIIREG:
6260	case SIOCSMIIREG:
6261		return igb_mii_ioctl(netdev, ifr, cmd);
6262	case SIOCSHWTSTAMP:
6263		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6264	default:
6265		return -EOPNOTSUPP;
6266	}
6267}
6268
6269s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6270{
6271	struct igb_adapter *adapter = hw->back;
6272	u16 cap_offset;
6273
6274	cap_offset = adapter->pdev->pcie_cap;
6275	if (!cap_offset)
6276		return -E1000_ERR_CONFIG;
6277
6278	pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6279
6280	return 0;
6281}
6282
6283s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6284{
6285	struct igb_adapter *adapter = hw->back;
6286	u16 cap_offset;
6287
6288	cap_offset = adapter->pdev->pcie_cap;
6289	if (!cap_offset)
6290		return -E1000_ERR_CONFIG;
6291
6292	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6293
6294	return 0;
6295}
6296
6297static void igb_vlan_mode(struct net_device *netdev, u32 features)
6298{
6299	struct igb_adapter *adapter = netdev_priv(netdev);
6300	struct e1000_hw *hw = &adapter->hw;
6301	u32 ctrl, rctl;
6302
6303	igb_irq_disable(adapter);
6304
6305	if (features & NETIF_F_HW_VLAN_RX) {
6306		/* enable VLAN tag insert/strip */
6307		ctrl = rd32(E1000_CTRL);
6308		ctrl |= E1000_CTRL_VME;
6309		wr32(E1000_CTRL, ctrl);
6310
6311		/* Disable CFI check */
6312		rctl = rd32(E1000_RCTL);
6313		rctl &= ~E1000_RCTL_CFIEN;
6314		wr32(E1000_RCTL, rctl);
6315	} else {
6316		/* disable VLAN tag insert/strip */
6317		ctrl = rd32(E1000_CTRL);
6318		ctrl &= ~E1000_CTRL_VME;
6319		wr32(E1000_CTRL, ctrl);
6320	}
6321
6322	igb_rlpml_set(adapter);
6323
6324	if (!test_bit(__IGB_DOWN, &adapter->state))
6325		igb_irq_enable(adapter);
6326}
6327
6328static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6329{
6330	struct igb_adapter *adapter = netdev_priv(netdev);
6331	struct e1000_hw *hw = &adapter->hw;
6332	int pf_id = adapter->vfs_allocated_count;
6333
6334	/* attempt to add filter to vlvf array */
6335	igb_vlvf_set(adapter, vid, true, pf_id);
6336
6337	/* add the filter since PF can receive vlans w/o entry in vlvf */
6338	igb_vfta_set(hw, vid, true);
6339
6340	set_bit(vid, adapter->active_vlans);
6341}
6342
6343static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6344{
6345	struct igb_adapter *adapter = netdev_priv(netdev);
6346	struct e1000_hw *hw = &adapter->hw;
6347	int pf_id = adapter->vfs_allocated_count;
6348	s32 err;
6349
6350	igb_irq_disable(adapter);
6351
6352	if (!test_bit(__IGB_DOWN, &adapter->state))
6353		igb_irq_enable(adapter);
6354
6355	/* remove vlan from VLVF table array */
6356	err = igb_vlvf_set(adapter, vid, false, pf_id);
6357
6358	/* if vid was not present in VLVF just remove it from table */
6359	if (err)
6360		igb_vfta_set(hw, vid, false);
6361
6362	clear_bit(vid, adapter->active_vlans);
6363}
6364
6365static void igb_restore_vlan(struct igb_adapter *adapter)
6366{
6367	u16 vid;
6368
6369	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6370		igb_vlan_rx_add_vid(adapter->netdev, vid);
6371}
6372
6373int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6374{
6375	struct pci_dev *pdev = adapter->pdev;
6376	struct e1000_mac_info *mac = &adapter->hw.mac;
6377
6378	mac->autoneg = 0;
6379
6380	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6381	 * for the switch() below to work */
6382	if ((spd & 1) || (dplx & ~1))
6383		goto err_inval;
6384
6385	/* Fiber NIC's only allow 1000 Gbps Full duplex */
6386	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6387	    spd != SPEED_1000 &&
6388	    dplx != DUPLEX_FULL)
6389		goto err_inval;
6390
6391	switch (spd + dplx) {
6392	case SPEED_10 + DUPLEX_HALF:
6393		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6394		break;
6395	case SPEED_10 + DUPLEX_FULL:
6396		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6397		break;
6398	case SPEED_100 + DUPLEX_HALF:
6399		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6400		break;
6401	case SPEED_100 + DUPLEX_FULL:
6402		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6403		break;
6404	case SPEED_1000 + DUPLEX_FULL:
6405		mac->autoneg = 1;
6406		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6407		break;
6408	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6409	default:
6410		goto err_inval;
6411	}
6412	return 0;
6413
6414err_inval:
6415	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6416	return -EINVAL;
6417}
6418
6419static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6420{
6421	struct net_device *netdev = pci_get_drvdata(pdev);
6422	struct igb_adapter *adapter = netdev_priv(netdev);
6423	struct e1000_hw *hw = &adapter->hw;
6424	u32 ctrl, rctl, status;
6425	u32 wufc = adapter->wol;
6426#ifdef CONFIG_PM
6427	int retval = 0;
6428#endif
6429
6430	netif_device_detach(netdev);
6431
6432	if (netif_running(netdev))
6433		igb_close(netdev);
6434
6435	igb_clear_interrupt_scheme(adapter);
6436
6437#ifdef CONFIG_PM
6438	retval = pci_save_state(pdev);
6439	if (retval)
6440		return retval;
6441#endif
6442
6443	status = rd32(E1000_STATUS);
6444	if (status & E1000_STATUS_LU)
6445		wufc &= ~E1000_WUFC_LNKC;
6446
6447	if (wufc) {
6448		igb_setup_rctl(adapter);
6449		igb_set_rx_mode(netdev);
6450
6451		/* turn on all-multi mode if wake on multicast is enabled */
6452		if (wufc & E1000_WUFC_MC) {
6453			rctl = rd32(E1000_RCTL);
6454			rctl |= E1000_RCTL_MPE;
6455			wr32(E1000_RCTL, rctl);
6456		}
6457
6458		ctrl = rd32(E1000_CTRL);
6459		/* advertise wake from D3Cold */
6460		#define E1000_CTRL_ADVD3WUC 0x00100000
6461		/* phy power management enable */
6462		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6463		ctrl |= E1000_CTRL_ADVD3WUC;
6464		wr32(E1000_CTRL, ctrl);
6465
6466		/* Allow time for pending master requests to run */
6467		igb_disable_pcie_master(hw);
6468
6469		wr32(E1000_WUC, E1000_WUC_PME_EN);
6470		wr32(E1000_WUFC, wufc);
6471	} else {
6472		wr32(E1000_WUC, 0);
6473		wr32(E1000_WUFC, 0);
6474	}
6475
6476	*enable_wake = wufc || adapter->en_mng_pt;
6477	if (!*enable_wake)
6478		igb_power_down_link(adapter);
6479	else
6480		igb_power_up_link(adapter);
6481
6482	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6483	 * would have already happened in close and is redundant. */
6484	igb_release_hw_control(adapter);
6485
6486	pci_disable_device(pdev);
6487
6488	return 0;
6489}
6490
6491#ifdef CONFIG_PM
6492static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6493{
6494	int retval;
6495	bool wake;
6496
6497	retval = __igb_shutdown(pdev, &wake);
6498	if (retval)
6499		return retval;
6500
6501	if (wake) {
6502		pci_prepare_to_sleep(pdev);
6503	} else {
6504		pci_wake_from_d3(pdev, false);
6505		pci_set_power_state(pdev, PCI_D3hot);
6506	}
6507
6508	return 0;
6509}
6510
6511static int igb_resume(struct pci_dev *pdev)
6512{
6513	struct net_device *netdev = pci_get_drvdata(pdev);
6514	struct igb_adapter *adapter = netdev_priv(netdev);
6515	struct e1000_hw *hw = &adapter->hw;
6516	u32 err;
6517
6518	pci_set_power_state(pdev, PCI_D0);
6519	pci_restore_state(pdev);
6520	pci_save_state(pdev);
6521
6522	err = pci_enable_device_mem(pdev);
6523	if (err) {
6524		dev_err(&pdev->dev,
6525			"igb: Cannot enable PCI device from suspend\n");
6526		return err;
6527	}
6528	pci_set_master(pdev);
6529
6530	pci_enable_wake(pdev, PCI_D3hot, 0);
6531	pci_enable_wake(pdev, PCI_D3cold, 0);
6532
6533	if (igb_init_interrupt_scheme(adapter)) {
6534		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6535		return -ENOMEM;
6536	}
6537
6538	igb_reset(adapter);
6539
6540	/* let the f/w know that the h/w is now under the control of the
6541	 * driver. */
6542	igb_get_hw_control(adapter);
6543
6544	wr32(E1000_WUS, ~0);
6545
6546	if (netif_running(netdev)) {
6547		err = igb_open(netdev);
6548		if (err)
6549			return err;
6550	}
6551
6552	netif_device_attach(netdev);
6553
6554	return 0;
6555}
6556#endif
6557
6558static void igb_shutdown(struct pci_dev *pdev)
6559{
6560	bool wake;
6561
6562	__igb_shutdown(pdev, &wake);
6563
6564	if (system_state == SYSTEM_POWER_OFF) {
6565		pci_wake_from_d3(pdev, wake);
6566		pci_set_power_state(pdev, PCI_D3hot);
6567	}
6568}
6569
6570#ifdef CONFIG_NET_POLL_CONTROLLER
6571/*
6572 * Polling 'interrupt' - used by things like netconsole to send skbs
6573 * without having to re-enable interrupts. It's not called while
6574 * the interrupt routine is executing.
6575 */
6576static void igb_netpoll(struct net_device *netdev)
6577{
6578	struct igb_adapter *adapter = netdev_priv(netdev);
6579	struct e1000_hw *hw = &adapter->hw;
6580	int i;
6581
6582	if (!adapter->msix_entries) {
6583		struct igb_q_vector *q_vector = adapter->q_vector[0];
6584		igb_irq_disable(adapter);
6585		napi_schedule(&q_vector->napi);
6586		return;
6587	}
6588
6589	for (i = 0; i < adapter->num_q_vectors; i++) {
6590		struct igb_q_vector *q_vector = adapter->q_vector[i];
6591		wr32(E1000_EIMC, q_vector->eims_value);
6592		napi_schedule(&q_vector->napi);
6593	}
6594}
6595#endif /* CONFIG_NET_POLL_CONTROLLER */
6596
6597/**
6598 * igb_io_error_detected - called when PCI error is detected
6599 * @pdev: Pointer to PCI device
6600 * @state: The current pci connection state
6601 *
6602 * This function is called after a PCI bus error affecting
6603 * this device has been detected.
6604 */
6605static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6606					      pci_channel_state_t state)
6607{
6608	struct net_device *netdev = pci_get_drvdata(pdev);
6609	struct igb_adapter *adapter = netdev_priv(netdev);
6610
6611	netif_device_detach(netdev);
6612
6613	if (state == pci_channel_io_perm_failure)
6614		return PCI_ERS_RESULT_DISCONNECT;
6615
6616	if (netif_running(netdev))
6617		igb_down(adapter);
6618	pci_disable_device(pdev);
6619
6620	/* Request a slot slot reset. */
6621	return PCI_ERS_RESULT_NEED_RESET;
6622}
6623
6624/**
6625 * igb_io_slot_reset - called after the pci bus has been reset.
6626 * @pdev: Pointer to PCI device
6627 *
6628 * Restart the card from scratch, as if from a cold-boot. Implementation
6629 * resembles the first-half of the igb_resume routine.
6630 */
6631static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6632{
6633	struct net_device *netdev = pci_get_drvdata(pdev);
6634	struct igb_adapter *adapter = netdev_priv(netdev);
6635	struct e1000_hw *hw = &adapter->hw;
6636	pci_ers_result_t result;
6637	int err;
6638
6639	if (pci_enable_device_mem(pdev)) {
6640		dev_err(&pdev->dev,
6641			"Cannot re-enable PCI device after reset.\n");
6642		result = PCI_ERS_RESULT_DISCONNECT;
6643	} else {
6644		pci_set_master(pdev);
6645		pci_restore_state(pdev);
6646		pci_save_state(pdev);
6647
6648		pci_enable_wake(pdev, PCI_D3hot, 0);
6649		pci_enable_wake(pdev, PCI_D3cold, 0);
6650
6651		igb_reset(adapter);
6652		wr32(E1000_WUS, ~0);
6653		result = PCI_ERS_RESULT_RECOVERED;
6654	}
6655
6656	err = pci_cleanup_aer_uncorrect_error_status(pdev);
6657	if (err) {
6658		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6659		        "failed 0x%0x\n", err);
6660		/* non-fatal, continue */
6661	}
6662
6663	return result;
6664}
6665
6666/**
6667 * igb_io_resume - called when traffic can start flowing again.
6668 * @pdev: Pointer to PCI device
6669 *
6670 * This callback is called when the error recovery driver tells us that
6671 * its OK to resume normal operation. Implementation resembles the
6672 * second-half of the igb_resume routine.
6673 */
6674static void igb_io_resume(struct pci_dev *pdev)
6675{
6676	struct net_device *netdev = pci_get_drvdata(pdev);
6677	struct igb_adapter *adapter = netdev_priv(netdev);
6678
6679	if (netif_running(netdev)) {
6680		if (igb_up(adapter)) {
6681			dev_err(&pdev->dev, "igb_up failed after reset\n");
6682			return;
6683		}
6684	}
6685
6686	netif_device_attach(netdev);
6687
6688	/* let the f/w know that the h/w is now under the control of the
6689	 * driver. */
6690	igb_get_hw_control(adapter);
6691}
6692
6693static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6694                             u8 qsel)
6695{
6696	u32 rar_low, rar_high;
6697	struct e1000_hw *hw = &adapter->hw;
6698
6699	/* HW expects these in little endian so we reverse the byte order
6700	 * from network order (big endian) to little endian
6701	 */
6702	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6703	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6704	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6705
6706	/* Indicate to hardware the Address is Valid. */
6707	rar_high |= E1000_RAH_AV;
6708
6709	if (hw->mac.type == e1000_82575)
6710		rar_high |= E1000_RAH_POOL_1 * qsel;
6711	else
6712		rar_high |= E1000_RAH_POOL_1 << qsel;
6713
6714	wr32(E1000_RAL(index), rar_low);
6715	wrfl();
6716	wr32(E1000_RAH(index), rar_high);
6717	wrfl();
6718}
6719
6720static int igb_set_vf_mac(struct igb_adapter *adapter,
6721                          int vf, unsigned char *mac_addr)
6722{
6723	struct e1000_hw *hw = &adapter->hw;
6724	/* VF MAC addresses start at end of receive addresses and moves
6725	 * torwards the first, as a result a collision should not be possible */
6726	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6727
6728	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6729
6730	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6731
6732	return 0;
6733}
6734
6735static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6736{
6737	struct igb_adapter *adapter = netdev_priv(netdev);
6738	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6739		return -EINVAL;
6740	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6741	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6742	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6743				      " change effective.");
6744	if (test_bit(__IGB_DOWN, &adapter->state)) {
6745		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6746			 " but the PF device is not up.\n");
6747		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6748			 " attempting to use the VF device.\n");
6749	}
6750	return igb_set_vf_mac(adapter, vf, mac);
6751}
6752
6753static int igb_link_mbps(int internal_link_speed)
6754{
6755	switch (internal_link_speed) {
6756	case SPEED_100:
6757		return 100;
6758	case SPEED_1000:
6759		return 1000;
6760	default:
6761		return 0;
6762	}
6763}
6764
6765static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6766				  int link_speed)
6767{
6768	int rf_dec, rf_int;
6769	u32 bcnrc_val;
6770
6771	if (tx_rate != 0) {
6772		/* Calculate the rate factor values to set */
6773		rf_int = link_speed / tx_rate;
6774		rf_dec = (link_speed - (rf_int * tx_rate));
6775		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6776
6777		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6778		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6779		               E1000_RTTBCNRC_RF_INT_MASK);
6780		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6781	} else {
6782		bcnrc_val = 0;
6783	}
6784
6785	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6786	wr32(E1000_RTTBCNRC, bcnrc_val);
6787}
6788
6789static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6790{
6791	int actual_link_speed, i;
6792	bool reset_rate = false;
6793
6794	/* VF TX rate limit was not set or not supported */
6795	if ((adapter->vf_rate_link_speed == 0) ||
6796	    (adapter->hw.mac.type != e1000_82576))
6797		return;
6798
6799	actual_link_speed = igb_link_mbps(adapter->link_speed);
6800	if (actual_link_speed != adapter->vf_rate_link_speed) {
6801		reset_rate = true;
6802		adapter->vf_rate_link_speed = 0;
6803		dev_info(&adapter->pdev->dev,
6804		         "Link speed has been changed. VF Transmit "
6805		         "rate is disabled\n");
6806	}
6807
6808	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6809		if (reset_rate)
6810			adapter->vf_data[i].tx_rate = 0;
6811
6812		igb_set_vf_rate_limit(&adapter->hw, i,
6813		                      adapter->vf_data[i].tx_rate,
6814		                      actual_link_speed);
6815	}
6816}
6817
6818static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6819{
6820	struct igb_adapter *adapter = netdev_priv(netdev);
6821	struct e1000_hw *hw = &adapter->hw;
6822	int actual_link_speed;
6823
6824	if (hw->mac.type != e1000_82576)
6825		return -EOPNOTSUPP;
6826
6827	actual_link_speed = igb_link_mbps(adapter->link_speed);
6828	if ((vf >= adapter->vfs_allocated_count) ||
6829	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6830	    (tx_rate < 0) || (tx_rate > actual_link_speed))
6831		return -EINVAL;
6832
6833	adapter->vf_rate_link_speed = actual_link_speed;
6834	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6835	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6836
6837	return 0;
6838}
6839
6840static int igb_ndo_get_vf_config(struct net_device *netdev,
6841				 int vf, struct ifla_vf_info *ivi)
6842{
6843	struct igb_adapter *adapter = netdev_priv(netdev);
6844	if (vf >= adapter->vfs_allocated_count)
6845		return -EINVAL;
6846	ivi->vf = vf;
6847	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6848	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
6849	ivi->vlan = adapter->vf_data[vf].pf_vlan;
6850	ivi->qos = adapter->vf_data[vf].pf_qos;
6851	return 0;
6852}
6853
6854static void igb_vmm_control(struct igb_adapter *adapter)
6855{
6856	struct e1000_hw *hw = &adapter->hw;
6857	u32 reg;
6858
6859	switch (hw->mac.type) {
6860	case e1000_82575:
6861	default:
6862		/* replication is not supported for 82575 */
6863		return;
6864	case e1000_82576:
6865		/* notify HW that the MAC is adding vlan tags */
6866		reg = rd32(E1000_DTXCTL);
6867		reg |= E1000_DTXCTL_VLAN_ADDED;
6868		wr32(E1000_DTXCTL, reg);
6869	case e1000_82580:
6870		/* enable replication vlan tag stripping */
6871		reg = rd32(E1000_RPLOLR);
6872		reg |= E1000_RPLOLR_STRVLAN;
6873		wr32(E1000_RPLOLR, reg);
6874	case e1000_i350:
6875		/* none of the above registers are supported by i350 */
6876		break;
6877	}
6878
6879	if (adapter->vfs_allocated_count) {
6880		igb_vmdq_set_loopback_pf(hw, true);
6881		igb_vmdq_set_replication_pf(hw, true);
6882		igb_vmdq_set_anti_spoofing_pf(hw, true,
6883						adapter->vfs_allocated_count);
6884	} else {
6885		igb_vmdq_set_loopback_pf(hw, false);
6886		igb_vmdq_set_replication_pf(hw, false);
6887	}
6888}
6889
6890/* igb_main.c */