Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * drivers/net/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
  16 * This program is free software; you can redistribute  it and/or modify it
  17 * under  the terms of  the GNU General  Public License as published by the
  18 * Free Software Foundation;  either version 2 of the  License, or (at your
  19 * option) any later version.
  20 *
  21 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  22 *  RA 11 31 24.2
  23 *  Dec +69 19 52
  24 *  V 3.84
  25 *  B-V +1.62
  26 *
  27 *  Theory of operation
  28 *
  29 *  The driver is initialized through of_device. Configuration information
  30 *  is therefore conveyed through an OF-style device tree.
  31 *
  32 *  The Gianfar Ethernet Controller uses a ring of buffer
  33 *  descriptors.  The beginning is indicated by a register
  34 *  pointing to the physical address of the start of the ring.
  35 *  The end is determined by a "wrap" bit being set in the
  36 *  last descriptor of the ring.
  37 *
  38 *  When a packet is received, the RXF bit in the
  39 *  IEVENT register is set, triggering an interrupt when the
  40 *  corresponding bit in the IMASK register is also set (if
  41 *  interrupt coalescing is active, then the interrupt may not
  42 *  happen immediately, but will wait until either a set number
  43 *  of frames or amount of time have passed).  In NAPI, the
  44 *  interrupt handler will signal there is work to be done, and
  45 *  exit. This method will start at the last known empty
  46 *  descriptor, and process every subsequent descriptor until there
  47 *  are none left with data (NAPI will stop after a set number of
  48 *  packets to give time to other tasks, but will eventually
  49 *  process all the packets).  The data arrives inside a
  50 *  pre-allocated skb, and so after the skb is passed up to the
  51 *  stack, a new skb must be allocated, and the address field in
  52 *  the buffer descriptor must be updated to indicate this new
  53 *  skb.
  54 *
  55 *  When the kernel requests that a packet be transmitted, the
  56 *  driver starts where it left off last time, and points the
  57 *  descriptor at the buffer which was passed in.  The driver
  58 *  then informs the DMA engine that there are packets ready to
  59 *  be transmitted.  Once the controller is finished transmitting
  60 *  the packet, an interrupt may be triggered (under the same
  61 *  conditions as for reception, but depending on the TXF bit).
  62 *  The driver then cleans up the buffer.
  63 */
  64
  65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  66#define DEBUG
  67
  68#include <linux/kernel.h>
  69#include <linux/string.h>
  70#include <linux/errno.h>
  71#include <linux/unistd.h>
  72#include <linux/slab.h>
  73#include <linux/interrupt.h>
  74#include <linux/init.h>
  75#include <linux/delay.h>
  76#include <linux/netdevice.h>
  77#include <linux/etherdevice.h>
  78#include <linux/skbuff.h>
  79#include <linux/if_vlan.h>
  80#include <linux/spinlock.h>
  81#include <linux/mm.h>
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
  91#include <asm/reg.h>
  92#include <asm/irq.h>
  93#include <asm/uaccess.h>
  94#include <linux/module.h>
  95#include <linux/dma-mapping.h>
  96#include <linux/crc32.h>
  97#include <linux/mii.h>
  98#include <linux/phy.h>
  99#include <linux/phy_fixed.h>
 100#include <linux/of.h>
 101#include <linux/of_net.h>
 102
 103#include "gianfar.h"
 104#include "fsl_pq_mdio.h"
 105
 106#define TX_TIMEOUT      (1*HZ)
 107#undef BRIEF_GFAR_ERRORS
 108#undef VERBOSE_GFAR_ERRORS
 109
 110const char gfar_driver_name[] = "Gianfar Ethernet";
 111const char gfar_driver_version[] = "1.3";
 112
 113static int gfar_enet_open(struct net_device *dev);
 114static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 115static void gfar_reset_task(struct work_struct *work);
 116static void gfar_timeout(struct net_device *dev);
 117static int gfar_close(struct net_device *dev);
 118struct sk_buff *gfar_new_skb(struct net_device *dev);
 119static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 120		struct sk_buff *skb);
 121static int gfar_set_mac_address(struct net_device *dev);
 122static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 123static irqreturn_t gfar_error(int irq, void *dev_id);
 124static irqreturn_t gfar_transmit(int irq, void *dev_id);
 125static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 126static void adjust_link(struct net_device *dev);
 127static void init_registers(struct net_device *dev);
 128static int init_phy(struct net_device *dev);
 129static int gfar_probe(struct platform_device *ofdev);
 130static int gfar_remove(struct platform_device *ofdev);
 131static void free_skb_resources(struct gfar_private *priv);
 132static void gfar_set_multi(struct net_device *dev);
 133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 134static void gfar_configure_serdes(struct net_device *dev);
 135static int gfar_poll(struct napi_struct *napi, int budget);
 136#ifdef CONFIG_NET_POLL_CONTROLLER
 137static void gfar_netpoll(struct net_device *dev);
 138#endif
 139int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 140static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 141static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
 142			      int amount_pull);
 143void gfar_halt(struct net_device *dev);
 144static void gfar_halt_nodisable(struct net_device *dev);
 145void gfar_start(struct net_device *dev);
 146static void gfar_clear_exact_match(struct net_device *dev);
 147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 148				  const u8 *addr);
 149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 150
 151MODULE_AUTHOR("Freescale Semiconductor, Inc");
 152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 153MODULE_LICENSE("GPL");
 154
 155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 156			    dma_addr_t buf)
 157{
 158	u32 lstatus;
 159
 160	bdp->bufPtr = buf;
 161
 162	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 163	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 164		lstatus |= BD_LFLAG(RXBD_WRAP);
 165
 166	eieio();
 167
 168	bdp->lstatus = lstatus;
 169}
 170
 171static int gfar_init_bds(struct net_device *ndev)
 172{
 173	struct gfar_private *priv = netdev_priv(ndev);
 174	struct gfar_priv_tx_q *tx_queue = NULL;
 175	struct gfar_priv_rx_q *rx_queue = NULL;
 176	struct txbd8 *txbdp;
 177	struct rxbd8 *rxbdp;
 178	int i, j;
 179
 180	for (i = 0; i < priv->num_tx_queues; i++) {
 181		tx_queue = priv->tx_queue[i];
 182		/* Initialize some variables in our dev structure */
 183		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 184		tx_queue->dirty_tx = tx_queue->tx_bd_base;
 185		tx_queue->cur_tx = tx_queue->tx_bd_base;
 186		tx_queue->skb_curtx = 0;
 187		tx_queue->skb_dirtytx = 0;
 188
 189		/* Initialize Transmit Descriptor Ring */
 190		txbdp = tx_queue->tx_bd_base;
 191		for (j = 0; j < tx_queue->tx_ring_size; j++) {
 192			txbdp->lstatus = 0;
 193			txbdp->bufPtr = 0;
 194			txbdp++;
 195		}
 196
 197		/* Set the last descriptor in the ring to indicate wrap */
 198		txbdp--;
 199		txbdp->status |= TXBD_WRAP;
 200	}
 201
 202	for (i = 0; i < priv->num_rx_queues; i++) {
 203		rx_queue = priv->rx_queue[i];
 204		rx_queue->cur_rx = rx_queue->rx_bd_base;
 205		rx_queue->skb_currx = 0;
 206		rxbdp = rx_queue->rx_bd_base;
 207
 208		for (j = 0; j < rx_queue->rx_ring_size; j++) {
 209			struct sk_buff *skb = rx_queue->rx_skbuff[j];
 210
 211			if (skb) {
 212				gfar_init_rxbdp(rx_queue, rxbdp,
 213						rxbdp->bufPtr);
 214			} else {
 215				skb = gfar_new_skb(ndev);
 216				if (!skb) {
 217					netdev_err(ndev, "Can't allocate RX buffers\n");
 218					goto err_rxalloc_fail;
 219				}
 220				rx_queue->rx_skbuff[j] = skb;
 221
 222				gfar_new_rxbdp(rx_queue, rxbdp, skb);
 223			}
 224
 225			rxbdp++;
 226		}
 227
 228	}
 229
 230	return 0;
 231
 232err_rxalloc_fail:
 233	free_skb_resources(priv);
 234	return -ENOMEM;
 235}
 236
 237static int gfar_alloc_skb_resources(struct net_device *ndev)
 238{
 239	void *vaddr;
 240	dma_addr_t addr;
 241	int i, j, k;
 242	struct gfar_private *priv = netdev_priv(ndev);
 243	struct device *dev = &priv->ofdev->dev;
 244	struct gfar_priv_tx_q *tx_queue = NULL;
 245	struct gfar_priv_rx_q *rx_queue = NULL;
 246
 247	priv->total_tx_ring_size = 0;
 248	for (i = 0; i < priv->num_tx_queues; i++)
 249		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 250
 251	priv->total_rx_ring_size = 0;
 252	for (i = 0; i < priv->num_rx_queues; i++)
 253		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 254
 255	/* Allocate memory for the buffer descriptors */
 256	vaddr = dma_alloc_coherent(dev,
 257			sizeof(struct txbd8) * priv->total_tx_ring_size +
 258			sizeof(struct rxbd8) * priv->total_rx_ring_size,
 259			&addr, GFP_KERNEL);
 260	if (!vaddr) {
 261		netif_err(priv, ifup, ndev,
 262			  "Could not allocate buffer descriptors!\n");
 263		return -ENOMEM;
 264	}
 265
 266	for (i = 0; i < priv->num_tx_queues; i++) {
 267		tx_queue = priv->tx_queue[i];
 268		tx_queue->tx_bd_base = vaddr;
 269		tx_queue->tx_bd_dma_base = addr;
 270		tx_queue->dev = ndev;
 271		/* enet DMA only understands physical addresses */
 272		addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
 273		vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
 274	}
 275
 276	/* Start the rx descriptor ring where the tx ring leaves off */
 277	for (i = 0; i < priv->num_rx_queues; i++) {
 278		rx_queue = priv->rx_queue[i];
 279		rx_queue->rx_bd_base = vaddr;
 280		rx_queue->rx_bd_dma_base = addr;
 281		rx_queue->dev = ndev;
 282		addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
 283		vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
 284	}
 285
 286	/* Setup the skbuff rings */
 287	for (i = 0; i < priv->num_tx_queues; i++) {
 288		tx_queue = priv->tx_queue[i];
 289		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
 290				  tx_queue->tx_ring_size, GFP_KERNEL);
 291		if (!tx_queue->tx_skbuff) {
 292			netif_err(priv, ifup, ndev,
 293				  "Could not allocate tx_skbuff\n");
 294			goto cleanup;
 295		}
 296
 297		for (k = 0; k < tx_queue->tx_ring_size; k++)
 298			tx_queue->tx_skbuff[k] = NULL;
 299	}
 300
 301	for (i = 0; i < priv->num_rx_queues; i++) {
 302		rx_queue = priv->rx_queue[i];
 303		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
 304				  rx_queue->rx_ring_size, GFP_KERNEL);
 305
 306		if (!rx_queue->rx_skbuff) {
 307			netif_err(priv, ifup, ndev,
 308				  "Could not allocate rx_skbuff\n");
 309			goto cleanup;
 310		}
 311
 312		for (j = 0; j < rx_queue->rx_ring_size; j++)
 313			rx_queue->rx_skbuff[j] = NULL;
 314	}
 315
 316	if (gfar_init_bds(ndev))
 317		goto cleanup;
 318
 319	return 0;
 320
 321cleanup:
 322	free_skb_resources(priv);
 323	return -ENOMEM;
 324}
 325
 326static void gfar_init_tx_rx_base(struct gfar_private *priv)
 327{
 328	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 329	u32 __iomem *baddr;
 330	int i;
 331
 332	baddr = &regs->tbase0;
 333	for(i = 0; i < priv->num_tx_queues; i++) {
 334		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 335		baddr	+= 2;
 336	}
 337
 338	baddr = &regs->rbase0;
 339	for(i = 0; i < priv->num_rx_queues; i++) {
 340		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 341		baddr   += 2;
 342	}
 343}
 344
 345static void gfar_init_mac(struct net_device *ndev)
 346{
 347	struct gfar_private *priv = netdev_priv(ndev);
 348	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 349	u32 rctrl = 0;
 350	u32 tctrl = 0;
 351	u32 attrs = 0;
 352
 353	/* write the tx/rx base registers */
 354	gfar_init_tx_rx_base(priv);
 355
 356	/* Configure the coalescing support */
 357	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 358
 359	if (priv->rx_filer_enable) {
 360		rctrl |= RCTRL_FILREN;
 361		/* Program the RIR0 reg with the required distribution */
 362		gfar_write(&regs->rir0, DEFAULT_RIR0);
 363	}
 364
 365	if (ndev->features & NETIF_F_RXCSUM)
 366		rctrl |= RCTRL_CHECKSUMMING;
 367
 368	if (priv->extended_hash) {
 369		rctrl |= RCTRL_EXTHASH;
 370
 371		gfar_clear_exact_match(ndev);
 372		rctrl |= RCTRL_EMEN;
 373	}
 374
 375	if (priv->padding) {
 376		rctrl &= ~RCTRL_PAL_MASK;
 377		rctrl |= RCTRL_PADDING(priv->padding);
 378	}
 379
 380	/* Insert receive time stamps into padding alignment bytes */
 381	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
 382		rctrl &= ~RCTRL_PAL_MASK;
 383		rctrl |= RCTRL_PADDING(8);
 384		priv->padding = 8;
 385	}
 386
 387	/* Enable HW time stamping if requested from user space */
 388	if (priv->hwts_rx_en)
 389		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 390
 391	if (ndev->features & NETIF_F_HW_VLAN_RX)
 392		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 393
 394	/* Init rctrl based on our settings */
 395	gfar_write(&regs->rctrl, rctrl);
 396
 397	if (ndev->features & NETIF_F_IP_CSUM)
 398		tctrl |= TCTRL_INIT_CSUM;
 399
 400	tctrl |= TCTRL_TXSCHED_PRIO;
 401
 402	gfar_write(&regs->tctrl, tctrl);
 403
 404	/* Set the extraction length and index */
 405	attrs = ATTRELI_EL(priv->rx_stash_size) |
 406		ATTRELI_EI(priv->rx_stash_index);
 407
 408	gfar_write(&regs->attreli, attrs);
 409
 410	/* Start with defaults, and add stashing or locking
 411	 * depending on the approprate variables */
 412	attrs = ATTR_INIT_SETTINGS;
 413
 414	if (priv->bd_stash_en)
 415		attrs |= ATTR_BDSTASH;
 416
 417	if (priv->rx_stash_size != 0)
 418		attrs |= ATTR_BUFSTASH;
 419
 420	gfar_write(&regs->attr, attrs);
 421
 422	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
 423	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
 424	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
 425}
 426
 427static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 428{
 429	struct gfar_private *priv = netdev_priv(dev);
 430	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 431	unsigned long tx_packets = 0, tx_bytes = 0;
 432	int i = 0;
 433
 434	for (i = 0; i < priv->num_rx_queues; i++) {
 435		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 436		rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
 437		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 438	}
 439
 440	dev->stats.rx_packets = rx_packets;
 441	dev->stats.rx_bytes = rx_bytes;
 442	dev->stats.rx_dropped = rx_dropped;
 443
 444	for (i = 0; i < priv->num_tx_queues; i++) {
 445		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 446		tx_packets += priv->tx_queue[i]->stats.tx_packets;
 447	}
 448
 449	dev->stats.tx_bytes = tx_bytes;
 450	dev->stats.tx_packets = tx_packets;
 451
 452	return &dev->stats;
 453}
 454
 455static const struct net_device_ops gfar_netdev_ops = {
 456	.ndo_open = gfar_enet_open,
 457	.ndo_start_xmit = gfar_start_xmit,
 458	.ndo_stop = gfar_close,
 459	.ndo_change_mtu = gfar_change_mtu,
 460	.ndo_set_features = gfar_set_features,
 461	.ndo_set_multicast_list = gfar_set_multi,
 462	.ndo_tx_timeout = gfar_timeout,
 463	.ndo_do_ioctl = gfar_ioctl,
 464	.ndo_get_stats = gfar_get_stats,
 465	.ndo_set_mac_address = eth_mac_addr,
 466	.ndo_validate_addr = eth_validate_addr,
 467#ifdef CONFIG_NET_POLL_CONTROLLER
 468	.ndo_poll_controller = gfar_netpoll,
 469#endif
 470};
 471
 472void lock_rx_qs(struct gfar_private *priv)
 473{
 474	int i = 0x0;
 475
 476	for (i = 0; i < priv->num_rx_queues; i++)
 477		spin_lock(&priv->rx_queue[i]->rxlock);
 478}
 479
 480void lock_tx_qs(struct gfar_private *priv)
 481{
 482	int i = 0x0;
 483
 484	for (i = 0; i < priv->num_tx_queues; i++)
 485		spin_lock(&priv->tx_queue[i]->txlock);
 486}
 487
 488void unlock_rx_qs(struct gfar_private *priv)
 489{
 490	int i = 0x0;
 491
 492	for (i = 0; i < priv->num_rx_queues; i++)
 493		spin_unlock(&priv->rx_queue[i]->rxlock);
 494}
 495
 496void unlock_tx_qs(struct gfar_private *priv)
 497{
 498	int i = 0x0;
 499
 500	for (i = 0; i < priv->num_tx_queues; i++)
 501		spin_unlock(&priv->tx_queue[i]->txlock);
 502}
 503
 504static bool gfar_is_vlan_on(struct gfar_private *priv)
 505{
 506	return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
 507	       (priv->ndev->features & NETIF_F_HW_VLAN_TX);
 508}
 509
 510/* Returns 1 if incoming frames use an FCB */
 511static inline int gfar_uses_fcb(struct gfar_private *priv)
 512{
 513	return gfar_is_vlan_on(priv) ||
 514		(priv->ndev->features & NETIF_F_RXCSUM) ||
 515		(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
 516}
 517
 518static void free_tx_pointers(struct gfar_private *priv)
 519{
 520	int i = 0;
 521
 522	for (i = 0; i < priv->num_tx_queues; i++)
 523		kfree(priv->tx_queue[i]);
 524}
 525
 526static void free_rx_pointers(struct gfar_private *priv)
 527{
 528	int i = 0;
 529
 530	for (i = 0; i < priv->num_rx_queues; i++)
 531		kfree(priv->rx_queue[i]);
 532}
 533
 534static void unmap_group_regs(struct gfar_private *priv)
 535{
 536	int i = 0;
 537
 538	for (i = 0; i < MAXGROUPS; i++)
 539		if (priv->gfargrp[i].regs)
 540			iounmap(priv->gfargrp[i].regs);
 541}
 542
 543static void disable_napi(struct gfar_private *priv)
 544{
 545	int i = 0;
 546
 547	for (i = 0; i < priv->num_grps; i++)
 548		napi_disable(&priv->gfargrp[i].napi);
 549}
 550
 551static void enable_napi(struct gfar_private *priv)
 552{
 553	int i = 0;
 554
 555	for (i = 0; i < priv->num_grps; i++)
 556		napi_enable(&priv->gfargrp[i].napi);
 557}
 558
 559static int gfar_parse_group(struct device_node *np,
 560		struct gfar_private *priv, const char *model)
 561{
 562	u32 *queue_mask;
 563
 564	priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
 565	if (!priv->gfargrp[priv->num_grps].regs)
 566		return -ENOMEM;
 567
 568	priv->gfargrp[priv->num_grps].interruptTransmit =
 569			irq_of_parse_and_map(np, 0);
 570
 571	/* If we aren't the FEC we have multiple interrupts */
 572	if (model && strcasecmp(model, "FEC")) {
 573		priv->gfargrp[priv->num_grps].interruptReceive =
 574			irq_of_parse_and_map(np, 1);
 575		priv->gfargrp[priv->num_grps].interruptError =
 576			irq_of_parse_and_map(np,2);
 577		if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
 578		    priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
 579		    priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
 580			return -EINVAL;
 581	}
 582
 583	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
 584	priv->gfargrp[priv->num_grps].priv = priv;
 585	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
 586	if(priv->mode == MQ_MG_MODE) {
 587		queue_mask = (u32 *)of_get_property(np,
 588					"fsl,rx-bit-map", NULL);
 589		priv->gfargrp[priv->num_grps].rx_bit_map =
 590			queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
 591		queue_mask = (u32 *)of_get_property(np,
 592					"fsl,tx-bit-map", NULL);
 593		priv->gfargrp[priv->num_grps].tx_bit_map =
 594			queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
 595	} else {
 596		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
 597		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
 598	}
 599	priv->num_grps++;
 600
 601	return 0;
 602}
 603
 604static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 605{
 606	const char *model;
 607	const char *ctype;
 608	const void *mac_addr;
 609	int err = 0, i;
 610	struct net_device *dev = NULL;
 611	struct gfar_private *priv = NULL;
 612	struct device_node *np = ofdev->dev.of_node;
 613	struct device_node *child = NULL;
 614	const u32 *stash;
 615	const u32 *stash_len;
 616	const u32 *stash_idx;
 617	unsigned int num_tx_qs, num_rx_qs;
 618	u32 *tx_queues, *rx_queues;
 619
 620	if (!np || !of_device_is_available(np))
 621		return -ENODEV;
 622
 623	/* parse the num of tx and rx queues */
 624	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
 625	num_tx_qs = tx_queues ? *tx_queues : 1;
 626
 627	if (num_tx_qs > MAX_TX_QS) {
 628		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 629		       num_tx_qs, MAX_TX_QS);
 630		pr_err("Cannot do alloc_etherdev, aborting\n");
 631		return -EINVAL;
 632	}
 633
 634	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
 635	num_rx_qs = rx_queues ? *rx_queues : 1;
 636
 637	if (num_rx_qs > MAX_RX_QS) {
 638		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 639		       num_rx_qs, MAX_RX_QS);
 640		pr_err("Cannot do alloc_etherdev, aborting\n");
 641		return -EINVAL;
 642	}
 643
 644	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 645	dev = *pdev;
 646	if (NULL == dev)
 647		return -ENOMEM;
 648
 649	priv = netdev_priv(dev);
 650	priv->node = ofdev->dev.of_node;
 651	priv->ndev = dev;
 652
 653	priv->num_tx_queues = num_tx_qs;
 654	netif_set_real_num_rx_queues(dev, num_rx_qs);
 655	priv->num_rx_queues = num_rx_qs;
 656	priv->num_grps = 0x0;
 657
 658	/* Init Rx queue filer rule set linked list*/
 659	INIT_LIST_HEAD(&priv->rx_list.list);
 660	priv->rx_list.count = 0;
 661	mutex_init(&priv->rx_queue_access);
 662
 663	model = of_get_property(np, "model", NULL);
 664
 665	for (i = 0; i < MAXGROUPS; i++)
 666		priv->gfargrp[i].regs = NULL;
 667
 668	/* Parse and initialize group specific information */
 669	if (of_device_is_compatible(np, "fsl,etsec2")) {
 670		priv->mode = MQ_MG_MODE;
 671		for_each_child_of_node(np, child) {
 672			err = gfar_parse_group(child, priv, model);
 673			if (err)
 674				goto err_grp_init;
 675		}
 676	} else {
 677		priv->mode = SQ_SG_MODE;
 678		err = gfar_parse_group(np, priv, model);
 679		if(err)
 680			goto err_grp_init;
 681	}
 682
 683	for (i = 0; i < priv->num_tx_queues; i++)
 684	       priv->tx_queue[i] = NULL;
 685	for (i = 0; i < priv->num_rx_queues; i++)
 686		priv->rx_queue[i] = NULL;
 687
 688	for (i = 0; i < priv->num_tx_queues; i++) {
 689		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 690					    GFP_KERNEL);
 691		if (!priv->tx_queue[i]) {
 692			err = -ENOMEM;
 693			goto tx_alloc_failed;
 694		}
 695		priv->tx_queue[i]->tx_skbuff = NULL;
 696		priv->tx_queue[i]->qindex = i;
 697		priv->tx_queue[i]->dev = dev;
 698		spin_lock_init(&(priv->tx_queue[i]->txlock));
 699	}
 700
 701	for (i = 0; i < priv->num_rx_queues; i++) {
 702		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 703					    GFP_KERNEL);
 704		if (!priv->rx_queue[i]) {
 705			err = -ENOMEM;
 706			goto rx_alloc_failed;
 707		}
 708		priv->rx_queue[i]->rx_skbuff = NULL;
 709		priv->rx_queue[i]->qindex = i;
 710		priv->rx_queue[i]->dev = dev;
 711		spin_lock_init(&(priv->rx_queue[i]->rxlock));
 712	}
 713
 714
 715	stash = of_get_property(np, "bd-stash", NULL);
 716
 717	if (stash) {
 718		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 719		priv->bd_stash_en = 1;
 720	}
 721
 722	stash_len = of_get_property(np, "rx-stash-len", NULL);
 723
 724	if (stash_len)
 725		priv->rx_stash_size = *stash_len;
 726
 727	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
 728
 729	if (stash_idx)
 730		priv->rx_stash_index = *stash_idx;
 731
 732	if (stash_len || stash_idx)
 733		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 734
 735	mac_addr = of_get_mac_address(np);
 736	if (mac_addr)
 737		memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
 738
 739	if (model && !strcasecmp(model, "TSEC"))
 740		priv->device_flags =
 741			FSL_GIANFAR_DEV_HAS_GIGABIT |
 742			FSL_GIANFAR_DEV_HAS_COALESCE |
 743			FSL_GIANFAR_DEV_HAS_RMON |
 744			FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 745	if (model && !strcasecmp(model, "eTSEC"))
 746		priv->device_flags =
 747			FSL_GIANFAR_DEV_HAS_GIGABIT |
 748			FSL_GIANFAR_DEV_HAS_COALESCE |
 749			FSL_GIANFAR_DEV_HAS_RMON |
 750			FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 751			FSL_GIANFAR_DEV_HAS_PADDING |
 752			FSL_GIANFAR_DEV_HAS_CSUM |
 753			FSL_GIANFAR_DEV_HAS_VLAN |
 754			FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 755			FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 756			FSL_GIANFAR_DEV_HAS_TIMER;
 757
 758	ctype = of_get_property(np, "phy-connection-type", NULL);
 759
 760	/* We only care about rgmii-id.  The rest are autodetected */
 761	if (ctype && !strcmp(ctype, "rgmii-id"))
 762		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 763	else
 764		priv->interface = PHY_INTERFACE_MODE_MII;
 765
 766	if (of_get_property(np, "fsl,magic-packet", NULL))
 767		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 768
 769	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 770
 771	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 772	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 773
 774	return 0;
 775
 776rx_alloc_failed:
 777	free_rx_pointers(priv);
 778tx_alloc_failed:
 779	free_tx_pointers(priv);
 780err_grp_init:
 781	unmap_group_regs(priv);
 782	free_netdev(dev);
 783	return err;
 784}
 785
 786static int gfar_hwtstamp_ioctl(struct net_device *netdev,
 787			struct ifreq *ifr, int cmd)
 788{
 789	struct hwtstamp_config config;
 790	struct gfar_private *priv = netdev_priv(netdev);
 791
 792	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 793		return -EFAULT;
 794
 795	/* reserved for future extensions */
 796	if (config.flags)
 797		return -EINVAL;
 798
 799	switch (config.tx_type) {
 800	case HWTSTAMP_TX_OFF:
 801		priv->hwts_tx_en = 0;
 802		break;
 803	case HWTSTAMP_TX_ON:
 804		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 805			return -ERANGE;
 806		priv->hwts_tx_en = 1;
 807		break;
 808	default:
 809		return -ERANGE;
 810	}
 811
 812	switch (config.rx_filter) {
 813	case HWTSTAMP_FILTER_NONE:
 814		if (priv->hwts_rx_en) {
 815			stop_gfar(netdev);
 816			priv->hwts_rx_en = 0;
 817			startup_gfar(netdev);
 818		}
 819		break;
 820	default:
 821		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 822			return -ERANGE;
 823		if (!priv->hwts_rx_en) {
 824			stop_gfar(netdev);
 825			priv->hwts_rx_en = 1;
 826			startup_gfar(netdev);
 827		}
 828		config.rx_filter = HWTSTAMP_FILTER_ALL;
 829		break;
 830	}
 831
 832	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 833		-EFAULT : 0;
 834}
 835
 836/* Ioctl MII Interface */
 837static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 838{
 839	struct gfar_private *priv = netdev_priv(dev);
 840
 841	if (!netif_running(dev))
 842		return -EINVAL;
 843
 844	if (cmd == SIOCSHWTSTAMP)
 845		return gfar_hwtstamp_ioctl(dev, rq, cmd);
 846
 847	if (!priv->phydev)
 848		return -ENODEV;
 849
 850	return phy_mii_ioctl(priv->phydev, rq, cmd);
 851}
 852
 853static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
 854{
 855	unsigned int new_bit_map = 0x0;
 856	int mask = 0x1 << (max_qs - 1), i;
 857	for (i = 0; i < max_qs; i++) {
 858		if (bit_map & mask)
 859			new_bit_map = new_bit_map + (1 << i);
 860		mask = mask >> 0x1;
 861	}
 862	return new_bit_map;
 863}
 864
 865static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 866				   u32 class)
 867{
 868	u32 rqfpr = FPR_FILER_MASK;
 869	u32 rqfcr = 0x0;
 870
 871	rqfar--;
 872	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 873	priv->ftp_rqfpr[rqfar] = rqfpr;
 874	priv->ftp_rqfcr[rqfar] = rqfcr;
 875	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 876
 877	rqfar--;
 878	rqfcr = RQFCR_CMP_NOMATCH;
 879	priv->ftp_rqfpr[rqfar] = rqfpr;
 880	priv->ftp_rqfcr[rqfar] = rqfcr;
 881	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 882
 883	rqfar--;
 884	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 885	rqfpr = class;
 886	priv->ftp_rqfcr[rqfar] = rqfcr;
 887	priv->ftp_rqfpr[rqfar] = rqfpr;
 888	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 889
 890	rqfar--;
 891	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 892	rqfpr = class;
 893	priv->ftp_rqfcr[rqfar] = rqfcr;
 894	priv->ftp_rqfpr[rqfar] = rqfpr;
 895	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 896
 897	return rqfar;
 898}
 899
 900static void gfar_init_filer_table(struct gfar_private *priv)
 901{
 902	int i = 0x0;
 903	u32 rqfar = MAX_FILER_IDX;
 904	u32 rqfcr = 0x0;
 905	u32 rqfpr = FPR_FILER_MASK;
 906
 907	/* Default rule */
 908	rqfcr = RQFCR_CMP_MATCH;
 909	priv->ftp_rqfcr[rqfar] = rqfcr;
 910	priv->ftp_rqfpr[rqfar] = rqfpr;
 911	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 912
 913	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 914	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 915	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 916	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 917	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 918	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 919
 920	/* cur_filer_idx indicated the first non-masked rule */
 921	priv->cur_filer_idx = rqfar;
 922
 923	/* Rest are masked rules */
 924	rqfcr = RQFCR_CMP_NOMATCH;
 925	for (i = 0; i < rqfar; i++) {
 926		priv->ftp_rqfcr[i] = rqfcr;
 927		priv->ftp_rqfpr[i] = rqfpr;
 928		gfar_write_filer(priv, i, rqfcr, rqfpr);
 929	}
 930}
 931
 932static void gfar_detect_errata(struct gfar_private *priv)
 933{
 934	struct device *dev = &priv->ofdev->dev;
 935	unsigned int pvr = mfspr(SPRN_PVR);
 936	unsigned int svr = mfspr(SPRN_SVR);
 937	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 938	unsigned int rev = svr & 0xffff;
 939
 940	/* MPC8313 Rev 2.0 and higher; All MPC837x */
 941	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 942			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 943		priv->errata |= GFAR_ERRATA_74;
 944
 945	/* MPC8313 and MPC837x all rev */
 946	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 947			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 948		priv->errata |= GFAR_ERRATA_76;
 949
 950	/* MPC8313 and MPC837x all rev */
 951	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 952			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 953		priv->errata |= GFAR_ERRATA_A002;
 954
 955	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
 956	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
 957			(pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
 958		priv->errata |= GFAR_ERRATA_12;
 959
 960	if (priv->errata)
 961		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 962			 priv->errata);
 963}
 964
 965/* Set up the ethernet device structure, private data,
 966 * and anything else we need before we start */
 967static int gfar_probe(struct platform_device *ofdev)
 968{
 969	u32 tempval;
 970	struct net_device *dev = NULL;
 971	struct gfar_private *priv = NULL;
 972	struct gfar __iomem *regs = NULL;
 973	int err = 0, i, grp_idx = 0;
 974	int len_devname;
 975	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
 976	u32 isrg = 0;
 977	u32 __iomem *baddr;
 978
 979	err = gfar_of_init(ofdev, &dev);
 980
 981	if (err)
 982		return err;
 983
 984	priv = netdev_priv(dev);
 985	priv->ndev = dev;
 986	priv->ofdev = ofdev;
 987	priv->node = ofdev->dev.of_node;
 988	SET_NETDEV_DEV(dev, &ofdev->dev);
 989
 990	spin_lock_init(&priv->bflock);
 991	INIT_WORK(&priv->reset_task, gfar_reset_task);
 992
 993	dev_set_drvdata(&ofdev->dev, priv);
 994	regs = priv->gfargrp[0].regs;
 995
 996	gfar_detect_errata(priv);
 997
 998	/* Stop the DMA engine now, in case it was running before */
 999	/* (The firmware could have used it, and left it running). */
1000	gfar_halt(dev);
1001
1002	/* Reset MAC layer */
1003	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1004
1005	/* We need to delay at least 3 TX clocks */
1006	udelay(2);
1007
1008	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1009	gfar_write(&regs->maccfg1, tempval);
1010
1011	/* Initialize MACCFG2. */
1012	tempval = MACCFG2_INIT_SETTINGS;
1013	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1014		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1015	gfar_write(&regs->maccfg2, tempval);
1016
1017	/* Initialize ECNTRL */
1018	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1019
1020	/* Set the dev->base_addr to the gfar reg region */
1021	dev->base_addr = (unsigned long) regs;
1022
1023	SET_NETDEV_DEV(dev, &ofdev->dev);
1024
1025	/* Fill in the dev structure */
1026	dev->watchdog_timeo = TX_TIMEOUT;
1027	dev->mtu = 1500;
1028	dev->netdev_ops = &gfar_netdev_ops;
1029	dev->ethtool_ops = &gfar_ethtool_ops;
1030
1031	/* Register for napi ...We are registering NAPI for each grp */
1032	for (i = 0; i < priv->num_grps; i++)
1033		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1034
1035	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1036		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1037			NETIF_F_RXCSUM;
1038		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1039			NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1040	}
1041
1042	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1043		dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1044		dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1045	}
1046
1047	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1048		priv->extended_hash = 1;
1049		priv->hash_width = 9;
1050
1051		priv->hash_regs[0] = &regs->igaddr0;
1052		priv->hash_regs[1] = &regs->igaddr1;
1053		priv->hash_regs[2] = &regs->igaddr2;
1054		priv->hash_regs[3] = &regs->igaddr3;
1055		priv->hash_regs[4] = &regs->igaddr4;
1056		priv->hash_regs[5] = &regs->igaddr5;
1057		priv->hash_regs[6] = &regs->igaddr6;
1058		priv->hash_regs[7] = &regs->igaddr7;
1059		priv->hash_regs[8] = &regs->gaddr0;
1060		priv->hash_regs[9] = &regs->gaddr1;
1061		priv->hash_regs[10] = &regs->gaddr2;
1062		priv->hash_regs[11] = &regs->gaddr3;
1063		priv->hash_regs[12] = &regs->gaddr4;
1064		priv->hash_regs[13] = &regs->gaddr5;
1065		priv->hash_regs[14] = &regs->gaddr6;
1066		priv->hash_regs[15] = &regs->gaddr7;
1067
1068	} else {
1069		priv->extended_hash = 0;
1070		priv->hash_width = 8;
1071
1072		priv->hash_regs[0] = &regs->gaddr0;
1073		priv->hash_regs[1] = &regs->gaddr1;
1074		priv->hash_regs[2] = &regs->gaddr2;
1075		priv->hash_regs[3] = &regs->gaddr3;
1076		priv->hash_regs[4] = &regs->gaddr4;
1077		priv->hash_regs[5] = &regs->gaddr5;
1078		priv->hash_regs[6] = &regs->gaddr6;
1079		priv->hash_regs[7] = &regs->gaddr7;
1080	}
1081
1082	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1083		priv->padding = DEFAULT_PADDING;
1084	else
1085		priv->padding = 0;
1086
1087	if (dev->features & NETIF_F_IP_CSUM ||
1088			priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1089		dev->hard_header_len += GMAC_FCB_LEN;
1090
1091	/* Program the isrg regs only if number of grps > 1 */
1092	if (priv->num_grps > 1) {
1093		baddr = &regs->isrg0;
1094		for (i = 0; i < priv->num_grps; i++) {
1095			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1096			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1097			gfar_write(baddr, isrg);
1098			baddr++;
1099			isrg = 0x0;
1100		}
1101	}
1102
1103	/* Need to reverse the bit maps as  bit_map's MSB is q0
1104	 * but, for_each_set_bit parses from right to left, which
1105	 * basically reverses the queue numbers */
1106	for (i = 0; i< priv->num_grps; i++) {
1107		priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1108				priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1109		priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1110				priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1111	}
1112
1113	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1114	 * also assign queues to groups */
1115	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1116		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1117		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1118				priv->num_rx_queues) {
1119			priv->gfargrp[grp_idx].num_rx_queues++;
1120			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1121			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1122			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1123		}
1124		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1125		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1126				priv->num_tx_queues) {
1127			priv->gfargrp[grp_idx].num_tx_queues++;
1128			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1129			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1130			tqueue = tqueue | (TQUEUE_EN0 >> i);
1131		}
1132		priv->gfargrp[grp_idx].rstat = rstat;
1133		priv->gfargrp[grp_idx].tstat = tstat;
1134		rstat = tstat =0;
1135	}
1136
1137	gfar_write(&regs->rqueue, rqueue);
1138	gfar_write(&regs->tqueue, tqueue);
1139
1140	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1141
1142	/* Initializing some of the rx/tx queue level parameters */
1143	for (i = 0; i < priv->num_tx_queues; i++) {
1144		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1145		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1146		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1147		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1148	}
1149
1150	for (i = 0; i < priv->num_rx_queues; i++) {
1151		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1152		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1153		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1154	}
1155
1156	/* always enable rx filer*/
1157	priv->rx_filer_enable = 1;
1158	/* Enable most messages by default */
1159	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1160
1161	/* Carrier starts down, phylib will bring it up */
1162	netif_carrier_off(dev);
1163
1164	err = register_netdev(dev);
1165
1166	if (err) {
1167		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1168		goto register_fail;
1169	}
1170
1171	device_init_wakeup(&dev->dev,
1172		priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1173
1174	/* fill out IRQ number and name fields */
1175	len_devname = strlen(dev->name);
1176	for (i = 0; i < priv->num_grps; i++) {
1177		strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1178				len_devname);
1179		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1180			strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1181				"_g", sizeof("_g"));
1182			priv->gfargrp[i].int_name_tx[
1183				strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1184			strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1185				priv->gfargrp[i].int_name_tx)],
1186				"_tx", sizeof("_tx") + 1);
1187
1188			strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1189					len_devname);
1190			strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1191					"_g", sizeof("_g"));
1192			priv->gfargrp[i].int_name_rx[
1193				strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1194			strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1195				priv->gfargrp[i].int_name_rx)],
1196				"_rx", sizeof("_rx") + 1);
1197
1198			strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1199					len_devname);
1200			strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1201				"_g", sizeof("_g"));
1202			priv->gfargrp[i].int_name_er[strlen(
1203					priv->gfargrp[i].int_name_er)] = i+48;
1204			strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1205				priv->gfargrp[i].int_name_er)],
1206				"_er", sizeof("_er") + 1);
1207		} else
1208			priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1209	}
1210
1211	/* Initialize the filer table */
1212	gfar_init_filer_table(priv);
1213
1214	/* Create all the sysfs files */
1215	gfar_init_sysfs(dev);
1216
1217	/* Print out the device info */
1218	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1219
1220	/* Even more device info helps when determining which kernel */
1221	/* provided which set of benchmarks. */
1222	netdev_info(dev, "Running with NAPI enabled\n");
1223	for (i = 0; i < priv->num_rx_queues; i++)
1224		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1225			    i, priv->rx_queue[i]->rx_ring_size);
1226	for(i = 0; i < priv->num_tx_queues; i++)
1227		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1228			    i, priv->tx_queue[i]->tx_ring_size);
1229
1230	return 0;
1231
1232register_fail:
1233	unmap_group_regs(priv);
1234	free_tx_pointers(priv);
1235	free_rx_pointers(priv);
1236	if (priv->phy_node)
1237		of_node_put(priv->phy_node);
1238	if (priv->tbi_node)
1239		of_node_put(priv->tbi_node);
1240	free_netdev(dev);
1241	return err;
1242}
1243
1244static int gfar_remove(struct platform_device *ofdev)
1245{
1246	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1247
1248	if (priv->phy_node)
1249		of_node_put(priv->phy_node);
1250	if (priv->tbi_node)
1251		of_node_put(priv->tbi_node);
1252
1253	dev_set_drvdata(&ofdev->dev, NULL);
1254
1255	unregister_netdev(priv->ndev);
1256	unmap_group_regs(priv);
1257	free_netdev(priv->ndev);
1258
1259	return 0;
1260}
1261
1262#ifdef CONFIG_PM
1263
1264static int gfar_suspend(struct device *dev)
1265{
1266	struct gfar_private *priv = dev_get_drvdata(dev);
1267	struct net_device *ndev = priv->ndev;
1268	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1269	unsigned long flags;
1270	u32 tempval;
1271
1272	int magic_packet = priv->wol_en &&
1273		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1274
1275	netif_device_detach(ndev);
1276
1277	if (netif_running(ndev)) {
1278
1279		local_irq_save(flags);
1280		lock_tx_qs(priv);
1281		lock_rx_qs(priv);
1282
1283		gfar_halt_nodisable(ndev);
1284
1285		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1286		tempval = gfar_read(&regs->maccfg1);
1287
1288		tempval &= ~MACCFG1_TX_EN;
1289
1290		if (!magic_packet)
1291			tempval &= ~MACCFG1_RX_EN;
1292
1293		gfar_write(&regs->maccfg1, tempval);
1294
1295		unlock_rx_qs(priv);
1296		unlock_tx_qs(priv);
1297		local_irq_restore(flags);
1298
1299		disable_napi(priv);
1300
1301		if (magic_packet) {
1302			/* Enable interrupt on Magic Packet */
1303			gfar_write(&regs->imask, IMASK_MAG);
1304
1305			/* Enable Magic Packet mode */
1306			tempval = gfar_read(&regs->maccfg2);
1307			tempval |= MACCFG2_MPEN;
1308			gfar_write(&regs->maccfg2, tempval);
1309		} else {
1310			phy_stop(priv->phydev);
1311		}
1312	}
1313
1314	return 0;
1315}
1316
1317static int gfar_resume(struct device *dev)
1318{
1319	struct gfar_private *priv = dev_get_drvdata(dev);
1320	struct net_device *ndev = priv->ndev;
1321	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1322	unsigned long flags;
1323	u32 tempval;
1324	int magic_packet = priv->wol_en &&
1325		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1326
1327	if (!netif_running(ndev)) {
1328		netif_device_attach(ndev);
1329		return 0;
1330	}
1331
1332	if (!magic_packet && priv->phydev)
1333		phy_start(priv->phydev);
1334
1335	/* Disable Magic Packet mode, in case something
1336	 * else woke us up.
1337	 */
1338	local_irq_save(flags);
1339	lock_tx_qs(priv);
1340	lock_rx_qs(priv);
1341
1342	tempval = gfar_read(&regs->maccfg2);
1343	tempval &= ~MACCFG2_MPEN;
1344	gfar_write(&regs->maccfg2, tempval);
1345
1346	gfar_start(ndev);
1347
1348	unlock_rx_qs(priv);
1349	unlock_tx_qs(priv);
1350	local_irq_restore(flags);
1351
1352	netif_device_attach(ndev);
1353
1354	enable_napi(priv);
1355
1356	return 0;
1357}
1358
1359static int gfar_restore(struct device *dev)
1360{
1361	struct gfar_private *priv = dev_get_drvdata(dev);
1362	struct net_device *ndev = priv->ndev;
1363
1364	if (!netif_running(ndev))
1365		return 0;
1366
1367	gfar_init_bds(ndev);
1368	init_registers(ndev);
1369	gfar_set_mac_address(ndev);
1370	gfar_init_mac(ndev);
1371	gfar_start(ndev);
1372
1373	priv->oldlink = 0;
1374	priv->oldspeed = 0;
1375	priv->oldduplex = -1;
1376
1377	if (priv->phydev)
1378		phy_start(priv->phydev);
1379
1380	netif_device_attach(ndev);
1381	enable_napi(priv);
1382
1383	return 0;
1384}
1385
1386static struct dev_pm_ops gfar_pm_ops = {
1387	.suspend = gfar_suspend,
1388	.resume = gfar_resume,
1389	.freeze = gfar_suspend,
1390	.thaw = gfar_resume,
1391	.restore = gfar_restore,
1392};
1393
1394#define GFAR_PM_OPS (&gfar_pm_ops)
1395
1396#else
1397
1398#define GFAR_PM_OPS NULL
1399
1400#endif
1401
1402/* Reads the controller's registers to determine what interface
1403 * connects it to the PHY.
1404 */
1405static phy_interface_t gfar_get_interface(struct net_device *dev)
1406{
1407	struct gfar_private *priv = netdev_priv(dev);
1408	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1409	u32 ecntrl;
1410
1411	ecntrl = gfar_read(&regs->ecntrl);
1412
1413	if (ecntrl & ECNTRL_SGMII_MODE)
1414		return PHY_INTERFACE_MODE_SGMII;
1415
1416	if (ecntrl & ECNTRL_TBI_MODE) {
1417		if (ecntrl & ECNTRL_REDUCED_MODE)
1418			return PHY_INTERFACE_MODE_RTBI;
1419		else
1420			return PHY_INTERFACE_MODE_TBI;
1421	}
1422
1423	if (ecntrl & ECNTRL_REDUCED_MODE) {
1424		if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1425			return PHY_INTERFACE_MODE_RMII;
1426		else {
1427			phy_interface_t interface = priv->interface;
1428
1429			/*
1430			 * This isn't autodetected right now, so it must
1431			 * be set by the device tree or platform code.
1432			 */
1433			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1434				return PHY_INTERFACE_MODE_RGMII_ID;
1435
1436			return PHY_INTERFACE_MODE_RGMII;
1437		}
1438	}
1439
1440	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1441		return PHY_INTERFACE_MODE_GMII;
1442
1443	return PHY_INTERFACE_MODE_MII;
1444}
1445
1446
1447/* Initializes driver's PHY state, and attaches to the PHY.
1448 * Returns 0 on success.
1449 */
1450static int init_phy(struct net_device *dev)
1451{
1452	struct gfar_private *priv = netdev_priv(dev);
1453	uint gigabit_support =
1454		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1455		SUPPORTED_1000baseT_Full : 0;
1456	phy_interface_t interface;
1457
1458	priv->oldlink = 0;
1459	priv->oldspeed = 0;
1460	priv->oldduplex = -1;
1461
1462	interface = gfar_get_interface(dev);
1463
1464	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1465				      interface);
1466	if (!priv->phydev)
1467		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1468							 interface);
1469	if (!priv->phydev) {
1470		dev_err(&dev->dev, "could not attach to PHY\n");
1471		return -ENODEV;
1472	}
1473
1474	if (interface == PHY_INTERFACE_MODE_SGMII)
1475		gfar_configure_serdes(dev);
1476
1477	/* Remove any features not supported by the controller */
1478	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1479	priv->phydev->advertising = priv->phydev->supported;
1480
1481	return 0;
1482}
1483
1484/*
1485 * Initialize TBI PHY interface for communicating with the
1486 * SERDES lynx PHY on the chip.  We communicate with this PHY
1487 * through the MDIO bus on each controller, treating it as a
1488 * "normal" PHY at the address found in the TBIPA register.  We assume
1489 * that the TBIPA register is valid.  Either the MDIO bus code will set
1490 * it to a value that doesn't conflict with other PHYs on the bus, or the
1491 * value doesn't matter, as there are no other PHYs on the bus.
1492 */
1493static void gfar_configure_serdes(struct net_device *dev)
1494{
1495	struct gfar_private *priv = netdev_priv(dev);
1496	struct phy_device *tbiphy;
1497
1498	if (!priv->tbi_node) {
1499		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1500				    "device tree specify a tbi-handle\n");
1501		return;
1502	}
1503
1504	tbiphy = of_phy_find_device(priv->tbi_node);
1505	if (!tbiphy) {
1506		dev_err(&dev->dev, "error: Could not get TBI device\n");
1507		return;
1508	}
1509
1510	/*
1511	 * If the link is already up, we must already be ok, and don't need to
1512	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1513	 * everything for us?  Resetting it takes the link down and requires
1514	 * several seconds for it to come back.
1515	 */
1516	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1517		return;
1518
1519	/* Single clk mode, mii mode off(for serdes communication) */
1520	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1521
1522	phy_write(tbiphy, MII_ADVERTISE,
1523			ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1524			ADVERTISE_1000XPSE_ASYM);
1525
1526	phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1527			BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1528}
1529
1530static void init_registers(struct net_device *dev)
1531{
1532	struct gfar_private *priv = netdev_priv(dev);
1533	struct gfar __iomem *regs = NULL;
1534	int i = 0;
1535
1536	for (i = 0; i < priv->num_grps; i++) {
1537		regs = priv->gfargrp[i].regs;
1538		/* Clear IEVENT */
1539		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1540
1541		/* Initialize IMASK */
1542		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1543	}
1544
1545	regs = priv->gfargrp[0].regs;
1546	/* Init hash registers to zero */
1547	gfar_write(&regs->igaddr0, 0);
1548	gfar_write(&regs->igaddr1, 0);
1549	gfar_write(&regs->igaddr2, 0);
1550	gfar_write(&regs->igaddr3, 0);
1551	gfar_write(&regs->igaddr4, 0);
1552	gfar_write(&regs->igaddr5, 0);
1553	gfar_write(&regs->igaddr6, 0);
1554	gfar_write(&regs->igaddr7, 0);
1555
1556	gfar_write(&regs->gaddr0, 0);
1557	gfar_write(&regs->gaddr1, 0);
1558	gfar_write(&regs->gaddr2, 0);
1559	gfar_write(&regs->gaddr3, 0);
1560	gfar_write(&regs->gaddr4, 0);
1561	gfar_write(&regs->gaddr5, 0);
1562	gfar_write(&regs->gaddr6, 0);
1563	gfar_write(&regs->gaddr7, 0);
1564
1565	/* Zero out the rmon mib registers if it has them */
1566	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1567		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1568
1569		/* Mask off the CAM interrupts */
1570		gfar_write(&regs->rmon.cam1, 0xffffffff);
1571		gfar_write(&regs->rmon.cam2, 0xffffffff);
1572	}
1573
1574	/* Initialize the max receive buffer length */
1575	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1576
1577	/* Initialize the Minimum Frame Length Register */
1578	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1579}
1580
1581static int __gfar_is_rx_idle(struct gfar_private *priv)
1582{
1583	u32 res;
1584
1585	/*
1586	 * Normaly TSEC should not hang on GRS commands, so we should
1587	 * actually wait for IEVENT_GRSC flag.
1588	 */
1589	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1590		return 0;
1591
1592	/*
1593	 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1594	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1595	 * and the Rx can be safely reset.
1596	 */
1597	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1598	res &= 0x7f807f80;
1599	if ((res & 0xffff) == (res >> 16))
1600		return 1;
1601
1602	return 0;
1603}
1604
1605/* Halt the receive and transmit queues */
1606static void gfar_halt_nodisable(struct net_device *dev)
1607{
1608	struct gfar_private *priv = netdev_priv(dev);
1609	struct gfar __iomem *regs = NULL;
1610	u32 tempval;
1611	int i = 0;
1612
1613	for (i = 0; i < priv->num_grps; i++) {
1614		regs = priv->gfargrp[i].regs;
1615		/* Mask all interrupts */
1616		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1617
1618		/* Clear all interrupts */
1619		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1620	}
1621
1622	regs = priv->gfargrp[0].regs;
1623	/* Stop the DMA, and wait for it to stop */
1624	tempval = gfar_read(&regs->dmactrl);
1625	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1626	    != (DMACTRL_GRS | DMACTRL_GTS)) {
1627		int ret;
1628
1629		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1630		gfar_write(&regs->dmactrl, tempval);
1631
1632		do {
1633			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1634				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1635				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1636			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1637				ret = __gfar_is_rx_idle(priv);
1638		} while (!ret);
1639	}
1640}
1641
1642/* Halt the receive and transmit queues */
1643void gfar_halt(struct net_device *dev)
1644{
1645	struct gfar_private *priv = netdev_priv(dev);
1646	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1647	u32 tempval;
1648
1649	gfar_halt_nodisable(dev);
1650
1651	/* Disable Rx and Tx */
1652	tempval = gfar_read(&regs->maccfg1);
1653	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1654	gfar_write(&regs->maccfg1, tempval);
1655}
1656
1657static void free_grp_irqs(struct gfar_priv_grp *grp)
1658{
1659	free_irq(grp->interruptError, grp);
1660	free_irq(grp->interruptTransmit, grp);
1661	free_irq(grp->interruptReceive, grp);
1662}
1663
1664void stop_gfar(struct net_device *dev)
1665{
1666	struct gfar_private *priv = netdev_priv(dev);
1667	unsigned long flags;
1668	int i;
1669
1670	phy_stop(priv->phydev);
1671
1672
1673	/* Lock it down */
1674	local_irq_save(flags);
1675	lock_tx_qs(priv);
1676	lock_rx_qs(priv);
1677
1678	gfar_halt(dev);
1679
1680	unlock_rx_qs(priv);
1681	unlock_tx_qs(priv);
1682	local_irq_restore(flags);
1683
1684	/* Free the IRQs */
1685	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1686		for (i = 0; i < priv->num_grps; i++)
1687			free_grp_irqs(&priv->gfargrp[i]);
1688	} else {
1689		for (i = 0; i < priv->num_grps; i++)
1690			free_irq(priv->gfargrp[i].interruptTransmit,
1691					&priv->gfargrp[i]);
1692	}
1693
1694	free_skb_resources(priv);
1695}
1696
1697static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1698{
1699	struct txbd8 *txbdp;
1700	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1701	int i, j;
1702
1703	txbdp = tx_queue->tx_bd_base;
1704
1705	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1706		if (!tx_queue->tx_skbuff[i])
1707			continue;
1708
1709		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1710				txbdp->length, DMA_TO_DEVICE);
1711		txbdp->lstatus = 0;
1712		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1713				j++) {
1714			txbdp++;
1715			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1716					txbdp->length, DMA_TO_DEVICE);
1717		}
1718		txbdp++;
1719		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1720		tx_queue->tx_skbuff[i] = NULL;
1721	}
1722	kfree(tx_queue->tx_skbuff);
1723}
1724
1725static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1726{
1727	struct rxbd8 *rxbdp;
1728	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1729	int i;
1730
1731	rxbdp = rx_queue->rx_bd_base;
1732
1733	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1734		if (rx_queue->rx_skbuff[i]) {
1735			dma_unmap_single(&priv->ofdev->dev,
1736					rxbdp->bufPtr, priv->rx_buffer_size,
1737					DMA_FROM_DEVICE);
1738			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1739			rx_queue->rx_skbuff[i] = NULL;
1740		}
1741		rxbdp->lstatus = 0;
1742		rxbdp->bufPtr = 0;
1743		rxbdp++;
1744	}
1745	kfree(rx_queue->rx_skbuff);
1746}
1747
1748/* If there are any tx skbs or rx skbs still around, free them.
1749 * Then free tx_skbuff and rx_skbuff */
1750static void free_skb_resources(struct gfar_private *priv)
1751{
1752	struct gfar_priv_tx_q *tx_queue = NULL;
1753	struct gfar_priv_rx_q *rx_queue = NULL;
1754	int i;
1755
1756	/* Go through all the buffer descriptors and free their data buffers */
1757	for (i = 0; i < priv->num_tx_queues; i++) {
1758		tx_queue = priv->tx_queue[i];
1759		if(tx_queue->tx_skbuff)
1760			free_skb_tx_queue(tx_queue);
1761	}
1762
1763	for (i = 0; i < priv->num_rx_queues; i++) {
1764		rx_queue = priv->rx_queue[i];
1765		if(rx_queue->rx_skbuff)
1766			free_skb_rx_queue(rx_queue);
1767	}
1768
1769	dma_free_coherent(&priv->ofdev->dev,
1770			sizeof(struct txbd8) * priv->total_tx_ring_size +
1771			sizeof(struct rxbd8) * priv->total_rx_ring_size,
1772			priv->tx_queue[0]->tx_bd_base,
1773			priv->tx_queue[0]->tx_bd_dma_base);
1774	skb_queue_purge(&priv->rx_recycle);
1775}
1776
1777void gfar_start(struct net_device *dev)
1778{
1779	struct gfar_private *priv = netdev_priv(dev);
1780	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1781	u32 tempval;
1782	int i = 0;
1783
1784	/* Enable Rx and Tx in MACCFG1 */
1785	tempval = gfar_read(&regs->maccfg1);
1786	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1787	gfar_write(&regs->maccfg1, tempval);
1788
1789	/* Initialize DMACTRL to have WWR and WOP */
1790	tempval = gfar_read(&regs->dmactrl);
1791	tempval |= DMACTRL_INIT_SETTINGS;
1792	gfar_write(&regs->dmactrl, tempval);
1793
1794	/* Make sure we aren't stopped */
1795	tempval = gfar_read(&regs->dmactrl);
1796	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1797	gfar_write(&regs->dmactrl, tempval);
1798
1799	for (i = 0; i < priv->num_grps; i++) {
1800		regs = priv->gfargrp[i].regs;
1801		/* Clear THLT/RHLT, so that the DMA starts polling now */
1802		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1803		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1804		/* Unmask the interrupts we look for */
1805		gfar_write(&regs->imask, IMASK_DEFAULT);
1806	}
1807
1808	dev->trans_start = jiffies; /* prevent tx timeout */
1809}
1810
1811void gfar_configure_coalescing(struct gfar_private *priv,
1812	unsigned long tx_mask, unsigned long rx_mask)
1813{
1814	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1815	u32 __iomem *baddr;
1816	int i = 0;
1817
1818	/* Backward compatible case ---- even if we enable
1819	 * multiple queues, there's only single reg to program
1820	 */
1821	gfar_write(&regs->txic, 0);
1822	if(likely(priv->tx_queue[0]->txcoalescing))
1823		gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1824
1825	gfar_write(&regs->rxic, 0);
1826	if(unlikely(priv->rx_queue[0]->rxcoalescing))
1827		gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1828
1829	if (priv->mode == MQ_MG_MODE) {
1830		baddr = &regs->txic0;
1831		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1832			if (likely(priv->tx_queue[i]->txcoalescing)) {
1833				gfar_write(baddr + i, 0);
1834				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1835			}
1836		}
1837
1838		baddr = &regs->rxic0;
1839		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1840			if (likely(priv->rx_queue[i]->rxcoalescing)) {
1841				gfar_write(baddr + i, 0);
1842				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1843			}
1844		}
1845	}
1846}
1847
1848static int register_grp_irqs(struct gfar_priv_grp *grp)
1849{
1850	struct gfar_private *priv = grp->priv;
1851	struct net_device *dev = priv->ndev;
1852	int err;
1853
1854	/* If the device has multiple interrupts, register for
1855	 * them.  Otherwise, only register for the one */
1856	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1857		/* Install our interrupt handlers for Error,
1858		 * Transmit, and Receive */
1859		if ((err = request_irq(grp->interruptError, gfar_error, 0,
1860				grp->int_name_er,grp)) < 0) {
1861			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1862				  grp->interruptError);
1863
1864			goto err_irq_fail;
1865		}
1866
1867		if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1868				0, grp->int_name_tx, grp)) < 0) {
1869			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1870				  grp->interruptTransmit);
1871			goto tx_irq_fail;
1872		}
1873
1874		if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1875				grp->int_name_rx, grp)) < 0) {
1876			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1877				  grp->interruptReceive);
1878			goto rx_irq_fail;
1879		}
1880	} else {
1881		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1882				grp->int_name_tx, grp)) < 0) {
1883			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1884				  grp->interruptTransmit);
1885			goto err_irq_fail;
1886		}
1887	}
1888
1889	return 0;
1890
1891rx_irq_fail:
1892	free_irq(grp->interruptTransmit, grp);
1893tx_irq_fail:
1894	free_irq(grp->interruptError, grp);
1895err_irq_fail:
1896	return err;
1897
1898}
1899
1900/* Bring the controller up and running */
1901int startup_gfar(struct net_device *ndev)
1902{
1903	struct gfar_private *priv = netdev_priv(ndev);
1904	struct gfar __iomem *regs = NULL;
1905	int err, i, j;
1906
1907	for (i = 0; i < priv->num_grps; i++) {
1908		regs= priv->gfargrp[i].regs;
1909		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1910	}
1911
1912	regs= priv->gfargrp[0].regs;
1913	err = gfar_alloc_skb_resources(ndev);
1914	if (err)
1915		return err;
1916
1917	gfar_init_mac(ndev);
1918
1919	for (i = 0; i < priv->num_grps; i++) {
1920		err = register_grp_irqs(&priv->gfargrp[i]);
1921		if (err) {
1922			for (j = 0; j < i; j++)
1923				free_grp_irqs(&priv->gfargrp[j]);
1924			goto irq_fail;
1925		}
1926	}
1927
1928	/* Start the controller */
1929	gfar_start(ndev);
1930
1931	phy_start(priv->phydev);
1932
1933	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1934
1935	return 0;
1936
1937irq_fail:
1938	free_skb_resources(priv);
1939	return err;
1940}
1941
1942/* Called when something needs to use the ethernet device */
1943/* Returns 0 for success. */
1944static int gfar_enet_open(struct net_device *dev)
1945{
1946	struct gfar_private *priv = netdev_priv(dev);
1947	int err;
1948
1949	enable_napi(priv);
1950
1951	skb_queue_head_init(&priv->rx_recycle);
1952
1953	/* Initialize a bunch of registers */
1954	init_registers(dev);
1955
1956	gfar_set_mac_address(dev);
1957
1958	err = init_phy(dev);
1959
1960	if (err) {
1961		disable_napi(priv);
1962		return err;
1963	}
1964
1965	err = startup_gfar(dev);
1966	if (err) {
1967		disable_napi(priv);
1968		return err;
1969	}
1970
1971	netif_tx_start_all_queues(dev);
1972
1973	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1974
1975	return err;
1976}
1977
1978static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1979{
1980	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1981
1982	memset(fcb, 0, GMAC_FCB_LEN);
1983
1984	return fcb;
1985}
1986
1987static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1988{
1989	u8 flags = 0;
1990
1991	/* If we're here, it's a IP packet with a TCP or UDP
1992	 * payload.  We set it to checksum, using a pseudo-header
1993	 * we provide
1994	 */
1995	flags = TXFCB_DEFAULT;
1996
1997	/* Tell the controller what the protocol is */
1998	/* And provide the already calculated phcs */
1999	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2000		flags |= TXFCB_UDP;
2001		fcb->phcs = udp_hdr(skb)->check;
2002	} else
2003		fcb->phcs = tcp_hdr(skb)->check;
2004
2005	/* l3os is the distance between the start of the
2006	 * frame (skb->data) and the start of the IP hdr.
2007	 * l4os is the distance between the start of the
2008	 * l3 hdr and the l4 hdr */
2009	fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2010	fcb->l4os = skb_network_header_len(skb);
2011
2012	fcb->flags = flags;
2013}
2014
2015void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2016{
2017	fcb->flags |= TXFCB_VLN;
2018	fcb->vlctl = vlan_tx_tag_get(skb);
2019}
2020
2021static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2022			       struct txbd8 *base, int ring_size)
2023{
2024	struct txbd8 *new_bd = bdp + stride;
2025
2026	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2027}
2028
2029static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2030		int ring_size)
2031{
2032	return skip_txbd(bdp, 1, base, ring_size);
2033}
2034
2035/* This is called by the kernel when a frame is ready for transmission. */
2036/* It is pointed to by the dev->hard_start_xmit function pointer */
2037static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2038{
2039	struct gfar_private *priv = netdev_priv(dev);
2040	struct gfar_priv_tx_q *tx_queue = NULL;
2041	struct netdev_queue *txq;
2042	struct gfar __iomem *regs = NULL;
2043	struct txfcb *fcb = NULL;
2044	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2045	u32 lstatus;
2046	int i, rq = 0, do_tstamp = 0;
2047	u32 bufaddr;
2048	unsigned long flags;
2049	unsigned int nr_frags, nr_txbds, length;
2050
2051	/*
2052	 * TOE=1 frames larger than 2500 bytes may see excess delays
2053	 * before start of transmission.
2054	 */
2055	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2056			skb->ip_summed == CHECKSUM_PARTIAL &&
2057			skb->len > 2500)) {
2058		int ret;
2059
2060		ret = skb_checksum_help(skb);
2061		if (ret)
2062			return ret;
2063	}
2064
2065	rq = skb->queue_mapping;
2066	tx_queue = priv->tx_queue[rq];
2067	txq = netdev_get_tx_queue(dev, rq);
2068	base = tx_queue->tx_bd_base;
2069	regs = tx_queue->grp->regs;
2070
2071	/* check if time stamp should be generated */
2072	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2073		     priv->hwts_tx_en))
2074		do_tstamp = 1;
2075
2076	/* make space for additional header when fcb is needed */
2077	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2078			vlan_tx_tag_present(skb) ||
2079			unlikely(do_tstamp)) &&
2080			(skb_headroom(skb) < GMAC_FCB_LEN)) {
2081		struct sk_buff *skb_new;
2082
2083		skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2084		if (!skb_new) {
2085			dev->stats.tx_errors++;
2086			kfree_skb(skb);
2087			return NETDEV_TX_OK;
2088		}
2089		kfree_skb(skb);
2090		skb = skb_new;
2091	}
2092
2093	/* total number of fragments in the SKB */
2094	nr_frags = skb_shinfo(skb)->nr_frags;
2095
2096	/* calculate the required number of TxBDs for this skb */
2097	if (unlikely(do_tstamp))
2098		nr_txbds = nr_frags + 2;
2099	else
2100		nr_txbds = nr_frags + 1;
2101
2102	/* check if there is space to queue this packet */
2103	if (nr_txbds > tx_queue->num_txbdfree) {
2104		/* no space, stop the queue */
2105		netif_tx_stop_queue(txq);
2106		dev->stats.tx_fifo_errors++;
2107		return NETDEV_TX_BUSY;
2108	}
2109
2110	/* Update transmit stats */
2111	tx_queue->stats.tx_bytes += skb->len;
2112	tx_queue->stats.tx_packets++;
2113
2114	txbdp = txbdp_start = tx_queue->cur_tx;
2115	lstatus = txbdp->lstatus;
2116
2117	/* Time stamp insertion requires one additional TxBD */
2118	if (unlikely(do_tstamp))
2119		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2120				tx_queue->tx_ring_size);
2121
2122	if (nr_frags == 0) {
2123		if (unlikely(do_tstamp))
2124			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2125					TXBD_INTERRUPT);
2126		else
2127			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2128	} else {
2129		/* Place the fragment addresses and lengths into the TxBDs */
2130		for (i = 0; i < nr_frags; i++) {
2131			/* Point at the next BD, wrapping as needed */
2132			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2133
2134			length = skb_shinfo(skb)->frags[i].size;
2135
2136			lstatus = txbdp->lstatus | length |
2137				BD_LFLAG(TXBD_READY);
2138
2139			/* Handle the last BD specially */
2140			if (i == nr_frags - 1)
2141				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2142
2143			bufaddr = dma_map_page(&priv->ofdev->dev,
2144					skb_shinfo(skb)->frags[i].page,
2145					skb_shinfo(skb)->frags[i].page_offset,
2146					length,
2147					DMA_TO_DEVICE);
2148
2149			/* set the TxBD length and buffer pointer */
2150			txbdp->bufPtr = bufaddr;
2151			txbdp->lstatus = lstatus;
2152		}
2153
2154		lstatus = txbdp_start->lstatus;
2155	}
2156
2157	/* Set up checksumming */
2158	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2159		fcb = gfar_add_fcb(skb);
2160		/* as specified by errata */
2161		if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2162			     && ((unsigned long)fcb % 0x20) > 0x18)) {
2163			__skb_pull(skb, GMAC_FCB_LEN);
2164			skb_checksum_help(skb);
2165		} else {
2166			lstatus |= BD_LFLAG(TXBD_TOE);
2167			gfar_tx_checksum(skb, fcb);
2168		}
2169	}
2170
2171	if (vlan_tx_tag_present(skb)) {
2172		if (unlikely(NULL == fcb)) {
2173			fcb = gfar_add_fcb(skb);
2174			lstatus |= BD_LFLAG(TXBD_TOE);
2175		}
2176
2177		gfar_tx_vlan(skb, fcb);
2178	}
2179
2180	/* Setup tx hardware time stamping if requested */
2181	if (unlikely(do_tstamp)) {
2182		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2183		if (fcb == NULL)
2184			fcb = gfar_add_fcb(skb);
2185		fcb->ptp = 1;
2186		lstatus |= BD_LFLAG(TXBD_TOE);
2187	}
2188
2189	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2190			skb_headlen(skb), DMA_TO_DEVICE);
2191
2192	/*
2193	 * If time stamping is requested one additional TxBD must be set up. The
2194	 * first TxBD points to the FCB and must have a data length of
2195	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2196	 * the full frame length.
2197	 */
2198	if (unlikely(do_tstamp)) {
2199		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2200		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2201				(skb_headlen(skb) - GMAC_FCB_LEN);
2202		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2203	} else {
2204		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2205	}
2206
2207	/*
2208	 * We can work in parallel with gfar_clean_tx_ring(), except
2209	 * when modifying num_txbdfree. Note that we didn't grab the lock
2210	 * when we were reading the num_txbdfree and checking for available
2211	 * space, that's because outside of this function it can only grow,
2212	 * and once we've got needed space, it cannot suddenly disappear.
2213	 *
2214	 * The lock also protects us from gfar_error(), which can modify
2215	 * regs->tstat and thus retrigger the transfers, which is why we
2216	 * also must grab the lock before setting ready bit for the first
2217	 * to be transmitted BD.
2218	 */
2219	spin_lock_irqsave(&tx_queue->txlock, flags);
2220
2221	/*
2222	 * The powerpc-specific eieio() is used, as wmb() has too strong
2223	 * semantics (it requires synchronization between cacheable and
2224	 * uncacheable mappings, which eieio doesn't provide and which we
2225	 * don't need), thus requiring a more expensive sync instruction.  At
2226	 * some point, the set of architecture-independent barrier functions
2227	 * should be expanded to include weaker barriers.
2228	 */
2229	eieio();
2230
2231	txbdp_start->lstatus = lstatus;
2232
2233	eieio(); /* force lstatus write before tx_skbuff */
2234
2235	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2236
2237	/* Update the current skb pointer to the next entry we will use
2238	 * (wrapping if necessary) */
2239	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2240		TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2241
2242	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2243
2244	/* reduce TxBD free count */
2245	tx_queue->num_txbdfree -= (nr_txbds);
2246
2247	/* If the next BD still needs to be cleaned up, then the bds
2248	   are full.  We need to tell the kernel to stop sending us stuff. */
2249	if (!tx_queue->num_txbdfree) {
2250		netif_tx_stop_queue(txq);
2251
2252		dev->stats.tx_fifo_errors++;
2253	}
2254
2255	/* Tell the DMA to go go go */
2256	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2257
2258	/* Unlock priv */
2259	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2260
2261	return NETDEV_TX_OK;
2262}
2263
2264/* Stops the kernel queue, and halts the controller */
2265static int gfar_close(struct net_device *dev)
2266{
2267	struct gfar_private *priv = netdev_priv(dev);
2268
2269	disable_napi(priv);
2270
2271	cancel_work_sync(&priv->reset_task);
2272	stop_gfar(dev);
2273
2274	/* Disconnect from the PHY */
2275	phy_disconnect(priv->phydev);
2276	priv->phydev = NULL;
2277
2278	netif_tx_stop_all_queues(dev);
2279
2280	return 0;
2281}
2282
2283/* Changes the mac address if the controller is not running. */
2284static int gfar_set_mac_address(struct net_device *dev)
2285{
2286	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2287
2288	return 0;
2289}
2290
2291/* Check if rx parser should be activated */
2292void gfar_check_rx_parser_mode(struct gfar_private *priv)
2293{
2294	struct gfar __iomem *regs;
2295	u32 tempval;
2296
2297	regs = priv->gfargrp[0].regs;
2298
2299	tempval = gfar_read(&regs->rctrl);
2300	/* If parse is no longer required, then disable parser */
2301	if (tempval & RCTRL_REQ_PARSER)
2302		tempval |= RCTRL_PRSDEP_INIT;
2303	else
2304		tempval &= ~RCTRL_PRSDEP_INIT;
2305	gfar_write(&regs->rctrl, tempval);
2306}
2307
2308/* Enables and disables VLAN insertion/extraction */
2309void gfar_vlan_mode(struct net_device *dev, u32 features)
2310{
2311	struct gfar_private *priv = netdev_priv(dev);
2312	struct gfar __iomem *regs = NULL;
2313	unsigned long flags;
2314	u32 tempval;
2315
2316	regs = priv->gfargrp[0].regs;
2317	local_irq_save(flags);
2318	lock_rx_qs(priv);
2319
2320	if (features & NETIF_F_HW_VLAN_TX) {
2321		/* Enable VLAN tag insertion */
2322		tempval = gfar_read(&regs->tctrl);
2323		tempval |= TCTRL_VLINS;
2324		gfar_write(&regs->tctrl, tempval);
2325	} else {
2326		/* Disable VLAN tag insertion */
2327		tempval = gfar_read(&regs->tctrl);
2328		tempval &= ~TCTRL_VLINS;
2329		gfar_write(&regs->tctrl, tempval);
2330	}
2331
2332	if (features & NETIF_F_HW_VLAN_RX) {
2333		/* Enable VLAN tag extraction */
2334		tempval = gfar_read(&regs->rctrl);
2335		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2336		gfar_write(&regs->rctrl, tempval);
2337	} else {
2338		/* Disable VLAN tag extraction */
2339		tempval = gfar_read(&regs->rctrl);
2340		tempval &= ~RCTRL_VLEX;
2341		gfar_write(&regs->rctrl, tempval);
2342
2343		gfar_check_rx_parser_mode(priv);
2344	}
2345
2346	gfar_change_mtu(dev, dev->mtu);
2347
2348	unlock_rx_qs(priv);
2349	local_irq_restore(flags);
2350}
2351
2352static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2353{
2354	int tempsize, tempval;
2355	struct gfar_private *priv = netdev_priv(dev);
2356	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2357	int oldsize = priv->rx_buffer_size;
2358	int frame_size = new_mtu + ETH_HLEN;
2359
2360	if (gfar_is_vlan_on(priv))
2361		frame_size += VLAN_HLEN;
2362
2363	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2364		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2365		return -EINVAL;
2366	}
2367
2368	if (gfar_uses_fcb(priv))
2369		frame_size += GMAC_FCB_LEN;
2370
2371	frame_size += priv->padding;
2372
2373	tempsize =
2374	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2375	    INCREMENTAL_BUFFER_SIZE;
2376
2377	/* Only stop and start the controller if it isn't already
2378	 * stopped, and we changed something */
2379	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2380		stop_gfar(dev);
2381
2382	priv->rx_buffer_size = tempsize;
2383
2384	dev->mtu = new_mtu;
2385
2386	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2387	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2388
2389	/* If the mtu is larger than the max size for standard
2390	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2391	 * to allow huge frames, and to check the length */
2392	tempval = gfar_read(&regs->maccfg2);
2393
2394	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2395			gfar_has_errata(priv, GFAR_ERRATA_74))
2396		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2397	else
2398		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2399
2400	gfar_write(&regs->maccfg2, tempval);
2401
2402	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2403		startup_gfar(dev);
2404
2405	return 0;
2406}
2407
2408/* gfar_reset_task gets scheduled when a packet has not been
2409 * transmitted after a set amount of time.
2410 * For now, assume that clearing out all the structures, and
2411 * starting over will fix the problem.
2412 */
2413static void gfar_reset_task(struct work_struct *work)
2414{
2415	struct gfar_private *priv = container_of(work, struct gfar_private,
2416			reset_task);
2417	struct net_device *dev = priv->ndev;
2418
2419	if (dev->flags & IFF_UP) {
2420		netif_tx_stop_all_queues(dev);
2421		stop_gfar(dev);
2422		startup_gfar(dev);
2423		netif_tx_start_all_queues(dev);
2424	}
2425
2426	netif_tx_schedule_all(dev);
2427}
2428
2429static void gfar_timeout(struct net_device *dev)
2430{
2431	struct gfar_private *priv = netdev_priv(dev);
2432
2433	dev->stats.tx_errors++;
2434	schedule_work(&priv->reset_task);
2435}
2436
2437static void gfar_align_skb(struct sk_buff *skb)
2438{
2439	/* We need the data buffer to be aligned properly.  We will reserve
2440	 * as many bytes as needed to align the data properly
2441	 */
2442	skb_reserve(skb, RXBUF_ALIGNMENT -
2443		(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2444}
2445
2446/* Interrupt Handler for Transmit complete */
2447static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2448{
2449	struct net_device *dev = tx_queue->dev;
2450	struct gfar_private *priv = netdev_priv(dev);
2451	struct gfar_priv_rx_q *rx_queue = NULL;
2452	struct txbd8 *bdp, *next = NULL;
2453	struct txbd8 *lbdp = NULL;
2454	struct txbd8 *base = tx_queue->tx_bd_base;
2455	struct sk_buff *skb;
2456	int skb_dirtytx;
2457	int tx_ring_size = tx_queue->tx_ring_size;
2458	int frags = 0, nr_txbds = 0;
2459	int i;
2460	int howmany = 0;
2461	u32 lstatus;
2462	size_t buflen;
2463
2464	rx_queue = priv->rx_queue[tx_queue->qindex];
2465	bdp = tx_queue->dirty_tx;
2466	skb_dirtytx = tx_queue->skb_dirtytx;
2467
2468	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2469		unsigned long flags;
2470
2471		frags = skb_shinfo(skb)->nr_frags;
2472
2473		/*
2474		 * When time stamping, one additional TxBD must be freed.
2475		 * Also, we need to dma_unmap_single() the TxPAL.
2476		 */
2477		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2478			nr_txbds = frags + 2;
2479		else
2480			nr_txbds = frags + 1;
2481
2482		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2483
2484		lstatus = lbdp->lstatus;
2485
2486		/* Only clean completed frames */
2487		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2488				(lstatus & BD_LENGTH_MASK))
2489			break;
2490
2491		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2492			next = next_txbd(bdp, base, tx_ring_size);
2493			buflen = next->length + GMAC_FCB_LEN;
2494		} else
2495			buflen = bdp->length;
2496
2497		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2498				buflen, DMA_TO_DEVICE);
2499
2500		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2501			struct skb_shared_hwtstamps shhwtstamps;
2502			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2503			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2504			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2505			skb_tstamp_tx(skb, &shhwtstamps);
2506			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2507			bdp = next;
2508		}
2509
2510		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2511		bdp = next_txbd(bdp, base, tx_ring_size);
2512
2513		for (i = 0; i < frags; i++) {
2514			dma_unmap_page(&priv->ofdev->dev,
2515					bdp->bufPtr,
2516					bdp->length,
2517					DMA_TO_DEVICE);
2518			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2519			bdp = next_txbd(bdp, base, tx_ring_size);
2520		}
2521
2522		/*
2523		 * If there's room in the queue (limit it to rx_buffer_size)
2524		 * we add this skb back into the pool, if it's the right size
2525		 */
2526		if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2527				skb_recycle_check(skb, priv->rx_buffer_size +
2528					RXBUF_ALIGNMENT)) {
2529			gfar_align_skb(skb);
2530			skb_queue_head(&priv->rx_recycle, skb);
2531		} else
2532			dev_kfree_skb_any(skb);
2533
2534		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2535
2536		skb_dirtytx = (skb_dirtytx + 1) &
2537			TX_RING_MOD_MASK(tx_ring_size);
2538
2539		howmany++;
2540		spin_lock_irqsave(&tx_queue->txlock, flags);
2541		tx_queue->num_txbdfree += nr_txbds;
2542		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2543	}
2544
2545	/* If we freed a buffer, we can restart transmission, if necessary */
2546	if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2547		netif_wake_subqueue(dev, tx_queue->qindex);
2548
2549	/* Update dirty indicators */
2550	tx_queue->skb_dirtytx = skb_dirtytx;
2551	tx_queue->dirty_tx = bdp;
2552
2553	return howmany;
2554}
2555
2556static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2557{
2558	unsigned long flags;
2559
2560	spin_lock_irqsave(&gfargrp->grplock, flags);
2561	if (napi_schedule_prep(&gfargrp->napi)) {
2562		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2563		__napi_schedule(&gfargrp->napi);
2564	} else {
2565		/*
2566		 * Clear IEVENT, so interrupts aren't called again
2567		 * because of the packets that have already arrived.
2568		 */
2569		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2570	}
2571	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2572
2573}
2574
2575/* Interrupt Handler for Transmit complete */
2576static irqreturn_t gfar_transmit(int irq, void *grp_id)
2577{
2578	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2579	return IRQ_HANDLED;
2580}
2581
2582static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2583		struct sk_buff *skb)
2584{
2585	struct net_device *dev = rx_queue->dev;
2586	struct gfar_private *priv = netdev_priv(dev);
2587	dma_addr_t buf;
2588
2589	buf = dma_map_single(&priv->ofdev->dev, skb->data,
2590			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2591	gfar_init_rxbdp(rx_queue, bdp, buf);
2592}
2593
2594static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2595{
2596	struct gfar_private *priv = netdev_priv(dev);
2597	struct sk_buff *skb = NULL;
2598
2599	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2600	if (!skb)
2601		return NULL;
2602
2603	gfar_align_skb(skb);
2604
2605	return skb;
2606}
2607
2608struct sk_buff * gfar_new_skb(struct net_device *dev)
2609{
2610	struct gfar_private *priv = netdev_priv(dev);
2611	struct sk_buff *skb = NULL;
2612
2613	skb = skb_dequeue(&priv->rx_recycle);
2614	if (!skb)
2615		skb = gfar_alloc_skb(dev);
2616
2617	return skb;
2618}
2619
2620static inline void count_errors(unsigned short status, struct net_device *dev)
2621{
2622	struct gfar_private *priv = netdev_priv(dev);
2623	struct net_device_stats *stats = &dev->stats;
2624	struct gfar_extra_stats *estats = &priv->extra_stats;
2625
2626	/* If the packet was truncated, none of the other errors
2627	 * matter */
2628	if (status & RXBD_TRUNCATED) {
2629		stats->rx_length_errors++;
2630
2631		estats->rx_trunc++;
2632
2633		return;
2634	}
2635	/* Count the errors, if there were any */
2636	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2637		stats->rx_length_errors++;
2638
2639		if (status & RXBD_LARGE)
2640			estats->rx_large++;
2641		else
2642			estats->rx_short++;
2643	}
2644	if (status & RXBD_NONOCTET) {
2645		stats->rx_frame_errors++;
2646		estats->rx_nonoctet++;
2647	}
2648	if (status & RXBD_CRCERR) {
2649		estats->rx_crcerr++;
2650		stats->rx_crc_errors++;
2651	}
2652	if (status & RXBD_OVERRUN) {
2653		estats->rx_overrun++;
2654		stats->rx_crc_errors++;
2655	}
2656}
2657
2658irqreturn_t gfar_receive(int irq, void *grp_id)
2659{
2660	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2661	return IRQ_HANDLED;
2662}
2663
2664static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2665{
2666	/* If valid headers were found, and valid sums
2667	 * were verified, then we tell the kernel that no
2668	 * checksumming is necessary.  Otherwise, it is */
2669	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2670		skb->ip_summed = CHECKSUM_UNNECESSARY;
2671	else
2672		skb_checksum_none_assert(skb);
2673}
2674
2675
2676/* gfar_process_frame() -- handle one incoming packet if skb
2677 * isn't NULL.  */
2678static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2679			      int amount_pull)
2680{
2681	struct gfar_private *priv = netdev_priv(dev);
2682	struct rxfcb *fcb = NULL;
2683
2684	int ret;
2685
2686	/* fcb is at the beginning if exists */
2687	fcb = (struct rxfcb *)skb->data;
2688
2689	/* Remove the FCB from the skb */
2690	/* Remove the padded bytes, if there are any */
2691	if (amount_pull) {
2692		skb_record_rx_queue(skb, fcb->rq);
2693		skb_pull(skb, amount_pull);
2694	}
2695
2696	/* Get receive timestamp from the skb */
2697	if (priv->hwts_rx_en) {
2698		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2699		u64 *ns = (u64 *) skb->data;
2700		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2701		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2702	}
2703
2704	if (priv->padding)
2705		skb_pull(skb, priv->padding);
2706
2707	if (dev->features & NETIF_F_RXCSUM)
2708		gfar_rx_checksum(skb, fcb);
2709
2710	/* Tell the skb what kind of packet this is */
2711	skb->protocol = eth_type_trans(skb, dev);
2712
2713	/*
2714	 * There's need to check for NETIF_F_HW_VLAN_RX here.
2715	 * Even if vlan rx accel is disabled, on some chips
2716	 * RXFCB_VLN is pseudo randomly set.
2717	 */
2718	if (dev->features & NETIF_F_HW_VLAN_RX &&
2719	    fcb->flags & RXFCB_VLN)
2720		__vlan_hwaccel_put_tag(skb, fcb->vlctl);
2721
2722	/* Send the packet up the stack */
2723	ret = netif_receive_skb(skb);
2724
2725	if (NET_RX_DROP == ret)
2726		priv->extra_stats.kernel_dropped++;
2727
2728	return 0;
2729}
2730
2731/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2732 *   until the budget/quota has been reached. Returns the number
2733 *   of frames handled
2734 */
2735int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2736{
2737	struct net_device *dev = rx_queue->dev;
2738	struct rxbd8 *bdp, *base;
2739	struct sk_buff *skb;
2740	int pkt_len;
2741	int amount_pull;
2742	int howmany = 0;
2743	struct gfar_private *priv = netdev_priv(dev);
2744
2745	/* Get the first full descriptor */
2746	bdp = rx_queue->cur_rx;
2747	base = rx_queue->rx_bd_base;
2748
2749	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2750
2751	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2752		struct sk_buff *newskb;
2753		rmb();
2754
2755		/* Add another skb for the future */
2756		newskb = gfar_new_skb(dev);
2757
2758		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2759
2760		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2761				priv->rx_buffer_size, DMA_FROM_DEVICE);
2762
2763		if (unlikely(!(bdp->status & RXBD_ERR) &&
2764				bdp->length > priv->rx_buffer_size))
2765			bdp->status = RXBD_LARGE;
2766
2767		/* We drop the frame if we failed to allocate a new buffer */
2768		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2769				 bdp->status & RXBD_ERR)) {
2770			count_errors(bdp->status, dev);
2771
2772			if (unlikely(!newskb))
2773				newskb = skb;
2774			else if (skb)
2775				skb_queue_head(&priv->rx_recycle, skb);
2776		} else {
2777			/* Increment the number of packets */
2778			rx_queue->stats.rx_packets++;
2779			howmany++;
2780
2781			if (likely(skb)) {
2782				pkt_len = bdp->length - ETH_FCS_LEN;
2783				/* Remove the FCS from the packet length */
2784				skb_put(skb, pkt_len);
2785				rx_queue->stats.rx_bytes += pkt_len;
2786				skb_record_rx_queue(skb, rx_queue->qindex);
2787				gfar_process_frame(dev, skb, amount_pull);
2788
2789			} else {
2790				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2791				rx_queue->stats.rx_dropped++;
2792				priv->extra_stats.rx_skbmissing++;
2793			}
2794
2795		}
2796
2797		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2798
2799		/* Setup the new bdp */
2800		gfar_new_rxbdp(rx_queue, bdp, newskb);
2801
2802		/* Update to the next pointer */
2803		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2804
2805		/* update to point at the next skb */
2806		rx_queue->skb_currx =
2807		    (rx_queue->skb_currx + 1) &
2808		    RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2809	}
2810
2811	/* Update the current rxbd pointer to be the next one */
2812	rx_queue->cur_rx = bdp;
2813
2814	return howmany;
2815}
2816
2817static int gfar_poll(struct napi_struct *napi, int budget)
2818{
2819	struct gfar_priv_grp *gfargrp = container_of(napi,
2820			struct gfar_priv_grp, napi);
2821	struct gfar_private *priv = gfargrp->priv;
2822	struct gfar __iomem *regs = gfargrp->regs;
2823	struct gfar_priv_tx_q *tx_queue = NULL;
2824	struct gfar_priv_rx_q *rx_queue = NULL;
2825	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2826	int tx_cleaned = 0, i, left_over_budget = budget;
2827	unsigned long serviced_queues = 0;
2828	int num_queues = 0;
2829
2830	num_queues = gfargrp->num_rx_queues;
2831	budget_per_queue = budget/num_queues;
2832
2833	/* Clear IEVENT, so interrupts aren't called again
2834	 * because of the packets that have already arrived */
2835	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2836
2837	while (num_queues && left_over_budget) {
2838
2839		budget_per_queue = left_over_budget/num_queues;
2840		left_over_budget = 0;
2841
2842		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2843			if (test_bit(i, &serviced_queues))
2844				continue;
2845			rx_queue = priv->rx_queue[i];
2846			tx_queue = priv->tx_queue[rx_queue->qindex];
2847
2848			tx_cleaned += gfar_clean_tx_ring(tx_queue);
2849			rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2850							budget_per_queue);
2851			rx_cleaned += rx_cleaned_per_queue;
2852			if(rx_cleaned_per_queue < budget_per_queue) {
2853				left_over_budget = left_over_budget +
2854					(budget_per_queue - rx_cleaned_per_queue);
2855				set_bit(i, &serviced_queues);
2856				num_queues--;
2857			}
2858		}
2859	}
2860
2861	if (tx_cleaned)
2862		return budget;
2863
2864	if (rx_cleaned < budget) {
2865		napi_complete(napi);
2866
2867		/* Clear the halt bit in RSTAT */
2868		gfar_write(&regs->rstat, gfargrp->rstat);
2869
2870		gfar_write(&regs->imask, IMASK_DEFAULT);
2871
2872		/* If we are coalescing interrupts, update the timer */
2873		/* Otherwise, clear it */
2874		gfar_configure_coalescing(priv,
2875				gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2876	}
2877
2878	return rx_cleaned;
2879}
2880
2881#ifdef CONFIG_NET_POLL_CONTROLLER
2882/*
2883 * Polling 'interrupt' - used by things like netconsole to send skbs
2884 * without having to re-enable interrupts. It's not called while
2885 * the interrupt routine is executing.
2886 */
2887static void gfar_netpoll(struct net_device *dev)
2888{
2889	struct gfar_private *priv = netdev_priv(dev);
2890	int i = 0;
2891
2892	/* If the device has multiple interrupts, run tx/rx */
2893	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2894		for (i = 0; i < priv->num_grps; i++) {
2895			disable_irq(priv->gfargrp[i].interruptTransmit);
2896			disable_irq(priv->gfargrp[i].interruptReceive);
2897			disable_irq(priv->gfargrp[i].interruptError);
2898			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2899						&priv->gfargrp[i]);
2900			enable_irq(priv->gfargrp[i].interruptError);
2901			enable_irq(priv->gfargrp[i].interruptReceive);
2902			enable_irq(priv->gfargrp[i].interruptTransmit);
2903		}
2904	} else {
2905		for (i = 0; i < priv->num_grps; i++) {
2906			disable_irq(priv->gfargrp[i].interruptTransmit);
2907			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2908						&priv->gfargrp[i]);
2909			enable_irq(priv->gfargrp[i].interruptTransmit);
2910		}
2911	}
2912}
2913#endif
2914
2915/* The interrupt handler for devices with one interrupt */
2916static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2917{
2918	struct gfar_priv_grp *gfargrp = grp_id;
2919
2920	/* Save ievent for future reference */
2921	u32 events = gfar_read(&gfargrp->regs->ievent);
2922
2923	/* Check for reception */
2924	if (events & IEVENT_RX_MASK)
2925		gfar_receive(irq, grp_id);
2926
2927	/* Check for transmit completion */
2928	if (events & IEVENT_TX_MASK)
2929		gfar_transmit(irq, grp_id);
2930
2931	/* Check for errors */
2932	if (events & IEVENT_ERR_MASK)
2933		gfar_error(irq, grp_id);
2934
2935	return IRQ_HANDLED;
2936}
2937
2938/* Called every time the controller might need to be made
2939 * aware of new link state.  The PHY code conveys this
2940 * information through variables in the phydev structure, and this
2941 * function converts those variables into the appropriate
2942 * register values, and can bring down the device if needed.
2943 */
2944static void adjust_link(struct net_device *dev)
2945{
2946	struct gfar_private *priv = netdev_priv(dev);
2947	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2948	unsigned long flags;
2949	struct phy_device *phydev = priv->phydev;
2950	int new_state = 0;
2951
2952	local_irq_save(flags);
2953	lock_tx_qs(priv);
2954
2955	if (phydev->link) {
2956		u32 tempval = gfar_read(&regs->maccfg2);
2957		u32 ecntrl = gfar_read(&regs->ecntrl);
2958
2959		/* Now we make sure that we can be in full duplex mode.
2960		 * If not, we operate in half-duplex mode. */
2961		if (phydev->duplex != priv->oldduplex) {
2962			new_state = 1;
2963			if (!(phydev->duplex))
2964				tempval &= ~(MACCFG2_FULL_DUPLEX);
2965			else
2966				tempval |= MACCFG2_FULL_DUPLEX;
2967
2968			priv->oldduplex = phydev->duplex;
2969		}
2970
2971		if (phydev->speed != priv->oldspeed) {
2972			new_state = 1;
2973			switch (phydev->speed) {
2974			case 1000:
2975				tempval =
2976				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2977
2978				ecntrl &= ~(ECNTRL_R100);
2979				break;
2980			case 100:
2981			case 10:
2982				tempval =
2983				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2984
2985				/* Reduced mode distinguishes
2986				 * between 10 and 100 */
2987				if (phydev->speed == SPEED_100)
2988					ecntrl |= ECNTRL_R100;
2989				else
2990					ecntrl &= ~(ECNTRL_R100);
2991				break;
2992			default:
2993				netif_warn(priv, link, dev,
2994					   "Ack!  Speed (%d) is not 10/100/1000!\n",
2995					   phydev->speed);
2996				break;
2997			}
2998
2999			priv->oldspeed = phydev->speed;
3000		}
3001
3002		gfar_write(&regs->maccfg2, tempval);
3003		gfar_write(&regs->ecntrl, ecntrl);
3004
3005		if (!priv->oldlink) {
3006			new_state = 1;
3007			priv->oldlink = 1;
3008		}
3009	} else if (priv->oldlink) {
3010		new_state = 1;
3011		priv->oldlink = 0;
3012		priv->oldspeed = 0;
3013		priv->oldduplex = -1;
3014	}
3015
3016	if (new_state && netif_msg_link(priv))
3017		phy_print_status(phydev);
3018	unlock_tx_qs(priv);
3019	local_irq_restore(flags);
3020}
3021
3022/* Update the hash table based on the current list of multicast
3023 * addresses we subscribe to.  Also, change the promiscuity of
3024 * the device based on the flags (this function is called
3025 * whenever dev->flags is changed */
3026static void gfar_set_multi(struct net_device *dev)
3027{
3028	struct netdev_hw_addr *ha;
3029	struct gfar_private *priv = netdev_priv(dev);
3030	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3031	u32 tempval;
3032
3033	if (dev->flags & IFF_PROMISC) {
3034		/* Set RCTRL to PROM */
3035		tempval = gfar_read(&regs->rctrl);
3036		tempval |= RCTRL_PROM;
3037		gfar_write(&regs->rctrl, tempval);
3038	} else {
3039		/* Set RCTRL to not PROM */
3040		tempval = gfar_read(&regs->rctrl);
3041		tempval &= ~(RCTRL_PROM);
3042		gfar_write(&regs->rctrl, tempval);
3043	}
3044
3045	if (dev->flags & IFF_ALLMULTI) {
3046		/* Set the hash to rx all multicast frames */
3047		gfar_write(&regs->igaddr0, 0xffffffff);
3048		gfar_write(&regs->igaddr1, 0xffffffff);
3049		gfar_write(&regs->igaddr2, 0xffffffff);
3050		gfar_write(&regs->igaddr3, 0xffffffff);
3051		gfar_write(&regs->igaddr4, 0xffffffff);
3052		gfar_write(&regs->igaddr5, 0xffffffff);
3053		gfar_write(&regs->igaddr6, 0xffffffff);
3054		gfar_write(&regs->igaddr7, 0xffffffff);
3055		gfar_write(&regs->gaddr0, 0xffffffff);
3056		gfar_write(&regs->gaddr1, 0xffffffff);
3057		gfar_write(&regs->gaddr2, 0xffffffff);
3058		gfar_write(&regs->gaddr3, 0xffffffff);
3059		gfar_write(&regs->gaddr4, 0xffffffff);
3060		gfar_write(&regs->gaddr5, 0xffffffff);
3061		gfar_write(&regs->gaddr6, 0xffffffff);
3062		gfar_write(&regs->gaddr7, 0xffffffff);
3063	} else {
3064		int em_num;
3065		int idx;
3066
3067		/* zero out the hash */
3068		gfar_write(&regs->igaddr0, 0x0);
3069		gfar_write(&regs->igaddr1, 0x0);
3070		gfar_write(&regs->igaddr2, 0x0);
3071		gfar_write(&regs->igaddr3, 0x0);
3072		gfar_write(&regs->igaddr4, 0x0);
3073		gfar_write(&regs->igaddr5, 0x0);
3074		gfar_write(&regs->igaddr6, 0x0);
3075		gfar_write(&regs->igaddr7, 0x0);
3076		gfar_write(&regs->gaddr0, 0x0);
3077		gfar_write(&regs->gaddr1, 0x0);
3078		gfar_write(&regs->gaddr2, 0x0);
3079		gfar_write(&regs->gaddr3, 0x0);
3080		gfar_write(&regs->gaddr4, 0x0);
3081		gfar_write(&regs->gaddr5, 0x0);
3082		gfar_write(&regs->gaddr6, 0x0);
3083		gfar_write(&regs->gaddr7, 0x0);
3084
3085		/* If we have extended hash tables, we need to
3086		 * clear the exact match registers to prepare for
3087		 * setting them */
3088		if (priv->extended_hash) {
3089			em_num = GFAR_EM_NUM + 1;
3090			gfar_clear_exact_match(dev);
3091			idx = 1;
3092		} else {
3093			idx = 0;
3094			em_num = 0;
3095		}
3096
3097		if (netdev_mc_empty(dev))
3098			return;
3099
3100		/* Parse the list, and set the appropriate bits */
3101		netdev_for_each_mc_addr(ha, dev) {
3102			if (idx < em_num) {
3103				gfar_set_mac_for_addr(dev, idx, ha->addr);
3104				idx++;
3105			} else
3106				gfar_set_hash_for_addr(dev, ha->addr);
3107		}
3108	}
3109}
3110
3111
3112/* Clears each of the exact match registers to zero, so they
3113 * don't interfere with normal reception */
3114static void gfar_clear_exact_match(struct net_device *dev)
3115{
3116	int idx;
3117	static const u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
3118
3119	for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3120		gfar_set_mac_for_addr(dev, idx, zero_arr);
3121}
3122
3123/* Set the appropriate hash bit for the given addr */
3124/* The algorithm works like so:
3125 * 1) Take the Destination Address (ie the multicast address), and
3126 * do a CRC on it (little endian), and reverse the bits of the
3127 * result.
3128 * 2) Use the 8 most significant bits as a hash into a 256-entry
3129 * table.  The table is controlled through 8 32-bit registers:
3130 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3131 * gaddr7.  This means that the 3 most significant bits in the
3132 * hash index which gaddr register to use, and the 5 other bits
3133 * indicate which bit (assuming an IBM numbering scheme, which
3134 * for PowerPC (tm) is usually the case) in the register holds
3135 * the entry. */
3136static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3137{
3138	u32 tempval;
3139	struct gfar_private *priv = netdev_priv(dev);
3140	u32 result = ether_crc(MAC_ADDR_LEN, addr);
3141	int width = priv->hash_width;
3142	u8 whichbit = (result >> (32 - width)) & 0x1f;
3143	u8 whichreg = result >> (32 - width + 5);
3144	u32 value = (1 << (31-whichbit));
3145
3146	tempval = gfar_read(priv->hash_regs[whichreg]);
3147	tempval |= value;
3148	gfar_write(priv->hash_regs[whichreg], tempval);
3149}
3150
3151
3152/* There are multiple MAC Address register pairs on some controllers
3153 * This function sets the numth pair to a given address
3154 */
3155static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3156				  const u8 *addr)
3157{
3158	struct gfar_private *priv = netdev_priv(dev);
3159	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3160	int idx;
3161	char tmpbuf[MAC_ADDR_LEN];
3162	u32 tempval;
3163	u32 __iomem *macptr = &regs->macstnaddr1;
3164
3165	macptr += num*2;
3166
3167	/* Now copy it into the mac registers backwards, cuz */
3168	/* little endian is silly */
3169	for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3170		tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3171
3172	gfar_write(macptr, *((u32 *) (tmpbuf)));
3173
3174	tempval = *((u32 *) (tmpbuf + 4));
3175
3176	gfar_write(macptr+1, tempval);
3177}
3178
3179/* GFAR error interrupt handler */
3180static irqreturn_t gfar_error(int irq, void *grp_id)
3181{
3182	struct gfar_priv_grp *gfargrp = grp_id;
3183	struct gfar __iomem *regs = gfargrp->regs;
3184	struct gfar_private *priv= gfargrp->priv;
3185	struct net_device *dev = priv->ndev;
3186
3187	/* Save ievent for future reference */
3188	u32 events = gfar_read(&regs->ievent);
3189
3190	/* Clear IEVENT */
3191	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3192
3193	/* Magic Packet is not an error. */
3194	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3195	    (events & IEVENT_MAG))
3196		events &= ~IEVENT_MAG;
3197
3198	/* Hmm... */
3199	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3200		netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3201			   events, gfar_read(&regs->imask));
3202
3203	/* Update the error counters */
3204	if (events & IEVENT_TXE) {
3205		dev->stats.tx_errors++;
3206
3207		if (events & IEVENT_LC)
3208			dev->stats.tx_window_errors++;
3209		if (events & IEVENT_CRL)
3210			dev->stats.tx_aborted_errors++;
3211		if (events & IEVENT_XFUN) {
3212			unsigned long flags;
3213
3214			netif_dbg(priv, tx_err, dev,
3215				  "TX FIFO underrun, packet dropped\n");
3216			dev->stats.tx_dropped++;
3217			priv->extra_stats.tx_underrun++;
3218
3219			local_irq_save(flags);
3220			lock_tx_qs(priv);
3221
3222			/* Reactivate the Tx Queues */
3223			gfar_write(&regs->tstat, gfargrp->tstat);
3224
3225			unlock_tx_qs(priv);
3226			local_irq_restore(flags);
3227		}
3228		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3229	}
3230	if (events & IEVENT_BSY) {
3231		dev->stats.rx_errors++;
3232		priv->extra_stats.rx_bsy++;
3233
3234		gfar_receive(irq, grp_id);
3235
3236		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3237			  gfar_read(&regs->rstat));
3238	}
3239	if (events & IEVENT_BABR) {
3240		dev->stats.rx_errors++;
3241		priv->extra_stats.rx_babr++;
3242
3243		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3244	}
3245	if (events & IEVENT_EBERR) {
3246		priv->extra_stats.eberr++;
3247		netif_dbg(priv, rx_err, dev, "bus error\n");
3248	}
3249	if (events & IEVENT_RXC)
3250		netif_dbg(priv, rx_status, dev, "control frame\n");
3251
3252	if (events & IEVENT_BABT) {
3253		priv->extra_stats.tx_babt++;
3254		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3255	}
3256	return IRQ_HANDLED;
3257}
3258
3259static struct of_device_id gfar_match[] =
3260{
3261	{
3262		.type = "network",
3263		.compatible = "gianfar",
3264	},
3265	{
3266		.compatible = "fsl,etsec2",
3267	},
3268	{},
3269};
3270MODULE_DEVICE_TABLE(of, gfar_match);
3271
3272/* Structure for a device driver */
3273static struct platform_driver gfar_driver = {
3274	.driver = {
3275		.name = "fsl-gianfar",
3276		.owner = THIS_MODULE,
3277		.pm = GFAR_PM_OPS,
3278		.of_match_table = gfar_match,
3279	},
3280	.probe = gfar_probe,
3281	.remove = gfar_remove,
3282};
3283
3284static int __init gfar_init(void)
3285{
3286	return platform_driver_register(&gfar_driver);
3287}
3288
3289static void __exit gfar_exit(void)
3290{
3291	platform_driver_unregister(&gfar_driver);
3292}
3293
3294module_init(gfar_init);
3295module_exit(gfar_exit);
3296