Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
   2/*
   3	Written 1997-2001 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms of
   6	the GNU General Public License (GPL), incorporated herein by reference.
   7	Drivers based on or derived from this code fall under the GPL and must
   8	retain the authorship, copyright and license notice.  This file is not
   9	a complete program and may only be used when the entire operating
  10	system is licensed under the GPL.
  11
  12	This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
  13	It also supports the Symbios Logic version of the same chip core.
  14
  15	The author may be reached as becker@scyld.com, or C/O
  16	Scyld Computing Corporation
  17	410 Severn Ave., Suite 210
  18	Annapolis MD 21403
  19
  20	Support and updates available at
  21	http://www.scyld.com/network/yellowfin.html
  22	[link no longer provides useful info -jgarzik]
  23
  24*/
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#define DRV_NAME	"yellowfin"
  29#define DRV_VERSION	"2.1"
  30#define DRV_RELDATE	"Sep 11, 2006"
  31
  32/* The user-configurable values.
  33   These may be modified when a driver module is loaded.*/
  34
  35static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
  36/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  37static int max_interrupt_work = 20;
  38static int mtu;
  39#ifdef YF_PROTOTYPE			/* Support for prototype hardware errata. */
  40/* System-wide count of bogus-rx frames. */
  41static int bogus_rx;
  42static int dma_ctrl = 0x004A0263; 			/* Constrained by errata */
  43static int fifo_cfg = 0x0020;				/* Bypass external Tx FIFO. */
  44#elif defined(YF_NEW)					/* A future perfect board :->.  */
  45static int dma_ctrl = 0x00CAC277;			/* Override when loading module! */
  46static int fifo_cfg = 0x0028;
  47#else
  48static const int dma_ctrl = 0x004A0263; 			/* Constrained by errata */
  49static const int fifo_cfg = 0x0020;				/* Bypass external Tx FIFO. */
  50#endif
  51
  52/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  53   Setting to > 1514 effectively disables this feature. */
  54static int rx_copybreak;
  55
  56/* Used to pass the media type, etc.
  57   No media types are currently defined.  These exist for driver
  58   interoperability.
  59*/
  60#define MAX_UNITS 8				/* More are supported, limit only on options */
  61static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
  62static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
  63
  64/* Do ugly workaround for GX server chipset errata. */
  65static int gx_fix;
  66
  67/* Operational parameters that are set at compile time. */
  68
  69/* Keep the ring sizes a power of two for efficiency.
  70   Making the Tx ring too long decreases the effectiveness of channel
  71   bonding and packet priority.
  72   There are no ill effects from too-large receive rings. */
  73#define TX_RING_SIZE	16
  74#define TX_QUEUE_SIZE	12		/* Must be > 4 && <= TX_RING_SIZE */
  75#define RX_RING_SIZE	64
  76#define STATUS_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct tx_status_words)
  77#define TX_TOTAL_SIZE		2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
  78#define RX_TOTAL_SIZE		RX_RING_SIZE*sizeof(struct yellowfin_desc)
  79
  80/* Operational parameters that usually are not changed. */
  81/* Time in jiffies before concluding the transmitter is hung. */
  82#define TX_TIMEOUT  (2*HZ)
  83#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
  84
  85#define yellowfin_debug debug
  86
  87#include <linux/module.h>
  88#include <linux/kernel.h>
  89#include <linux/string.h>
  90#include <linux/timer.h>
  91#include <linux/errno.h>
  92#include <linux/ioport.h>
  93#include <linux/interrupt.h>
  94#include <linux/pci.h>
  95#include <linux/init.h>
  96#include <linux/mii.h>
  97#include <linux/netdevice.h>
  98#include <linux/etherdevice.h>
  99#include <linux/skbuff.h>
 100#include <linux/ethtool.h>
 101#include <linux/crc32.h>
 102#include <linux/bitops.h>
 103#include <asm/uaccess.h>
 104#include <asm/processor.h>		/* Processor type for cache alignment. */
 105#include <asm/unaligned.h>
 106#include <asm/io.h>
 107
 108/* These identify the driver base version and may not be removed. */
 109static const char version[] __devinitconst =
 110  KERN_INFO DRV_NAME ".c:v1.05  1/09/2001  Written by Donald Becker <becker@scyld.com>\n"
 111  "  (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
 112
 113MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 114MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
 115MODULE_LICENSE("GPL");
 116
 117module_param(max_interrupt_work, int, 0);
 118module_param(mtu, int, 0);
 119module_param(debug, int, 0);
 120module_param(rx_copybreak, int, 0);
 121module_param_array(options, int, NULL, 0);
 122module_param_array(full_duplex, int, NULL, 0);
 123module_param(gx_fix, int, 0);
 124MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
 125MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
 126MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
 127MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
 128MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
 129MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
 130MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
 131
 132/*
 133				Theory of Operation
 134
 135I. Board Compatibility
 136
 137This device driver is designed for the Packet Engines "Yellowfin" Gigabit
 138Ethernet adapter.  The G-NIC 64-bit PCI card is supported, as well as the
 139Symbios 53C885E dual function chip.
 140
 141II. Board-specific settings
 142
 143PCI bus devices are configured by the system at boot time, so no jumpers
 144need to be set on the board.  The system BIOS preferably should assign the
 145PCI INTA signal to an otherwise unused system IRQ line.
 146Note: Kernel versions earlier than 1.3.73 do not support shared PCI
 147interrupt lines.
 148
 149III. Driver operation
 150
 151IIIa. Ring buffers
 152
 153The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
 154This is a descriptor list scheme similar to that used by the EEPro100 and
 155Tulip.  This driver uses two statically allocated fixed-size descriptor lists
 156formed into rings by a branch from the final descriptor to the beginning of
 157the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 158
 159The driver allocates full frame size skbuffs for the Rx ring buffers at
 160open() time and passes the skb->data field to the Yellowfin as receive data
 161buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 162a fresh skbuff is allocated and the frame is copied to the new skbuff.
 163When the incoming frame is larger, the skbuff is passed directly up the
 164protocol stack and replaced by a newly allocated skbuff.
 165
 166The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 167using a full-sized skbuff for small frames vs. the copying costs of larger
 168frames.  For small frames the copying cost is negligible (esp. considering
 169that we are pre-loading the cache with immediately useful header
 170information).  For large frames the copying cost is non-trivial, and the
 171larger copy might flush the cache of useful data.
 172
 173IIIC. Synchronization
 174
 175The driver runs as two independent, single-threaded flows of control.  One
 176is the send-packet routine, which enforces single-threaded use by the
 177dev->tbusy flag.  The other thread is the interrupt handler, which is single
 178threaded by the hardware and other software.
 179
 180The send packet thread has partial control over the Tx ring and 'dev->tbusy'
 181flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
 182queue slot is empty, it clears the tbusy flag when finished otherwise it sets
 183the 'yp->tx_full' flag.
 184
 185The interrupt handler has exclusive control over the Rx ring and records stats
 186from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
 187empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
 188clears both the tx_full and tbusy flags.
 189
 190IV. Notes
 191
 192Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
 193Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
 194and an AlphaStation to verifty the Alpha port!
 195
 196IVb. References
 197
 198Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
 199Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
 200   Data Manual v3.0
 201http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
 202http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
 203
 204IVc. Errata
 205
 206See Packet Engines confidential appendix (prototype chips only).
 207*/
 208
 209
 210
 211enum capability_flags {
 212	HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
 213	HasMACAddrBug=32, /* Only on early revs.  */
 214	DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
 215};
 216
 217/* The PCI I/O space extent. */
 218enum {
 219	YELLOWFIN_SIZE	= 0x100,
 220};
 221
 222struct pci_id_info {
 223        const char *name;
 224        struct match_info {
 225                int     pci, pci_mask, subsystem, subsystem_mask;
 226                int revision, revision_mask;                            /* Only 8 bits. */
 227        } id;
 228        int drv_flags;                          /* Driver use, intended as capability flags. */
 229};
 230
 231static const struct pci_id_info pci_id_tbl[] = {
 232	{"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
 233	 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
 234	{"Symbios SYM83C885", { 0x07011000, 0xffffffff},
 235	  HasMII | DontUseEeprom },
 236	{ }
 237};
 238
 239static DEFINE_PCI_DEVICE_TABLE(yellowfin_pci_tbl) = {
 240	{ 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
 241	{ 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 242	{ }
 243};
 244MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
 245
 246
 247/* Offsets to the Yellowfin registers.  Various sizes and alignments. */
 248enum yellowfin_offsets {
 249	TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
 250	TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
 251	RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
 252	RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
 253	EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
 254	ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
 255	Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
 256	MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
 257	MII_Status=0xAE,
 258	RxDepth=0xB8, FlowCtrl=0xBC,
 259	AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
 260	EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
 261	EEFeature=0xF5,
 262};
 263
 264/* The Yellowfin Rx and Tx buffer descriptors.
 265   Elements are written as 32 bit for endian portability. */
 266struct yellowfin_desc {
 267	__le32 dbdma_cmd;
 268	__le32 addr;
 269	__le32 branch_addr;
 270	__le32 result_status;
 271};
 272
 273struct tx_status_words {
 274#ifdef __BIG_ENDIAN
 275	u16 tx_errs;
 276	u16 tx_cnt;
 277	u16 paused;
 278	u16 total_tx_cnt;
 279#else  /* Little endian chips. */
 280	u16 tx_cnt;
 281	u16 tx_errs;
 282	u16 total_tx_cnt;
 283	u16 paused;
 284#endif /* __BIG_ENDIAN */
 285};
 286
 287/* Bits in yellowfin_desc.cmd */
 288enum desc_cmd_bits {
 289	CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
 290	CMD_NOP=0x60000000, CMD_STOP=0x70000000,
 291	BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
 292	BRANCH_IFTRUE=0x040000,
 293};
 294
 295/* Bits in yellowfin_desc.status */
 296enum desc_status_bits { RX_EOP=0x0040, };
 297
 298/* Bits in the interrupt status/mask registers. */
 299enum intr_status_bits {
 300	IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
 301	IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
 302	IntrEarlyRx=0x100, IntrWakeup=0x200, };
 303
 304#define PRIV_ALIGN	31 	/* Required alignment mask */
 305#define MII_CNT		4
 306struct yellowfin_private {
 307	/* Descriptor rings first for alignment.
 308	   Tx requires a second descriptor for status. */
 309	struct yellowfin_desc *rx_ring;
 310	struct yellowfin_desc *tx_ring;
 311	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 312	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 313	dma_addr_t rx_ring_dma;
 314	dma_addr_t tx_ring_dma;
 315
 316	struct tx_status_words *tx_status;
 317	dma_addr_t tx_status_dma;
 318
 319	struct timer_list timer;	/* Media selection timer. */
 320	/* Frequently used and paired value: keep adjacent for cache effect. */
 321	int chip_id, drv_flags;
 322	struct pci_dev *pci_dev;
 323	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
 324	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
 325	struct tx_status_words *tx_tail_desc;
 326	unsigned int cur_tx, dirty_tx;
 327	int tx_threshold;
 328	unsigned int tx_full:1;				/* The Tx queue is full. */
 329	unsigned int full_duplex:1;			/* Full-duplex operation requested. */
 330	unsigned int duplex_lock:1;
 331	unsigned int medialock:1;			/* Do not sense media. */
 332	unsigned int default_port:4;		/* Last dev->if_port value. */
 333	/* MII transceiver section. */
 334	int mii_cnt;						/* MII device addresses. */
 335	u16 advertising;					/* NWay media advertisement */
 336	unsigned char phys[MII_CNT];		/* MII device addresses, only first one used */
 337	spinlock_t lock;
 338	void __iomem *base;
 339};
 340
 341static int read_eeprom(void __iomem *ioaddr, int location);
 342static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
 343static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
 344static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 345static int yellowfin_open(struct net_device *dev);
 346static void yellowfin_timer(unsigned long data);
 347static void yellowfin_tx_timeout(struct net_device *dev);
 348static int yellowfin_init_ring(struct net_device *dev);
 349static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
 350					struct net_device *dev);
 351static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
 352static int yellowfin_rx(struct net_device *dev);
 353static void yellowfin_error(struct net_device *dev, int intr_status);
 354static int yellowfin_close(struct net_device *dev);
 355static void set_rx_mode(struct net_device *dev);
 356static const struct ethtool_ops ethtool_ops;
 357
 358static const struct net_device_ops netdev_ops = {
 359	.ndo_open 		= yellowfin_open,
 360	.ndo_stop 		= yellowfin_close,
 361	.ndo_start_xmit 	= yellowfin_start_xmit,
 362	.ndo_set_rx_mode	= set_rx_mode,
 363	.ndo_change_mtu		= eth_change_mtu,
 364	.ndo_validate_addr	= eth_validate_addr,
 365	.ndo_set_mac_address 	= eth_mac_addr,
 366	.ndo_do_ioctl 		= netdev_ioctl,
 367	.ndo_tx_timeout 	= yellowfin_tx_timeout,
 368};
 369
 370static int __devinit yellowfin_init_one(struct pci_dev *pdev,
 371					const struct pci_device_id *ent)
 372{
 373	struct net_device *dev;
 374	struct yellowfin_private *np;
 375	int irq;
 376	int chip_idx = ent->driver_data;
 377	static int find_cnt;
 378	void __iomem *ioaddr;
 379	int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 380	int drv_flags = pci_id_tbl[chip_idx].drv_flags;
 381        void *ring_space;
 382        dma_addr_t ring_dma;
 383#ifdef USE_IO_OPS
 384	int bar = 0;
 385#else
 386	int bar = 1;
 387#endif
 388
 389/* when built into the kernel, we only print version if device is found */
 390#ifndef MODULE
 391	static int printed_version;
 392	if (!printed_version++)
 393		printk(version);
 394#endif
 395
 396	i = pci_enable_device(pdev);
 397	if (i) return i;
 398
 399	dev = alloc_etherdev(sizeof(*np));
 400	if (!dev)
 401		return -ENOMEM;
 402
 403	SET_NETDEV_DEV(dev, &pdev->dev);
 404
 405	np = netdev_priv(dev);
 406
 407	if (pci_request_regions(pdev, DRV_NAME))
 408		goto err_out_free_netdev;
 409
 410	pci_set_master (pdev);
 411
 412	ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
 413	if (!ioaddr)
 414		goto err_out_free_res;
 415
 416	irq = pdev->irq;
 417
 418	if (drv_flags & DontUseEeprom)
 419		for (i = 0; i < 6; i++)
 420			dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
 421	else {
 422		int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
 423		for (i = 0; i < 6; i++)
 424			dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
 425	}
 426
 427	/* Reset the chip. */
 428	iowrite32(0x80000000, ioaddr + DMACtrl);
 429
 430	pci_set_drvdata(pdev, dev);
 431	spin_lock_init(&np->lock);
 432
 433	np->pci_dev = pdev;
 434	np->chip_id = chip_idx;
 435	np->drv_flags = drv_flags;
 436	np->base = ioaddr;
 437
 438	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 439	if (!ring_space)
 440		goto err_out_cleardev;
 441	np->tx_ring = ring_space;
 442	np->tx_ring_dma = ring_dma;
 443
 444	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 445	if (!ring_space)
 446		goto err_out_unmap_tx;
 447	np->rx_ring = ring_space;
 448	np->rx_ring_dma = ring_dma;
 449
 450	ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
 451	if (!ring_space)
 452		goto err_out_unmap_rx;
 453	np->tx_status = ring_space;
 454	np->tx_status_dma = ring_dma;
 455
 456	if (dev->mem_start)
 457		option = dev->mem_start;
 458
 459	/* The lower four bits are the media type. */
 460	if (option > 0) {
 461		if (option & 0x200)
 462			np->full_duplex = 1;
 463		np->default_port = option & 15;
 464		if (np->default_port)
 465			np->medialock = 1;
 466	}
 467	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
 468		np->full_duplex = 1;
 469
 470	if (np->full_duplex)
 471		np->duplex_lock = 1;
 472
 473	/* The Yellowfin-specific entries in the device structure. */
 474	dev->netdev_ops = &netdev_ops;
 475	SET_ETHTOOL_OPS(dev, &ethtool_ops);
 476	dev->watchdog_timeo = TX_TIMEOUT;
 477
 478	if (mtu)
 479		dev->mtu = mtu;
 480
 481	i = register_netdev(dev);
 482	if (i)
 483		goto err_out_unmap_status;
 484
 485	netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n",
 486		    pci_id_tbl[chip_idx].name,
 487		    ioread32(ioaddr + ChipRev), ioaddr,
 488		    dev->dev_addr, irq);
 489
 490	if (np->drv_flags & HasMII) {
 491		int phy, phy_idx = 0;
 492		for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
 493			int mii_status = mdio_read(ioaddr, phy, 1);
 494			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
 495				np->phys[phy_idx++] = phy;
 496				np->advertising = mdio_read(ioaddr, phy, 4);
 497				netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n",
 498					    phy, mii_status, np->advertising);
 499			}
 500		}
 501		np->mii_cnt = phy_idx;
 502	}
 503
 504	find_cnt++;
 505
 506	return 0;
 507
 508err_out_unmap_status:
 509        pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
 510		np->tx_status_dma);
 511err_out_unmap_rx:
 512        pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 513err_out_unmap_tx:
 514        pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 515err_out_cleardev:
 516	pci_set_drvdata(pdev, NULL);
 517	pci_iounmap(pdev, ioaddr);
 518err_out_free_res:
 519	pci_release_regions(pdev);
 520err_out_free_netdev:
 521	free_netdev (dev);
 522	return -ENODEV;
 523}
 524
 525static int __devinit read_eeprom(void __iomem *ioaddr, int location)
 526{
 527	int bogus_cnt = 10000;		/* Typical 33Mhz: 1050 ticks */
 528
 529	iowrite8(location, ioaddr + EEAddr);
 530	iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
 531	while ((ioread8(ioaddr + EEStatus) & 0x80)  &&  --bogus_cnt > 0)
 532		;
 533	return ioread8(ioaddr + EERead);
 534}
 535
 536/* MII Managemen Data I/O accesses.
 537   These routines assume the MDIO controller is idle, and do not exit until
 538   the command is finished. */
 539
 540static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
 541{
 542	int i;
 543
 544	iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
 545	iowrite16(1, ioaddr + MII_Cmd);
 546	for (i = 10000; i >= 0; i--)
 547		if ((ioread16(ioaddr + MII_Status) & 1) == 0)
 548			break;
 549	return ioread16(ioaddr + MII_Rd_Data);
 550}
 551
 552static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
 553{
 554	int i;
 555
 556	iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
 557	iowrite16(value, ioaddr + MII_Wr_Data);
 558
 559	/* Wait for the command to finish. */
 560	for (i = 10000; i >= 0; i--)
 561		if ((ioread16(ioaddr + MII_Status) & 1) == 0)
 562			break;
 563}
 564
 565
 566static int yellowfin_open(struct net_device *dev)
 567{
 568	struct yellowfin_private *yp = netdev_priv(dev);
 569	const int irq = yp->pci_dev->irq;
 570	void __iomem *ioaddr = yp->base;
 571	int i, rc;
 572
 573	/* Reset the chip. */
 574	iowrite32(0x80000000, ioaddr + DMACtrl);
 575
 576	rc = request_irq(irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
 577	if (rc)
 578		return rc;
 579
 580	rc = yellowfin_init_ring(dev);
 581	if (rc < 0)
 582		goto err_free_irq;
 583
 584	iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
 585	iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
 586
 587	for (i = 0; i < 6; i++)
 588		iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
 589
 590	/* Set up various condition 'select' registers.
 591	   There are no options here. */
 592	iowrite32(0x00800080, ioaddr + TxIntrSel); 	/* Interrupt on Tx abort */
 593	iowrite32(0x00800080, ioaddr + TxBranchSel);	/* Branch on Tx abort */
 594	iowrite32(0x00400040, ioaddr + TxWaitSel); 	/* Wait on Tx status */
 595	iowrite32(0x00400040, ioaddr + RxIntrSel);	/* Interrupt on Rx done */
 596	iowrite32(0x00400040, ioaddr + RxBranchSel);	/* Branch on Rx error */
 597	iowrite32(0x00400040, ioaddr + RxWaitSel);	/* Wait on Rx done */
 598
 599	/* Initialize other registers: with so many this eventually this will
 600	   converted to an offset/value list. */
 601	iowrite32(dma_ctrl, ioaddr + DMACtrl);
 602	iowrite16(fifo_cfg, ioaddr + FIFOcfg);
 603	/* Enable automatic generation of flow control frames, period 0xffff. */
 604	iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
 605
 606	yp->tx_threshold = 32;
 607	iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
 608
 609	if (dev->if_port == 0)
 610		dev->if_port = yp->default_port;
 611
 612	netif_start_queue(dev);
 613
 614	/* Setting the Rx mode will start the Rx process. */
 615	if (yp->drv_flags & IsGigabit) {
 616		/* We are always in full-duplex mode with gigabit! */
 617		yp->full_duplex = 1;
 618		iowrite16(0x01CF, ioaddr + Cnfg);
 619	} else {
 620		iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
 621		iowrite16(0x1018, ioaddr + FrameGap1);
 622		iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
 623	}
 624	set_rx_mode(dev);
 625
 626	/* Enable interrupts by setting the interrupt mask. */
 627	iowrite16(0x81ff, ioaddr + IntrEnb);			/* See enum intr_status_bits */
 628	iowrite16(0x0000, ioaddr + EventStatus);		/* Clear non-interrupting events */
 629	iowrite32(0x80008000, ioaddr + RxCtrl);		/* Start Rx and Tx channels. */
 630	iowrite32(0x80008000, ioaddr + TxCtrl);
 631
 632	if (yellowfin_debug > 2) {
 633		netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__);
 634	}
 635
 636	/* Set the timer to check for link beat. */
 637	init_timer(&yp->timer);
 638	yp->timer.expires = jiffies + 3*HZ;
 639	yp->timer.data = (unsigned long)dev;
 640	yp->timer.function = yellowfin_timer;				/* timer handler */
 641	add_timer(&yp->timer);
 642out:
 643	return rc;
 644
 645err_free_irq:
 646	free_irq(irq, dev);
 647	goto out;
 648}
 649
 650static void yellowfin_timer(unsigned long data)
 651{
 652	struct net_device *dev = (struct net_device *)data;
 653	struct yellowfin_private *yp = netdev_priv(dev);
 654	void __iomem *ioaddr = yp->base;
 655	int next_tick = 60*HZ;
 656
 657	if (yellowfin_debug > 3) {
 658		netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n",
 659			      ioread16(ioaddr + IntrStatus));
 660	}
 661
 662	if (yp->mii_cnt) {
 663		int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
 664		int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
 665		int negotiated = lpa & yp->advertising;
 666		if (yellowfin_debug > 1)
 667			netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n",
 668				      yp->phys[0], bmsr, lpa);
 669
 670		yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
 671
 672		iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
 673
 674		if (bmsr & BMSR_LSTATUS)
 675			next_tick = 60*HZ;
 676		else
 677			next_tick = 3*HZ;
 678	}
 679
 680	yp->timer.expires = jiffies + next_tick;
 681	add_timer(&yp->timer);
 682}
 683
 684static void yellowfin_tx_timeout(struct net_device *dev)
 685{
 686	struct yellowfin_private *yp = netdev_priv(dev);
 687	void __iomem *ioaddr = yp->base;
 688
 689	netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n",
 690		    yp->cur_tx, yp->dirty_tx,
 691		    ioread32(ioaddr + TxStatus),
 692		    ioread32(ioaddr + RxStatus));
 693
 694	/* Note: these should be KERN_DEBUG. */
 695	if (yellowfin_debug) {
 696		int i;
 697		pr_warning("  Rx ring %p: ", yp->rx_ring);
 698		for (i = 0; i < RX_RING_SIZE; i++)
 699			pr_cont(" %08x", yp->rx_ring[i].result_status);
 700		pr_cont("\n");
 701		pr_warning("  Tx ring %p: ", yp->tx_ring);
 702		for (i = 0; i < TX_RING_SIZE; i++)
 703			pr_cont(" %04x /%08x",
 704			       yp->tx_status[i].tx_errs,
 705			       yp->tx_ring[i].result_status);
 706		pr_cont("\n");
 707	}
 708
 709	/* If the hardware is found to hang regularly, we will update the code
 710	   to reinitialize the chip here. */
 711	dev->if_port = 0;
 712
 713	/* Wake the potentially-idle transmit channel. */
 714	iowrite32(0x10001000, yp->base + TxCtrl);
 715	if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
 716		netif_wake_queue (dev);		/* Typical path */
 717
 718	dev->trans_start = jiffies; /* prevent tx timeout */
 719	dev->stats.tx_errors++;
 720}
 721
 722/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
 723static int yellowfin_init_ring(struct net_device *dev)
 724{
 725	struct yellowfin_private *yp = netdev_priv(dev);
 726	int i, j;
 727
 728	yp->tx_full = 0;
 729	yp->cur_rx = yp->cur_tx = 0;
 730	yp->dirty_tx = 0;
 731
 732	yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
 733
 734	for (i = 0; i < RX_RING_SIZE; i++) {
 735		yp->rx_ring[i].dbdma_cmd =
 736			cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
 737		yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
 738			((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
 739	}
 740
 741	for (i = 0; i < RX_RING_SIZE; i++) {
 742		struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
 743		yp->rx_skbuff[i] = skb;
 744		if (skb == NULL)
 745			break;
 746		skb_reserve(skb, 2);	/* 16 byte align the IP header. */
 747		yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
 748			skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
 749	}
 750	if (i != RX_RING_SIZE) {
 751		for (j = 0; j < i; j++)
 752			dev_kfree_skb(yp->rx_skbuff[j]);
 753		return -ENOMEM;
 754	}
 755	yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
 756	yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
 757
 758#define NO_TXSTATS
 759#ifdef NO_TXSTATS
 760	/* In this mode the Tx ring needs only a single descriptor. */
 761	for (i = 0; i < TX_RING_SIZE; i++) {
 762		yp->tx_skbuff[i] = NULL;
 763		yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
 764		yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
 765			((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
 766	}
 767	/* Wrap ring */
 768	yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
 769#else
 770{
 771	/* Tx ring needs a pair of descriptors, the second for the status. */
 772	for (i = 0; i < TX_RING_SIZE; i++) {
 773		j = 2*i;
 774		yp->tx_skbuff[i] = 0;
 775		/* Branch on Tx error. */
 776		yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
 777		yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
 778			(j+1)*sizeof(struct yellowfin_desc));
 779		j++;
 780		if (yp->flags & FullTxStatus) {
 781			yp->tx_ring[j].dbdma_cmd =
 782				cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
 783			yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
 784			yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
 785				i*sizeof(struct tx_status_words));
 786		} else {
 787			/* Symbios chips write only tx_errs word. */
 788			yp->tx_ring[j].dbdma_cmd =
 789				cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
 790			yp->tx_ring[j].request_cnt = 2;
 791			/* Om pade ummmmm... */
 792			yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
 793				i*sizeof(struct tx_status_words) +
 794				&(yp->tx_status[0].tx_errs) -
 795				&(yp->tx_status[0]));
 796		}
 797		yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
 798			((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
 799	}
 800	/* Wrap ring */
 801	yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
 802}
 803#endif
 804	yp->tx_tail_desc = &yp->tx_status[0];
 805	return 0;
 806}
 807
 808static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
 809					struct net_device *dev)
 810{
 811	struct yellowfin_private *yp = netdev_priv(dev);
 812	unsigned entry;
 813	int len = skb->len;
 814
 815	netif_stop_queue (dev);
 816
 817	/* Note: Ordering is important here, set the field with the
 818	   "ownership" bit last, and only then increment cur_tx. */
 819
 820	/* Calculate the next Tx descriptor entry. */
 821	entry = yp->cur_tx % TX_RING_SIZE;
 822
 823	if (gx_fix) {	/* Note: only works for paddable protocols e.g.  IP. */
 824		int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
 825		/* Fix GX chipset errata. */
 826		if (cacheline_end > 24  || cacheline_end == 0) {
 827			len = skb->len + 32 - cacheline_end + 1;
 828			if (skb_padto(skb, len)) {
 829				yp->tx_skbuff[entry] = NULL;
 830				netif_wake_queue(dev);
 831				return NETDEV_TX_OK;
 832			}
 833		}
 834	}
 835	yp->tx_skbuff[entry] = skb;
 836
 837#ifdef NO_TXSTATS
 838	yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
 839		skb->data, len, PCI_DMA_TODEVICE));
 840	yp->tx_ring[entry].result_status = 0;
 841	if (entry >= TX_RING_SIZE-1) {
 842		/* New stop command. */
 843		yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
 844		yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
 845			cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
 846	} else {
 847		yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
 848		yp->tx_ring[entry].dbdma_cmd =
 849			cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
 850	}
 851	yp->cur_tx++;
 852#else
 853	yp->tx_ring[entry<<1].request_cnt = len;
 854	yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
 855		skb->data, len, PCI_DMA_TODEVICE));
 856	/* The input_last (status-write) command is constant, but we must
 857	   rewrite the subsequent 'stop' command. */
 858
 859	yp->cur_tx++;
 860	{
 861		unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
 862		yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
 863	}
 864	/* Final step -- overwrite the old 'stop' command. */
 865
 866	yp->tx_ring[entry<<1].dbdma_cmd =
 867		cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
 868					  CMD_TX_PKT | BRANCH_IFTRUE) | len);
 869#endif
 870
 871	/* Non-x86 Todo: explicitly flush cache lines here. */
 872
 873	/* Wake the potentially-idle transmit channel. */
 874	iowrite32(0x10001000, yp->base + TxCtrl);
 875
 876	if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
 877		netif_start_queue (dev);		/* Typical path */
 878	else
 879		yp->tx_full = 1;
 880
 881	if (yellowfin_debug > 4) {
 882		netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n",
 883			      yp->cur_tx, entry);
 884	}
 885	return NETDEV_TX_OK;
 886}
 887
 888/* The interrupt handler does all of the Rx thread work and cleans up
 889   after the Tx thread. */
 890static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
 891{
 892	struct net_device *dev = dev_instance;
 893	struct yellowfin_private *yp;
 894	void __iomem *ioaddr;
 895	int boguscnt = max_interrupt_work;
 896	unsigned int handled = 0;
 897
 898	yp = netdev_priv(dev);
 899	ioaddr = yp->base;
 900
 901	spin_lock (&yp->lock);
 902
 903	do {
 904		u16 intr_status = ioread16(ioaddr + IntrClear);
 905
 906		if (yellowfin_debug > 4)
 907			netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n",
 908				      intr_status);
 909
 910		if (intr_status == 0)
 911			break;
 912		handled = 1;
 913
 914		if (intr_status & (IntrRxDone | IntrEarlyRx)) {
 915			yellowfin_rx(dev);
 916			iowrite32(0x10001000, ioaddr + RxCtrl);		/* Wake Rx engine. */
 917		}
 918
 919#ifdef NO_TXSTATS
 920		for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
 921			int entry = yp->dirty_tx % TX_RING_SIZE;
 922			struct sk_buff *skb;
 923
 924			if (yp->tx_ring[entry].result_status == 0)
 925				break;
 926			skb = yp->tx_skbuff[entry];
 927			dev->stats.tx_packets++;
 928			dev->stats.tx_bytes += skb->len;
 929			/* Free the original skb. */
 930			pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
 931				skb->len, PCI_DMA_TODEVICE);
 932			dev_kfree_skb_irq(skb);
 933			yp->tx_skbuff[entry] = NULL;
 934		}
 935		if (yp->tx_full &&
 936		    yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
 937			/* The ring is no longer full, clear tbusy. */
 938			yp->tx_full = 0;
 939			netif_wake_queue(dev);
 940		}
 941#else
 942		if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
 943			unsigned dirty_tx = yp->dirty_tx;
 944
 945			for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
 946				 dirty_tx++) {
 947				/* Todo: optimize this. */
 948				int entry = dirty_tx % TX_RING_SIZE;
 949				u16 tx_errs = yp->tx_status[entry].tx_errs;
 950				struct sk_buff *skb;
 951
 952#ifndef final_version
 953				if (yellowfin_debug > 5)
 954					netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n",
 955						      entry,
 956						      yp->tx_status[entry].tx_cnt,
 957						      yp->tx_status[entry].tx_errs,
 958						      yp->tx_status[entry].total_tx_cnt,
 959						      yp->tx_status[entry].paused);
 960#endif
 961				if (tx_errs == 0)
 962					break;	/* It still hasn't been Txed */
 963				skb = yp->tx_skbuff[entry];
 964				if (tx_errs & 0xF810) {
 965					/* There was an major error, log it. */
 966#ifndef final_version
 967					if (yellowfin_debug > 1)
 968						netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n",
 969							      tx_errs);
 970#endif
 971					dev->stats.tx_errors++;
 972					if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
 973					if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
 974					if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
 975					if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
 976				} else {
 977#ifndef final_version
 978					if (yellowfin_debug > 4)
 979						netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n",
 980							      tx_errs);
 981#endif
 982					dev->stats.tx_bytes += skb->len;
 983					dev->stats.collisions += tx_errs & 15;
 984					dev->stats.tx_packets++;
 985				}
 986				/* Free the original skb. */
 987				pci_unmap_single(yp->pci_dev,
 988					yp->tx_ring[entry<<1].addr, skb->len,
 989					PCI_DMA_TODEVICE);
 990				dev_kfree_skb_irq(skb);
 991				yp->tx_skbuff[entry] = 0;
 992				/* Mark status as empty. */
 993				yp->tx_status[entry].tx_errs = 0;
 994			}
 995
 996#ifndef final_version
 997			if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
 998				netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n",
 999					   dirty_tx, yp->cur_tx, yp->tx_full);
1000				dirty_tx += TX_RING_SIZE;
1001			}
1002#endif
1003
1004			if (yp->tx_full &&
1005			    yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1006				/* The ring is no longer full, clear tbusy. */
1007				yp->tx_full = 0;
1008				netif_wake_queue(dev);
1009			}
1010
1011			yp->dirty_tx = dirty_tx;
1012			yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1013		}
1014#endif
1015
1016		/* Log errors and other uncommon events. */
1017		if (intr_status & 0x2ee)	/* Abnormal error summary. */
1018			yellowfin_error(dev, intr_status);
1019
1020		if (--boguscnt < 0) {
1021			netdev_warn(dev, "Too much work at interrupt, status=%#04x\n",
1022				    intr_status);
1023			break;
1024		}
1025	} while (1);
1026
1027	if (yellowfin_debug > 3)
1028		netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n",
1029			      ioread16(ioaddr + IntrStatus));
1030
1031	spin_unlock (&yp->lock);
1032	return IRQ_RETVAL(handled);
1033}
1034
1035/* This routine is logically part of the interrupt handler, but separated
1036   for clarity and better register allocation. */
1037static int yellowfin_rx(struct net_device *dev)
1038{
1039	struct yellowfin_private *yp = netdev_priv(dev);
1040	int entry = yp->cur_rx % RX_RING_SIZE;
1041	int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1042
1043	if (yellowfin_debug > 4) {
1044		printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n",
1045			   entry, yp->rx_ring[entry].result_status);
1046		printk(KERN_DEBUG "   #%d desc. %08x %08x %08x\n",
1047			   entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1048			   yp->rx_ring[entry].result_status);
1049	}
1050
1051	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1052	while (1) {
1053		struct yellowfin_desc *desc = &yp->rx_ring[entry];
1054		struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1055		s16 frame_status;
1056		u16 desc_status;
1057		int data_size;
1058		u8 *buf_addr;
1059
1060		if(!desc->result_status)
1061			break;
1062		pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1063			yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1064		desc_status = le32_to_cpu(desc->result_status) >> 16;
1065		buf_addr = rx_skb->data;
1066		data_size = (le32_to_cpu(desc->dbdma_cmd) -
1067			le32_to_cpu(desc->result_status)) & 0xffff;
1068		frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1069		if (yellowfin_debug > 4)
1070			printk(KERN_DEBUG "  %s() status was %04x\n",
1071			       __func__, frame_status);
1072		if (--boguscnt < 0)
1073			break;
1074		if ( ! (desc_status & RX_EOP)) {
1075			if (data_size != 0)
1076				netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n",
1077					    desc_status, data_size);
1078			dev->stats.rx_length_errors++;
1079		} else if ((yp->drv_flags & IsGigabit)  &&  (frame_status & 0x0038)) {
1080			/* There was a error. */
1081			if (yellowfin_debug > 3)
1082				printk(KERN_DEBUG "  %s() Rx error was %04x\n",
1083				       __func__, frame_status);
1084			dev->stats.rx_errors++;
1085			if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1086			if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1087			if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1088			if (frame_status < 0) dev->stats.rx_dropped++;
1089		} else if ( !(yp->drv_flags & IsGigabit)  &&
1090				   ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1091			u8 status1 = buf_addr[data_size-2];
1092			u8 status2 = buf_addr[data_size-1];
1093			dev->stats.rx_errors++;
1094			if (status1 & 0xC0) dev->stats.rx_length_errors++;
1095			if (status2 & 0x03) dev->stats.rx_frame_errors++;
1096			if (status2 & 0x04) dev->stats.rx_crc_errors++;
1097			if (status2 & 0x80) dev->stats.rx_dropped++;
1098#ifdef YF_PROTOTYPE		/* Support for prototype hardware errata. */
1099		} else if ((yp->flags & HasMACAddrBug)  &&
1100			memcmp(le32_to_cpu(yp->rx_ring_dma +
1101				entry*sizeof(struct yellowfin_desc)),
1102				dev->dev_addr, 6) != 0 &&
1103			memcmp(le32_to_cpu(yp->rx_ring_dma +
1104				entry*sizeof(struct yellowfin_desc)),
1105				"\377\377\377\377\377\377", 6) != 0) {
1106			if (bogus_rx++ == 0)
1107				netdev_warn(dev, "Bad frame to %pM\n",
1108					    buf_addr);
1109#endif
1110		} else {
1111			struct sk_buff *skb;
1112			int pkt_len = data_size -
1113				(yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1114			/* To verify: Yellowfin Length should omit the CRC! */
1115
1116#ifndef final_version
1117			if (yellowfin_debug > 4)
1118				printk(KERN_DEBUG "  %s() normal Rx pkt length %d of %d, bogus_cnt %d\n",
1119				       __func__, pkt_len, data_size, boguscnt);
1120#endif
1121			/* Check if the packet is long enough to just pass up the skbuff
1122			   without copying to a properly sized skbuff. */
1123			if (pkt_len > rx_copybreak) {
1124				skb_put(skb = rx_skb, pkt_len);
1125				pci_unmap_single(yp->pci_dev,
1126					le32_to_cpu(yp->rx_ring[entry].addr),
1127					yp->rx_buf_sz,
1128					PCI_DMA_FROMDEVICE);
1129				yp->rx_skbuff[entry] = NULL;
1130			} else {
1131				skb = netdev_alloc_skb(dev, pkt_len + 2);
1132				if (skb == NULL)
1133					break;
1134				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1135				skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1136				skb_put(skb, pkt_len);
1137				pci_dma_sync_single_for_device(yp->pci_dev,
1138								le32_to_cpu(desc->addr),
1139								yp->rx_buf_sz,
1140								PCI_DMA_FROMDEVICE);
1141			}
1142			skb->protocol = eth_type_trans(skb, dev);
1143			netif_rx(skb);
1144			dev->stats.rx_packets++;
1145			dev->stats.rx_bytes += pkt_len;
1146		}
1147		entry = (++yp->cur_rx) % RX_RING_SIZE;
1148	}
1149
1150	/* Refill the Rx ring buffers. */
1151	for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1152		entry = yp->dirty_rx % RX_RING_SIZE;
1153		if (yp->rx_skbuff[entry] == NULL) {
1154			struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
1155			if (skb == NULL)
1156				break;				/* Better luck next round. */
1157			yp->rx_skbuff[entry] = skb;
1158			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
1159			yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1160				skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1161		}
1162		yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1163		yp->rx_ring[entry].result_status = 0;	/* Clear complete bit. */
1164		if (entry != 0)
1165			yp->rx_ring[entry - 1].dbdma_cmd =
1166				cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1167		else
1168			yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1169				cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1170							| yp->rx_buf_sz);
1171	}
1172
1173	return 0;
1174}
1175
1176static void yellowfin_error(struct net_device *dev, int intr_status)
1177{
1178	netdev_err(dev, "Something Wicked happened! %04x\n", intr_status);
1179	/* Hmmmmm, it's not clear what to do here. */
1180	if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1181		dev->stats.tx_errors++;
1182	if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1183		dev->stats.rx_errors++;
1184}
1185
1186static int yellowfin_close(struct net_device *dev)
1187{
1188	struct yellowfin_private *yp = netdev_priv(dev);
1189	void __iomem *ioaddr = yp->base;
1190	int i;
1191
1192	netif_stop_queue (dev);
1193
1194	if (yellowfin_debug > 1) {
1195		netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n",
1196			      ioread16(ioaddr + TxStatus),
1197			      ioread16(ioaddr + RxStatus),
1198			      ioread16(ioaddr + IntrStatus));
1199		netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d,  Rx %d / %d\n",
1200			      yp->cur_tx, yp->dirty_tx,
1201			      yp->cur_rx, yp->dirty_rx);
1202	}
1203
1204	/* Disable interrupts by clearing the interrupt mask. */
1205	iowrite16(0x0000, ioaddr + IntrEnb);
1206
1207	/* Stop the chip's Tx and Rx processes. */
1208	iowrite32(0x80000000, ioaddr + RxCtrl);
1209	iowrite32(0x80000000, ioaddr + TxCtrl);
1210
1211	del_timer(&yp->timer);
1212
1213#if defined(__i386__)
1214	if (yellowfin_debug > 2) {
1215		printk(KERN_DEBUG "  Tx ring at %08llx:\n",
1216				(unsigned long long)yp->tx_ring_dma);
1217		for (i = 0; i < TX_RING_SIZE*2; i++)
1218			printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n",
1219				   ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1220				   i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1221				   yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1222		printk(KERN_DEBUG "  Tx status %p:\n", yp->tx_status);
1223		for (i = 0; i < TX_RING_SIZE; i++)
1224			printk(KERN_DEBUG "   #%d status %04x %04x %04x %04x\n",
1225				   i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1226				   yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1227
1228		printk(KERN_DEBUG "  Rx ring %08llx:\n",
1229				(unsigned long long)yp->rx_ring_dma);
1230		for (i = 0; i < RX_RING_SIZE; i++) {
1231			printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n",
1232				   ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1233				   i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1234				   yp->rx_ring[i].result_status);
1235			if (yellowfin_debug > 6) {
1236				if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1237					int j;
1238
1239					printk(KERN_DEBUG);
1240					for (j = 0; j < 0x50; j++)
1241						pr_cont(" %04x",
1242							get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1243					pr_cont("\n");
1244				}
1245			}
1246		}
1247	}
1248#endif /* __i386__ debugging only */
1249
1250	free_irq(yp->pci_dev->irq, dev);
1251
1252	/* Free all the skbuffs in the Rx queue. */
1253	for (i = 0; i < RX_RING_SIZE; i++) {
1254		yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1255		yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1256		if (yp->rx_skbuff[i]) {
1257			dev_kfree_skb(yp->rx_skbuff[i]);
1258		}
1259		yp->rx_skbuff[i] = NULL;
1260	}
1261	for (i = 0; i < TX_RING_SIZE; i++) {
1262		if (yp->tx_skbuff[i])
1263			dev_kfree_skb(yp->tx_skbuff[i]);
1264		yp->tx_skbuff[i] = NULL;
1265	}
1266
1267#ifdef YF_PROTOTYPE			/* Support for prototype hardware errata. */
1268	if (yellowfin_debug > 0) {
1269		netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n",
1270			      bogus_rx);
1271	}
1272#endif
1273
1274	return 0;
1275}
1276
1277/* Set or clear the multicast filter for this adaptor. */
1278
1279static void set_rx_mode(struct net_device *dev)
1280{
1281	struct yellowfin_private *yp = netdev_priv(dev);
1282	void __iomem *ioaddr = yp->base;
1283	u16 cfg_value = ioread16(ioaddr + Cnfg);
1284
1285	/* Stop the Rx process to change any value. */
1286	iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1287	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1288		iowrite16(0x000F, ioaddr + AddrMode);
1289	} else if ((netdev_mc_count(dev) > 64) ||
1290		   (dev->flags & IFF_ALLMULTI)) {
1291		/* Too many to filter well, or accept all multicasts. */
1292		iowrite16(0x000B, ioaddr + AddrMode);
1293	} else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */
1294		struct netdev_hw_addr *ha;
1295		u16 hash_table[4];
1296		int i;
1297
1298		memset(hash_table, 0, sizeof(hash_table));
1299		netdev_for_each_mc_addr(ha, dev) {
1300			unsigned int bit;
1301
1302			/* Due to a bug in the early chip versions, multiple filter
1303			   slots must be set for each address. */
1304			if (yp->drv_flags & HasMulticastBug) {
1305				bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f;
1306				hash_table[bit >> 4] |= (1 << bit);
1307				bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f;
1308				hash_table[bit >> 4] |= (1 << bit);
1309				bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f;
1310				hash_table[bit >> 4] |= (1 << bit);
1311			}
1312			bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f;
1313			hash_table[bit >> 4] |= (1 << bit);
1314		}
1315		/* Copy the hash table to the chip. */
1316		for (i = 0; i < 4; i++)
1317			iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1318		iowrite16(0x0003, ioaddr + AddrMode);
1319	} else {					/* Normal, unicast/broadcast-only mode. */
1320		iowrite16(0x0001, ioaddr + AddrMode);
1321	}
1322	/* Restart the Rx process. */
1323	iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1324}
1325
1326static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1327{
1328	struct yellowfin_private *np = netdev_priv(dev);
1329	strcpy(info->driver, DRV_NAME);
1330	strcpy(info->version, DRV_VERSION);
1331	strcpy(info->bus_info, pci_name(np->pci_dev));
1332}
1333
1334static const struct ethtool_ops ethtool_ops = {
1335	.get_drvinfo = yellowfin_get_drvinfo
1336};
1337
1338static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1339{
1340	struct yellowfin_private *np = netdev_priv(dev);
1341	void __iomem *ioaddr = np->base;
1342	struct mii_ioctl_data *data = if_mii(rq);
1343
1344	switch(cmd) {
1345	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
1346		data->phy_id = np->phys[0] & 0x1f;
1347		/* Fall Through */
1348
1349	case SIOCGMIIREG:		/* Read MII PHY register. */
1350		data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1351		return 0;
1352
1353	case SIOCSMIIREG:		/* Write MII PHY register. */
1354		if (data->phy_id == np->phys[0]) {
1355			u16 value = data->val_in;
1356			switch (data->reg_num) {
1357			case 0:
1358				/* Check for autonegotiation on or reset. */
1359				np->medialock = (value & 0x9000) ? 0 : 1;
1360				if (np->medialock)
1361					np->full_duplex = (value & 0x0100) ? 1 : 0;
1362				break;
1363			case 4: np->advertising = value; break;
1364			}
1365			/* Perhaps check_duplex(dev), depending on chip semantics. */
1366		}
1367		mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1368		return 0;
1369	default:
1370		return -EOPNOTSUPP;
1371	}
1372}
1373
1374
1375static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1376{
1377	struct net_device *dev = pci_get_drvdata(pdev);
1378	struct yellowfin_private *np;
1379
1380	BUG_ON(!dev);
1381	np = netdev_priv(dev);
1382
1383        pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1384		np->tx_status_dma);
1385	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1386	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1387	unregister_netdev (dev);
1388
1389	pci_iounmap(pdev, np->base);
1390
1391	pci_release_regions (pdev);
1392
1393	free_netdev (dev);
1394	pci_set_drvdata(pdev, NULL);
1395}
1396
1397
1398static struct pci_driver yellowfin_driver = {
1399	.name		= DRV_NAME,
1400	.id_table	= yellowfin_pci_tbl,
1401	.probe		= yellowfin_init_one,
1402	.remove		= __devexit_p(yellowfin_remove_one),
1403};
1404
1405
1406static int __init yellowfin_init (void)
1407{
1408/* when a module, this is printed whether or not devices are found in probe */
1409#ifdef MODULE
1410	printk(version);
1411#endif
1412	return pci_register_driver(&yellowfin_driver);
1413}
1414
1415
1416static void __exit yellowfin_cleanup (void)
1417{
1418	pci_unregister_driver (&yellowfin_driver);
1419}
1420
1421
1422module_init(yellowfin_init);
1423module_exit(yellowfin_cleanup);