Loading...
Note: File does not exist in v3.1.
1/* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2/*
3 Written 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
23
24*/
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#define DRV_NAME "yellowfin"
29#define DRV_VERSION "2.1"
30#define DRV_RELDATE "Sep 11, 2006"
31
32/* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37static int max_interrupt_work = 20;
38static int mtu;
39#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40/* System-wide count of bogus-rx frames. */
41static int bogus_rx;
42static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44#elif defined(YF_NEW) /* A future perfect board :->. */
45static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46static int fifo_cfg = 0x0028;
47#else
48static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50#endif
51
52/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54static int rx_copybreak;
55
56/* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
59*/
60#define MAX_UNITS 8 /* More are supported, limit only on options */
61static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63
64/* Do ugly workaround for GX server chipset errata. */
65static int gx_fix;
66
67/* Operational parameters that are set at compile time. */
68
69/* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73#define TX_RING_SIZE 16
74#define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75#define RX_RING_SIZE 64
76#define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77#define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
79
80/* Operational parameters that usually are not changed. */
81/* Time in jiffies before concluding the transmitter is hung. */
82#define TX_TIMEOUT (2*HZ)
83#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85#define yellowfin_debug debug
86
87#include <linux/module.h>
88#include <linux/kernel.h>
89#include <linux/string.h>
90#include <linux/timer.h>
91#include <linux/errno.h>
92#include <linux/ioport.h>
93#include <linux/interrupt.h>
94#include <linux/pci.h>
95#include <linux/init.h>
96#include <linux/mii.h>
97#include <linux/netdevice.h>
98#include <linux/etherdevice.h>
99#include <linux/skbuff.h>
100#include <linux/ethtool.h>
101#include <linux/crc32.h>
102#include <linux/bitops.h>
103#include <asm/uaccess.h>
104#include <asm/processor.h> /* Processor type for cache alignment. */
105#include <asm/unaligned.h>
106#include <asm/io.h>
107
108/* These identify the driver base version and may not be removed. */
109static const char version[] __devinitconst =
110 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
111 " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
112
113MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
114MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
115MODULE_LICENSE("GPL");
116
117module_param(max_interrupt_work, int, 0);
118module_param(mtu, int, 0);
119module_param(debug, int, 0);
120module_param(rx_copybreak, int, 0);
121module_param_array(options, int, NULL, 0);
122module_param_array(full_duplex, int, NULL, 0);
123module_param(gx_fix, int, 0);
124MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
125MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
126MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
127MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
128MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
129MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
130MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
131
132/*
133 Theory of Operation
134
135I. Board Compatibility
136
137This device driver is designed for the Packet Engines "Yellowfin" Gigabit
138Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
139Symbios 53C885E dual function chip.
140
141II. Board-specific settings
142
143PCI bus devices are configured by the system at boot time, so no jumpers
144need to be set on the board. The system BIOS preferably should assign the
145PCI INTA signal to an otherwise unused system IRQ line.
146Note: Kernel versions earlier than 1.3.73 do not support shared PCI
147interrupt lines.
148
149III. Driver operation
150
151IIIa. Ring buffers
152
153The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
154This is a descriptor list scheme similar to that used by the EEPro100 and
155Tulip. This driver uses two statically allocated fixed-size descriptor lists
156formed into rings by a branch from the final descriptor to the beginning of
157the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
158
159The driver allocates full frame size skbuffs for the Rx ring buffers at
160open() time and passes the skb->data field to the Yellowfin as receive data
161buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
162a fresh skbuff is allocated and the frame is copied to the new skbuff.
163When the incoming frame is larger, the skbuff is passed directly up the
164protocol stack and replaced by a newly allocated skbuff.
165
166The RX_COPYBREAK value is chosen to trade-off the memory wasted by
167using a full-sized skbuff for small frames vs. the copying costs of larger
168frames. For small frames the copying cost is negligible (esp. considering
169that we are pre-loading the cache with immediately useful header
170information). For large frames the copying cost is non-trivial, and the
171larger copy might flush the cache of useful data.
172
173IIIC. Synchronization
174
175The driver runs as two independent, single-threaded flows of control. One
176is the send-packet routine, which enforces single-threaded use by the
177dev->tbusy flag. The other thread is the interrupt handler, which is single
178threaded by the hardware and other software.
179
180The send packet thread has partial control over the Tx ring and 'dev->tbusy'
181flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
182queue slot is empty, it clears the tbusy flag when finished otherwise it sets
183the 'yp->tx_full' flag.
184
185The interrupt handler has exclusive control over the Rx ring and records stats
186from the Tx ring. After reaping the stats, it marks the Tx queue entry as
187empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
188clears both the tx_full and tbusy flags.
189
190IV. Notes
191
192Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
193Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
194and an AlphaStation to verifty the Alpha port!
195
196IVb. References
197
198Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
199Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
200 Data Manual v3.0
201http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
202http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
203
204IVc. Errata
205
206See Packet Engines confidential appendix (prototype chips only).
207*/
208
209
210
211enum capability_flags {
212 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
213 HasMACAddrBug=32, /* Only on early revs. */
214 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
215};
216
217/* The PCI I/O space extent. */
218enum {
219 YELLOWFIN_SIZE = 0x100,
220};
221
222struct pci_id_info {
223 const char *name;
224 struct match_info {
225 int pci, pci_mask, subsystem, subsystem_mask;
226 int revision, revision_mask; /* Only 8 bits. */
227 } id;
228 int drv_flags; /* Driver use, intended as capability flags. */
229};
230
231static const struct pci_id_info pci_id_tbl[] = {
232 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
233 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
234 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
235 HasMII | DontUseEeprom },
236 { }
237};
238
239static DEFINE_PCI_DEVICE_TABLE(yellowfin_pci_tbl) = {
240 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
241 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
242 { }
243};
244MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
245
246
247/* Offsets to the Yellowfin registers. Various sizes and alignments. */
248enum yellowfin_offsets {
249 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
250 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
251 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
252 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
253 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
254 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
255 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
256 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
257 MII_Status=0xAE,
258 RxDepth=0xB8, FlowCtrl=0xBC,
259 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
260 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
261 EEFeature=0xF5,
262};
263
264/* The Yellowfin Rx and Tx buffer descriptors.
265 Elements are written as 32 bit for endian portability. */
266struct yellowfin_desc {
267 __le32 dbdma_cmd;
268 __le32 addr;
269 __le32 branch_addr;
270 __le32 result_status;
271};
272
273struct tx_status_words {
274#ifdef __BIG_ENDIAN
275 u16 tx_errs;
276 u16 tx_cnt;
277 u16 paused;
278 u16 total_tx_cnt;
279#else /* Little endian chips. */
280 u16 tx_cnt;
281 u16 tx_errs;
282 u16 total_tx_cnt;
283 u16 paused;
284#endif /* __BIG_ENDIAN */
285};
286
287/* Bits in yellowfin_desc.cmd */
288enum desc_cmd_bits {
289 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
290 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
291 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
292 BRANCH_IFTRUE=0x040000,
293};
294
295/* Bits in yellowfin_desc.status */
296enum desc_status_bits { RX_EOP=0x0040, };
297
298/* Bits in the interrupt status/mask registers. */
299enum intr_status_bits {
300 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
301 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
302 IntrEarlyRx=0x100, IntrWakeup=0x200, };
303
304#define PRIV_ALIGN 31 /* Required alignment mask */
305#define MII_CNT 4
306struct yellowfin_private {
307 /* Descriptor rings first for alignment.
308 Tx requires a second descriptor for status. */
309 struct yellowfin_desc *rx_ring;
310 struct yellowfin_desc *tx_ring;
311 struct sk_buff* rx_skbuff[RX_RING_SIZE];
312 struct sk_buff* tx_skbuff[TX_RING_SIZE];
313 dma_addr_t rx_ring_dma;
314 dma_addr_t tx_ring_dma;
315
316 struct tx_status_words *tx_status;
317 dma_addr_t tx_status_dma;
318
319 struct timer_list timer; /* Media selection timer. */
320 /* Frequently used and paired value: keep adjacent for cache effect. */
321 int chip_id, drv_flags;
322 struct pci_dev *pci_dev;
323 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
324 unsigned int rx_buf_sz; /* Based on MTU+slack. */
325 struct tx_status_words *tx_tail_desc;
326 unsigned int cur_tx, dirty_tx;
327 int tx_threshold;
328 unsigned int tx_full:1; /* The Tx queue is full. */
329 unsigned int full_duplex:1; /* Full-duplex operation requested. */
330 unsigned int duplex_lock:1;
331 unsigned int medialock:1; /* Do not sense media. */
332 unsigned int default_port:4; /* Last dev->if_port value. */
333 /* MII transceiver section. */
334 int mii_cnt; /* MII device addresses. */
335 u16 advertising; /* NWay media advertisement */
336 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
337 spinlock_t lock;
338 void __iomem *base;
339};
340
341static int read_eeprom(void __iomem *ioaddr, int location);
342static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
343static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
344static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
345static int yellowfin_open(struct net_device *dev);
346static void yellowfin_timer(unsigned long data);
347static void yellowfin_tx_timeout(struct net_device *dev);
348static int yellowfin_init_ring(struct net_device *dev);
349static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
350 struct net_device *dev);
351static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352static int yellowfin_rx(struct net_device *dev);
353static void yellowfin_error(struct net_device *dev, int intr_status);
354static int yellowfin_close(struct net_device *dev);
355static void set_rx_mode(struct net_device *dev);
356static const struct ethtool_ops ethtool_ops;
357
358static const struct net_device_ops netdev_ops = {
359 .ndo_open = yellowfin_open,
360 .ndo_stop = yellowfin_close,
361 .ndo_start_xmit = yellowfin_start_xmit,
362 .ndo_set_rx_mode = set_rx_mode,
363 .ndo_change_mtu = eth_change_mtu,
364 .ndo_validate_addr = eth_validate_addr,
365 .ndo_set_mac_address = eth_mac_addr,
366 .ndo_do_ioctl = netdev_ioctl,
367 .ndo_tx_timeout = yellowfin_tx_timeout,
368};
369
370static int __devinit yellowfin_init_one(struct pci_dev *pdev,
371 const struct pci_device_id *ent)
372{
373 struct net_device *dev;
374 struct yellowfin_private *np;
375 int irq;
376 int chip_idx = ent->driver_data;
377 static int find_cnt;
378 void __iomem *ioaddr;
379 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
380 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
381 void *ring_space;
382 dma_addr_t ring_dma;
383#ifdef USE_IO_OPS
384 int bar = 0;
385#else
386 int bar = 1;
387#endif
388
389/* when built into the kernel, we only print version if device is found */
390#ifndef MODULE
391 static int printed_version;
392 if (!printed_version++)
393 printk(version);
394#endif
395
396 i = pci_enable_device(pdev);
397 if (i) return i;
398
399 dev = alloc_etherdev(sizeof(*np));
400 if (!dev)
401 return -ENOMEM;
402
403 SET_NETDEV_DEV(dev, &pdev->dev);
404
405 np = netdev_priv(dev);
406
407 if (pci_request_regions(pdev, DRV_NAME))
408 goto err_out_free_netdev;
409
410 pci_set_master (pdev);
411
412 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
413 if (!ioaddr)
414 goto err_out_free_res;
415
416 irq = pdev->irq;
417
418 if (drv_flags & DontUseEeprom)
419 for (i = 0; i < 6; i++)
420 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
421 else {
422 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
423 for (i = 0; i < 6; i++)
424 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
425 }
426
427 /* Reset the chip. */
428 iowrite32(0x80000000, ioaddr + DMACtrl);
429
430 pci_set_drvdata(pdev, dev);
431 spin_lock_init(&np->lock);
432
433 np->pci_dev = pdev;
434 np->chip_id = chip_idx;
435 np->drv_flags = drv_flags;
436 np->base = ioaddr;
437
438 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
439 if (!ring_space)
440 goto err_out_cleardev;
441 np->tx_ring = ring_space;
442 np->tx_ring_dma = ring_dma;
443
444 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
445 if (!ring_space)
446 goto err_out_unmap_tx;
447 np->rx_ring = ring_space;
448 np->rx_ring_dma = ring_dma;
449
450 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
451 if (!ring_space)
452 goto err_out_unmap_rx;
453 np->tx_status = ring_space;
454 np->tx_status_dma = ring_dma;
455
456 if (dev->mem_start)
457 option = dev->mem_start;
458
459 /* The lower four bits are the media type. */
460 if (option > 0) {
461 if (option & 0x200)
462 np->full_duplex = 1;
463 np->default_port = option & 15;
464 if (np->default_port)
465 np->medialock = 1;
466 }
467 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
468 np->full_duplex = 1;
469
470 if (np->full_duplex)
471 np->duplex_lock = 1;
472
473 /* The Yellowfin-specific entries in the device structure. */
474 dev->netdev_ops = &netdev_ops;
475 SET_ETHTOOL_OPS(dev, ðtool_ops);
476 dev->watchdog_timeo = TX_TIMEOUT;
477
478 if (mtu)
479 dev->mtu = mtu;
480
481 i = register_netdev(dev);
482 if (i)
483 goto err_out_unmap_status;
484
485 netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n",
486 pci_id_tbl[chip_idx].name,
487 ioread32(ioaddr + ChipRev), ioaddr,
488 dev->dev_addr, irq);
489
490 if (np->drv_flags & HasMII) {
491 int phy, phy_idx = 0;
492 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
493 int mii_status = mdio_read(ioaddr, phy, 1);
494 if (mii_status != 0xffff && mii_status != 0x0000) {
495 np->phys[phy_idx++] = phy;
496 np->advertising = mdio_read(ioaddr, phy, 4);
497 netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n",
498 phy, mii_status, np->advertising);
499 }
500 }
501 np->mii_cnt = phy_idx;
502 }
503
504 find_cnt++;
505
506 return 0;
507
508err_out_unmap_status:
509 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
510 np->tx_status_dma);
511err_out_unmap_rx:
512 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
513err_out_unmap_tx:
514 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
515err_out_cleardev:
516 pci_set_drvdata(pdev, NULL);
517 pci_iounmap(pdev, ioaddr);
518err_out_free_res:
519 pci_release_regions(pdev);
520err_out_free_netdev:
521 free_netdev (dev);
522 return -ENODEV;
523}
524
525static int __devinit read_eeprom(void __iomem *ioaddr, int location)
526{
527 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
528
529 iowrite8(location, ioaddr + EEAddr);
530 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
531 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
532 ;
533 return ioread8(ioaddr + EERead);
534}
535
536/* MII Managemen Data I/O accesses.
537 These routines assume the MDIO controller is idle, and do not exit until
538 the command is finished. */
539
540static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
541{
542 int i;
543
544 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
545 iowrite16(1, ioaddr + MII_Cmd);
546 for (i = 10000; i >= 0; i--)
547 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
548 break;
549 return ioread16(ioaddr + MII_Rd_Data);
550}
551
552static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
553{
554 int i;
555
556 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
557 iowrite16(value, ioaddr + MII_Wr_Data);
558
559 /* Wait for the command to finish. */
560 for (i = 10000; i >= 0; i--)
561 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
562 break;
563}
564
565
566static int yellowfin_open(struct net_device *dev)
567{
568 struct yellowfin_private *yp = netdev_priv(dev);
569 const int irq = yp->pci_dev->irq;
570 void __iomem *ioaddr = yp->base;
571 int i, rc;
572
573 /* Reset the chip. */
574 iowrite32(0x80000000, ioaddr + DMACtrl);
575
576 rc = request_irq(irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
577 if (rc)
578 return rc;
579
580 rc = yellowfin_init_ring(dev);
581 if (rc < 0)
582 goto err_free_irq;
583
584 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
585 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
586
587 for (i = 0; i < 6; i++)
588 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
589
590 /* Set up various condition 'select' registers.
591 There are no options here. */
592 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
593 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
594 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
595 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
596 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
597 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
598
599 /* Initialize other registers: with so many this eventually this will
600 converted to an offset/value list. */
601 iowrite32(dma_ctrl, ioaddr + DMACtrl);
602 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
603 /* Enable automatic generation of flow control frames, period 0xffff. */
604 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
605
606 yp->tx_threshold = 32;
607 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
608
609 if (dev->if_port == 0)
610 dev->if_port = yp->default_port;
611
612 netif_start_queue(dev);
613
614 /* Setting the Rx mode will start the Rx process. */
615 if (yp->drv_flags & IsGigabit) {
616 /* We are always in full-duplex mode with gigabit! */
617 yp->full_duplex = 1;
618 iowrite16(0x01CF, ioaddr + Cnfg);
619 } else {
620 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
621 iowrite16(0x1018, ioaddr + FrameGap1);
622 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
623 }
624 set_rx_mode(dev);
625
626 /* Enable interrupts by setting the interrupt mask. */
627 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
628 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
629 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
630 iowrite32(0x80008000, ioaddr + TxCtrl);
631
632 if (yellowfin_debug > 2) {
633 netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__);
634 }
635
636 /* Set the timer to check for link beat. */
637 init_timer(&yp->timer);
638 yp->timer.expires = jiffies + 3*HZ;
639 yp->timer.data = (unsigned long)dev;
640 yp->timer.function = yellowfin_timer; /* timer handler */
641 add_timer(&yp->timer);
642out:
643 return rc;
644
645err_free_irq:
646 free_irq(irq, dev);
647 goto out;
648}
649
650static void yellowfin_timer(unsigned long data)
651{
652 struct net_device *dev = (struct net_device *)data;
653 struct yellowfin_private *yp = netdev_priv(dev);
654 void __iomem *ioaddr = yp->base;
655 int next_tick = 60*HZ;
656
657 if (yellowfin_debug > 3) {
658 netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n",
659 ioread16(ioaddr + IntrStatus));
660 }
661
662 if (yp->mii_cnt) {
663 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
664 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
665 int negotiated = lpa & yp->advertising;
666 if (yellowfin_debug > 1)
667 netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n",
668 yp->phys[0], bmsr, lpa);
669
670 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
671
672 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
673
674 if (bmsr & BMSR_LSTATUS)
675 next_tick = 60*HZ;
676 else
677 next_tick = 3*HZ;
678 }
679
680 yp->timer.expires = jiffies + next_tick;
681 add_timer(&yp->timer);
682}
683
684static void yellowfin_tx_timeout(struct net_device *dev)
685{
686 struct yellowfin_private *yp = netdev_priv(dev);
687 void __iomem *ioaddr = yp->base;
688
689 netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n",
690 yp->cur_tx, yp->dirty_tx,
691 ioread32(ioaddr + TxStatus),
692 ioread32(ioaddr + RxStatus));
693
694 /* Note: these should be KERN_DEBUG. */
695 if (yellowfin_debug) {
696 int i;
697 pr_warning(" Rx ring %p: ", yp->rx_ring);
698 for (i = 0; i < RX_RING_SIZE; i++)
699 pr_cont(" %08x", yp->rx_ring[i].result_status);
700 pr_cont("\n");
701 pr_warning(" Tx ring %p: ", yp->tx_ring);
702 for (i = 0; i < TX_RING_SIZE; i++)
703 pr_cont(" %04x /%08x",
704 yp->tx_status[i].tx_errs,
705 yp->tx_ring[i].result_status);
706 pr_cont("\n");
707 }
708
709 /* If the hardware is found to hang regularly, we will update the code
710 to reinitialize the chip here. */
711 dev->if_port = 0;
712
713 /* Wake the potentially-idle transmit channel. */
714 iowrite32(0x10001000, yp->base + TxCtrl);
715 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
716 netif_wake_queue (dev); /* Typical path */
717
718 dev->trans_start = jiffies; /* prevent tx timeout */
719 dev->stats.tx_errors++;
720}
721
722/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
723static int yellowfin_init_ring(struct net_device *dev)
724{
725 struct yellowfin_private *yp = netdev_priv(dev);
726 int i, j;
727
728 yp->tx_full = 0;
729 yp->cur_rx = yp->cur_tx = 0;
730 yp->dirty_tx = 0;
731
732 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
733
734 for (i = 0; i < RX_RING_SIZE; i++) {
735 yp->rx_ring[i].dbdma_cmd =
736 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
737 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
738 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
739 }
740
741 for (i = 0; i < RX_RING_SIZE; i++) {
742 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
743 yp->rx_skbuff[i] = skb;
744 if (skb == NULL)
745 break;
746 skb_reserve(skb, 2); /* 16 byte align the IP header. */
747 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
748 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
749 }
750 if (i != RX_RING_SIZE) {
751 for (j = 0; j < i; j++)
752 dev_kfree_skb(yp->rx_skbuff[j]);
753 return -ENOMEM;
754 }
755 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
756 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
757
758#define NO_TXSTATS
759#ifdef NO_TXSTATS
760 /* In this mode the Tx ring needs only a single descriptor. */
761 for (i = 0; i < TX_RING_SIZE; i++) {
762 yp->tx_skbuff[i] = NULL;
763 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
764 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
765 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
766 }
767 /* Wrap ring */
768 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
769#else
770{
771 /* Tx ring needs a pair of descriptors, the second for the status. */
772 for (i = 0; i < TX_RING_SIZE; i++) {
773 j = 2*i;
774 yp->tx_skbuff[i] = 0;
775 /* Branch on Tx error. */
776 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
777 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
778 (j+1)*sizeof(struct yellowfin_desc));
779 j++;
780 if (yp->flags & FullTxStatus) {
781 yp->tx_ring[j].dbdma_cmd =
782 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
783 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
784 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
785 i*sizeof(struct tx_status_words));
786 } else {
787 /* Symbios chips write only tx_errs word. */
788 yp->tx_ring[j].dbdma_cmd =
789 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
790 yp->tx_ring[j].request_cnt = 2;
791 /* Om pade ummmmm... */
792 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
793 i*sizeof(struct tx_status_words) +
794 &(yp->tx_status[0].tx_errs) -
795 &(yp->tx_status[0]));
796 }
797 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
798 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
799 }
800 /* Wrap ring */
801 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
802}
803#endif
804 yp->tx_tail_desc = &yp->tx_status[0];
805 return 0;
806}
807
808static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
809 struct net_device *dev)
810{
811 struct yellowfin_private *yp = netdev_priv(dev);
812 unsigned entry;
813 int len = skb->len;
814
815 netif_stop_queue (dev);
816
817 /* Note: Ordering is important here, set the field with the
818 "ownership" bit last, and only then increment cur_tx. */
819
820 /* Calculate the next Tx descriptor entry. */
821 entry = yp->cur_tx % TX_RING_SIZE;
822
823 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
824 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
825 /* Fix GX chipset errata. */
826 if (cacheline_end > 24 || cacheline_end == 0) {
827 len = skb->len + 32 - cacheline_end + 1;
828 if (skb_padto(skb, len)) {
829 yp->tx_skbuff[entry] = NULL;
830 netif_wake_queue(dev);
831 return NETDEV_TX_OK;
832 }
833 }
834 }
835 yp->tx_skbuff[entry] = skb;
836
837#ifdef NO_TXSTATS
838 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
839 skb->data, len, PCI_DMA_TODEVICE));
840 yp->tx_ring[entry].result_status = 0;
841 if (entry >= TX_RING_SIZE-1) {
842 /* New stop command. */
843 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
844 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
845 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
846 } else {
847 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
848 yp->tx_ring[entry].dbdma_cmd =
849 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
850 }
851 yp->cur_tx++;
852#else
853 yp->tx_ring[entry<<1].request_cnt = len;
854 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
855 skb->data, len, PCI_DMA_TODEVICE));
856 /* The input_last (status-write) command is constant, but we must
857 rewrite the subsequent 'stop' command. */
858
859 yp->cur_tx++;
860 {
861 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
862 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
863 }
864 /* Final step -- overwrite the old 'stop' command. */
865
866 yp->tx_ring[entry<<1].dbdma_cmd =
867 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
868 CMD_TX_PKT | BRANCH_IFTRUE) | len);
869#endif
870
871 /* Non-x86 Todo: explicitly flush cache lines here. */
872
873 /* Wake the potentially-idle transmit channel. */
874 iowrite32(0x10001000, yp->base + TxCtrl);
875
876 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
877 netif_start_queue (dev); /* Typical path */
878 else
879 yp->tx_full = 1;
880
881 if (yellowfin_debug > 4) {
882 netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n",
883 yp->cur_tx, entry);
884 }
885 return NETDEV_TX_OK;
886}
887
888/* The interrupt handler does all of the Rx thread work and cleans up
889 after the Tx thread. */
890static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
891{
892 struct net_device *dev = dev_instance;
893 struct yellowfin_private *yp;
894 void __iomem *ioaddr;
895 int boguscnt = max_interrupt_work;
896 unsigned int handled = 0;
897
898 yp = netdev_priv(dev);
899 ioaddr = yp->base;
900
901 spin_lock (&yp->lock);
902
903 do {
904 u16 intr_status = ioread16(ioaddr + IntrClear);
905
906 if (yellowfin_debug > 4)
907 netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n",
908 intr_status);
909
910 if (intr_status == 0)
911 break;
912 handled = 1;
913
914 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
915 yellowfin_rx(dev);
916 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
917 }
918
919#ifdef NO_TXSTATS
920 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
921 int entry = yp->dirty_tx % TX_RING_SIZE;
922 struct sk_buff *skb;
923
924 if (yp->tx_ring[entry].result_status == 0)
925 break;
926 skb = yp->tx_skbuff[entry];
927 dev->stats.tx_packets++;
928 dev->stats.tx_bytes += skb->len;
929 /* Free the original skb. */
930 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
931 skb->len, PCI_DMA_TODEVICE);
932 dev_kfree_skb_irq(skb);
933 yp->tx_skbuff[entry] = NULL;
934 }
935 if (yp->tx_full &&
936 yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
937 /* The ring is no longer full, clear tbusy. */
938 yp->tx_full = 0;
939 netif_wake_queue(dev);
940 }
941#else
942 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
943 unsigned dirty_tx = yp->dirty_tx;
944
945 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
946 dirty_tx++) {
947 /* Todo: optimize this. */
948 int entry = dirty_tx % TX_RING_SIZE;
949 u16 tx_errs = yp->tx_status[entry].tx_errs;
950 struct sk_buff *skb;
951
952#ifndef final_version
953 if (yellowfin_debug > 5)
954 netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n",
955 entry,
956 yp->tx_status[entry].tx_cnt,
957 yp->tx_status[entry].tx_errs,
958 yp->tx_status[entry].total_tx_cnt,
959 yp->tx_status[entry].paused);
960#endif
961 if (tx_errs == 0)
962 break; /* It still hasn't been Txed */
963 skb = yp->tx_skbuff[entry];
964 if (tx_errs & 0xF810) {
965 /* There was an major error, log it. */
966#ifndef final_version
967 if (yellowfin_debug > 1)
968 netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n",
969 tx_errs);
970#endif
971 dev->stats.tx_errors++;
972 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
973 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
974 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
975 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
976 } else {
977#ifndef final_version
978 if (yellowfin_debug > 4)
979 netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n",
980 tx_errs);
981#endif
982 dev->stats.tx_bytes += skb->len;
983 dev->stats.collisions += tx_errs & 15;
984 dev->stats.tx_packets++;
985 }
986 /* Free the original skb. */
987 pci_unmap_single(yp->pci_dev,
988 yp->tx_ring[entry<<1].addr, skb->len,
989 PCI_DMA_TODEVICE);
990 dev_kfree_skb_irq(skb);
991 yp->tx_skbuff[entry] = 0;
992 /* Mark status as empty. */
993 yp->tx_status[entry].tx_errs = 0;
994 }
995
996#ifndef final_version
997 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
998 netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n",
999 dirty_tx, yp->cur_tx, yp->tx_full);
1000 dirty_tx += TX_RING_SIZE;
1001 }
1002#endif
1003
1004 if (yp->tx_full &&
1005 yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1006 /* The ring is no longer full, clear tbusy. */
1007 yp->tx_full = 0;
1008 netif_wake_queue(dev);
1009 }
1010
1011 yp->dirty_tx = dirty_tx;
1012 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1013 }
1014#endif
1015
1016 /* Log errors and other uncommon events. */
1017 if (intr_status & 0x2ee) /* Abnormal error summary. */
1018 yellowfin_error(dev, intr_status);
1019
1020 if (--boguscnt < 0) {
1021 netdev_warn(dev, "Too much work at interrupt, status=%#04x\n",
1022 intr_status);
1023 break;
1024 }
1025 } while (1);
1026
1027 if (yellowfin_debug > 3)
1028 netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n",
1029 ioread16(ioaddr + IntrStatus));
1030
1031 spin_unlock (&yp->lock);
1032 return IRQ_RETVAL(handled);
1033}
1034
1035/* This routine is logically part of the interrupt handler, but separated
1036 for clarity and better register allocation. */
1037static int yellowfin_rx(struct net_device *dev)
1038{
1039 struct yellowfin_private *yp = netdev_priv(dev);
1040 int entry = yp->cur_rx % RX_RING_SIZE;
1041 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1042
1043 if (yellowfin_debug > 4) {
1044 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n",
1045 entry, yp->rx_ring[entry].result_status);
1046 printk(KERN_DEBUG " #%d desc. %08x %08x %08x\n",
1047 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1048 yp->rx_ring[entry].result_status);
1049 }
1050
1051 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1052 while (1) {
1053 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1054 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1055 s16 frame_status;
1056 u16 desc_status;
1057 int data_size;
1058 u8 *buf_addr;
1059
1060 if(!desc->result_status)
1061 break;
1062 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1063 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1064 desc_status = le32_to_cpu(desc->result_status) >> 16;
1065 buf_addr = rx_skb->data;
1066 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1067 le32_to_cpu(desc->result_status)) & 0xffff;
1068 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1069 if (yellowfin_debug > 4)
1070 printk(KERN_DEBUG " %s() status was %04x\n",
1071 __func__, frame_status);
1072 if (--boguscnt < 0)
1073 break;
1074 if ( ! (desc_status & RX_EOP)) {
1075 if (data_size != 0)
1076 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n",
1077 desc_status, data_size);
1078 dev->stats.rx_length_errors++;
1079 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1080 /* There was a error. */
1081 if (yellowfin_debug > 3)
1082 printk(KERN_DEBUG " %s() Rx error was %04x\n",
1083 __func__, frame_status);
1084 dev->stats.rx_errors++;
1085 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1086 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1087 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1088 if (frame_status < 0) dev->stats.rx_dropped++;
1089 } else if ( !(yp->drv_flags & IsGigabit) &&
1090 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1091 u8 status1 = buf_addr[data_size-2];
1092 u8 status2 = buf_addr[data_size-1];
1093 dev->stats.rx_errors++;
1094 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1095 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1096 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1097 if (status2 & 0x80) dev->stats.rx_dropped++;
1098#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1099 } else if ((yp->flags & HasMACAddrBug) &&
1100 memcmp(le32_to_cpu(yp->rx_ring_dma +
1101 entry*sizeof(struct yellowfin_desc)),
1102 dev->dev_addr, 6) != 0 &&
1103 memcmp(le32_to_cpu(yp->rx_ring_dma +
1104 entry*sizeof(struct yellowfin_desc)),
1105 "\377\377\377\377\377\377", 6) != 0) {
1106 if (bogus_rx++ == 0)
1107 netdev_warn(dev, "Bad frame to %pM\n",
1108 buf_addr);
1109#endif
1110 } else {
1111 struct sk_buff *skb;
1112 int pkt_len = data_size -
1113 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1114 /* To verify: Yellowfin Length should omit the CRC! */
1115
1116#ifndef final_version
1117 if (yellowfin_debug > 4)
1118 printk(KERN_DEBUG " %s() normal Rx pkt length %d of %d, bogus_cnt %d\n",
1119 __func__, pkt_len, data_size, boguscnt);
1120#endif
1121 /* Check if the packet is long enough to just pass up the skbuff
1122 without copying to a properly sized skbuff. */
1123 if (pkt_len > rx_copybreak) {
1124 skb_put(skb = rx_skb, pkt_len);
1125 pci_unmap_single(yp->pci_dev,
1126 le32_to_cpu(yp->rx_ring[entry].addr),
1127 yp->rx_buf_sz,
1128 PCI_DMA_FROMDEVICE);
1129 yp->rx_skbuff[entry] = NULL;
1130 } else {
1131 skb = netdev_alloc_skb(dev, pkt_len + 2);
1132 if (skb == NULL)
1133 break;
1134 skb_reserve(skb, 2); /* 16 byte align the IP header */
1135 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1136 skb_put(skb, pkt_len);
1137 pci_dma_sync_single_for_device(yp->pci_dev,
1138 le32_to_cpu(desc->addr),
1139 yp->rx_buf_sz,
1140 PCI_DMA_FROMDEVICE);
1141 }
1142 skb->protocol = eth_type_trans(skb, dev);
1143 netif_rx(skb);
1144 dev->stats.rx_packets++;
1145 dev->stats.rx_bytes += pkt_len;
1146 }
1147 entry = (++yp->cur_rx) % RX_RING_SIZE;
1148 }
1149
1150 /* Refill the Rx ring buffers. */
1151 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1152 entry = yp->dirty_rx % RX_RING_SIZE;
1153 if (yp->rx_skbuff[entry] == NULL) {
1154 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
1155 if (skb == NULL)
1156 break; /* Better luck next round. */
1157 yp->rx_skbuff[entry] = skb;
1158 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1159 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1160 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1161 }
1162 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1163 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1164 if (entry != 0)
1165 yp->rx_ring[entry - 1].dbdma_cmd =
1166 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1167 else
1168 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1169 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1170 | yp->rx_buf_sz);
1171 }
1172
1173 return 0;
1174}
1175
1176static void yellowfin_error(struct net_device *dev, int intr_status)
1177{
1178 netdev_err(dev, "Something Wicked happened! %04x\n", intr_status);
1179 /* Hmmmmm, it's not clear what to do here. */
1180 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1181 dev->stats.tx_errors++;
1182 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1183 dev->stats.rx_errors++;
1184}
1185
1186static int yellowfin_close(struct net_device *dev)
1187{
1188 struct yellowfin_private *yp = netdev_priv(dev);
1189 void __iomem *ioaddr = yp->base;
1190 int i;
1191
1192 netif_stop_queue (dev);
1193
1194 if (yellowfin_debug > 1) {
1195 netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n",
1196 ioread16(ioaddr + TxStatus),
1197 ioread16(ioaddr + RxStatus),
1198 ioread16(ioaddr + IntrStatus));
1199 netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n",
1200 yp->cur_tx, yp->dirty_tx,
1201 yp->cur_rx, yp->dirty_rx);
1202 }
1203
1204 /* Disable interrupts by clearing the interrupt mask. */
1205 iowrite16(0x0000, ioaddr + IntrEnb);
1206
1207 /* Stop the chip's Tx and Rx processes. */
1208 iowrite32(0x80000000, ioaddr + RxCtrl);
1209 iowrite32(0x80000000, ioaddr + TxCtrl);
1210
1211 del_timer(&yp->timer);
1212
1213#if defined(__i386__)
1214 if (yellowfin_debug > 2) {
1215 printk(KERN_DEBUG " Tx ring at %08llx:\n",
1216 (unsigned long long)yp->tx_ring_dma);
1217 for (i = 0; i < TX_RING_SIZE*2; i++)
1218 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n",
1219 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1220 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1221 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1222 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1223 for (i = 0; i < TX_RING_SIZE; i++)
1224 printk(KERN_DEBUG " #%d status %04x %04x %04x %04x\n",
1225 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1226 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1227
1228 printk(KERN_DEBUG " Rx ring %08llx:\n",
1229 (unsigned long long)yp->rx_ring_dma);
1230 for (i = 0; i < RX_RING_SIZE; i++) {
1231 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n",
1232 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1233 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1234 yp->rx_ring[i].result_status);
1235 if (yellowfin_debug > 6) {
1236 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1237 int j;
1238
1239 printk(KERN_DEBUG);
1240 for (j = 0; j < 0x50; j++)
1241 pr_cont(" %04x",
1242 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1243 pr_cont("\n");
1244 }
1245 }
1246 }
1247 }
1248#endif /* __i386__ debugging only */
1249
1250 free_irq(yp->pci_dev->irq, dev);
1251
1252 /* Free all the skbuffs in the Rx queue. */
1253 for (i = 0; i < RX_RING_SIZE; i++) {
1254 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1255 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1256 if (yp->rx_skbuff[i]) {
1257 dev_kfree_skb(yp->rx_skbuff[i]);
1258 }
1259 yp->rx_skbuff[i] = NULL;
1260 }
1261 for (i = 0; i < TX_RING_SIZE; i++) {
1262 if (yp->tx_skbuff[i])
1263 dev_kfree_skb(yp->tx_skbuff[i]);
1264 yp->tx_skbuff[i] = NULL;
1265 }
1266
1267#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1268 if (yellowfin_debug > 0) {
1269 netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n",
1270 bogus_rx);
1271 }
1272#endif
1273
1274 return 0;
1275}
1276
1277/* Set or clear the multicast filter for this adaptor. */
1278
1279static void set_rx_mode(struct net_device *dev)
1280{
1281 struct yellowfin_private *yp = netdev_priv(dev);
1282 void __iomem *ioaddr = yp->base;
1283 u16 cfg_value = ioread16(ioaddr + Cnfg);
1284
1285 /* Stop the Rx process to change any value. */
1286 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1287 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1288 iowrite16(0x000F, ioaddr + AddrMode);
1289 } else if ((netdev_mc_count(dev) > 64) ||
1290 (dev->flags & IFF_ALLMULTI)) {
1291 /* Too many to filter well, or accept all multicasts. */
1292 iowrite16(0x000B, ioaddr + AddrMode);
1293 } else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */
1294 struct netdev_hw_addr *ha;
1295 u16 hash_table[4];
1296 int i;
1297
1298 memset(hash_table, 0, sizeof(hash_table));
1299 netdev_for_each_mc_addr(ha, dev) {
1300 unsigned int bit;
1301
1302 /* Due to a bug in the early chip versions, multiple filter
1303 slots must be set for each address. */
1304 if (yp->drv_flags & HasMulticastBug) {
1305 bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f;
1306 hash_table[bit >> 4] |= (1 << bit);
1307 bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f;
1308 hash_table[bit >> 4] |= (1 << bit);
1309 bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f;
1310 hash_table[bit >> 4] |= (1 << bit);
1311 }
1312 bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f;
1313 hash_table[bit >> 4] |= (1 << bit);
1314 }
1315 /* Copy the hash table to the chip. */
1316 for (i = 0; i < 4; i++)
1317 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1318 iowrite16(0x0003, ioaddr + AddrMode);
1319 } else { /* Normal, unicast/broadcast-only mode. */
1320 iowrite16(0x0001, ioaddr + AddrMode);
1321 }
1322 /* Restart the Rx process. */
1323 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1324}
1325
1326static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1327{
1328 struct yellowfin_private *np = netdev_priv(dev);
1329 strcpy(info->driver, DRV_NAME);
1330 strcpy(info->version, DRV_VERSION);
1331 strcpy(info->bus_info, pci_name(np->pci_dev));
1332}
1333
1334static const struct ethtool_ops ethtool_ops = {
1335 .get_drvinfo = yellowfin_get_drvinfo
1336};
1337
1338static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1339{
1340 struct yellowfin_private *np = netdev_priv(dev);
1341 void __iomem *ioaddr = np->base;
1342 struct mii_ioctl_data *data = if_mii(rq);
1343
1344 switch(cmd) {
1345 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1346 data->phy_id = np->phys[0] & 0x1f;
1347 /* Fall Through */
1348
1349 case SIOCGMIIREG: /* Read MII PHY register. */
1350 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1351 return 0;
1352
1353 case SIOCSMIIREG: /* Write MII PHY register. */
1354 if (data->phy_id == np->phys[0]) {
1355 u16 value = data->val_in;
1356 switch (data->reg_num) {
1357 case 0:
1358 /* Check for autonegotiation on or reset. */
1359 np->medialock = (value & 0x9000) ? 0 : 1;
1360 if (np->medialock)
1361 np->full_duplex = (value & 0x0100) ? 1 : 0;
1362 break;
1363 case 4: np->advertising = value; break;
1364 }
1365 /* Perhaps check_duplex(dev), depending on chip semantics. */
1366 }
1367 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1368 return 0;
1369 default:
1370 return -EOPNOTSUPP;
1371 }
1372}
1373
1374
1375static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1376{
1377 struct net_device *dev = pci_get_drvdata(pdev);
1378 struct yellowfin_private *np;
1379
1380 BUG_ON(!dev);
1381 np = netdev_priv(dev);
1382
1383 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1384 np->tx_status_dma);
1385 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1386 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1387 unregister_netdev (dev);
1388
1389 pci_iounmap(pdev, np->base);
1390
1391 pci_release_regions (pdev);
1392
1393 free_netdev (dev);
1394 pci_set_drvdata(pdev, NULL);
1395}
1396
1397
1398static struct pci_driver yellowfin_driver = {
1399 .name = DRV_NAME,
1400 .id_table = yellowfin_pci_tbl,
1401 .probe = yellowfin_init_one,
1402 .remove = __devexit_p(yellowfin_remove_one),
1403};
1404
1405
1406static int __init yellowfin_init (void)
1407{
1408/* when a module, this is printed whether or not devices are found in probe */
1409#ifdef MODULE
1410 printk(version);
1411#endif
1412 return pci_register_driver(&yellowfin_driver);
1413}
1414
1415
1416static void __exit yellowfin_cleanup (void)
1417{
1418 pci_unregister_driver (&yellowfin_driver);
1419}
1420
1421
1422module_init(yellowfin_init);
1423module_exit(yellowfin_cleanup);