Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*******************************************************************************
  2
  3  Intel(R) Gigabit Ethernet Linux driver
  4  Copyright(c) 2007-2012 Intel Corporation.
  5
  6  This program is free software; you can redistribute it and/or modify it
  7  under the terms and conditions of the GNU General Public License,
  8  version 2, as published by the Free Software Foundation.
  9
 10  This program is distributed in the hope it will be useful, but WITHOUT
 11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13  more details.
 14
 15  You should have received a copy of the GNU General Public License along with
 16  this program; if not, write to the Free Software Foundation, Inc.,
 17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 18
 19  The full GNU General Public License is included in this distribution in
 20  the file called "COPYING".
 21
 22  Contact Information:
 23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 25
 26******************************************************************************/
 27
 28/* e1000_i210
 29 * e1000_i211
 30 */
 31
 32#include <linux/types.h>
 33#include <linux/if_ether.h>
 34
 35#include "e1000_hw.h"
 36#include "e1000_i210.h"
 37
 38static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw);
 39static void igb_put_hw_semaphore_i210(struct e1000_hw *hw);
 40static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
 41				u16 *data);
 42static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw);
 43
 44/**
 45 *  igb_acquire_nvm_i210 - Request for access to EEPROM
 46 *  @hw: pointer to the HW structure
 47 *
 48 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
 49 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 50 *  Return successful if access grant bit set, else clear the request for
 51 *  EEPROM access and return -E1000_ERR_NVM (-1).
 52 **/
 53s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
 54{
 55	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
 56}
 57
 58/**
 59 *  igb_release_nvm_i210 - Release exclusive access to EEPROM
 60 *  @hw: pointer to the HW structure
 61 *
 62 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 63 *  then release the semaphores acquired.
 64 **/
 65void igb_release_nvm_i210(struct e1000_hw *hw)
 66{
 67	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
 68}
 69
 70/**
 71 *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
 72 *  @hw: pointer to the HW structure
 73 *  @mask: specifies which semaphore to acquire
 74 *
 75 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 76 *  will also specify which port we're acquiring the lock for.
 77 **/
 78s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
 79{
 80	u32 swfw_sync;
 81	u32 swmask = mask;
 82	u32 fwmask = mask << 16;
 83	s32 ret_val = E1000_SUCCESS;
 84	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
 85
 86	while (i < timeout) {
 87		if (igb_get_hw_semaphore_i210(hw)) {
 88			ret_val = -E1000_ERR_SWFW_SYNC;
 89			goto out;
 90		}
 91
 92		swfw_sync = rd32(E1000_SW_FW_SYNC);
 93		if (!(swfw_sync & fwmask))
 94			break;
 95
 96		/*
 97		 * Firmware currently using resource (fwmask)
 98		 */
 99		igb_put_hw_semaphore_i210(hw);
100		mdelay(5);
101		i++;
102	}
103
104	if (i == timeout) {
105		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
106		ret_val = -E1000_ERR_SWFW_SYNC;
107		goto out;
108	}
109
110	swfw_sync |= swmask;
111	wr32(E1000_SW_FW_SYNC, swfw_sync);
112
113	igb_put_hw_semaphore_i210(hw);
114out:
115	return ret_val;
116}
117
118/**
119 *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
120 *  @hw: pointer to the HW structure
121 *  @mask: specifies which semaphore to acquire
122 *
123 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
124 *  will also specify which port we're releasing the lock for.
125 **/
126void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
127{
128	u32 swfw_sync;
129
130	while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
131		; /* Empty */
132
133	swfw_sync = rd32(E1000_SW_FW_SYNC);
134	swfw_sync &= ~mask;
135	wr32(E1000_SW_FW_SYNC, swfw_sync);
136
137	igb_put_hw_semaphore_i210(hw);
138}
139
140/**
141 *  igb_get_hw_semaphore_i210 - Acquire hardware semaphore
142 *  @hw: pointer to the HW structure
143 *
144 *  Acquire the HW semaphore to access the PHY or NVM
145 **/
146static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
147{
148	u32 swsm;
149	s32 ret_val = E1000_SUCCESS;
150	s32 timeout = hw->nvm.word_size + 1;
151	s32 i = 0;
152
153	/* Get the FW semaphore. */
154	for (i = 0; i < timeout; i++) {
155		swsm = rd32(E1000_SWSM);
156		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
157
158		/* Semaphore acquired if bit latched */
159		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
160			break;
161
162		udelay(50);
163	}
164
165	if (i == timeout) {
166		/* Release semaphores */
167		igb_put_hw_semaphore(hw);
168		hw_dbg("Driver can't access the NVM\n");
169		ret_val = -E1000_ERR_NVM;
170		goto out;
171	}
172
173out:
174	return ret_val;
175}
176
177/**
178 *  igb_put_hw_semaphore_i210 - Release hardware semaphore
179 *  @hw: pointer to the HW structure
180 *
181 *  Release hardware semaphore used to access the PHY or NVM
182 **/
183static void igb_put_hw_semaphore_i210(struct e1000_hw *hw)
184{
185	u32 swsm;
186
187	swsm = rd32(E1000_SWSM);
188
189	swsm &= ~E1000_SWSM_SWESMBI;
190
191	wr32(E1000_SWSM, swsm);
192}
193
194/**
195 *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
196 *  @hw: pointer to the HW structure
197 *  @offset: offset of word in the Shadow Ram to read
198 *  @words: number of words to read
199 *  @data: word read from the Shadow Ram
200 *
201 *  Reads a 16 bit word from the Shadow Ram using the EERD register.
202 *  Uses necessary synchronization semaphores.
203 **/
204s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
205			     u16 *data)
206{
207	s32 status = E1000_SUCCESS;
208	u16 i, count;
209
210	/* We cannot hold synchronization semaphores for too long,
211	 * because of forceful takeover procedure. However it is more efficient
212	 * to read in bursts than synchronizing access for each word. */
213	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
214		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
215			E1000_EERD_EEWR_MAX_COUNT : (words - i);
216		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
217			status = igb_read_nvm_eerd(hw, offset, count,
218						     data + i);
219			hw->nvm.ops.release(hw);
220		} else {
221			status = E1000_ERR_SWFW_SYNC;
222		}
223
224		if (status != E1000_SUCCESS)
225			break;
226	}
227
228	return status;
229}
230
231/**
232 *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
233 *  @hw: pointer to the HW structure
234 *  @offset: offset within the Shadow RAM to be written to
235 *  @words: number of words to write
236 *  @data: 16 bit word(s) to be written to the Shadow RAM
237 *
238 *  Writes data to Shadow RAM at offset using EEWR register.
239 *
240 *  If e1000_update_nvm_checksum is not called after this function , the
241 *  data will not be committed to FLASH and also Shadow RAM will most likely
242 *  contain an invalid checksum.
243 *
244 *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
245 *  partially written.
246 **/
247s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
248			      u16 *data)
249{
250	s32 status = E1000_SUCCESS;
251	u16 i, count;
252
253	/* We cannot hold synchronization semaphores for too long,
254	 * because of forceful takeover procedure. However it is more efficient
255	 * to write in bursts than synchronizing access for each word. */
256	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
257		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
258			E1000_EERD_EEWR_MAX_COUNT : (words - i);
259		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
260			status = igb_write_nvm_srwr(hw, offset, count,
261						      data + i);
262			hw->nvm.ops.release(hw);
263		} else {
264			status = E1000_ERR_SWFW_SYNC;
265		}
266
267		if (status != E1000_SUCCESS)
268			break;
269	}
270
271	return status;
272}
273
274/**
275 *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
276 *  @hw: pointer to the HW structure
277 *  @offset: offset within the Shadow Ram to be written to
278 *  @words: number of words to write
279 *  @data: 16 bit word(s) to be written to the Shadow Ram
280 *
281 *  Writes data to Shadow Ram at offset using EEWR register.
282 *
283 *  If igb_update_nvm_checksum is not called after this function , the
284 *  Shadow Ram will most likely contain an invalid checksum.
285 **/
286static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
287				u16 *data)
288{
289	struct e1000_nvm_info *nvm = &hw->nvm;
290	u32 i, k, eewr = 0;
291	u32 attempts = 100000;
292	s32 ret_val = E1000_SUCCESS;
293
294	/*
295	 * A check for invalid values:  offset too large, too many words,
296	 * too many words for the offset, and not enough words.
297	 */
298	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
299	    (words == 0)) {
300		hw_dbg("nvm parameter(s) out of bounds\n");
301		ret_val = -E1000_ERR_NVM;
302		goto out;
303	}
304
305	for (i = 0; i < words; i++) {
306		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
307			(data[i] << E1000_NVM_RW_REG_DATA) |
308			E1000_NVM_RW_REG_START;
309
310		wr32(E1000_SRWR, eewr);
311
312		for (k = 0; k < attempts; k++) {
313			if (E1000_NVM_RW_REG_DONE &
314			    rd32(E1000_SRWR)) {
315				ret_val = E1000_SUCCESS;
316				break;
317			}
318			udelay(5);
319	}
320
321		if (ret_val != E1000_SUCCESS) {
322			hw_dbg("Shadow RAM write EEWR timed out\n");
323			break;
324		}
325	}
326
327out:
328	return ret_val;
329}
330
331/**
332 *  igb_read_nvm_i211 - Read NVM wrapper function for I211
333 *  @hw: pointer to the HW structure
334 *  @address: the word address (aka eeprom offset) to read
335 *  @data: pointer to the data read
336 *
337 *  Wrapper function to return data formerly found in the NVM.
338 **/
339s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words,
340			       u16 *data)
341{
342	s32 ret_val = E1000_SUCCESS;
343
344	/* Only the MAC addr is required to be present in the iNVM */
345	switch (offset) {
346	case NVM_MAC_ADDR:
347		ret_val = igb_read_invm_i211(hw, offset, &data[0]);
348		ret_val |= igb_read_invm_i211(hw, offset+1, &data[1]);
349		ret_val |= igb_read_invm_i211(hw, offset+2, &data[2]);
350		if (ret_val != E1000_SUCCESS)
351			hw_dbg("MAC Addr not found in iNVM\n");
352		break;
353	case NVM_ID_LED_SETTINGS:
354	case NVM_INIT_CTRL_2:
355	case NVM_INIT_CTRL_4:
356	case NVM_LED_1_CFG:
357	case NVM_LED_0_2_CFG:
358		igb_read_invm_i211(hw, offset, data);
359		break;
360	case NVM_COMPAT:
361		*data = ID_LED_DEFAULT_I210;
362		break;
363	case NVM_SUB_DEV_ID:
364		*data = hw->subsystem_device_id;
365		break;
366	case NVM_SUB_VEN_ID:
367		*data = hw->subsystem_vendor_id;
368		break;
369	case NVM_DEV_ID:
370		*data = hw->device_id;
371		break;
372	case NVM_VEN_ID:
373		*data = hw->vendor_id;
374		break;
375	default:
376		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
377		*data = NVM_RESERVED_WORD;
378		break;
379	}
380	return ret_val;
381}
382
383/**
384 *  igb_read_invm_i211 - Reads OTP
385 *  @hw: pointer to the HW structure
386 *  @address: the word address (aka eeprom offset) to read
387 *  @data: pointer to the data read
388 *
389 *  Reads 16-bit words from the OTP. Return error when the word is not
390 *  stored in OTP.
391 **/
392s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data)
393{
394	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
395	u32 invm_dword;
396	u16 i;
397	u8 record_type, word_address;
398
399	for (i = 0; i < E1000_INVM_SIZE; i++) {
400		invm_dword = rd32(E1000_INVM_DATA_REG(i));
401		/* Get record type */
402		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
403		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
404			break;
405		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
406			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
407		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
408			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
409		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
410			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
411			if (word_address == (u8)address) {
412				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
413				hw_dbg("Read INVM Word 0x%02x = %x",
414					  address, *data);
415				status = E1000_SUCCESS;
416				break;
417			}
418		}
419	}
420	if (status != E1000_SUCCESS)
421		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
422	return status;
423}
424
425/**
426 *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
427 *  @hw: pointer to the HW structure
428 *
429 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
430 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
431 **/
432s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
433{
434	s32 status = E1000_SUCCESS;
435	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
436
437	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
438
439		/*
440		 * Replace the read function with semaphore grabbing with
441		 * the one that skips this for a while.
442		 * We have semaphore taken already here.
443		 */
444		read_op_ptr = hw->nvm.ops.read;
445		hw->nvm.ops.read = igb_read_nvm_eerd;
446
447		status = igb_validate_nvm_checksum(hw);
448
449		/* Revert original read operation. */
450		hw->nvm.ops.read = read_op_ptr;
451
452		hw->nvm.ops.release(hw);
453	} else {
454		status = E1000_ERR_SWFW_SYNC;
455	}
456
457	return status;
458}
459
460
461/**
462 *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
463 *  @hw: pointer to the HW structure
464 *
465 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
466 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
467 *  value to the EEPROM. Next commit EEPROM data onto the Flash.
468 **/
469s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
470{
471	s32 ret_val = E1000_SUCCESS;
472	u16 checksum = 0;
473	u16 i, nvm_data;
474
475	/*
476	 * Read the first word from the EEPROM. If this times out or fails, do
477	 * not continue or we could be in for a very long wait while every
478	 * EEPROM read fails
479	 */
480	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
481	if (ret_val != E1000_SUCCESS) {
482		hw_dbg("EEPROM read failed\n");
483		goto out;
484	}
485
486	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
487		/*
488		 * Do not use hw->nvm.ops.write, hw->nvm.ops.read
489		 * because we do not want to take the synchronization
490		 * semaphores twice here.
491		 */
492
493		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
494			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
495			if (ret_val) {
496				hw->nvm.ops.release(hw);
497				hw_dbg("NVM Read Error while updating checksum.\n");
498				goto out;
499			}
500			checksum += nvm_data;
501		}
502		checksum = (u16) NVM_SUM - checksum;
503		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
504						&checksum);
505		if (ret_val != E1000_SUCCESS) {
506			hw->nvm.ops.release(hw);
507			hw_dbg("NVM Write Error while updating checksum.\n");
508			goto out;
509		}
510
511		hw->nvm.ops.release(hw);
512
513		ret_val = igb_update_flash_i210(hw);
514	} else {
515		ret_val = -E1000_ERR_SWFW_SYNC;
516	}
517out:
518	return ret_val;
519}
520
521/**
522 *  igb_update_flash_i210 - Commit EEPROM to the flash
523 *  @hw: pointer to the HW structure
524 *
525 **/
526s32 igb_update_flash_i210(struct e1000_hw *hw)
527{
528	s32 ret_val = E1000_SUCCESS;
529	u32 flup;
530
531	ret_val = igb_pool_flash_update_done_i210(hw);
532	if (ret_val == -E1000_ERR_NVM) {
533		hw_dbg("Flash update time out\n");
534		goto out;
535	}
536
537	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
538	wr32(E1000_EECD, flup);
539
540	ret_val = igb_pool_flash_update_done_i210(hw);
541	if (ret_val == E1000_SUCCESS)
542		hw_dbg("Flash update complete\n");
543	else
544		hw_dbg("Flash update time out\n");
545
546out:
547	return ret_val;
548}
549
550/**
551 *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
552 *  @hw: pointer to the HW structure
553 *
554 **/
555s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
556{
557	s32 ret_val = -E1000_ERR_NVM;
558	u32 i, reg;
559
560	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
561		reg = rd32(E1000_EECD);
562		if (reg & E1000_EECD_FLUDONE_I210) {
563			ret_val = E1000_SUCCESS;
564			break;
565		}
566		udelay(5);
567	}
568
569	return ret_val;
570}
571
572/**
573 *  igb_valid_led_default_i210 - Verify a valid default LED config
574 *  @hw: pointer to the HW structure
575 *  @data: pointer to the NVM (EEPROM)
576 *
577 *  Read the EEPROM for the current default LED configuration.  If the
578 *  LED configuration is not valid, set to a valid LED configuration.
579 **/
580s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
581{
582	s32 ret_val;
583
584	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
585	if (ret_val) {
586		hw_dbg("NVM Read Error\n");
587		goto out;
588	}
589
590	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
591		switch (hw->phy.media_type) {
592		case e1000_media_type_internal_serdes:
593			*data = ID_LED_DEFAULT_I210_SERDES;
594			break;
595		case e1000_media_type_copper:
596		default:
597			*data = ID_LED_DEFAULT_I210;
598			break;
599		}
600	}
601out:
602	return ret_val;
603}