Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 *
  21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/string.h>
  27#include <linux/ptrace.h>
  28#include <linux/errno.h>
  29#include <linux/ioport.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/pci.h>
  33#include <linux/init.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/spinlock.h>
  39#include <linux/workqueue.h>
  40#include <linux/bitops.h>
  41#include <linux/io.h>
  42#include <linux/irq.h>
  43#include <linux/clk.h>
  44#include <linux/platform_device.h>
  45#include <linux/phy.h>
  46#include <linux/fec.h>
  47#include <linux/of.h>
  48#include <linux/of_device.h>
  49#include <linux/of_gpio.h>
  50#include <linux/of_net.h>
  51#include <linux/pinctrl/consumer.h>
  52
  53#include <asm/cacheflush.h>
  54
  55#ifndef CONFIG_ARM
  56#include <asm/coldfire.h>
  57#include <asm/mcfsim.h>
  58#endif
  59
  60#include "fec.h"
  61
  62#if defined(CONFIG_ARM)
  63#define FEC_ALIGNMENT	0xf
  64#else
  65#define FEC_ALIGNMENT	0x3
  66#endif
  67
  68#define DRIVER_NAME	"fec"
  69
  70/* Controller is ENET-MAC */
  71#define FEC_QUIRK_ENET_MAC		(1 << 0)
  72/* Controller needs driver to swap frame */
  73#define FEC_QUIRK_SWAP_FRAME		(1 << 1)
  74/* Controller uses gasket */
  75#define FEC_QUIRK_USE_GASKET		(1 << 2)
  76/* Controller has GBIT support */
  77#define FEC_QUIRK_HAS_GBIT		(1 << 3)
  78
  79static struct platform_device_id fec_devtype[] = {
  80	{
  81		/* keep it for coldfire */
  82		.name = DRIVER_NAME,
  83		.driver_data = 0,
  84	}, {
  85		.name = "imx25-fec",
  86		.driver_data = FEC_QUIRK_USE_GASKET,
  87	}, {
  88		.name = "imx27-fec",
  89		.driver_data = 0,
  90	}, {
  91		.name = "imx28-fec",
  92		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
  93	}, {
  94		.name = "imx6q-fec",
  95		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
  96	}, {
  97		/* sentinel */
  98	}
  99};
 100MODULE_DEVICE_TABLE(platform, fec_devtype);
 101
 102enum imx_fec_type {
 103	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 104	IMX27_FEC,	/* runs on i.mx27/35/51 */
 105	IMX28_FEC,
 106	IMX6Q_FEC,
 107};
 108
 109static const struct of_device_id fec_dt_ids[] = {
 110	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 111	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 112	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 113	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 114	{ /* sentinel */ }
 115};
 116MODULE_DEVICE_TABLE(of, fec_dt_ids);
 117
 118static unsigned char macaddr[ETH_ALEN];
 119module_param_array(macaddr, byte, NULL, 0);
 120MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 121
 122#if defined(CONFIG_M5272)
 123/*
 124 * Some hardware gets it MAC address out of local flash memory.
 125 * if this is non-zero then assume it is the address to get MAC from.
 126 */
 127#if defined(CONFIG_NETtel)
 128#define	FEC_FLASHMAC	0xf0006006
 129#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 130#define	FEC_FLASHMAC	0xf0006000
 131#elif defined(CONFIG_CANCam)
 132#define	FEC_FLASHMAC	0xf0020000
 133#elif defined (CONFIG_M5272C3)
 134#define	FEC_FLASHMAC	(0xffe04000 + 4)
 135#elif defined(CONFIG_MOD5272)
 136#define FEC_FLASHMAC	0xffc0406b
 137#else
 138#define	FEC_FLASHMAC	0
 139#endif
 140#endif /* CONFIG_M5272 */
 141
 142/* The number of Tx and Rx buffers.  These are allocated from the page
 143 * pool.  The code may assume these are power of two, so it it best
 144 * to keep them that size.
 145 * We don't need to allocate pages for the transmitter.  We just use
 146 * the skbuffer directly.
 147 */
 148#define FEC_ENET_RX_PAGES	8
 149#define FEC_ENET_RX_FRSIZE	2048
 150#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
 151#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
 152#define FEC_ENET_TX_FRSIZE	2048
 153#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
 154#define TX_RING_SIZE		16	/* Must be power of two */
 155#define TX_RING_MOD_MASK	15	/*   for this to work */
 156
 157#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
 158#error "FEC: descriptor ring size constants too large"
 159#endif
 160
 161/* Interrupt events/masks. */
 162#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
 163#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
 164#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
 165#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
 166#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
 167#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
 168#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
 169#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
 170#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
 171#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
 172
 173#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
 174
 175/* The FEC stores dest/src/type, data, and checksum for receive packets.
 176 */
 177#define PKT_MAXBUF_SIZE		1518
 178#define PKT_MINBUF_SIZE		64
 179#define PKT_MAXBLR_SIZE		1520
 180
 181/* This device has up to three irqs on some platforms */
 182#define FEC_IRQ_NUM		3
 183
 184/*
 185 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 186 * size bits. Other FEC hardware does not, so we need to take that into
 187 * account when setting it.
 188 */
 189#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 190    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 191#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 192#else
 193#define	OPT_FRAME_SIZE	0
 194#endif
 195
 196/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 197 * tx_bd_base always point to the base of the buffer descriptors.  The
 198 * cur_rx and cur_tx point to the currently available buffer.
 199 * The dirty_tx tracks the current buffer that is being sent by the
 200 * controller.  The cur_tx and dirty_tx are equal under both completely
 201 * empty and completely full conditions.  The empty/ready indicator in
 202 * the buffer descriptor determines the actual condition.
 203 */
 204struct fec_enet_private {
 205	/* Hardware registers of the FEC device */
 206	void __iomem *hwp;
 207
 208	struct net_device *netdev;
 209
 210	struct clk *clk_ipg;
 211	struct clk *clk_ahb;
 212
 213	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
 214	unsigned char *tx_bounce[TX_RING_SIZE];
 215	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
 216	struct	sk_buff* rx_skbuff[RX_RING_SIZE];
 217	ushort	skb_cur;
 218	ushort	skb_dirty;
 219
 220	/* CPM dual port RAM relative addresses */
 221	dma_addr_t	bd_dma;
 222	/* Address of Rx and Tx buffers */
 223	struct bufdesc	*rx_bd_base;
 224	struct bufdesc	*tx_bd_base;
 225	/* The next free ring entry */
 226	struct bufdesc	*cur_rx, *cur_tx;
 227	/* The ring entries to be free()ed */
 228	struct bufdesc	*dirty_tx;
 229
 230	uint	tx_full;
 231	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
 232	spinlock_t hw_lock;
 233
 234	struct	platform_device *pdev;
 235
 236	int	opened;
 237	int	dev_id;
 238
 239	/* Phylib and MDIO interface */
 240	struct	mii_bus *mii_bus;
 241	struct	phy_device *phy_dev;
 242	int	mii_timeout;
 243	uint	phy_speed;
 244	phy_interface_t	phy_interface;
 245	int	link;
 246	int	full_duplex;
 247	struct	completion mdio_done;
 248	int	irq[FEC_IRQ_NUM];
 249};
 250
 251/* FEC MII MMFR bits definition */
 252#define FEC_MMFR_ST		(1 << 30)
 253#define FEC_MMFR_OP_READ	(2 << 28)
 254#define FEC_MMFR_OP_WRITE	(1 << 28)
 255#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 256#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 257#define FEC_MMFR_TA		(2 << 16)
 258#define FEC_MMFR_DATA(v)	(v & 0xffff)
 259
 260#define FEC_MII_TIMEOUT		30000 /* us */
 261
 262/* Transmitter timeout */
 263#define TX_TIMEOUT (2 * HZ)
 264
 265static int mii_cnt;
 266
 267static void *swap_buffer(void *bufaddr, int len)
 268{
 269	int i;
 270	unsigned int *buf = bufaddr;
 271
 272	for (i = 0; i < (len + 3) / 4; i++, buf++)
 273		*buf = cpu_to_be32(*buf);
 274
 275	return bufaddr;
 276}
 277
 278static netdev_tx_t
 279fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 280{
 281	struct fec_enet_private *fep = netdev_priv(ndev);
 282	const struct platform_device_id *id_entry =
 283				platform_get_device_id(fep->pdev);
 284	struct bufdesc *bdp;
 285	void *bufaddr;
 286	unsigned short	status;
 287	unsigned long flags;
 288
 289	if (!fep->link) {
 290		/* Link is down or autonegotiation is in progress. */
 291		return NETDEV_TX_BUSY;
 292	}
 293
 294	spin_lock_irqsave(&fep->hw_lock, flags);
 295	/* Fill in a Tx ring entry */
 296	bdp = fep->cur_tx;
 297
 298	status = bdp->cbd_sc;
 299
 300	if (status & BD_ENET_TX_READY) {
 301		/* Ooops.  All transmit buffers are full.  Bail out.
 302		 * This should not happen, since ndev->tbusy should be set.
 303		 */
 304		printk("%s: tx queue full!.\n", ndev->name);
 305		spin_unlock_irqrestore(&fep->hw_lock, flags);
 306		return NETDEV_TX_BUSY;
 307	}
 308
 309	/* Clear all of the status flags */
 310	status &= ~BD_ENET_TX_STATS;
 311
 312	/* Set buffer length and buffer pointer */
 313	bufaddr = skb->data;
 314	bdp->cbd_datlen = skb->len;
 315
 316	/*
 317	 * On some FEC implementations data must be aligned on
 318	 * 4-byte boundaries. Use bounce buffers to copy data
 319	 * and get it aligned. Ugh.
 320	 */
 321	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
 322		unsigned int index;
 323		index = bdp - fep->tx_bd_base;
 324		memcpy(fep->tx_bounce[index], skb->data, skb->len);
 325		bufaddr = fep->tx_bounce[index];
 326	}
 327
 328	/*
 329	 * Some design made an incorrect assumption on endian mode of
 330	 * the system that it's running on. As the result, driver has to
 331	 * swap every frame going to and coming from the controller.
 332	 */
 333	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
 334		swap_buffer(bufaddr, skb->len);
 335
 336	/* Save skb pointer */
 337	fep->tx_skbuff[fep->skb_cur] = skb;
 338
 339	ndev->stats.tx_bytes += skb->len;
 340	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
 341
 342	/* Push the data cache so the CPM does not get stale memory
 343	 * data.
 344	 */
 345	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
 346			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
 347
 348	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 349	 * it's the last BD of the frame, and to put the CRC on the end.
 350	 */
 351	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
 352			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
 353	bdp->cbd_sc = status;
 354
 355	/* Trigger transmission start */
 356	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 357
 358	/* If this was the last BD in the ring, start at the beginning again. */
 359	if (status & BD_ENET_TX_WRAP)
 360		bdp = fep->tx_bd_base;
 361	else
 362		bdp++;
 363
 364	if (bdp == fep->dirty_tx) {
 365		fep->tx_full = 1;
 366		netif_stop_queue(ndev);
 367	}
 368
 369	fep->cur_tx = bdp;
 370
 371	skb_tx_timestamp(skb);
 372
 373	spin_unlock_irqrestore(&fep->hw_lock, flags);
 374
 375	return NETDEV_TX_OK;
 376}
 377
 378/* This function is called to start or restart the FEC during a link
 379 * change.  This only happens when switching between half and full
 380 * duplex.
 381 */
 382static void
 383fec_restart(struct net_device *ndev, int duplex)
 384{
 385	struct fec_enet_private *fep = netdev_priv(ndev);
 386	const struct platform_device_id *id_entry =
 387				platform_get_device_id(fep->pdev);
 388	int i;
 389	u32 temp_mac[2];
 390	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 391	u32 ecntl = 0x2; /* ETHEREN */
 392
 393	/* Whack a reset.  We should wait for this. */
 394	writel(1, fep->hwp + FEC_ECNTRL);
 395	udelay(10);
 396
 397	/*
 398	 * enet-mac reset will reset mac address registers too,
 399	 * so need to reconfigure it.
 400	 */
 401	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 402		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 403		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
 404		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
 405	}
 406
 407	/* Clear any outstanding interrupt. */
 408	writel(0xffc00000, fep->hwp + FEC_IEVENT);
 409
 410	/* Reset all multicast.	*/
 411	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 412	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 413#ifndef CONFIG_M5272
 414	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
 415	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
 416#endif
 417
 418	/* Set maximum receive buffer size. */
 419	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
 420
 421	/* Set receive and transmit descriptor base. */
 422	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
 423	writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
 424			fep->hwp + FEC_X_DES_START);
 425
 426	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 427	fep->cur_rx = fep->rx_bd_base;
 428
 429	/* Reset SKB transmit buffers. */
 430	fep->skb_cur = fep->skb_dirty = 0;
 431	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
 432		if (fep->tx_skbuff[i]) {
 433			dev_kfree_skb_any(fep->tx_skbuff[i]);
 434			fep->tx_skbuff[i] = NULL;
 435		}
 436	}
 437
 438	/* Enable MII mode */
 439	if (duplex) {
 440		/* FD enable */
 441		writel(0x04, fep->hwp + FEC_X_CNTRL);
 442	} else {
 443		/* No Rcv on Xmit */
 444		rcntl |= 0x02;
 445		writel(0x0, fep->hwp + FEC_X_CNTRL);
 446	}
 447
 448	fep->full_duplex = duplex;
 449
 450	/* Set MII speed */
 451	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 452
 453	/*
 454	 * The phy interface and speed need to get configured
 455	 * differently on enet-mac.
 456	 */
 457	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 458		/* Enable flow control and length check */
 459		rcntl |= 0x40000000 | 0x00000020;
 460
 461		/* RGMII, RMII or MII */
 462		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
 463			rcntl |= (1 << 6);
 464		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 465			rcntl |= (1 << 8);
 466		else
 467			rcntl &= ~(1 << 8);
 468
 469		/* 1G, 100M or 10M */
 470		if (fep->phy_dev) {
 471			if (fep->phy_dev->speed == SPEED_1000)
 472				ecntl |= (1 << 5);
 473			else if (fep->phy_dev->speed == SPEED_100)
 474				rcntl &= ~(1 << 9);
 475			else
 476				rcntl |= (1 << 9);
 477		}
 478	} else {
 479#ifdef FEC_MIIGSK_ENR
 480		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
 481			u32 cfgr;
 482			/* disable the gasket and wait */
 483			writel(0, fep->hwp + FEC_MIIGSK_ENR);
 484			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
 485				udelay(1);
 486
 487			/*
 488			 * configure the gasket:
 489			 *   RMII, 50 MHz, no loopback, no echo
 490			 *   MII, 25 MHz, no loopback, no echo
 491			 */
 492			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 493				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
 494			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
 495				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
 496			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
 497
 498			/* re-enable the gasket */
 499			writel(2, fep->hwp + FEC_MIIGSK_ENR);
 500		}
 501#endif
 502	}
 503	writel(rcntl, fep->hwp + FEC_R_CNTRL);
 504
 505	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 506		/* enable ENET endian swap */
 507		ecntl |= (1 << 8);
 508		/* enable ENET store and forward mode */
 509		writel(1 << 8, fep->hwp + FEC_X_WMRK);
 510	}
 511
 512	/* And last, enable the transmit and receive processing */
 513	writel(ecntl, fep->hwp + FEC_ECNTRL);
 514	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 515
 516	/* Enable interrupts we wish to service */
 517	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 518}
 519
 520static void
 521fec_stop(struct net_device *ndev)
 522{
 523	struct fec_enet_private *fep = netdev_priv(ndev);
 524	const struct platform_device_id *id_entry =
 525				platform_get_device_id(fep->pdev);
 526	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
 527
 528	/* We cannot expect a graceful transmit stop without link !!! */
 529	if (fep->link) {
 530		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
 531		udelay(10);
 532		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
 533			printk("fec_stop : Graceful transmit stop did not complete !\n");
 534	}
 535
 536	/* Whack a reset.  We should wait for this. */
 537	writel(1, fep->hwp + FEC_ECNTRL);
 538	udelay(10);
 539	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 540	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 541
 542	/* We have to keep ENET enabled to have MII interrupt stay working */
 543	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 544		writel(2, fep->hwp + FEC_ECNTRL);
 545		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
 546	}
 547}
 548
 549
 550static void
 551fec_timeout(struct net_device *ndev)
 552{
 553	struct fec_enet_private *fep = netdev_priv(ndev);
 554
 555	ndev->stats.tx_errors++;
 556
 557	fec_restart(ndev, fep->full_duplex);
 558	netif_wake_queue(ndev);
 559}
 560
 561static void
 562fec_enet_tx(struct net_device *ndev)
 563{
 564	struct	fec_enet_private *fep;
 565	struct bufdesc *bdp;
 566	unsigned short status;
 567	struct	sk_buff	*skb;
 568
 569	fep = netdev_priv(ndev);
 570	spin_lock(&fep->hw_lock);
 571	bdp = fep->dirty_tx;
 572
 573	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
 574		if (bdp == fep->cur_tx && fep->tx_full == 0)
 575			break;
 576
 577		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
 578				FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
 579		bdp->cbd_bufaddr = 0;
 580
 581		skb = fep->tx_skbuff[fep->skb_dirty];
 582		/* Check for errors. */
 583		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 584				   BD_ENET_TX_RL | BD_ENET_TX_UN |
 585				   BD_ENET_TX_CSL)) {
 586			ndev->stats.tx_errors++;
 587			if (status & BD_ENET_TX_HB)  /* No heartbeat */
 588				ndev->stats.tx_heartbeat_errors++;
 589			if (status & BD_ENET_TX_LC)  /* Late collision */
 590				ndev->stats.tx_window_errors++;
 591			if (status & BD_ENET_TX_RL)  /* Retrans limit */
 592				ndev->stats.tx_aborted_errors++;
 593			if (status & BD_ENET_TX_UN)  /* Underrun */
 594				ndev->stats.tx_fifo_errors++;
 595			if (status & BD_ENET_TX_CSL) /* Carrier lost */
 596				ndev->stats.tx_carrier_errors++;
 597		} else {
 598			ndev->stats.tx_packets++;
 599		}
 600
 601		if (status & BD_ENET_TX_READY)
 602			printk("HEY! Enet xmit interrupt and TX_READY.\n");
 603
 604		/* Deferred means some collisions occurred during transmit,
 605		 * but we eventually sent the packet OK.
 606		 */
 607		if (status & BD_ENET_TX_DEF)
 608			ndev->stats.collisions++;
 609
 610		/* Free the sk buffer associated with this last transmit */
 611		dev_kfree_skb_any(skb);
 612		fep->tx_skbuff[fep->skb_dirty] = NULL;
 613		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
 614
 615		/* Update pointer to next buffer descriptor to be transmitted */
 616		if (status & BD_ENET_TX_WRAP)
 617			bdp = fep->tx_bd_base;
 618		else
 619			bdp++;
 620
 621		/* Since we have freed up a buffer, the ring is no longer full
 622		 */
 623		if (fep->tx_full) {
 624			fep->tx_full = 0;
 625			if (netif_queue_stopped(ndev))
 626				netif_wake_queue(ndev);
 627		}
 628	}
 629	fep->dirty_tx = bdp;
 630	spin_unlock(&fep->hw_lock);
 631}
 632
 633
 634/* During a receive, the cur_rx points to the current incoming buffer.
 635 * When we update through the ring, if the next incoming buffer has
 636 * not been given to the system, we just set the empty indicator,
 637 * effectively tossing the packet.
 638 */
 639static void
 640fec_enet_rx(struct net_device *ndev)
 641{
 642	struct fec_enet_private *fep = netdev_priv(ndev);
 643	const struct platform_device_id *id_entry =
 644				platform_get_device_id(fep->pdev);
 645	struct bufdesc *bdp;
 646	unsigned short status;
 647	struct	sk_buff	*skb;
 648	ushort	pkt_len;
 649	__u8 *data;
 650
 651#ifdef CONFIG_M532x
 652	flush_cache_all();
 653#endif
 654
 655	spin_lock(&fep->hw_lock);
 656
 657	/* First, grab all of the stats for the incoming packet.
 658	 * These get messed up if we get called due to a busy condition.
 659	 */
 660	bdp = fep->cur_rx;
 661
 662	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
 663
 664		/* Since we have allocated space to hold a complete frame,
 665		 * the last indicator should be set.
 666		 */
 667		if ((status & BD_ENET_RX_LAST) == 0)
 668			printk("FEC ENET: rcv is not +last\n");
 669
 670		if (!fep->opened)
 671			goto rx_processing_done;
 672
 673		/* Check for errors. */
 674		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
 675			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 676			ndev->stats.rx_errors++;
 677			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
 678				/* Frame too long or too short. */
 679				ndev->stats.rx_length_errors++;
 680			}
 681			if (status & BD_ENET_RX_NO)	/* Frame alignment */
 682				ndev->stats.rx_frame_errors++;
 683			if (status & BD_ENET_RX_CR)	/* CRC Error */
 684				ndev->stats.rx_crc_errors++;
 685			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
 686				ndev->stats.rx_fifo_errors++;
 687		}
 688
 689		/* Report late collisions as a frame error.
 690		 * On this error, the BD is closed, but we don't know what we
 691		 * have in the buffer.  So, just drop this frame on the floor.
 692		 */
 693		if (status & BD_ENET_RX_CL) {
 694			ndev->stats.rx_errors++;
 695			ndev->stats.rx_frame_errors++;
 696			goto rx_processing_done;
 697		}
 698
 699		/* Process the incoming frame. */
 700		ndev->stats.rx_packets++;
 701		pkt_len = bdp->cbd_datlen;
 702		ndev->stats.rx_bytes += pkt_len;
 703		data = (__u8*)__va(bdp->cbd_bufaddr);
 704
 705		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
 706				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
 707
 708		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
 709			swap_buffer(data, pkt_len);
 710
 711		/* This does 16 byte alignment, exactly what we need.
 712		 * The packet length includes FCS, but we don't want to
 713		 * include that when passing upstream as it messes up
 714		 * bridging applications.
 715		 */
 716		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
 717
 718		if (unlikely(!skb)) {
 719			printk("%s: Memory squeeze, dropping packet.\n",
 720					ndev->name);
 721			ndev->stats.rx_dropped++;
 722		} else {
 723			skb_reserve(skb, NET_IP_ALIGN);
 724			skb_put(skb, pkt_len - 4);	/* Make room */
 725			skb_copy_to_linear_data(skb, data, pkt_len - 4);
 726			skb->protocol = eth_type_trans(skb, ndev);
 727			if (!skb_defer_rx_timestamp(skb))
 728				netif_rx(skb);
 729		}
 730
 731		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
 732				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
 733rx_processing_done:
 734		/* Clear the status flags for this buffer */
 735		status &= ~BD_ENET_RX_STATS;
 736
 737		/* Mark the buffer empty */
 738		status |= BD_ENET_RX_EMPTY;
 739		bdp->cbd_sc = status;
 740
 741		/* Update BD pointer to next entry */
 742		if (status & BD_ENET_RX_WRAP)
 743			bdp = fep->rx_bd_base;
 744		else
 745			bdp++;
 746		/* Doing this here will keep the FEC running while we process
 747		 * incoming frames.  On a heavily loaded network, we should be
 748		 * able to keep up at the expense of system resources.
 749		 */
 750		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 751	}
 752	fep->cur_rx = bdp;
 753
 754	spin_unlock(&fep->hw_lock);
 755}
 756
 757static irqreturn_t
 758fec_enet_interrupt(int irq, void *dev_id)
 759{
 760	struct net_device *ndev = dev_id;
 761	struct fec_enet_private *fep = netdev_priv(ndev);
 762	uint int_events;
 763	irqreturn_t ret = IRQ_NONE;
 764
 765	do {
 766		int_events = readl(fep->hwp + FEC_IEVENT);
 767		writel(int_events, fep->hwp + FEC_IEVENT);
 768
 769		if (int_events & FEC_ENET_RXF) {
 770			ret = IRQ_HANDLED;
 771			fec_enet_rx(ndev);
 772		}
 773
 774		/* Transmit OK, or non-fatal error. Update the buffer
 775		 * descriptors. FEC handles all errors, we just discover
 776		 * them as part of the transmit process.
 777		 */
 778		if (int_events & FEC_ENET_TXF) {
 779			ret = IRQ_HANDLED;
 780			fec_enet_tx(ndev);
 781		}
 782
 783		if (int_events & FEC_ENET_MII) {
 784			ret = IRQ_HANDLED;
 785			complete(&fep->mdio_done);
 786		}
 787	} while (int_events);
 788
 789	return ret;
 790}
 791
 792
 793
 794/* ------------------------------------------------------------------------- */
 795static void __inline__ fec_get_mac(struct net_device *ndev)
 796{
 797	struct fec_enet_private *fep = netdev_priv(ndev);
 798	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
 799	unsigned char *iap, tmpaddr[ETH_ALEN];
 800
 801	/*
 802	 * try to get mac address in following order:
 803	 *
 804	 * 1) module parameter via kernel command line in form
 805	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
 806	 */
 807	iap = macaddr;
 808
 809#ifdef CONFIG_OF
 810	/*
 811	 * 2) from device tree data
 812	 */
 813	if (!is_valid_ether_addr(iap)) {
 814		struct device_node *np = fep->pdev->dev.of_node;
 815		if (np) {
 816			const char *mac = of_get_mac_address(np);
 817			if (mac)
 818				iap = (unsigned char *) mac;
 819		}
 820	}
 821#endif
 822
 823	/*
 824	 * 3) from flash or fuse (via platform data)
 825	 */
 826	if (!is_valid_ether_addr(iap)) {
 827#ifdef CONFIG_M5272
 828		if (FEC_FLASHMAC)
 829			iap = (unsigned char *)FEC_FLASHMAC;
 830#else
 831		if (pdata)
 832			iap = (unsigned char *)&pdata->mac;
 833#endif
 834	}
 835
 836	/*
 837	 * 4) FEC mac registers set by bootloader
 838	 */
 839	if (!is_valid_ether_addr(iap)) {
 840		*((unsigned long *) &tmpaddr[0]) =
 841			be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
 842		*((unsigned short *) &tmpaddr[4]) =
 843			be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
 844		iap = &tmpaddr[0];
 845	}
 846
 847	memcpy(ndev->dev_addr, iap, ETH_ALEN);
 848
 849	/* Adjust MAC if using macaddr */
 850	if (iap == macaddr)
 851		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
 852}
 853
 854/* ------------------------------------------------------------------------- */
 855
 856/*
 857 * Phy section
 858 */
 859static void fec_enet_adjust_link(struct net_device *ndev)
 860{
 861	struct fec_enet_private *fep = netdev_priv(ndev);
 862	struct phy_device *phy_dev = fep->phy_dev;
 863	unsigned long flags;
 864
 865	int status_change = 0;
 866
 867	spin_lock_irqsave(&fep->hw_lock, flags);
 868
 869	/* Prevent a state halted on mii error */
 870	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
 871		phy_dev->state = PHY_RESUMING;
 872		goto spin_unlock;
 873	}
 874
 875	/* Duplex link change */
 876	if (phy_dev->link) {
 877		if (fep->full_duplex != phy_dev->duplex) {
 878			fec_restart(ndev, phy_dev->duplex);
 879			/* prevent unnecessary second fec_restart() below */
 880			fep->link = phy_dev->link;
 881			status_change = 1;
 882		}
 883	}
 884
 885	/* Link on or off change */
 886	if (phy_dev->link != fep->link) {
 887		fep->link = phy_dev->link;
 888		if (phy_dev->link)
 889			fec_restart(ndev, phy_dev->duplex);
 890		else
 891			fec_stop(ndev);
 892		status_change = 1;
 893	}
 894
 895spin_unlock:
 896	spin_unlock_irqrestore(&fep->hw_lock, flags);
 897
 898	if (status_change)
 899		phy_print_status(phy_dev);
 900}
 901
 902static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 903{
 904	struct fec_enet_private *fep = bus->priv;
 905	unsigned long time_left;
 906
 907	fep->mii_timeout = 0;
 908	init_completion(&fep->mdio_done);
 909
 910	/* start a read op */
 911	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
 912		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
 913		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
 914
 915	/* wait for end of transfer */
 916	time_left = wait_for_completion_timeout(&fep->mdio_done,
 917			usecs_to_jiffies(FEC_MII_TIMEOUT));
 918	if (time_left == 0) {
 919		fep->mii_timeout = 1;
 920		printk(KERN_ERR "FEC: MDIO read timeout\n");
 921		return -ETIMEDOUT;
 922	}
 923
 924	/* return value */
 925	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
 926}
 927
 928static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
 929			   u16 value)
 930{
 931	struct fec_enet_private *fep = bus->priv;
 932	unsigned long time_left;
 933
 934	fep->mii_timeout = 0;
 935	init_completion(&fep->mdio_done);
 936
 937	/* start a write op */
 938	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
 939		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
 940		FEC_MMFR_TA | FEC_MMFR_DATA(value),
 941		fep->hwp + FEC_MII_DATA);
 942
 943	/* wait for end of transfer */
 944	time_left = wait_for_completion_timeout(&fep->mdio_done,
 945			usecs_to_jiffies(FEC_MII_TIMEOUT));
 946	if (time_left == 0) {
 947		fep->mii_timeout = 1;
 948		printk(KERN_ERR "FEC: MDIO write timeout\n");
 949		return -ETIMEDOUT;
 950	}
 951
 952	return 0;
 953}
 954
 955static int fec_enet_mdio_reset(struct mii_bus *bus)
 956{
 957	return 0;
 958}
 959
 960static int fec_enet_mii_probe(struct net_device *ndev)
 961{
 962	struct fec_enet_private *fep = netdev_priv(ndev);
 963	const struct platform_device_id *id_entry =
 964				platform_get_device_id(fep->pdev);
 965	struct phy_device *phy_dev = NULL;
 966	char mdio_bus_id[MII_BUS_ID_SIZE];
 967	char phy_name[MII_BUS_ID_SIZE + 3];
 968	int phy_id;
 969	int dev_id = fep->dev_id;
 970
 971	fep->phy_dev = NULL;
 972
 973	/* check for attached phy */
 974	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
 975		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
 976			continue;
 977		if (fep->mii_bus->phy_map[phy_id] == NULL)
 978			continue;
 979		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
 980			continue;
 981		if (dev_id--)
 982			continue;
 983		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
 984		break;
 985	}
 986
 987	if (phy_id >= PHY_MAX_ADDR) {
 988		printk(KERN_INFO
 989			"%s: no PHY, assuming direct connection to switch\n",
 990			ndev->name);
 991		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
 992		phy_id = 0;
 993	}
 994
 995	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
 996	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
 997			      fep->phy_interface);
 998	if (IS_ERR(phy_dev)) {
 999		printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
1000		return PTR_ERR(phy_dev);
1001	}
1002
1003	/* mask with MAC supported features */
1004	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
1005		phy_dev->supported &= PHY_GBIT_FEATURES;
1006	else
1007		phy_dev->supported &= PHY_BASIC_FEATURES;
1008
1009	phy_dev->advertising = phy_dev->supported;
1010
1011	fep->phy_dev = phy_dev;
1012	fep->link = 0;
1013	fep->full_duplex = 0;
1014
1015	printk(KERN_INFO
1016		"%s: Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1017		ndev->name,
1018		fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1019		fep->phy_dev->irq);
1020
1021	return 0;
1022}
1023
1024static int fec_enet_mii_init(struct platform_device *pdev)
1025{
1026	static struct mii_bus *fec0_mii_bus;
1027	struct net_device *ndev = platform_get_drvdata(pdev);
1028	struct fec_enet_private *fep = netdev_priv(ndev);
1029	const struct platform_device_id *id_entry =
1030				platform_get_device_id(fep->pdev);
1031	int err = -ENXIO, i;
1032
1033	/*
1034	 * The dual fec interfaces are not equivalent with enet-mac.
1035	 * Here are the differences:
1036	 *
1037	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1038	 *  - fec0 acts as the 1588 time master while fec1 is slave
1039	 *  - external phys can only be configured by fec0
1040	 *
1041	 * That is to say fec1 can not work independently. It only works
1042	 * when fec0 is working. The reason behind this design is that the
1043	 * second interface is added primarily for Switch mode.
1044	 *
1045	 * Because of the last point above, both phys are attached on fec0
1046	 * mdio interface in board design, and need to be configured by
1047	 * fec0 mii_bus.
1048	 */
1049	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1050		/* fec1 uses fec0 mii_bus */
1051		if (mii_cnt && fec0_mii_bus) {
1052			fep->mii_bus = fec0_mii_bus;
1053			mii_cnt++;
1054			return 0;
1055		}
1056		return -ENOENT;
1057	}
1058
1059	fep->mii_timeout = 0;
1060
1061	/*
1062	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1063	 *
1064	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1065	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1066	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1067	 * document.
1068	 */
1069	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1070	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1071		fep->phy_speed--;
1072	fep->phy_speed <<= 1;
1073	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1074
1075	fep->mii_bus = mdiobus_alloc();
1076	if (fep->mii_bus == NULL) {
1077		err = -ENOMEM;
1078		goto err_out;
1079	}
1080
1081	fep->mii_bus->name = "fec_enet_mii_bus";
1082	fep->mii_bus->read = fec_enet_mdio_read;
1083	fep->mii_bus->write = fec_enet_mdio_write;
1084	fep->mii_bus->reset = fec_enet_mdio_reset;
1085	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1086		pdev->name, fep->dev_id + 1);
1087	fep->mii_bus->priv = fep;
1088	fep->mii_bus->parent = &pdev->dev;
1089
1090	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1091	if (!fep->mii_bus->irq) {
1092		err = -ENOMEM;
1093		goto err_out_free_mdiobus;
1094	}
1095
1096	for (i = 0; i < PHY_MAX_ADDR; i++)
1097		fep->mii_bus->irq[i] = PHY_POLL;
1098
1099	if (mdiobus_register(fep->mii_bus))
1100		goto err_out_free_mdio_irq;
1101
1102	mii_cnt++;
1103
1104	/* save fec0 mii_bus */
1105	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1106		fec0_mii_bus = fep->mii_bus;
1107
1108	return 0;
1109
1110err_out_free_mdio_irq:
1111	kfree(fep->mii_bus->irq);
1112err_out_free_mdiobus:
1113	mdiobus_free(fep->mii_bus);
1114err_out:
1115	return err;
1116}
1117
1118static void fec_enet_mii_remove(struct fec_enet_private *fep)
1119{
1120	if (--mii_cnt == 0) {
1121		mdiobus_unregister(fep->mii_bus);
1122		kfree(fep->mii_bus->irq);
1123		mdiobus_free(fep->mii_bus);
1124	}
1125}
1126
1127static int fec_enet_get_settings(struct net_device *ndev,
1128				  struct ethtool_cmd *cmd)
1129{
1130	struct fec_enet_private *fep = netdev_priv(ndev);
1131	struct phy_device *phydev = fep->phy_dev;
1132
1133	if (!phydev)
1134		return -ENODEV;
1135
1136	return phy_ethtool_gset(phydev, cmd);
1137}
1138
1139static int fec_enet_set_settings(struct net_device *ndev,
1140				 struct ethtool_cmd *cmd)
1141{
1142	struct fec_enet_private *fep = netdev_priv(ndev);
1143	struct phy_device *phydev = fep->phy_dev;
1144
1145	if (!phydev)
1146		return -ENODEV;
1147
1148	return phy_ethtool_sset(phydev, cmd);
1149}
1150
1151static void fec_enet_get_drvinfo(struct net_device *ndev,
1152				 struct ethtool_drvinfo *info)
1153{
1154	struct fec_enet_private *fep = netdev_priv(ndev);
1155
1156	strcpy(info->driver, fep->pdev->dev.driver->name);
1157	strcpy(info->version, "Revision: 1.0");
1158	strcpy(info->bus_info, dev_name(&ndev->dev));
1159}
1160
1161static const struct ethtool_ops fec_enet_ethtool_ops = {
1162	.get_settings		= fec_enet_get_settings,
1163	.set_settings		= fec_enet_set_settings,
1164	.get_drvinfo		= fec_enet_get_drvinfo,
1165	.get_link		= ethtool_op_get_link,
1166	.get_ts_info		= ethtool_op_get_ts_info,
1167};
1168
1169static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1170{
1171	struct fec_enet_private *fep = netdev_priv(ndev);
1172	struct phy_device *phydev = fep->phy_dev;
1173
1174	if (!netif_running(ndev))
1175		return -EINVAL;
1176
1177	if (!phydev)
1178		return -ENODEV;
1179
1180	return phy_mii_ioctl(phydev, rq, cmd);
1181}
1182
1183static void fec_enet_free_buffers(struct net_device *ndev)
1184{
1185	struct fec_enet_private *fep = netdev_priv(ndev);
1186	int i;
1187	struct sk_buff *skb;
1188	struct bufdesc	*bdp;
1189
1190	bdp = fep->rx_bd_base;
1191	for (i = 0; i < RX_RING_SIZE; i++) {
1192		skb = fep->rx_skbuff[i];
1193
1194		if (bdp->cbd_bufaddr)
1195			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1196					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1197		if (skb)
1198			dev_kfree_skb(skb);
1199		bdp++;
1200	}
1201
1202	bdp = fep->tx_bd_base;
1203	for (i = 0; i < TX_RING_SIZE; i++)
1204		kfree(fep->tx_bounce[i]);
1205}
1206
1207static int fec_enet_alloc_buffers(struct net_device *ndev)
1208{
1209	struct fec_enet_private *fep = netdev_priv(ndev);
1210	int i;
1211	struct sk_buff *skb;
1212	struct bufdesc	*bdp;
1213
1214	bdp = fep->rx_bd_base;
1215	for (i = 0; i < RX_RING_SIZE; i++) {
1216		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1217		if (!skb) {
1218			fec_enet_free_buffers(ndev);
1219			return -ENOMEM;
1220		}
1221		fep->rx_skbuff[i] = skb;
1222
1223		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1224				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1225		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1226		bdp++;
1227	}
1228
1229	/* Set the last buffer to wrap. */
1230	bdp--;
1231	bdp->cbd_sc |= BD_SC_WRAP;
1232
1233	bdp = fep->tx_bd_base;
1234	for (i = 0; i < TX_RING_SIZE; i++) {
1235		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1236
1237		bdp->cbd_sc = 0;
1238		bdp->cbd_bufaddr = 0;
1239		bdp++;
1240	}
1241
1242	/* Set the last buffer to wrap. */
1243	bdp--;
1244	bdp->cbd_sc |= BD_SC_WRAP;
1245
1246	return 0;
1247}
1248
1249static int
1250fec_enet_open(struct net_device *ndev)
1251{
1252	struct fec_enet_private *fep = netdev_priv(ndev);
1253	int ret;
1254
1255	/* I should reset the ring buffers here, but I don't yet know
1256	 * a simple way to do that.
1257	 */
1258
1259	ret = fec_enet_alloc_buffers(ndev);
1260	if (ret)
1261		return ret;
1262
1263	/* Probe and connect to PHY when open the interface */
1264	ret = fec_enet_mii_probe(ndev);
1265	if (ret) {
1266		fec_enet_free_buffers(ndev);
1267		return ret;
1268	}
1269	phy_start(fep->phy_dev);
1270	netif_start_queue(ndev);
1271	fep->opened = 1;
1272	return 0;
1273}
1274
1275static int
1276fec_enet_close(struct net_device *ndev)
1277{
1278	struct fec_enet_private *fep = netdev_priv(ndev);
1279
1280	/* Don't know what to do yet. */
1281	fep->opened = 0;
1282	netif_stop_queue(ndev);
1283	fec_stop(ndev);
1284
1285	if (fep->phy_dev) {
1286		phy_stop(fep->phy_dev);
1287		phy_disconnect(fep->phy_dev);
1288	}
1289
1290	fec_enet_free_buffers(ndev);
1291
1292	return 0;
1293}
1294
1295/* Set or clear the multicast filter for this adaptor.
1296 * Skeleton taken from sunlance driver.
1297 * The CPM Ethernet implementation allows Multicast as well as individual
1298 * MAC address filtering.  Some of the drivers check to make sure it is
1299 * a group multicast address, and discard those that are not.  I guess I
1300 * will do the same for now, but just remove the test if you want
1301 * individual filtering as well (do the upper net layers want or support
1302 * this kind of feature?).
1303 */
1304
1305#define HASH_BITS	6		/* #bits in hash */
1306#define CRC32_POLY	0xEDB88320
1307
1308static void set_multicast_list(struct net_device *ndev)
1309{
1310	struct fec_enet_private *fep = netdev_priv(ndev);
1311	struct netdev_hw_addr *ha;
1312	unsigned int i, bit, data, crc, tmp;
1313	unsigned char hash;
1314
1315	if (ndev->flags & IFF_PROMISC) {
1316		tmp = readl(fep->hwp + FEC_R_CNTRL);
1317		tmp |= 0x8;
1318		writel(tmp, fep->hwp + FEC_R_CNTRL);
1319		return;
1320	}
1321
1322	tmp = readl(fep->hwp + FEC_R_CNTRL);
1323	tmp &= ~0x8;
1324	writel(tmp, fep->hwp + FEC_R_CNTRL);
1325
1326	if (ndev->flags & IFF_ALLMULTI) {
1327		/* Catch all multicast addresses, so set the
1328		 * filter to all 1's
1329		 */
1330		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1331		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1332
1333		return;
1334	}
1335
1336	/* Clear filter and add the addresses in hash register
1337	 */
1338	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1339	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1340
1341	netdev_for_each_mc_addr(ha, ndev) {
1342		/* calculate crc32 value of mac address */
1343		crc = 0xffffffff;
1344
1345		for (i = 0; i < ndev->addr_len; i++) {
1346			data = ha->addr[i];
1347			for (bit = 0; bit < 8; bit++, data >>= 1) {
1348				crc = (crc >> 1) ^
1349				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1350			}
1351		}
1352
1353		/* only upper 6 bits (HASH_BITS) are used
1354		 * which point to specific bit in he hash registers
1355		 */
1356		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1357
1358		if (hash > 31) {
1359			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1360			tmp |= 1 << (hash - 32);
1361			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1362		} else {
1363			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1364			tmp |= 1 << hash;
1365			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1366		}
1367	}
1368}
1369
1370/* Set a MAC change in hardware. */
1371static int
1372fec_set_mac_address(struct net_device *ndev, void *p)
1373{
1374	struct fec_enet_private *fep = netdev_priv(ndev);
1375	struct sockaddr *addr = p;
1376
1377	if (!is_valid_ether_addr(addr->sa_data))
1378		return -EADDRNOTAVAIL;
1379
1380	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1381
1382	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1383		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1384		fep->hwp + FEC_ADDR_LOW);
1385	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1386		fep->hwp + FEC_ADDR_HIGH);
1387	return 0;
1388}
1389
1390#ifdef CONFIG_NET_POLL_CONTROLLER
1391/*
1392 * fec_poll_controller: FEC Poll controller function
1393 * @dev: The FEC network adapter
1394 *
1395 * Polled functionality used by netconsole and others in non interrupt mode
1396 *
1397 */
1398void fec_poll_controller(struct net_device *dev)
1399{
1400	int i;
1401	struct fec_enet_private *fep = netdev_priv(dev);
1402
1403	for (i = 0; i < FEC_IRQ_NUM; i++) {
1404		if (fep->irq[i] > 0) {
1405			disable_irq(fep->irq[i]);
1406			fec_enet_interrupt(fep->irq[i], dev);
1407			enable_irq(fep->irq[i]);
1408		}
1409	}
1410}
1411#endif
1412
1413static const struct net_device_ops fec_netdev_ops = {
1414	.ndo_open		= fec_enet_open,
1415	.ndo_stop		= fec_enet_close,
1416	.ndo_start_xmit		= fec_enet_start_xmit,
1417	.ndo_set_rx_mode	= set_multicast_list,
1418	.ndo_change_mtu		= eth_change_mtu,
1419	.ndo_validate_addr	= eth_validate_addr,
1420	.ndo_tx_timeout		= fec_timeout,
1421	.ndo_set_mac_address	= fec_set_mac_address,
1422	.ndo_do_ioctl		= fec_enet_ioctl,
1423#ifdef CONFIG_NET_POLL_CONTROLLER
1424	.ndo_poll_controller	= fec_poll_controller,
1425#endif
1426};
1427
1428 /*
1429  * XXX:  We need to clean up on failure exits here.
1430  *
1431  */
1432static int fec_enet_init(struct net_device *ndev)
1433{
1434	struct fec_enet_private *fep = netdev_priv(ndev);
1435	struct bufdesc *cbd_base;
1436	struct bufdesc *bdp;
1437	int i;
1438
1439	/* Allocate memory for buffer descriptors. */
1440	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1441			GFP_KERNEL);
1442	if (!cbd_base) {
1443		printk("FEC: allocate descriptor memory failed?\n");
1444		return -ENOMEM;
1445	}
1446
1447	spin_lock_init(&fep->hw_lock);
1448
1449	fep->netdev = ndev;
1450
1451	/* Get the Ethernet address */
1452	fec_get_mac(ndev);
1453
1454	/* Set receive and transmit descriptor base. */
1455	fep->rx_bd_base = cbd_base;
1456	fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1457
1458	/* The FEC Ethernet specific entries in the device structure */
1459	ndev->watchdog_timeo = TX_TIMEOUT;
1460	ndev->netdev_ops = &fec_netdev_ops;
1461	ndev->ethtool_ops = &fec_enet_ethtool_ops;
1462
1463	/* Initialize the receive buffer descriptors. */
1464	bdp = fep->rx_bd_base;
1465	for (i = 0; i < RX_RING_SIZE; i++) {
1466
1467		/* Initialize the BD for every fragment in the page. */
1468		bdp->cbd_sc = 0;
1469		bdp++;
1470	}
1471
1472	/* Set the last buffer to wrap */
1473	bdp--;
1474	bdp->cbd_sc |= BD_SC_WRAP;
1475
1476	/* ...and the same for transmit */
1477	bdp = fep->tx_bd_base;
1478	for (i = 0; i < TX_RING_SIZE; i++) {
1479
1480		/* Initialize the BD for every fragment in the page. */
1481		bdp->cbd_sc = 0;
1482		bdp->cbd_bufaddr = 0;
1483		bdp++;
1484	}
1485
1486	/* Set the last buffer to wrap */
1487	bdp--;
1488	bdp->cbd_sc |= BD_SC_WRAP;
1489
1490	fec_restart(ndev, 0);
1491
1492	return 0;
1493}
1494
1495#ifdef CONFIG_OF
1496static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
1497{
1498	struct device_node *np = pdev->dev.of_node;
1499
1500	if (np)
1501		return of_get_phy_mode(np);
1502
1503	return -ENODEV;
1504}
1505
1506static void __devinit fec_reset_phy(struct platform_device *pdev)
1507{
1508	int err, phy_reset;
1509	struct device_node *np = pdev->dev.of_node;
1510
1511	if (!np)
1512		return;
1513
1514	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1515	err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
1516	if (err) {
1517		pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
1518		return;
1519	}
1520	msleep(1);
1521	gpio_set_value(phy_reset, 1);
1522}
1523#else /* CONFIG_OF */
1524static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
1525{
1526	return -ENODEV;
1527}
1528
1529static inline void fec_reset_phy(struct platform_device *pdev)
1530{
1531	/*
1532	 * In case of platform probe, the reset has been done
1533	 * by machine code.
1534	 */
1535}
1536#endif /* CONFIG_OF */
1537
1538static int __devinit
1539fec_probe(struct platform_device *pdev)
1540{
1541	struct fec_enet_private *fep;
1542	struct fec_platform_data *pdata;
1543	struct net_device *ndev;
1544	int i, irq, ret = 0;
1545	struct resource *r;
1546	const struct of_device_id *of_id;
1547	static int dev_id;
1548	struct pinctrl *pinctrl;
1549
1550	of_id = of_match_device(fec_dt_ids, &pdev->dev);
1551	if (of_id)
1552		pdev->id_entry = of_id->data;
1553
1554	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1555	if (!r)
1556		return -ENXIO;
1557
1558	r = request_mem_region(r->start, resource_size(r), pdev->name);
1559	if (!r)
1560		return -EBUSY;
1561
1562	/* Init network device */
1563	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1564	if (!ndev) {
1565		ret = -ENOMEM;
1566		goto failed_alloc_etherdev;
1567	}
1568
1569	SET_NETDEV_DEV(ndev, &pdev->dev);
1570
1571	/* setup board info structure */
1572	fep = netdev_priv(ndev);
1573
1574	fep->hwp = ioremap(r->start, resource_size(r));
1575	fep->pdev = pdev;
1576	fep->dev_id = dev_id++;
1577
1578	if (!fep->hwp) {
1579		ret = -ENOMEM;
1580		goto failed_ioremap;
1581	}
1582
1583	platform_set_drvdata(pdev, ndev);
1584
1585	ret = fec_get_phy_mode_dt(pdev);
1586	if (ret < 0) {
1587		pdata = pdev->dev.platform_data;
1588		if (pdata)
1589			fep->phy_interface = pdata->phy;
1590		else
1591			fep->phy_interface = PHY_INTERFACE_MODE_MII;
1592	} else {
1593		fep->phy_interface = ret;
1594	}
1595
1596	fec_reset_phy(pdev);
1597
1598	for (i = 0; i < FEC_IRQ_NUM; i++) {
1599		irq = platform_get_irq(pdev, i);
1600		if (irq < 0) {
1601			if (i)
1602				break;
1603			ret = irq;
1604			goto failed_irq;
1605		}
1606		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1607		if (ret) {
1608			while (--i >= 0) {
1609				irq = platform_get_irq(pdev, i);
1610				free_irq(irq, ndev);
1611			}
1612			goto failed_irq;
1613		}
1614	}
1615
1616	pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1617	if (IS_ERR(pinctrl)) {
1618		ret = PTR_ERR(pinctrl);
1619		goto failed_pin;
1620	}
1621
1622	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1623	if (IS_ERR(fep->clk_ipg)) {
1624		ret = PTR_ERR(fep->clk_ipg);
1625		goto failed_clk;
1626	}
1627
1628	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1629	if (IS_ERR(fep->clk_ahb)) {
1630		ret = PTR_ERR(fep->clk_ahb);
1631		goto failed_clk;
1632	}
1633
1634	clk_prepare_enable(fep->clk_ahb);
1635	clk_prepare_enable(fep->clk_ipg);
1636
1637	ret = fec_enet_init(ndev);
1638	if (ret)
1639		goto failed_init;
1640
1641	ret = fec_enet_mii_init(pdev);
1642	if (ret)
1643		goto failed_mii_init;
1644
1645	/* Carrier starts down, phylib will bring it up */
1646	netif_carrier_off(ndev);
1647
1648	ret = register_netdev(ndev);
1649	if (ret)
1650		goto failed_register;
1651
1652	return 0;
1653
1654failed_register:
1655	fec_enet_mii_remove(fep);
1656failed_mii_init:
1657failed_init:
1658	clk_disable_unprepare(fep->clk_ahb);
1659	clk_disable_unprepare(fep->clk_ipg);
1660failed_pin:
1661failed_clk:
1662	for (i = 0; i < FEC_IRQ_NUM; i++) {
1663		irq = platform_get_irq(pdev, i);
1664		if (irq > 0)
1665			free_irq(irq, ndev);
1666	}
1667failed_irq:
1668	iounmap(fep->hwp);
1669failed_ioremap:
1670	free_netdev(ndev);
1671failed_alloc_etherdev:
1672	release_mem_region(r->start, resource_size(r));
1673
1674	return ret;
1675}
1676
1677static int __devexit
1678fec_drv_remove(struct platform_device *pdev)
1679{
1680	struct net_device *ndev = platform_get_drvdata(pdev);
1681	struct fec_enet_private *fep = netdev_priv(ndev);
1682	struct resource *r;
1683	int i;
1684
1685	unregister_netdev(ndev);
1686	fec_enet_mii_remove(fep);
1687	for (i = 0; i < FEC_IRQ_NUM; i++) {
1688		int irq = platform_get_irq(pdev, i);
1689		if (irq > 0)
1690			free_irq(irq, ndev);
1691	}
1692	clk_disable_unprepare(fep->clk_ahb);
1693	clk_disable_unprepare(fep->clk_ipg);
1694	iounmap(fep->hwp);
1695	free_netdev(ndev);
1696
1697	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1698	BUG_ON(!r);
1699	release_mem_region(r->start, resource_size(r));
1700
1701	platform_set_drvdata(pdev, NULL);
1702
1703	return 0;
1704}
1705
1706#ifdef CONFIG_PM
1707static int
1708fec_suspend(struct device *dev)
1709{
1710	struct net_device *ndev = dev_get_drvdata(dev);
1711	struct fec_enet_private *fep = netdev_priv(ndev);
1712
1713	if (netif_running(ndev)) {
1714		fec_stop(ndev);
1715		netif_device_detach(ndev);
1716	}
1717	clk_disable_unprepare(fep->clk_ahb);
1718	clk_disable_unprepare(fep->clk_ipg);
1719
1720	return 0;
1721}
1722
1723static int
1724fec_resume(struct device *dev)
1725{
1726	struct net_device *ndev = dev_get_drvdata(dev);
1727	struct fec_enet_private *fep = netdev_priv(ndev);
1728
1729	clk_prepare_enable(fep->clk_ahb);
1730	clk_prepare_enable(fep->clk_ipg);
1731	if (netif_running(ndev)) {
1732		fec_restart(ndev, fep->full_duplex);
1733		netif_device_attach(ndev);
1734	}
1735
1736	return 0;
1737}
1738
1739static const struct dev_pm_ops fec_pm_ops = {
1740	.suspend	= fec_suspend,
1741	.resume		= fec_resume,
1742	.freeze		= fec_suspend,
1743	.thaw		= fec_resume,
1744	.poweroff	= fec_suspend,
1745	.restore	= fec_resume,
1746};
1747#endif
1748
1749static struct platform_driver fec_driver = {
1750	.driver	= {
1751		.name	= DRIVER_NAME,
1752		.owner	= THIS_MODULE,
1753#ifdef CONFIG_PM
1754		.pm	= &fec_pm_ops,
1755#endif
1756		.of_match_table = fec_dt_ids,
1757	},
1758	.id_table = fec_devtype,
1759	.probe	= fec_probe,
1760	.remove	= __devexit_p(fec_drv_remove),
1761};
1762
1763module_platform_driver(fec_driver);
1764
1765MODULE_LICENSE("GPL");