Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
   3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  18 *
  19 *
  20 * This driver is designed for the Broadcom SiByte SOC built-in
  21 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
  22 *
  23 * Updated to the driver model and the PHY abstraction layer
  24 * by Maciej W. Rozycki.
  25 */
  26
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/kernel.h>
  30#include <linux/string.h>
  31#include <linux/timer.h>
  32#include <linux/errno.h>
  33#include <linux/ioport.h>
  34#include <linux/slab.h>
  35#include <linux/interrupt.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/skbuff.h>
  39#include <linux/init.h>
  40#include <linux/bitops.h>
  41#include <linux/err.h>
  42#include <linux/ethtool.h>
  43#include <linux/mii.h>
  44#include <linux/phy.h>
  45#include <linux/platform_device.h>
  46#include <linux/prefetch.h>
  47
  48#include <asm/cache.h>
  49#include <asm/io.h>
  50#include <asm/processor.h>	/* Processor type for cache alignment. */
  51
  52/* Operational parameters that usually are not changed. */
  53
  54#define CONFIG_SBMAC_COALESCE
  55
  56/* Time in jiffies before concluding the transmitter is hung. */
  57#define TX_TIMEOUT  (2*HZ)
  58
  59
  60MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
  61MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
  62
  63/* A few user-configurable values which may be modified when a driver
  64   module is loaded. */
  65
  66/* 1 normal messages, 0 quiet .. 7 verbose. */
  67static int debug = 1;
  68module_param(debug, int, S_IRUGO);
  69MODULE_PARM_DESC(debug, "Debug messages");
  70
  71#ifdef CONFIG_SBMAC_COALESCE
  72static int int_pktcnt_tx = 255;
  73module_param(int_pktcnt_tx, int, S_IRUGO);
  74MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
  75
  76static int int_timeout_tx = 255;
  77module_param(int_timeout_tx, int, S_IRUGO);
  78MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
  79
  80static int int_pktcnt_rx = 64;
  81module_param(int_pktcnt_rx, int, S_IRUGO);
  82MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
  83
  84static int int_timeout_rx = 64;
  85module_param(int_timeout_rx, int, S_IRUGO);
  86MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
  87#endif
  88
  89#include <asm/sibyte/board.h>
  90#include <asm/sibyte/sb1250.h>
  91#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  92#include <asm/sibyte/bcm1480_regs.h>
  93#include <asm/sibyte/bcm1480_int.h>
  94#define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
  95#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  96#include <asm/sibyte/sb1250_regs.h>
  97#include <asm/sibyte/sb1250_int.h>
  98#else
  99#error invalid SiByte MAC configuration
 100#endif
 101#include <asm/sibyte/sb1250_scd.h>
 102#include <asm/sibyte/sb1250_mac.h>
 103#include <asm/sibyte/sb1250_dma.h>
 104
 105#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
 106#define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
 107#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
 108#define UNIT_INT(n)		(K_INT_MAC_0 + (n))
 109#else
 110#error invalid SiByte MAC configuration
 111#endif
 112
 113#ifdef K_INT_PHY
 114#define SBMAC_PHY_INT			K_INT_PHY
 115#else
 116#define SBMAC_PHY_INT			PHY_POLL
 117#endif
 118
 119/**********************************************************************
 120 *  Simple types
 121 ********************************************************************* */
 122
 123enum sbmac_speed {
 124	sbmac_speed_none = 0,
 125	sbmac_speed_10 = SPEED_10,
 126	sbmac_speed_100 = SPEED_100,
 127	sbmac_speed_1000 = SPEED_1000,
 128};
 129
 130enum sbmac_duplex {
 131	sbmac_duplex_none = -1,
 132	sbmac_duplex_half = DUPLEX_HALF,
 133	sbmac_duplex_full = DUPLEX_FULL,
 134};
 135
 136enum sbmac_fc {
 137	sbmac_fc_none,
 138	sbmac_fc_disabled,
 139	sbmac_fc_frame,
 140	sbmac_fc_collision,
 141	sbmac_fc_carrier,
 142};
 143
 144enum sbmac_state {
 145	sbmac_state_uninit,
 146	sbmac_state_off,
 147	sbmac_state_on,
 148	sbmac_state_broken,
 149};
 150
 151
 152/**********************************************************************
 153 *  Macros
 154 ********************************************************************* */
 155
 156
 157#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
 158			  (d)->sbdma_dscrtable : (d)->f+1)
 159
 160
 161#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
 162
 163#define SBMAC_MAX_TXDESCR	256
 164#define SBMAC_MAX_RXDESCR	256
 165
 166#define ENET_PACKET_SIZE	1518
 167/*#define ENET_PACKET_SIZE	9216 */
 168
 169/**********************************************************************
 170 *  DMA Descriptor structure
 171 ********************************************************************* */
 172
 173struct sbdmadscr {
 174	uint64_t  dscr_a;
 175	uint64_t  dscr_b;
 176};
 177
 178/**********************************************************************
 179 *  DMA Controller structure
 180 ********************************************************************* */
 181
 182struct sbmacdma {
 183
 184	/*
 185	 * This stuff is used to identify the channel and the registers
 186	 * associated with it.
 187	 */
 188	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
 189						   MAC */
 190	int			sbdma_channel;	/* channel number */
 191	int			sbdma_txdir;	/* direction (1=transmit) */
 192	int			sbdma_maxdescr;	/* total # of descriptors
 193						   in ring */
 194#ifdef CONFIG_SBMAC_COALESCE
 195	int			sbdma_int_pktcnt;
 196						/* # descriptors rx/tx
 197						   before interrupt */
 198	int			sbdma_int_timeout;
 199						/* # usec rx/tx interrupt */
 200#endif
 201	void __iomem		*sbdma_config0;	/* DMA config register 0 */
 202	void __iomem		*sbdma_config1;	/* DMA config register 1 */
 203	void __iomem		*sbdma_dscrbase;
 204						/* descriptor base address */
 205	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
 206	void __iomem		*sbdma_curdscr;	/* current descriptor
 207						   address */
 208	void __iomem		*sbdma_oodpktlost;
 209						/* pkt drop (rx only) */
 210
 211	/*
 212	 * This stuff is for maintenance of the ring
 213	 */
 214	void			*sbdma_dscrtable_unaligned;
 215	struct sbdmadscr	*sbdma_dscrtable;
 216						/* base of descriptor table */
 217	struct sbdmadscr	*sbdma_dscrtable_end;
 218						/* end of descriptor table */
 219	struct sk_buff		**sbdma_ctxtable;
 220						/* context table, one
 221						   per descr */
 222	dma_addr_t		sbdma_dscrtable_phys;
 223						/* and also the phys addr */
 224	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
 225	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
 226						   to remove */
 227};
 228
 229
 230/**********************************************************************
 231 *  Ethernet softc structure
 232 ********************************************************************* */
 233
 234struct sbmac_softc {
 235
 236	/*
 237	 * Linux-specific things
 238	 */
 239	struct net_device	*sbm_dev;	/* pointer to linux device */
 240	struct napi_struct	napi;
 241	struct phy_device	*phy_dev;	/* the associated PHY device */
 242	struct mii_bus		*mii_bus;	/* the MII bus */
 243	int			phy_irq[PHY_MAX_ADDR];
 244	spinlock_t		sbm_lock;	/* spin lock */
 245	int			sbm_devflags;	/* current device flags */
 246
 247	/*
 248	 * Controller-specific things
 249	 */
 250	void __iomem		*sbm_base;	/* MAC's base address */
 251	enum sbmac_state	sbm_state;	/* current state */
 252
 253	void __iomem		*sbm_macenable;	/* MAC Enable Register */
 254	void __iomem		*sbm_maccfg;	/* MAC Config Register */
 255	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
 256	void __iomem		*sbm_framecfg;	/* Frame Config Register */
 257	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
 258	void __iomem		*sbm_isr;	/* Interrupt Status Register */
 259	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
 260	void __iomem		*sbm_mdio;	/* MDIO Register */
 261
 262	enum sbmac_speed	sbm_speed;	/* current speed */
 263	enum sbmac_duplex	sbm_duplex;	/* current duplex */
 264	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
 265	int			sbm_pause;	/* current pause setting */
 266	int			sbm_link;	/* current link state */
 267
 268	unsigned char		sbm_hwaddr[ETH_ALEN];
 269
 270	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
 271	struct sbmacdma		sbm_rxdma;
 272	int			rx_hw_checksum;
 273	int			sbe_idx;
 274};
 275
 276
 277/**********************************************************************
 278 *  Externs
 279 ********************************************************************* */
 280
 281/**********************************************************************
 282 *  Prototypes
 283 ********************************************************************* */
 284
 285static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 286			  int txrx, int maxdescr);
 287static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
 288static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 289			       struct sk_buff *m);
 290static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
 291static void sbdma_emptyring(struct sbmacdma *d);
 292static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
 293static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 294			    int work_to_do, int poll);
 295static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 296			     int poll);
 297static int sbmac_initctx(struct sbmac_softc *s);
 298static void sbmac_channel_start(struct sbmac_softc *s);
 299static void sbmac_channel_stop(struct sbmac_softc *s);
 300static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
 301						enum sbmac_state);
 302static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
 303static uint64_t sbmac_addr2reg(unsigned char *ptr);
 304static irqreturn_t sbmac_intr(int irq, void *dev_instance);
 305static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
 306static void sbmac_setmulti(struct sbmac_softc *sc);
 307static int sbmac_init(struct platform_device *pldev, long long base);
 308static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
 309static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
 310			    enum sbmac_fc fc);
 311
 312static int sbmac_open(struct net_device *dev);
 313static void sbmac_tx_timeout (struct net_device *dev);
 314static void sbmac_set_rx_mode(struct net_device *dev);
 315static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 316static int sbmac_close(struct net_device *dev);
 317static int sbmac_poll(struct napi_struct *napi, int budget);
 318
 319static void sbmac_mii_poll(struct net_device *dev);
 320static int sbmac_mii_probe(struct net_device *dev);
 321
 322static void sbmac_mii_sync(void __iomem *sbm_mdio);
 323static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 324			       int bitcnt);
 325static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
 326static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 327			   u16 val);
 328
 329
 330/**********************************************************************
 331 *  Globals
 332 ********************************************************************* */
 333
 334static char sbmac_string[] = "sb1250-mac";
 335
 336static char sbmac_mdio_string[] = "sb1250-mac-mdio";
 337
 338
 339/**********************************************************************
 340 *  MDIO constants
 341 ********************************************************************* */
 342
 343#define	MII_COMMAND_START	0x01
 344#define	MII_COMMAND_READ	0x02
 345#define	MII_COMMAND_WRITE	0x01
 346#define	MII_COMMAND_ACK		0x02
 347
 348#define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
 349
 350#define ENABLE 		1
 351#define DISABLE		0
 352
 353/**********************************************************************
 354 *  SBMAC_MII_SYNC(sbm_mdio)
 355 *
 356 *  Synchronize with the MII - send a pattern of bits to the MII
 357 *  that will guarantee that it is ready to accept a command.
 358 *
 359 *  Input parameters:
 360 *  	   sbm_mdio - address of the MAC's MDIO register
 361 *
 362 *  Return value:
 363 *  	   nothing
 364 ********************************************************************* */
 365
 366static void sbmac_mii_sync(void __iomem *sbm_mdio)
 367{
 368	int cnt;
 369	uint64_t bits;
 370	int mac_mdio_genc;
 371
 372	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 373
 374	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
 375
 376	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 377
 378	for (cnt = 0; cnt < 32; cnt++) {
 379		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 380		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 381	}
 382}
 383
 384/**********************************************************************
 385 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
 386 *
 387 *  Send some bits to the MII.  The bits to be sent are right-
 388 *  justified in the 'data' parameter.
 389 *
 390 *  Input parameters:
 391 *  	   sbm_mdio - address of the MAC's MDIO register
 392 *  	   data     - data to send
 393 *  	   bitcnt   - number of bits to send
 394 ********************************************************************* */
 395
 396static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 397			       int bitcnt)
 398{
 399	int i;
 400	uint64_t bits;
 401	unsigned int curmask;
 402	int mac_mdio_genc;
 403
 404	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 405
 406	bits = M_MAC_MDIO_DIR_OUTPUT;
 407	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 408
 409	curmask = 1 << (bitcnt - 1);
 410
 411	for (i = 0; i < bitcnt; i++) {
 412		if (data & curmask)
 413			bits |= M_MAC_MDIO_OUT;
 414		else bits &= ~M_MAC_MDIO_OUT;
 415		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 416		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 417		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 418		curmask >>= 1;
 419	}
 420}
 421
 422
 423
 424/**********************************************************************
 425 *  SBMAC_MII_READ(bus, phyaddr, regidx)
 426 *  Read a PHY register.
 427 *
 428 *  Input parameters:
 429 *  	   bus     - MDIO bus handle
 430 *  	   phyaddr - PHY's address
 431 *  	   regnum  - index of register to read
 432 *
 433 *  Return value:
 434 *  	   value read, or 0xffff if an error occurred.
 435 ********************************************************************* */
 436
 437static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
 438{
 439	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 440	void __iomem *sbm_mdio = sc->sbm_mdio;
 441	int idx;
 442	int error;
 443	int regval;
 444	int mac_mdio_genc;
 445
 446	/*
 447	 * Synchronize ourselves so that the PHY knows the next
 448	 * thing coming down is a command
 449	 */
 450	sbmac_mii_sync(sbm_mdio);
 451
 452	/*
 453	 * Send the data to the PHY.  The sequence is
 454	 * a "start" command (2 bits)
 455	 * a "read" command (2 bits)
 456	 * the PHY addr (5 bits)
 457	 * the register index (5 bits)
 458	 */
 459	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 460	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
 461	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 462	sbmac_mii_senddata(sbm_mdio, regidx, 5);
 463
 464	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 465
 466	/*
 467	 * Switch the port around without a clock transition.
 468	 */
 469	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 470
 471	/*
 472	 * Send out a clock pulse to signal we want the status
 473	 */
 474	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 475		     sbm_mdio);
 476	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 477
 478	/*
 479	 * If an error occurred, the PHY will signal '1' back
 480	 */
 481	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
 482
 483	/*
 484	 * Issue an 'idle' clock pulse, but keep the direction
 485	 * the same.
 486	 */
 487	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 488		     sbm_mdio);
 489	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 490
 491	regval = 0;
 492
 493	for (idx = 0; idx < 16; idx++) {
 494		regval <<= 1;
 495
 496		if (error == 0) {
 497			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
 498				regval |= 1;
 499		}
 500
 501		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 502			     sbm_mdio);
 503		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 504	}
 505
 506	/* Switch back to output */
 507	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 508
 509	if (error == 0)
 510		return regval;
 511	return 0xffff;
 512}
 513
 514
 515/**********************************************************************
 516 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
 517 *
 518 *  Write a value to a PHY register.
 519 *
 520 *  Input parameters:
 521 *  	   bus     - MDIO bus handle
 522 *  	   phyaddr - PHY to use
 523 *  	   regidx  - register within the PHY
 524 *  	   regval  - data to write to register
 525 *
 526 *  Return value:
 527 *  	   0 for success
 528 ********************************************************************* */
 529
 530static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 531			   u16 regval)
 532{
 533	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 534	void __iomem *sbm_mdio = sc->sbm_mdio;
 535	int mac_mdio_genc;
 536
 537	sbmac_mii_sync(sbm_mdio);
 538
 539	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 540	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
 541	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 542	sbmac_mii_senddata(sbm_mdio, regidx, 5);
 543	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
 544	sbmac_mii_senddata(sbm_mdio, regval, 16);
 545
 546	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 547
 548	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 549
 550	return 0;
 551}
 552
 553
 554
 555/**********************************************************************
 556 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
 557 *
 558 *  Initialize a DMA channel context.  Since there are potentially
 559 *  eight DMA channels per MAC, it's nice to do this in a standard
 560 *  way.
 561 *
 562 *  Input parameters:
 563 *  	   d - struct sbmacdma (DMA channel context)
 564 *  	   s - struct sbmac_softc (pointer to a MAC)
 565 *  	   chan - channel number (0..1 right now)
 566 *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
 567 *      maxdescr - number of descriptors
 568 *
 569 *  Return value:
 570 *  	   nothing
 571 ********************************************************************* */
 572
 573static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 574			  int txrx, int maxdescr)
 575{
 576#ifdef CONFIG_SBMAC_COALESCE
 577	int int_pktcnt, int_timeout;
 578#endif
 579
 580	/*
 581	 * Save away interesting stuff in the structure
 582	 */
 583
 584	d->sbdma_eth       = s;
 585	d->sbdma_channel   = chan;
 586	d->sbdma_txdir     = txrx;
 587
 588#if 0
 589	/* RMON clearing */
 590	s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
 591#endif
 592
 593	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
 594	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
 595	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
 596	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
 597	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
 598	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
 599	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
 600	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
 601	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
 602	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
 603	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
 604	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
 605	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
 606	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
 607	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
 608	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
 609	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
 610	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
 611	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
 612	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
 613	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
 614
 615	/*
 616	 * initialize register pointers
 617	 */
 618
 619	d->sbdma_config0 =
 620		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
 621	d->sbdma_config1 =
 622		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
 623	d->sbdma_dscrbase =
 624		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
 625	d->sbdma_dscrcnt =
 626		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
 627	d->sbdma_curdscr =
 628		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
 629	if (d->sbdma_txdir)
 630		d->sbdma_oodpktlost = NULL;
 631	else
 632		d->sbdma_oodpktlost =
 633			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
 634
 635	/*
 636	 * Allocate memory for the ring
 637	 */
 638
 639	d->sbdma_maxdescr = maxdescr;
 640
 641	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
 642					       sizeof(*d->sbdma_dscrtable),
 643					       GFP_KERNEL);
 644
 645	/*
 646	 * The descriptor table must be aligned to at least 16 bytes or the
 647	 * MAC will corrupt it.
 648	 */
 649	d->sbdma_dscrtable = (struct sbdmadscr *)
 650			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
 651				   sizeof(*d->sbdma_dscrtable));
 652
 653	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
 654
 655	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
 656
 657	/*
 658	 * And context table
 659	 */
 660
 661	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
 662				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
 663
 664#ifdef CONFIG_SBMAC_COALESCE
 665	/*
 666	 * Setup Rx/Tx DMA coalescing defaults
 667	 */
 668
 669	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
 670	if ( int_pktcnt ) {
 671		d->sbdma_int_pktcnt = int_pktcnt;
 672	} else {
 673		d->sbdma_int_pktcnt = 1;
 674	}
 675
 676	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
 677	if ( int_timeout ) {
 678		d->sbdma_int_timeout = int_timeout;
 679	} else {
 680		d->sbdma_int_timeout = 0;
 681	}
 682#endif
 683
 684}
 685
 686/**********************************************************************
 687 *  SBDMA_CHANNEL_START(d)
 688 *
 689 *  Initialize the hardware registers for a DMA channel.
 690 *
 691 *  Input parameters:
 692 *  	   d - DMA channel to init (context must be previously init'd
 693 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
 694 *
 695 *  Return value:
 696 *  	   nothing
 697 ********************************************************************* */
 698
 699static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
 700{
 701	/*
 702	 * Turn on the DMA channel
 703	 */
 704
 705#ifdef CONFIG_SBMAC_COALESCE
 706	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
 707		       0, d->sbdma_config1);
 708	__raw_writeq(M_DMA_EOP_INT_EN |
 709		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
 710		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
 711		       0, d->sbdma_config0);
 712#else
 713	__raw_writeq(0, d->sbdma_config1);
 714	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
 715		       0, d->sbdma_config0);
 716#endif
 717
 718	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
 719
 720	/*
 721	 * Initialize ring pointers
 722	 */
 723
 724	d->sbdma_addptr = d->sbdma_dscrtable;
 725	d->sbdma_remptr = d->sbdma_dscrtable;
 726}
 727
 728/**********************************************************************
 729 *  SBDMA_CHANNEL_STOP(d)
 730 *
 731 *  Initialize the hardware registers for a DMA channel.
 732 *
 733 *  Input parameters:
 734 *  	   d - DMA channel to init (context must be previously init'd
 735 *
 736 *  Return value:
 737 *  	   nothing
 738 ********************************************************************* */
 739
 740static void sbdma_channel_stop(struct sbmacdma *d)
 741{
 742	/*
 743	 * Turn off the DMA channel
 744	 */
 745
 746	__raw_writeq(0, d->sbdma_config1);
 747
 748	__raw_writeq(0, d->sbdma_dscrbase);
 749
 750	__raw_writeq(0, d->sbdma_config0);
 751
 752	/*
 753	 * Zero ring pointers
 754	 */
 755
 756	d->sbdma_addptr = NULL;
 757	d->sbdma_remptr = NULL;
 758}
 759
 760static inline void sbdma_align_skb(struct sk_buff *skb,
 761				   unsigned int power2, unsigned int offset)
 762{
 763	unsigned char *addr = skb->data;
 764	unsigned char *newaddr = PTR_ALIGN(addr, power2);
 765
 766	skb_reserve(skb, newaddr - addr + offset);
 767}
 768
 769
 770/**********************************************************************
 771 *  SBDMA_ADD_RCVBUFFER(d,sb)
 772 *
 773 *  Add a buffer to the specified DMA channel.   For receive channels,
 774 *  this queues a buffer for inbound packets.
 775 *
 776 *  Input parameters:
 777 *	   sc - softc structure
 778 *  	    d - DMA channel descriptor
 779 * 	   sb - sk_buff to add, or NULL if we should allocate one
 780 *
 781 *  Return value:
 782 *  	   0 if buffer could not be added (ring is full)
 783 *  	   1 if buffer added successfully
 784 ********************************************************************* */
 785
 786
 787static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 788			       struct sk_buff *sb)
 789{
 790	struct net_device *dev = sc->sbm_dev;
 791	struct sbdmadscr *dsc;
 792	struct sbdmadscr *nextdsc;
 793	struct sk_buff *sb_new = NULL;
 794	int pktsize = ENET_PACKET_SIZE;
 795
 796	/* get pointer to our current place in the ring */
 797
 798	dsc = d->sbdma_addptr;
 799	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 800
 801	/*
 802	 * figure out if the ring is full - if the next descriptor
 803	 * is the same as the one that we're going to remove from
 804	 * the ring, the ring is full
 805	 */
 806
 807	if (nextdsc == d->sbdma_remptr) {
 808		return -ENOSPC;
 809	}
 810
 811	/*
 812	 * Allocate a sk_buff if we don't already have one.
 813	 * If we do have an sk_buff, reset it so that it's empty.
 814	 *
 815	 * Note: sk_buffs don't seem to be guaranteed to have any sort
 816	 * of alignment when they are allocated.  Therefore, allocate enough
 817	 * extra space to make sure that:
 818	 *
 819	 *    1. the data does not start in the middle of a cache line.
 820	 *    2. The data does not end in the middle of a cache line
 821	 *    3. The buffer can be aligned such that the IP addresses are
 822	 *       naturally aligned.
 823	 *
 824	 *  Remember, the SOCs MAC writes whole cache lines at a time,
 825	 *  without reading the old contents first.  So, if the sk_buff's
 826	 *  data portion starts in the middle of a cache line, the SOC
 827	 *  DMA will trash the beginning (and ending) portions.
 828	 */
 829
 830	if (sb == NULL) {
 831		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
 832					       SMP_CACHE_BYTES * 2 +
 833					       NET_IP_ALIGN);
 834		if (sb_new == NULL) {
 835			pr_info("%s: sk_buff allocation failed\n",
 836			       d->sbdma_eth->sbm_dev->name);
 837			return -ENOBUFS;
 838		}
 839
 840		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
 841	}
 842	else {
 843		sb_new = sb;
 844		/*
 845		 * nothing special to reinit buffer, it's already aligned
 846		 * and sb->data already points to a good place.
 847		 */
 848	}
 849
 850	/*
 851	 * fill in the descriptor
 852	 */
 853
 854#ifdef CONFIG_SBMAC_COALESCE
 855	/*
 856	 * Do not interrupt per DMA transfer.
 857	 */
 858	dsc->dscr_a = virt_to_phys(sb_new->data) |
 859		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
 860#else
 861	dsc->dscr_a = virt_to_phys(sb_new->data) |
 862		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
 863		M_DMA_DSCRA_INTERRUPT;
 864#endif
 865
 866	/* receiving: no options */
 867	dsc->dscr_b = 0;
 868
 869	/*
 870	 * fill in the context
 871	 */
 872
 873	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
 874
 875	/*
 876	 * point at next packet
 877	 */
 878
 879	d->sbdma_addptr = nextdsc;
 880
 881	/*
 882	 * Give the buffer to the DMA engine.
 883	 */
 884
 885	__raw_writeq(1, d->sbdma_dscrcnt);
 886
 887	return 0;					/* we did it */
 888}
 889
 890/**********************************************************************
 891 *  SBDMA_ADD_TXBUFFER(d,sb)
 892 *
 893 *  Add a transmit buffer to the specified DMA channel, causing a
 894 *  transmit to start.
 895 *
 896 *  Input parameters:
 897 *  	   d - DMA channel descriptor
 898 * 	   sb - sk_buff to add
 899 *
 900 *  Return value:
 901 *  	   0 transmit queued successfully
 902 *  	   otherwise error code
 903 ********************************************************************* */
 904
 905
 906static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
 907{
 908	struct sbdmadscr *dsc;
 909	struct sbdmadscr *nextdsc;
 910	uint64_t phys;
 911	uint64_t ncb;
 912	int length;
 913
 914	/* get pointer to our current place in the ring */
 915
 916	dsc = d->sbdma_addptr;
 917	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 918
 919	/*
 920	 * figure out if the ring is full - if the next descriptor
 921	 * is the same as the one that we're going to remove from
 922	 * the ring, the ring is full
 923	 */
 924
 925	if (nextdsc == d->sbdma_remptr) {
 926		return -ENOSPC;
 927	}
 928
 929	/*
 930	 * Under Linux, it's not necessary to copy/coalesce buffers
 931	 * like it is on NetBSD.  We think they're all contiguous,
 932	 * but that may not be true for GBE.
 933	 */
 934
 935	length = sb->len;
 936
 937	/*
 938	 * fill in the descriptor.  Note that the number of cache
 939	 * blocks in the descriptor is the number of blocks
 940	 * *spanned*, so we need to add in the offset (if any)
 941	 * while doing the calculation.
 942	 */
 943
 944	phys = virt_to_phys(sb->data);
 945	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
 946
 947	dsc->dscr_a = phys |
 948		V_DMA_DSCRA_A_SIZE(ncb) |
 949#ifndef CONFIG_SBMAC_COALESCE
 950		M_DMA_DSCRA_INTERRUPT |
 951#endif
 952		M_DMA_ETHTX_SOP;
 953
 954	/* transmitting: set outbound options and length */
 955
 956	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
 957		V_DMA_DSCRB_PKT_SIZE(length);
 958
 959	/*
 960	 * fill in the context
 961	 */
 962
 963	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
 964
 965	/*
 966	 * point at next packet
 967	 */
 968
 969	d->sbdma_addptr = nextdsc;
 970
 971	/*
 972	 * Give the buffer to the DMA engine.
 973	 */
 974
 975	__raw_writeq(1, d->sbdma_dscrcnt);
 976
 977	return 0;					/* we did it */
 978}
 979
 980
 981
 982
 983/**********************************************************************
 984 *  SBDMA_EMPTYRING(d)
 985 *
 986 *  Free all allocated sk_buffs on the specified DMA channel;
 987 *
 988 *  Input parameters:
 989 *  	   d  - DMA channel
 990 *
 991 *  Return value:
 992 *  	   nothing
 993 ********************************************************************* */
 994
 995static void sbdma_emptyring(struct sbmacdma *d)
 996{
 997	int idx;
 998	struct sk_buff *sb;
 999
1000	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1001		sb = d->sbdma_ctxtable[idx];
1002		if (sb) {
1003			dev_kfree_skb(sb);
1004			d->sbdma_ctxtable[idx] = NULL;
1005		}
1006	}
1007}
1008
1009
1010/**********************************************************************
1011 *  SBDMA_FILLRING(d)
1012 *
1013 *  Fill the specified DMA channel (must be receive channel)
1014 *  with sk_buffs
1015 *
1016 *  Input parameters:
1017 *	   sc - softc structure
1018 *  	    d - DMA channel
1019 *
1020 *  Return value:
1021 *  	   nothing
1022 ********************************************************************* */
1023
1024static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1025{
1026	int idx;
1027
1028	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1029		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1030			break;
1031	}
1032}
1033
1034#ifdef CONFIG_NET_POLL_CONTROLLER
1035static void sbmac_netpoll(struct net_device *netdev)
1036{
1037	struct sbmac_softc *sc = netdev_priv(netdev);
1038	int irq = sc->sbm_dev->irq;
1039
1040	__raw_writeq(0, sc->sbm_imr);
1041
1042	sbmac_intr(irq, netdev);
1043
1044#ifdef CONFIG_SBMAC_COALESCE
1045	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1046	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1047	sc->sbm_imr);
1048#else
1049	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1050	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1051#endif
1052}
1053#endif
1054
1055/**********************************************************************
1056 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1057 *
1058 *  Process "completed" receive buffers on the specified DMA channel.
1059 *
1060 *  Input parameters:
1061 *            sc - softc structure
1062 *  	       d - DMA channel context
1063 *    work_to_do - no. of packets to process before enabling interrupt
1064 *                 again (for NAPI)
1065 *          poll - 1: using polling (for NAPI)
1066 *
1067 *  Return value:
1068 *  	   nothing
1069 ********************************************************************* */
1070
1071static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1072			    int work_to_do, int poll)
1073{
1074	struct net_device *dev = sc->sbm_dev;
1075	int curidx;
1076	int hwidx;
1077	struct sbdmadscr *dsc;
1078	struct sk_buff *sb;
1079	int len;
1080	int work_done = 0;
1081	int dropped = 0;
1082
1083	prefetch(d);
1084
1085again:
1086	/* Check if the HW dropped any frames */
1087	dev->stats.rx_fifo_errors
1088	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1089	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1090
1091	while (work_to_do-- > 0) {
1092		/*
1093		 * figure out where we are (as an index) and where
1094		 * the hardware is (also as an index)
1095		 *
1096		 * This could be done faster if (for example) the
1097		 * descriptor table was page-aligned and contiguous in
1098		 * both virtual and physical memory -- you could then
1099		 * just compare the low-order bits of the virtual address
1100		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1101		 */
1102
1103		dsc = d->sbdma_remptr;
1104		curidx = dsc - d->sbdma_dscrtable;
1105
1106		prefetch(dsc);
1107		prefetch(&d->sbdma_ctxtable[curidx]);
1108
1109		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1110			 d->sbdma_dscrtable_phys) /
1111			sizeof(*d->sbdma_dscrtable);
1112
1113		/*
1114		 * If they're the same, that means we've processed all
1115		 * of the descriptors up to (but not including) the one that
1116		 * the hardware is working on right now.
1117		 */
1118
1119		if (curidx == hwidx)
1120			goto done;
1121
1122		/*
1123		 * Otherwise, get the packet's sk_buff ptr back
1124		 */
1125
1126		sb = d->sbdma_ctxtable[curidx];
1127		d->sbdma_ctxtable[curidx] = NULL;
1128
1129		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1130
1131		/*
1132		 * Check packet status.  If good, process it.
1133		 * If not, silently drop it and put it back on the
1134		 * receive ring.
1135		 */
1136
1137		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1138
1139			/*
1140			 * Add a new buffer to replace the old one.  If we fail
1141			 * to allocate a buffer, we're going to drop this
1142			 * packet and put it right back on the receive ring.
1143			 */
1144
1145			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1146				     -ENOBUFS)) {
1147				dev->stats.rx_dropped++;
1148				/* Re-add old buffer */
1149				sbdma_add_rcvbuffer(sc, d, sb);
1150				/* No point in continuing at the moment */
1151				printk(KERN_ERR "dropped packet (1)\n");
1152				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1153				goto done;
1154			} else {
1155				/*
1156				 * Set length into the packet
1157				 */
1158				skb_put(sb,len);
1159
1160				/*
1161				 * Buffer has been replaced on the
1162				 * receive ring.  Pass the buffer to
1163				 * the kernel
1164				 */
1165				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1166				/* Check hw IPv4/TCP checksum if supported */
1167				if (sc->rx_hw_checksum == ENABLE) {
1168					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1169					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1170						sb->ip_summed = CHECKSUM_UNNECESSARY;
1171						/* don't need to set sb->csum */
1172					} else {
1173						skb_checksum_none_assert(sb);
1174					}
1175				}
1176				prefetch(sb->data);
1177				prefetch((const void *)(((char *)sb->data)+32));
1178				if (poll)
1179					dropped = netif_receive_skb(sb);
1180				else
1181					dropped = netif_rx(sb);
1182
1183				if (dropped == NET_RX_DROP) {
1184					dev->stats.rx_dropped++;
1185					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1186					goto done;
1187				}
1188				else {
1189					dev->stats.rx_bytes += len;
1190					dev->stats.rx_packets++;
1191				}
1192			}
1193		} else {
1194			/*
1195			 * Packet was mangled somehow.  Just drop it and
1196			 * put it back on the receive ring.
1197			 */
1198			dev->stats.rx_errors++;
1199			sbdma_add_rcvbuffer(sc, d, sb);
1200		}
1201
1202
1203		/*
1204		 * .. and advance to the next buffer.
1205		 */
1206
1207		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1208		work_done++;
1209	}
1210	if (!poll) {
1211		work_to_do = 32;
1212		goto again; /* collect fifo drop statistics again */
1213	}
1214done:
1215	return work_done;
1216}
1217
1218/**********************************************************************
1219 *  SBDMA_TX_PROCESS(sc,d)
1220 *
1221 *  Process "completed" transmit buffers on the specified DMA channel.
1222 *  This is normally called within the interrupt service routine.
1223 *  Note that this isn't really ideal for priority channels, since
1224 *  it processes all of the packets on a given channel before
1225 *  returning.
1226 *
1227 *  Input parameters:
1228 *      sc - softc structure
1229 *  	 d - DMA channel context
1230 *    poll - 1: using polling (for NAPI)
1231 *
1232 *  Return value:
1233 *  	   nothing
1234 ********************************************************************* */
1235
1236static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1237			     int poll)
1238{
1239	struct net_device *dev = sc->sbm_dev;
1240	int curidx;
1241	int hwidx;
1242	struct sbdmadscr *dsc;
1243	struct sk_buff *sb;
1244	unsigned long flags;
1245	int packets_handled = 0;
1246
1247	spin_lock_irqsave(&(sc->sbm_lock), flags);
1248
1249	if (d->sbdma_remptr == d->sbdma_addptr)
1250	  goto end_unlock;
1251
1252	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1253		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1254
1255	for (;;) {
1256		/*
1257		 * figure out where we are (as an index) and where
1258		 * the hardware is (also as an index)
1259		 *
1260		 * This could be done faster if (for example) the
1261		 * descriptor table was page-aligned and contiguous in
1262		 * both virtual and physical memory -- you could then
1263		 * just compare the low-order bits of the virtual address
1264		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1265		 */
1266
1267		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1268
1269		/*
1270		 * If they're the same, that means we've processed all
1271		 * of the descriptors up to (but not including) the one that
1272		 * the hardware is working on right now.
1273		 */
1274
1275		if (curidx == hwidx)
1276			break;
1277
1278		/*
1279		 * Otherwise, get the packet's sk_buff ptr back
1280		 */
1281
1282		dsc = &(d->sbdma_dscrtable[curidx]);
1283		sb = d->sbdma_ctxtable[curidx];
1284		d->sbdma_ctxtable[curidx] = NULL;
1285
1286		/*
1287		 * Stats
1288		 */
1289
1290		dev->stats.tx_bytes += sb->len;
1291		dev->stats.tx_packets++;
1292
1293		/*
1294		 * for transmits, we just free buffers.
1295		 */
1296
1297		dev_kfree_skb_irq(sb);
1298
1299		/*
1300		 * .. and advance to the next buffer.
1301		 */
1302
1303		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1304
1305		packets_handled++;
1306
1307	}
1308
1309	/*
1310	 * Decide if we should wake up the protocol or not.
1311	 * Other drivers seem to do this when we reach a low
1312	 * watermark on the transmit queue.
1313	 */
1314
1315	if (packets_handled)
1316		netif_wake_queue(d->sbdma_eth->sbm_dev);
1317
1318end_unlock:
1319	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1320
1321}
1322
1323
1324
1325/**********************************************************************
1326 *  SBMAC_INITCTX(s)
1327 *
1328 *  Initialize an Ethernet context structure - this is called
1329 *  once per MAC on the 1250.  Memory is allocated here, so don't
1330 *  call it again from inside the ioctl routines that bring the
1331 *  interface up/down
1332 *
1333 *  Input parameters:
1334 *  	   s - sbmac context structure
1335 *
1336 *  Return value:
1337 *  	   0
1338 ********************************************************************* */
1339
1340static int sbmac_initctx(struct sbmac_softc *s)
1341{
1342
1343	/*
1344	 * figure out the addresses of some ports
1345	 */
1346
1347	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1348	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1349	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1350	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1351	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1352	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1353	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1354	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1355
1356	/*
1357	 * Initialize the DMA channels.  Right now, only one per MAC is used
1358	 * Note: Only do this _once_, as it allocates memory from the kernel!
1359	 */
1360
1361	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1362	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1363
1364	/*
1365	 * initial state is OFF
1366	 */
1367
1368	s->sbm_state = sbmac_state_off;
1369
1370	return 0;
1371}
1372
1373
1374static void sbdma_uninitctx(struct sbmacdma *d)
1375{
1376	if (d->sbdma_dscrtable_unaligned) {
1377		kfree(d->sbdma_dscrtable_unaligned);
1378		d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1379	}
1380
1381	if (d->sbdma_ctxtable) {
1382		kfree(d->sbdma_ctxtable);
1383		d->sbdma_ctxtable = NULL;
1384	}
1385}
1386
1387
1388static void sbmac_uninitctx(struct sbmac_softc *sc)
1389{
1390	sbdma_uninitctx(&(sc->sbm_txdma));
1391	sbdma_uninitctx(&(sc->sbm_rxdma));
1392}
1393
1394
1395/**********************************************************************
1396 *  SBMAC_CHANNEL_START(s)
1397 *
1398 *  Start packet processing on this MAC.
1399 *
1400 *  Input parameters:
1401 *  	   s - sbmac structure
1402 *
1403 *  Return value:
1404 *  	   nothing
1405 ********************************************************************* */
1406
1407static void sbmac_channel_start(struct sbmac_softc *s)
1408{
1409	uint64_t reg;
1410	void __iomem *port;
1411	uint64_t cfg,fifo,framecfg;
1412	int idx, th_value;
1413
1414	/*
1415	 * Don't do this if running
1416	 */
1417
1418	if (s->sbm_state == sbmac_state_on)
1419		return;
1420
1421	/*
1422	 * Bring the controller out of reset, but leave it off.
1423	 */
1424
1425	__raw_writeq(0, s->sbm_macenable);
1426
1427	/*
1428	 * Ignore all received packets
1429	 */
1430
1431	__raw_writeq(0, s->sbm_rxfilter);
1432
1433	/*
1434	 * Calculate values for various control registers.
1435	 */
1436
1437	cfg = M_MAC_RETRY_EN |
1438		M_MAC_TX_HOLD_SOP_EN |
1439		V_MAC_TX_PAUSE_CNT_16K |
1440		M_MAC_AP_STAT_EN |
1441		M_MAC_FAST_SYNC |
1442		M_MAC_SS_EN |
1443		0;
1444
1445	/*
1446	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1447	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1448	 * Use a larger RD_THRSH for gigabit
1449	 */
1450	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1451		th_value = 28;
1452	else
1453		th_value = 64;
1454
1455	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1456		((s->sbm_speed == sbmac_speed_1000)
1457		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1458		V_MAC_TX_RL_THRSH(4) |
1459		V_MAC_RX_PL_THRSH(4) |
1460		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1461		V_MAC_RX_RL_THRSH(8) |
1462		0;
1463
1464	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1465		V_MAC_MAX_FRAMESZ_DEFAULT |
1466		V_MAC_BACKOFF_SEL(1);
1467
1468	/*
1469	 * Clear out the hash address map
1470	 */
1471
1472	port = s->sbm_base + R_MAC_HASH_BASE;
1473	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1474		__raw_writeq(0, port);
1475		port += sizeof(uint64_t);
1476	}
1477
1478	/*
1479	 * Clear out the exact-match table
1480	 */
1481
1482	port = s->sbm_base + R_MAC_ADDR_BASE;
1483	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1484		__raw_writeq(0, port);
1485		port += sizeof(uint64_t);
1486	}
1487
1488	/*
1489	 * Clear out the DMA Channel mapping table registers
1490	 */
1491
1492	port = s->sbm_base + R_MAC_CHUP0_BASE;
1493	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1494		__raw_writeq(0, port);
1495		port += sizeof(uint64_t);
1496	}
1497
1498
1499	port = s->sbm_base + R_MAC_CHLO0_BASE;
1500	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1501		__raw_writeq(0, port);
1502		port += sizeof(uint64_t);
1503	}
1504
1505	/*
1506	 * Program the hardware address.  It goes into the hardware-address
1507	 * register as well as the first filter register.
1508	 */
1509
1510	reg = sbmac_addr2reg(s->sbm_hwaddr);
1511
1512	port = s->sbm_base + R_MAC_ADDR_BASE;
1513	__raw_writeq(reg, port);
1514	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1515
1516#ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1517	/*
1518	 * Pass1 SOCs do not receive packets addressed to the
1519	 * destination address in the R_MAC_ETHERNET_ADDR register.
1520	 * Set the value to zero.
1521	 */
1522	__raw_writeq(0, port);
1523#else
1524	__raw_writeq(reg, port);
1525#endif
1526
1527	/*
1528	 * Set the receive filter for no packets, and write values
1529	 * to the various config registers
1530	 */
1531
1532	__raw_writeq(0, s->sbm_rxfilter);
1533	__raw_writeq(0, s->sbm_imr);
1534	__raw_writeq(framecfg, s->sbm_framecfg);
1535	__raw_writeq(fifo, s->sbm_fifocfg);
1536	__raw_writeq(cfg, s->sbm_maccfg);
1537
1538	/*
1539	 * Initialize DMA channels (rings should be ok now)
1540	 */
1541
1542	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1543	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1544
1545	/*
1546	 * Configure the speed, duplex, and flow control
1547	 */
1548
1549	sbmac_set_speed(s,s->sbm_speed);
1550	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1551
1552	/*
1553	 * Fill the receive ring
1554	 */
1555
1556	sbdma_fillring(s, &(s->sbm_rxdma));
1557
1558	/*
1559	 * Turn on the rest of the bits in the enable register
1560	 */
1561
1562#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1563	__raw_writeq(M_MAC_RXDMA_EN0 |
1564		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1565#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1566	__raw_writeq(M_MAC_RXDMA_EN0 |
1567		       M_MAC_TXDMA_EN0 |
1568		       M_MAC_RX_ENABLE |
1569		       M_MAC_TX_ENABLE, s->sbm_macenable);
1570#else
1571#error invalid SiByte MAC configuration
1572#endif
1573
1574#ifdef CONFIG_SBMAC_COALESCE
1575	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1576		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1577#else
1578	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1579		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1580#endif
1581
1582	/*
1583	 * Enable receiving unicasts and broadcasts
1584	 */
1585
1586	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1587
1588	/*
1589	 * we're running now.
1590	 */
1591
1592	s->sbm_state = sbmac_state_on;
1593
1594	/*
1595	 * Program multicast addresses
1596	 */
1597
1598	sbmac_setmulti(s);
1599
1600	/*
1601	 * If channel was in promiscuous mode before, turn that on
1602	 */
1603
1604	if (s->sbm_devflags & IFF_PROMISC) {
1605		sbmac_promiscuous_mode(s,1);
1606	}
1607
1608}
1609
1610
1611/**********************************************************************
1612 *  SBMAC_CHANNEL_STOP(s)
1613 *
1614 *  Stop packet processing on this MAC.
1615 *
1616 *  Input parameters:
1617 *  	   s - sbmac structure
1618 *
1619 *  Return value:
1620 *  	   nothing
1621 ********************************************************************* */
1622
1623static void sbmac_channel_stop(struct sbmac_softc *s)
1624{
1625	/* don't do this if already stopped */
1626
1627	if (s->sbm_state == sbmac_state_off)
1628		return;
1629
1630	/* don't accept any packets, disable all interrupts */
1631
1632	__raw_writeq(0, s->sbm_rxfilter);
1633	__raw_writeq(0, s->sbm_imr);
1634
1635	/* Turn off ticker */
1636
1637	/* XXX */
1638
1639	/* turn off receiver and transmitter */
1640
1641	__raw_writeq(0, s->sbm_macenable);
1642
1643	/* We're stopped now. */
1644
1645	s->sbm_state = sbmac_state_off;
1646
1647	/*
1648	 * Stop DMA channels (rings should be ok now)
1649	 */
1650
1651	sbdma_channel_stop(&(s->sbm_rxdma));
1652	sbdma_channel_stop(&(s->sbm_txdma));
1653
1654	/* Empty the receive and transmit rings */
1655
1656	sbdma_emptyring(&(s->sbm_rxdma));
1657	sbdma_emptyring(&(s->sbm_txdma));
1658
1659}
1660
1661/**********************************************************************
1662 *  SBMAC_SET_CHANNEL_STATE(state)
1663 *
1664 *  Set the channel's state ON or OFF
1665 *
1666 *  Input parameters:
1667 *  	   state - new state
1668 *
1669 *  Return value:
1670 *  	   old state
1671 ********************************************************************* */
1672static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1673						enum sbmac_state state)
1674{
1675	enum sbmac_state oldstate = sc->sbm_state;
1676
1677	/*
1678	 * If same as previous state, return
1679	 */
1680
1681	if (state == oldstate) {
1682		return oldstate;
1683	}
1684
1685	/*
1686	 * If new state is ON, turn channel on
1687	 */
1688
1689	if (state == sbmac_state_on) {
1690		sbmac_channel_start(sc);
1691	}
1692	else {
1693		sbmac_channel_stop(sc);
1694	}
1695
1696	/*
1697	 * Return previous state
1698	 */
1699
1700	return oldstate;
1701}
1702
1703
1704/**********************************************************************
1705 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1706 *
1707 *  Turn on or off promiscuous mode
1708 *
1709 *  Input parameters:
1710 *  	   sc - softc
1711 *      onoff - 1 to turn on, 0 to turn off
1712 *
1713 *  Return value:
1714 *  	   nothing
1715 ********************************************************************* */
1716
1717static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1718{
1719	uint64_t reg;
1720
1721	if (sc->sbm_state != sbmac_state_on)
1722		return;
1723
1724	if (onoff) {
1725		reg = __raw_readq(sc->sbm_rxfilter);
1726		reg |= M_MAC_ALLPKT_EN;
1727		__raw_writeq(reg, sc->sbm_rxfilter);
1728	}
1729	else {
1730		reg = __raw_readq(sc->sbm_rxfilter);
1731		reg &= ~M_MAC_ALLPKT_EN;
1732		__raw_writeq(reg, sc->sbm_rxfilter);
1733	}
1734}
1735
1736/**********************************************************************
1737 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1738 *
1739 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1740 *
1741 *  Input parameters:
1742 *  	   sc - softc
1743 *
1744 *  Return value:
1745 *  	   nothing
1746 ********************************************************************* */
1747
1748static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1749{
1750	uint64_t reg;
1751
1752	/* Hard code the off set to 15 for now */
1753	reg = __raw_readq(sc->sbm_rxfilter);
1754	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1755	__raw_writeq(reg, sc->sbm_rxfilter);
1756
1757	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1758	   later does.  */
1759	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1760		sc->rx_hw_checksum = DISABLE;
1761	} else {
1762		sc->rx_hw_checksum = ENABLE;
1763	}
1764}
1765
1766
1767/**********************************************************************
1768 *  SBMAC_ADDR2REG(ptr)
1769 *
1770 *  Convert six bytes into the 64-bit register value that
1771 *  we typically write into the SBMAC's address/mcast registers
1772 *
1773 *  Input parameters:
1774 *  	   ptr - pointer to 6 bytes
1775 *
1776 *  Return value:
1777 *  	   register value
1778 ********************************************************************* */
1779
1780static uint64_t sbmac_addr2reg(unsigned char *ptr)
1781{
1782	uint64_t reg = 0;
1783
1784	ptr += 6;
1785
1786	reg |= (uint64_t) *(--ptr);
1787	reg <<= 8;
1788	reg |= (uint64_t) *(--ptr);
1789	reg <<= 8;
1790	reg |= (uint64_t) *(--ptr);
1791	reg <<= 8;
1792	reg |= (uint64_t) *(--ptr);
1793	reg <<= 8;
1794	reg |= (uint64_t) *(--ptr);
1795	reg <<= 8;
1796	reg |= (uint64_t) *(--ptr);
1797
1798	return reg;
1799}
1800
1801
1802/**********************************************************************
1803 *  SBMAC_SET_SPEED(s,speed)
1804 *
1805 *  Configure LAN speed for the specified MAC.
1806 *  Warning: must be called when MAC is off!
1807 *
1808 *  Input parameters:
1809 *  	   s - sbmac structure
1810 *  	   speed - speed to set MAC to (see enum sbmac_speed)
1811 *
1812 *  Return value:
1813 *  	   1 if successful
1814 *      0 indicates invalid parameters
1815 ********************************************************************* */
1816
1817static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1818{
1819	uint64_t cfg;
1820	uint64_t framecfg;
1821
1822	/*
1823	 * Save new current values
1824	 */
1825
1826	s->sbm_speed = speed;
1827
1828	if (s->sbm_state == sbmac_state_on)
1829		return 0;	/* save for next restart */
1830
1831	/*
1832	 * Read current register values
1833	 */
1834
1835	cfg = __raw_readq(s->sbm_maccfg);
1836	framecfg = __raw_readq(s->sbm_framecfg);
1837
1838	/*
1839	 * Mask out the stuff we want to change
1840	 */
1841
1842	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1843	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1844		      M_MAC_SLOT_SIZE);
1845
1846	/*
1847	 * Now add in the new bits
1848	 */
1849
1850	switch (speed) {
1851	case sbmac_speed_10:
1852		framecfg |= V_MAC_IFG_RX_10 |
1853			V_MAC_IFG_TX_10 |
1854			K_MAC_IFG_THRSH_10 |
1855			V_MAC_SLOT_SIZE_10;
1856		cfg |= V_MAC_SPEED_SEL_10MBPS;
1857		break;
1858
1859	case sbmac_speed_100:
1860		framecfg |= V_MAC_IFG_RX_100 |
1861			V_MAC_IFG_TX_100 |
1862			V_MAC_IFG_THRSH_100 |
1863			V_MAC_SLOT_SIZE_100;
1864		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1865		break;
1866
1867	case sbmac_speed_1000:
1868		framecfg |= V_MAC_IFG_RX_1000 |
1869			V_MAC_IFG_TX_1000 |
1870			V_MAC_IFG_THRSH_1000 |
1871			V_MAC_SLOT_SIZE_1000;
1872		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1873		break;
1874
1875	default:
1876		return 0;
1877	}
1878
1879	/*
1880	 * Send the bits back to the hardware
1881	 */
1882
1883	__raw_writeq(framecfg, s->sbm_framecfg);
1884	__raw_writeq(cfg, s->sbm_maccfg);
1885
1886	return 1;
1887}
1888
1889/**********************************************************************
1890 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1891 *
1892 *  Set Ethernet duplex and flow control options for this MAC
1893 *  Warning: must be called when MAC is off!
1894 *
1895 *  Input parameters:
1896 *  	   s - sbmac structure
1897 *  	   duplex - duplex setting (see enum sbmac_duplex)
1898 *  	   fc - flow control setting (see enum sbmac_fc)
1899 *
1900 *  Return value:
1901 *  	   1 if ok
1902 *  	   0 if an invalid parameter combination was specified
1903 ********************************************************************* */
1904
1905static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1906			    enum sbmac_fc fc)
1907{
1908	uint64_t cfg;
1909
1910	/*
1911	 * Save new current values
1912	 */
1913
1914	s->sbm_duplex = duplex;
1915	s->sbm_fc = fc;
1916
1917	if (s->sbm_state == sbmac_state_on)
1918		return 0;	/* save for next restart */
1919
1920	/*
1921	 * Read current register values
1922	 */
1923
1924	cfg = __raw_readq(s->sbm_maccfg);
1925
1926	/*
1927	 * Mask off the stuff we're about to change
1928	 */
1929
1930	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1931
1932
1933	switch (duplex) {
1934	case sbmac_duplex_half:
1935		switch (fc) {
1936		case sbmac_fc_disabled:
1937			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1938			break;
1939
1940		case sbmac_fc_collision:
1941			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1942			break;
1943
1944		case sbmac_fc_carrier:
1945			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1946			break;
1947
1948		case sbmac_fc_frame:		/* not valid in half duplex */
1949		default:			/* invalid selection */
1950			return 0;
1951		}
1952		break;
1953
1954	case sbmac_duplex_full:
1955		switch (fc) {
1956		case sbmac_fc_disabled:
1957			cfg |= V_MAC_FC_CMD_DISABLED;
1958			break;
1959
1960		case sbmac_fc_frame:
1961			cfg |= V_MAC_FC_CMD_ENABLED;
1962			break;
1963
1964		case sbmac_fc_collision:	/* not valid in full duplex */
1965		case sbmac_fc_carrier:		/* not valid in full duplex */
1966		default:
1967			return 0;
1968		}
1969		break;
1970	default:
1971		return 0;
1972	}
1973
1974	/*
1975	 * Send the bits back to the hardware
1976	 */
1977
1978	__raw_writeq(cfg, s->sbm_maccfg);
1979
1980	return 1;
1981}
1982
1983
1984
1985
1986/**********************************************************************
1987 *  SBMAC_INTR()
1988 *
1989 *  Interrupt handler for MAC interrupts
1990 *
1991 *  Input parameters:
1992 *  	   MAC structure
1993 *
1994 *  Return value:
1995 *  	   nothing
1996 ********************************************************************* */
1997static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1998{
1999	struct net_device *dev = (struct net_device *) dev_instance;
2000	struct sbmac_softc *sc = netdev_priv(dev);
2001	uint64_t isr;
2002	int handled = 0;
2003
2004	/*
2005	 * Read the ISR (this clears the bits in the real
2006	 * register, except for counter addr)
2007	 */
2008
2009	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2010
2011	if (isr == 0)
2012		return IRQ_RETVAL(0);
2013	handled = 1;
2014
2015	/*
2016	 * Transmits on channel 0
2017	 */
2018
2019	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2020		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2021
2022	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2023		if (napi_schedule_prep(&sc->napi)) {
2024			__raw_writeq(0, sc->sbm_imr);
2025			__napi_schedule(&sc->napi);
2026			/* Depend on the exit from poll to reenable intr */
2027		}
2028		else {
2029			/* may leave some packets behind */
2030			sbdma_rx_process(sc,&(sc->sbm_rxdma),
2031					 SBMAC_MAX_RXDESCR * 2, 0);
2032		}
2033	}
2034	return IRQ_RETVAL(handled);
2035}
2036
2037/**********************************************************************
2038 *  SBMAC_START_TX(skb,dev)
2039 *
2040 *  Start output on the specified interface.  Basically, we
2041 *  queue as many buffers as we can until the ring fills up, or
2042 *  we run off the end of the queue, whichever comes first.
2043 *
2044 *  Input parameters:
2045 *
2046 *
2047 *  Return value:
2048 *  	   nothing
2049 ********************************************************************* */
2050static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2051{
2052	struct sbmac_softc *sc = netdev_priv(dev);
2053	unsigned long flags;
2054
2055	/* lock eth irq */
2056	spin_lock_irqsave(&sc->sbm_lock, flags);
2057
2058	/*
2059	 * Put the buffer on the transmit ring.  If we
2060	 * don't have room, stop the queue.
2061	 */
2062
2063	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2064		/* XXX save skb that we could not send */
2065		netif_stop_queue(dev);
2066		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2067
2068		return NETDEV_TX_BUSY;
2069	}
2070
2071	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2072
2073	return NETDEV_TX_OK;
2074}
2075
2076/**********************************************************************
2077 *  SBMAC_SETMULTI(sc)
2078 *
2079 *  Reprogram the multicast table into the hardware, given
2080 *  the list of multicasts associated with the interface
2081 *  structure.
2082 *
2083 *  Input parameters:
2084 *  	   sc - softc
2085 *
2086 *  Return value:
2087 *  	   nothing
2088 ********************************************************************* */
2089
2090static void sbmac_setmulti(struct sbmac_softc *sc)
2091{
2092	uint64_t reg;
2093	void __iomem *port;
2094	int idx;
2095	struct netdev_hw_addr *ha;
2096	struct net_device *dev = sc->sbm_dev;
2097
2098	/*
2099	 * Clear out entire multicast table.  We do this by nuking
2100	 * the entire hash table and all the direct matches except
2101	 * the first one, which is used for our station address
2102	 */
2103
2104	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2105		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2106		__raw_writeq(0, port);
2107	}
2108
2109	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2110		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2111		__raw_writeq(0, port);
2112	}
2113
2114	/*
2115	 * Clear the filter to say we don't want any multicasts.
2116	 */
2117
2118	reg = __raw_readq(sc->sbm_rxfilter);
2119	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2120	__raw_writeq(reg, sc->sbm_rxfilter);
2121
2122	if (dev->flags & IFF_ALLMULTI) {
2123		/*
2124		 * Enable ALL multicasts.  Do this by inverting the
2125		 * multicast enable bit.
2126		 */
2127		reg = __raw_readq(sc->sbm_rxfilter);
2128		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2129		__raw_writeq(reg, sc->sbm_rxfilter);
2130		return;
2131	}
2132
2133
2134	/*
2135	 * Progam new multicast entries.  For now, only use the
2136	 * perfect filter.  In the future we'll need to use the
2137	 * hash filter if the perfect filter overflows
2138	 */
2139
2140	/* XXX only using perfect filter for now, need to use hash
2141	 * XXX if the table overflows */
2142
2143	idx = 1;		/* skip station address */
2144	netdev_for_each_mc_addr(ha, dev) {
2145		if (idx == MAC_ADDR_COUNT)
2146			break;
2147		reg = sbmac_addr2reg(ha->addr);
2148		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2149		__raw_writeq(reg, port);
2150		idx++;
2151	}
2152
2153	/*
2154	 * Enable the "accept multicast bits" if we programmed at least one
2155	 * multicast.
2156	 */
2157
2158	if (idx > 1) {
2159		reg = __raw_readq(sc->sbm_rxfilter);
2160		reg |= M_MAC_MCAST_EN;
2161		__raw_writeq(reg, sc->sbm_rxfilter);
2162	}
2163}
2164
2165static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2166{
2167	if (new_mtu >  ENET_PACKET_SIZE)
2168		return -EINVAL;
2169	_dev->mtu = new_mtu;
2170	pr_info("changing the mtu to %d\n", new_mtu);
2171	return 0;
2172}
2173
2174static const struct net_device_ops sbmac_netdev_ops = {
2175	.ndo_open		= sbmac_open,
2176	.ndo_stop		= sbmac_close,
2177	.ndo_start_xmit		= sbmac_start_tx,
2178	.ndo_set_rx_mode	= sbmac_set_rx_mode,
2179	.ndo_tx_timeout		= sbmac_tx_timeout,
2180	.ndo_do_ioctl		= sbmac_mii_ioctl,
2181	.ndo_change_mtu		= sb1250_change_mtu,
2182	.ndo_validate_addr	= eth_validate_addr,
2183	.ndo_set_mac_address	= eth_mac_addr,
2184#ifdef CONFIG_NET_POLL_CONTROLLER
2185	.ndo_poll_controller	= sbmac_netpoll,
2186#endif
2187};
2188
2189/**********************************************************************
2190 *  SBMAC_INIT(dev)
2191 *
2192 *  Attach routine - init hardware and hook ourselves into linux
2193 *
2194 *  Input parameters:
2195 *  	   dev - net_device structure
2196 *
2197 *  Return value:
2198 *  	   status
2199 ********************************************************************* */
2200
2201static int sbmac_init(struct platform_device *pldev, long long base)
2202{
2203	struct net_device *dev = dev_get_drvdata(&pldev->dev);
2204	int idx = pldev->id;
2205	struct sbmac_softc *sc = netdev_priv(dev);
2206	unsigned char *eaddr;
2207	uint64_t ea_reg;
2208	int i;
2209	int err;
2210
2211	sc->sbm_dev = dev;
2212	sc->sbe_idx = idx;
2213
2214	eaddr = sc->sbm_hwaddr;
2215
2216	/*
2217	 * Read the ethernet address.  The firmware left this programmed
2218	 * for us in the ethernet address register for each mac.
2219	 */
2220
2221	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2222	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2223	for (i = 0; i < 6; i++) {
2224		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2225		ea_reg >>= 8;
2226	}
2227
2228	for (i = 0; i < 6; i++) {
2229		dev->dev_addr[i] = eaddr[i];
2230	}
2231
2232	/*
2233	 * Initialize context (get pointers to registers and stuff), then
2234	 * allocate the memory for the descriptor tables.
2235	 */
2236
2237	sbmac_initctx(sc);
2238
2239	/*
2240	 * Set up Linux device callins
2241	 */
2242
2243	spin_lock_init(&(sc->sbm_lock));
2244
2245	dev->netdev_ops = &sbmac_netdev_ops;
2246	dev->watchdog_timeo = TX_TIMEOUT;
2247
2248	netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2249
2250	dev->irq		= UNIT_INT(idx);
2251
2252	/* This is needed for PASS2 for Rx H/W checksum feature */
2253	sbmac_set_iphdr_offset(sc);
2254
2255	sc->mii_bus = mdiobus_alloc();
2256	if (sc->mii_bus == NULL) {
2257		err = -ENOMEM;
2258		goto uninit_ctx;
2259	}
2260
2261	sc->mii_bus->name = sbmac_mdio_string;
2262	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2263		pldev->name, idx);
2264	sc->mii_bus->priv = sc;
2265	sc->mii_bus->read = sbmac_mii_read;
2266	sc->mii_bus->write = sbmac_mii_write;
2267	sc->mii_bus->irq = sc->phy_irq;
2268	for (i = 0; i < PHY_MAX_ADDR; ++i)
2269		sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2270
2271	sc->mii_bus->parent = &pldev->dev;
2272	/*
2273	 * Probe PHY address
2274	 */
2275	err = mdiobus_register(sc->mii_bus);
2276	if (err) {
2277		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2278		       dev->name);
2279		goto free_mdio;
2280	}
2281	dev_set_drvdata(&pldev->dev, sc->mii_bus);
2282
2283	err = register_netdev(dev);
2284	if (err) {
2285		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2286		       sbmac_string, idx);
2287		goto unreg_mdio;
2288	}
2289
2290	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2291
2292	if (sc->rx_hw_checksum == ENABLE)
2293		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2294
2295	/*
2296	 * Display Ethernet address (this is called during the config
2297	 * process so we need to finish off the config message that
2298	 * was being displayed)
2299	 */
2300	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2301	       dev->name, base, eaddr);
2302
2303	return 0;
2304unreg_mdio:
2305	mdiobus_unregister(sc->mii_bus);
2306	dev_set_drvdata(&pldev->dev, NULL);
2307free_mdio:
2308	mdiobus_free(sc->mii_bus);
2309uninit_ctx:
2310	sbmac_uninitctx(sc);
2311	return err;
2312}
2313
2314
2315static int sbmac_open(struct net_device *dev)
2316{
2317	struct sbmac_softc *sc = netdev_priv(dev);
2318	int err;
2319
2320	if (debug > 1)
2321		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2322
2323	/*
2324	 * map/route interrupt (clear status first, in case something
2325	 * weird is pending; we haven't initialized the mac registers
2326	 * yet)
2327	 */
2328
2329	__raw_readq(sc->sbm_isr);
2330	err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2331	if (err) {
2332		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2333		       dev->irq);
2334		goto out_err;
2335	}
2336
2337	sc->sbm_speed = sbmac_speed_none;
2338	sc->sbm_duplex = sbmac_duplex_none;
2339	sc->sbm_fc = sbmac_fc_none;
2340	sc->sbm_pause = -1;
2341	sc->sbm_link = 0;
2342
2343	/*
2344	 * Attach to the PHY
2345	 */
2346	err = sbmac_mii_probe(dev);
2347	if (err)
2348		goto out_unregister;
2349
2350	/*
2351	 * Turn on the channel
2352	 */
2353
2354	sbmac_set_channel_state(sc,sbmac_state_on);
2355
2356	netif_start_queue(dev);
2357
2358	sbmac_set_rx_mode(dev);
2359
2360	phy_start(sc->phy_dev);
2361
2362	napi_enable(&sc->napi);
2363
2364	return 0;
2365
2366out_unregister:
2367	free_irq(dev->irq, dev);
2368out_err:
2369	return err;
2370}
2371
2372static int sbmac_mii_probe(struct net_device *dev)
2373{
2374	struct sbmac_softc *sc = netdev_priv(dev);
2375	struct phy_device *phy_dev;
2376	int i;
2377
2378	for (i = 0; i < PHY_MAX_ADDR; i++) {
2379		phy_dev = sc->mii_bus->phy_map[i];
2380		if (phy_dev)
2381			break;
2382	}
2383	if (!phy_dev) {
2384		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2385		return -ENXIO;
2386	}
2387
2388	phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll, 0,
2389			      PHY_INTERFACE_MODE_GMII);
2390	if (IS_ERR(phy_dev)) {
2391		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2392		return PTR_ERR(phy_dev);
2393	}
2394
2395	/* Remove any features not supported by the controller */
2396	phy_dev->supported &= SUPPORTED_10baseT_Half |
2397			      SUPPORTED_10baseT_Full |
2398			      SUPPORTED_100baseT_Half |
2399			      SUPPORTED_100baseT_Full |
2400			      SUPPORTED_1000baseT_Half |
2401			      SUPPORTED_1000baseT_Full |
2402			      SUPPORTED_Autoneg |
2403			      SUPPORTED_MII |
2404			      SUPPORTED_Pause |
2405			      SUPPORTED_Asym_Pause;
2406	phy_dev->advertising = phy_dev->supported;
2407
2408	pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2409		dev->name, phy_dev->drv->name,
2410		dev_name(&phy_dev->dev), phy_dev->irq);
2411
2412	sc->phy_dev = phy_dev;
2413
2414	return 0;
2415}
2416
2417
2418static void sbmac_mii_poll(struct net_device *dev)
2419{
2420	struct sbmac_softc *sc = netdev_priv(dev);
2421	struct phy_device *phy_dev = sc->phy_dev;
2422	unsigned long flags;
2423	enum sbmac_fc fc;
2424	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2425
2426	link_chg = (sc->sbm_link != phy_dev->link);
2427	speed_chg = (sc->sbm_speed != phy_dev->speed);
2428	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2429	pause_chg = (sc->sbm_pause != phy_dev->pause);
2430
2431	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2432		return;					/* Hmmm... */
2433
2434	if (!phy_dev->link) {
2435		if (link_chg) {
2436			sc->sbm_link = phy_dev->link;
2437			sc->sbm_speed = sbmac_speed_none;
2438			sc->sbm_duplex = sbmac_duplex_none;
2439			sc->sbm_fc = sbmac_fc_disabled;
2440			sc->sbm_pause = -1;
2441			pr_info("%s: link unavailable\n", dev->name);
2442		}
2443		return;
2444	}
2445
2446	if (phy_dev->duplex == DUPLEX_FULL) {
2447		if (phy_dev->pause)
2448			fc = sbmac_fc_frame;
2449		else
2450			fc = sbmac_fc_disabled;
2451	} else
2452		fc = sbmac_fc_collision;
2453	fc_chg = (sc->sbm_fc != fc);
2454
2455	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2456		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2457
2458	spin_lock_irqsave(&sc->sbm_lock, flags);
2459
2460	sc->sbm_speed = phy_dev->speed;
2461	sc->sbm_duplex = phy_dev->duplex;
2462	sc->sbm_fc = fc;
2463	sc->sbm_pause = phy_dev->pause;
2464	sc->sbm_link = phy_dev->link;
2465
2466	if ((speed_chg || duplex_chg || fc_chg) &&
2467	    sc->sbm_state != sbmac_state_off) {
2468		/*
2469		 * something changed, restart the channel
2470		 */
2471		if (debug > 1)
2472			pr_debug("%s: restarting channel "
2473				 "because PHY state changed\n", dev->name);
2474		sbmac_channel_stop(sc);
2475		sbmac_channel_start(sc);
2476	}
2477
2478	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2479}
2480
2481
2482static void sbmac_tx_timeout (struct net_device *dev)
2483{
2484	struct sbmac_softc *sc = netdev_priv(dev);
2485	unsigned long flags;
2486
2487	spin_lock_irqsave(&sc->sbm_lock, flags);
2488
2489
2490	dev->trans_start = jiffies; /* prevent tx timeout */
2491	dev->stats.tx_errors++;
2492
2493	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2494
2495	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2496}
2497
2498
2499
2500
2501static void sbmac_set_rx_mode(struct net_device *dev)
2502{
2503	unsigned long flags;
2504	struct sbmac_softc *sc = netdev_priv(dev);
2505
2506	spin_lock_irqsave(&sc->sbm_lock, flags);
2507	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2508		/*
2509		 * Promiscuous changed.
2510		 */
2511
2512		if (dev->flags & IFF_PROMISC) {
2513			sbmac_promiscuous_mode(sc,1);
2514		}
2515		else {
2516			sbmac_promiscuous_mode(sc,0);
2517		}
2518	}
2519	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2520
2521	/*
2522	 * Program the multicasts.  Do this every time.
2523	 */
2524
2525	sbmac_setmulti(sc);
2526
2527}
2528
2529static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2530{
2531	struct sbmac_softc *sc = netdev_priv(dev);
2532
2533	if (!netif_running(dev) || !sc->phy_dev)
2534		return -EINVAL;
2535
2536	return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2537}
2538
2539static int sbmac_close(struct net_device *dev)
2540{
2541	struct sbmac_softc *sc = netdev_priv(dev);
2542
2543	napi_disable(&sc->napi);
2544
2545	phy_stop(sc->phy_dev);
2546
2547	sbmac_set_channel_state(sc, sbmac_state_off);
2548
2549	netif_stop_queue(dev);
2550
2551	if (debug > 1)
2552		pr_debug("%s: Shutting down ethercard\n", dev->name);
2553
2554	phy_disconnect(sc->phy_dev);
2555	sc->phy_dev = NULL;
2556	free_irq(dev->irq, dev);
2557
2558	sbdma_emptyring(&(sc->sbm_txdma));
2559	sbdma_emptyring(&(sc->sbm_rxdma));
2560
2561	return 0;
2562}
2563
2564static int sbmac_poll(struct napi_struct *napi, int budget)
2565{
2566	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2567	int work_done;
2568
2569	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2570	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2571
2572	if (work_done < budget) {
2573		napi_complete(napi);
2574
2575#ifdef CONFIG_SBMAC_COALESCE
2576		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2577			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2578			     sc->sbm_imr);
2579#else
2580		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2581			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2582#endif
2583	}
2584
2585	return work_done;
2586}
2587
2588
2589static int __devinit sbmac_probe(struct platform_device *pldev)
2590{
2591	struct net_device *dev;
2592	struct sbmac_softc *sc;
2593	void __iomem *sbm_base;
2594	struct resource *res;
2595	u64 sbmac_orig_hwaddr;
2596	int err;
2597
2598	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2599	BUG_ON(!res);
2600	sbm_base = ioremap_nocache(res->start, resource_size(res));
2601	if (!sbm_base) {
2602		printk(KERN_ERR "%s: unable to map device registers\n",
2603		       dev_name(&pldev->dev));
2604		err = -ENOMEM;
2605		goto out_out;
2606	}
2607
2608	/*
2609	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2610	 * value for us by the firmware if we're going to use this MAC.
2611	 * If we find a zero, skip this MAC.
2612	 */
2613	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2614	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2615		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2616	if (sbmac_orig_hwaddr == 0) {
2617		err = 0;
2618		goto out_unmap;
2619	}
2620
2621	/*
2622	 * Okay, cool.  Initialize this MAC.
2623	 */
2624	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2625	if (!dev) {
2626		err = -ENOMEM;
2627		goto out_unmap;
2628	}
2629
2630	dev_set_drvdata(&pldev->dev, dev);
2631	SET_NETDEV_DEV(dev, &pldev->dev);
2632
2633	sc = netdev_priv(dev);
2634	sc->sbm_base = sbm_base;
2635
2636	err = sbmac_init(pldev, res->start);
2637	if (err)
2638		goto out_kfree;
2639
2640	return 0;
2641
2642out_kfree:
2643	free_netdev(dev);
2644	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2645
2646out_unmap:
2647	iounmap(sbm_base);
2648
2649out_out:
2650	return err;
2651}
2652
2653static int __exit sbmac_remove(struct platform_device *pldev)
2654{
2655	struct net_device *dev = dev_get_drvdata(&pldev->dev);
2656	struct sbmac_softc *sc = netdev_priv(dev);
2657
2658	unregister_netdev(dev);
2659	sbmac_uninitctx(sc);
2660	mdiobus_unregister(sc->mii_bus);
2661	mdiobus_free(sc->mii_bus);
2662	iounmap(sc->sbm_base);
2663	free_netdev(dev);
2664
2665	return 0;
2666}
2667
2668static struct platform_driver sbmac_driver = {
2669	.probe = sbmac_probe,
2670	.remove = __exit_p(sbmac_remove),
2671	.driver = {
2672		.name = sbmac_string,
2673		.owner  = THIS_MODULE,
2674	},
2675};
2676
2677module_platform_driver(sbmac_driver);