Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 *
   3 * Alchemy Au1x00 ethernet driver
   4 *
   5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
   6 * Copyright 2002 TimeSys Corp.
   7 * Added ethtool/mii-tool support,
   8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
   9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
  10 * or riemer@riemer-nt.de: fixed the link beat detection with
  11 * ioctls (SIOCGMIIPHY)
  12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
  13 *  converted to use linux-2.6.x's PHY framework
  14 *
  15 * Author: MontaVista Software, Inc.
  16 *		ppopov@mvista.com or source@mvista.com
  17 *
  18 * ########################################################################
  19 *
  20 *  This program is free software; you can distribute it and/or modify it
  21 *  under the terms of the GNU General Public License (Version 2) as
  22 *  published by the Free Software Foundation.
  23 *
  24 *  This program is distributed in the hope it will be useful, but WITHOUT
  25 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  26 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  27 *  for more details.
  28 *
  29 *  You should have received a copy of the GNU General Public License along
  30 *  with this program; if not, write to the Free Software Foundation, Inc.,
  31 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  32 *
  33 * ########################################################################
  34 *
  35 *
  36 */
  37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  38
  39#include <linux/capability.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/module.h>
  42#include <linux/kernel.h>
  43#include <linux/string.h>
  44#include <linux/timer.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/ioport.h>
  48#include <linux/bitops.h>
  49#include <linux/slab.h>
  50#include <linux/interrupt.h>
  51#include <linux/init.h>
  52#include <linux/netdevice.h>
  53#include <linux/etherdevice.h>
  54#include <linux/ethtool.h>
  55#include <linux/mii.h>
  56#include <linux/skbuff.h>
  57#include <linux/delay.h>
  58#include <linux/crc32.h>
  59#include <linux/phy.h>
  60#include <linux/platform_device.h>
  61#include <linux/cpu.h>
  62#include <linux/io.h>
  63
  64#include <asm/mipsregs.h>
  65#include <asm/irq.h>
  66#include <asm/processor.h>
  67
  68#include <au1000.h>
  69#include <au1xxx_eth.h>
  70#include <prom.h>
  71
  72#include "au1000_eth.h"
  73
  74#ifdef AU1000_ETH_DEBUG
  75static int au1000_debug = 5;
  76#else
  77static int au1000_debug = 3;
  78#endif
  79
  80#define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
  81				NETIF_MSG_PROBE	| \
  82				NETIF_MSG_LINK)
  83
  84#define DRV_NAME	"au1000_eth"
  85#define DRV_VERSION	"1.7"
  86#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
  87#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
  88
  89MODULE_AUTHOR(DRV_AUTHOR);
  90MODULE_DESCRIPTION(DRV_DESC);
  91MODULE_LICENSE("GPL");
  92MODULE_VERSION(DRV_VERSION);
  93
  94/*
  95 * Theory of operation
  96 *
  97 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
  98 * There are four receive and four transmit descriptors.  These
  99 * descriptors are not in memory; rather, they are just a set of
 100 * hardware registers.
 101 *
 102 * Since the Au1000 has a coherent data cache, the receive and
 103 * transmit buffers are allocated from the KSEG0 segment. The
 104 * hardware registers, however, are still mapped at KSEG1 to
 105 * make sure there's no out-of-order writes, and that all writes
 106 * complete immediately.
 107 */
 108
 109/*
 110 * board-specific configurations
 111 *
 112 * PHY detection algorithm
 113 *
 114 * If phy_static_config is undefined, the PHY setup is
 115 * autodetected:
 116 *
 117 * mii_probe() first searches the current MAC's MII bus for a PHY,
 118 * selecting the first (or last, if phy_search_highest_addr is
 119 * defined) PHY address not already claimed by another netdev.
 120 *
 121 * If nothing was found that way when searching for the 2nd ethernet
 122 * controller's PHY and phy1_search_mac0 is defined, then
 123 * the first MII bus is searched as well for an unclaimed PHY; this is
 124 * needed in case of a dual-PHY accessible only through the MAC0's MII
 125 * bus.
 126 *
 127 * Finally, if no PHY is found, then the corresponding ethernet
 128 * controller is not registered to the network subsystem.
 129 */
 130
 131/* autodetection defaults: phy1_search_mac0 */
 132
 133/* static PHY setup
 134 *
 135 * most boards PHY setup should be detectable properly with the
 136 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 137 * you have a switch attached, or want to use the PHY's interrupt
 138 * notification capabilities) you can provide a static PHY
 139 * configuration here
 140 *
 141 * IRQs may only be set, if a PHY address was configured
 142 * If a PHY address is given, also a bus id is required to be set
 143 *
 144 * ps: make sure the used irqs are configured properly in the board
 145 * specific irq-map
 146 */
 147
 148static void au1000_enable_mac(struct net_device *dev, int force_reset)
 149{
 150	unsigned long flags;
 151	struct au1000_private *aup = netdev_priv(dev);
 152
 153	spin_lock_irqsave(&aup->lock, flags);
 154
 155	if (force_reset || (!aup->mac_enabled)) {
 156		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 157		au_sync_delay(2);
 158		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
 159				| MAC_EN_CLOCK_ENABLE), aup->enable);
 160		au_sync_delay(2);
 161
 162		aup->mac_enabled = 1;
 163	}
 164
 165	spin_unlock_irqrestore(&aup->lock, flags);
 166}
 167
 168/*
 169 * MII operations
 170 */
 171static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
 172{
 173	struct au1000_private *aup = netdev_priv(dev);
 174	u32 *const mii_control_reg = &aup->mac->mii_control;
 175	u32 *const mii_data_reg = &aup->mac->mii_data;
 176	u32 timedout = 20;
 177	u32 mii_control;
 178
 179	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 180		mdelay(1);
 181		if (--timedout == 0) {
 182			netdev_err(dev, "read_MII busy timeout!!\n");
 183			return -1;
 184		}
 185	}
 186
 187	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 188		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
 189
 190	writel(mii_control, mii_control_reg);
 191
 192	timedout = 20;
 193	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 194		mdelay(1);
 195		if (--timedout == 0) {
 196			netdev_err(dev, "mdio_read busy timeout!!\n");
 197			return -1;
 198		}
 199	}
 200	return readl(mii_data_reg);
 201}
 202
 203static void au1000_mdio_write(struct net_device *dev, int phy_addr,
 204			      int reg, u16 value)
 205{
 206	struct au1000_private *aup = netdev_priv(dev);
 207	u32 *const mii_control_reg = &aup->mac->mii_control;
 208	u32 *const mii_data_reg = &aup->mac->mii_data;
 209	u32 timedout = 20;
 210	u32 mii_control;
 211
 212	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 213		mdelay(1);
 214		if (--timedout == 0) {
 215			netdev_err(dev, "mdio_write busy timeout!!\n");
 216			return;
 217		}
 218	}
 219
 220	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 221		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
 222
 223	writel(value, mii_data_reg);
 224	writel(mii_control, mii_control_reg);
 225}
 226
 227static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
 228{
 229	/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
 230	 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus)
 231	 */
 232	struct net_device *const dev = bus->priv;
 233
 234	/* make sure the MAC associated with this
 235	 * mii_bus is enabled
 236	 */
 237	au1000_enable_mac(dev, 0);
 238
 239	return au1000_mdio_read(dev, phy_addr, regnum);
 240}
 241
 242static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
 243				u16 value)
 244{
 245	struct net_device *const dev = bus->priv;
 246
 247	/* make sure the MAC associated with this
 248	 * mii_bus is enabled
 249	 */
 250	au1000_enable_mac(dev, 0);
 251
 252	au1000_mdio_write(dev, phy_addr, regnum, value);
 253	return 0;
 254}
 255
 256static int au1000_mdiobus_reset(struct mii_bus *bus)
 257{
 258	struct net_device *const dev = bus->priv;
 259
 260	/* make sure the MAC associated with this
 261	 * mii_bus is enabled
 262	 */
 263	au1000_enable_mac(dev, 0);
 264
 265	return 0;
 266}
 267
 268static void au1000_hard_stop(struct net_device *dev)
 269{
 270	struct au1000_private *aup = netdev_priv(dev);
 271	u32 reg;
 272
 273	netif_dbg(aup, drv, dev, "hard stop\n");
 274
 275	reg = readl(&aup->mac->control);
 276	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
 277	writel(reg, &aup->mac->control);
 278	au_sync_delay(10);
 279}
 280
 281static void au1000_enable_rx_tx(struct net_device *dev)
 282{
 283	struct au1000_private *aup = netdev_priv(dev);
 284	u32 reg;
 285
 286	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
 287
 288	reg = readl(&aup->mac->control);
 289	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
 290	writel(reg, &aup->mac->control);
 291	au_sync_delay(10);
 292}
 293
 294static void
 295au1000_adjust_link(struct net_device *dev)
 296{
 297	struct au1000_private *aup = netdev_priv(dev);
 298	struct phy_device *phydev = aup->phy_dev;
 299	unsigned long flags;
 300	u32 reg;
 301
 302	int status_change = 0;
 303
 304	BUG_ON(!aup->phy_dev);
 305
 306	spin_lock_irqsave(&aup->lock, flags);
 307
 308	if (phydev->link && (aup->old_speed != phydev->speed)) {
 309		/* speed changed */
 310
 311		switch (phydev->speed) {
 312		case SPEED_10:
 313		case SPEED_100:
 314			break;
 315		default:
 316			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
 317							phydev->speed);
 318			break;
 319		}
 320
 321		aup->old_speed = phydev->speed;
 322
 323		status_change = 1;
 324	}
 325
 326	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
 327		/* duplex mode changed */
 328
 329		/* switching duplex mode requires to disable rx and tx! */
 330		au1000_hard_stop(dev);
 331
 332		reg = readl(&aup->mac->control);
 333		if (DUPLEX_FULL == phydev->duplex) {
 334			reg |= MAC_FULL_DUPLEX;
 335			reg &= ~MAC_DISABLE_RX_OWN;
 336		} else {
 337			reg &= ~MAC_FULL_DUPLEX;
 338			reg |= MAC_DISABLE_RX_OWN;
 339		}
 340		writel(reg, &aup->mac->control);
 341		au_sync_delay(1);
 342
 343		au1000_enable_rx_tx(dev);
 344		aup->old_duplex = phydev->duplex;
 345
 346		status_change = 1;
 347	}
 348
 349	if (phydev->link != aup->old_link) {
 350		/* link state changed */
 351
 352		if (!phydev->link) {
 353			/* link went down */
 354			aup->old_speed = 0;
 355			aup->old_duplex = -1;
 356		}
 357
 358		aup->old_link = phydev->link;
 359		status_change = 1;
 360	}
 361
 362	spin_unlock_irqrestore(&aup->lock, flags);
 363
 364	if (status_change) {
 365		if (phydev->link)
 366			netdev_info(dev, "link up (%d/%s)\n",
 367			       phydev->speed,
 368			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
 369		else
 370			netdev_info(dev, "link down\n");
 371	}
 372}
 373
 374static int au1000_mii_probe(struct net_device *dev)
 375{
 376	struct au1000_private *const aup = netdev_priv(dev);
 377	struct phy_device *phydev = NULL;
 378	int phy_addr;
 379
 380	if (aup->phy_static_config) {
 381		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
 382
 383		if (aup->phy_addr)
 384			phydev = aup->mii_bus->phy_map[aup->phy_addr];
 385		else
 386			netdev_info(dev, "using PHY-less setup\n");
 387		return 0;
 388	}
 389
 390	/* find the first (lowest address) PHY
 391	 * on the current MAC's MII bus
 392	 */
 393	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
 394		if (aup->mii_bus->phy_map[phy_addr]) {
 395			phydev = aup->mii_bus->phy_map[phy_addr];
 396			if (!aup->phy_search_highest_addr)
 397				/* break out with first one found */
 398				break;
 399		}
 400
 401	if (aup->phy1_search_mac0) {
 402		/* try harder to find a PHY */
 403		if (!phydev && (aup->mac_id == 1)) {
 404			/* no PHY found, maybe we have a dual PHY? */
 405			dev_info(&dev->dev, ": no PHY found on MAC1, "
 406				"let's see if it's attached to MAC0...\n");
 407
 408			/* find the first (lowest address) non-attached
 409			 * PHY on the MAC0 MII bus
 410			 */
 411			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 412				struct phy_device *const tmp_phydev =
 413					aup->mii_bus->phy_map[phy_addr];
 414
 415				if (aup->mac_id == 1)
 416					break;
 417
 418				/* no PHY here... */
 419				if (!tmp_phydev)
 420					continue;
 421
 422				/* already claimed by MAC0 */
 423				if (tmp_phydev->attached_dev)
 424					continue;
 425
 426				phydev = tmp_phydev;
 427				break; /* found it */
 428			}
 429		}
 430	}
 431
 432	if (!phydev) {
 433		netdev_err(dev, "no PHY found\n");
 434		return -1;
 435	}
 436
 437	/* now we are supposed to have a proper phydev, to attach to... */
 438	BUG_ON(phydev->attached_dev);
 439
 440	phydev = phy_connect(dev, dev_name(&phydev->dev), &au1000_adjust_link,
 441			0, PHY_INTERFACE_MODE_MII);
 442
 443	if (IS_ERR(phydev)) {
 444		netdev_err(dev, "Could not attach to PHY\n");
 445		return PTR_ERR(phydev);
 446	}
 447
 448	/* mask with MAC supported features */
 449	phydev->supported &= (SUPPORTED_10baseT_Half
 450			      | SUPPORTED_10baseT_Full
 451			      | SUPPORTED_100baseT_Half
 452			      | SUPPORTED_100baseT_Full
 453			      | SUPPORTED_Autoneg
 454			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
 455			      | SUPPORTED_MII
 456			      | SUPPORTED_TP);
 457
 458	phydev->advertising = phydev->supported;
 459
 460	aup->old_link = 0;
 461	aup->old_speed = 0;
 462	aup->old_duplex = -1;
 463	aup->phy_dev = phydev;
 464
 465	netdev_info(dev, "attached PHY driver [%s] "
 466	       "(mii_bus:phy_addr=%s, irq=%d)\n",
 467	       phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
 468
 469	return 0;
 470}
 471
 472
 473/*
 474 * Buffer allocation/deallocation routines. The buffer descriptor returned
 475 * has the virtual and dma address of a buffer suitable for
 476 * both, receive and transmit operations.
 477 */
 478static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
 479{
 480	struct db_dest *pDB;
 481	pDB = aup->pDBfree;
 482
 483	if (pDB)
 484		aup->pDBfree = pDB->pnext;
 485
 486	return pDB;
 487}
 488
 489void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
 490{
 491	struct db_dest *pDBfree = aup->pDBfree;
 492	if (pDBfree)
 493		pDBfree->pnext = pDB;
 494	aup->pDBfree = pDB;
 495}
 496
 497static void au1000_reset_mac_unlocked(struct net_device *dev)
 498{
 499	struct au1000_private *const aup = netdev_priv(dev);
 500	int i;
 501
 502	au1000_hard_stop(dev);
 503
 504	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 505	au_sync_delay(2);
 506	writel(0, aup->enable);
 507	au_sync_delay(2);
 508
 509	aup->tx_full = 0;
 510	for (i = 0; i < NUM_RX_DMA; i++) {
 511		/* reset control bits */
 512		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
 513	}
 514	for (i = 0; i < NUM_TX_DMA; i++) {
 515		/* reset control bits */
 516		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
 517	}
 518
 519	aup->mac_enabled = 0;
 520
 521}
 522
 523static void au1000_reset_mac(struct net_device *dev)
 524{
 525	struct au1000_private *const aup = netdev_priv(dev);
 526	unsigned long flags;
 527
 528	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
 529					(unsigned)aup);
 530
 531	spin_lock_irqsave(&aup->lock, flags);
 532
 533	au1000_reset_mac_unlocked(dev);
 534
 535	spin_unlock_irqrestore(&aup->lock, flags);
 536}
 537
 538/*
 539 * Setup the receive and transmit "rings".  These pointers are the addresses
 540 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 541 * these are not descriptors sitting in memory.
 542 */
 543static void
 544au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
 545{
 546	int i;
 547
 548	for (i = 0; i < NUM_RX_DMA; i++) {
 549		aup->rx_dma_ring[i] = (struct rx_dma *)
 550			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
 551	}
 552	for (i = 0; i < NUM_TX_DMA; i++) {
 553		aup->tx_dma_ring[i] = (struct tx_dma *)
 554			(tx_base + sizeof(struct tx_dma) * i);
 555	}
 556}
 557
 558/*
 559 * ethtool operations
 560 */
 561
 562static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 563{
 564	struct au1000_private *aup = netdev_priv(dev);
 565
 566	if (aup->phy_dev)
 567		return phy_ethtool_gset(aup->phy_dev, cmd);
 568
 569	return -EINVAL;
 570}
 571
 572static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 573{
 574	struct au1000_private *aup = netdev_priv(dev);
 575
 576	if (!capable(CAP_NET_ADMIN))
 577		return -EPERM;
 578
 579	if (aup->phy_dev)
 580		return phy_ethtool_sset(aup->phy_dev, cmd);
 581
 582	return -EINVAL;
 583}
 584
 585static void
 586au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 587{
 588	struct au1000_private *aup = netdev_priv(dev);
 589
 590	strcpy(info->driver, DRV_NAME);
 591	strcpy(info->version, DRV_VERSION);
 592	info->fw_version[0] = '\0';
 593	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
 594	info->regdump_len = 0;
 595}
 596
 597static void au1000_set_msglevel(struct net_device *dev, u32 value)
 598{
 599	struct au1000_private *aup = netdev_priv(dev);
 600	aup->msg_enable = value;
 601}
 602
 603static u32 au1000_get_msglevel(struct net_device *dev)
 604{
 605	struct au1000_private *aup = netdev_priv(dev);
 606	return aup->msg_enable;
 607}
 608
 609static const struct ethtool_ops au1000_ethtool_ops = {
 610	.get_settings = au1000_get_settings,
 611	.set_settings = au1000_set_settings,
 612	.get_drvinfo = au1000_get_drvinfo,
 613	.get_link = ethtool_op_get_link,
 614	.get_msglevel = au1000_get_msglevel,
 615	.set_msglevel = au1000_set_msglevel,
 616};
 617
 618
 619/*
 620 * Initialize the interface.
 621 *
 622 * When the device powers up, the clocks are disabled and the
 623 * mac is in reset state.  When the interface is closed, we
 624 * do the same -- reset the device and disable the clocks to
 625 * conserve power. Thus, whenever au1000_init() is called,
 626 * the device should already be in reset state.
 627 */
 628static int au1000_init(struct net_device *dev)
 629{
 630	struct au1000_private *aup = netdev_priv(dev);
 631	unsigned long flags;
 632	int i;
 633	u32 control;
 634
 635	netif_dbg(aup, hw, dev, "au1000_init\n");
 636
 637	/* bring the device out of reset */
 638	au1000_enable_mac(dev, 1);
 639
 640	spin_lock_irqsave(&aup->lock, flags);
 641
 642	writel(0, &aup->mac->control);
 643	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
 644	aup->tx_tail = aup->tx_head;
 645	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
 646
 647	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
 648					&aup->mac->mac_addr_high);
 649	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
 650		dev->dev_addr[1]<<8 | dev->dev_addr[0],
 651					&aup->mac->mac_addr_low);
 652
 653
 654	for (i = 0; i < NUM_RX_DMA; i++)
 655		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
 656
 657	au_sync();
 658
 659	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
 660#ifndef CONFIG_CPU_LITTLE_ENDIAN
 661	control |= MAC_BIG_ENDIAN;
 662#endif
 663	if (aup->phy_dev) {
 664		if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
 665			control |= MAC_FULL_DUPLEX;
 666		else
 667			control |= MAC_DISABLE_RX_OWN;
 668	} else { /* PHY-less op, assume full-duplex */
 669		control |= MAC_FULL_DUPLEX;
 670	}
 671
 672	writel(control, &aup->mac->control);
 673	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
 674	au_sync();
 675
 676	spin_unlock_irqrestore(&aup->lock, flags);
 677	return 0;
 678}
 679
 680static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
 681{
 682	struct net_device_stats *ps = &dev->stats;
 683
 684	ps->rx_packets++;
 685	if (status & RX_MCAST_FRAME)
 686		ps->multicast++;
 687
 688	if (status & RX_ERROR) {
 689		ps->rx_errors++;
 690		if (status & RX_MISSED_FRAME)
 691			ps->rx_missed_errors++;
 692		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
 693			ps->rx_length_errors++;
 694		if (status & RX_CRC_ERROR)
 695			ps->rx_crc_errors++;
 696		if (status & RX_COLL)
 697			ps->collisions++;
 698	} else
 699		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
 700
 701}
 702
 703/*
 704 * Au1000 receive routine.
 705 */
 706static int au1000_rx(struct net_device *dev)
 707{
 708	struct au1000_private *aup = netdev_priv(dev);
 709	struct sk_buff *skb;
 710	struct rx_dma *prxd;
 711	u32 buff_stat, status;
 712	struct db_dest *pDB;
 713	u32	frmlen;
 714
 715	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
 716
 717	prxd = aup->rx_dma_ring[aup->rx_head];
 718	buff_stat = prxd->buff_stat;
 719	while (buff_stat & RX_T_DONE)  {
 720		status = prxd->status;
 721		pDB = aup->rx_db_inuse[aup->rx_head];
 722		au1000_update_rx_stats(dev, status);
 723		if (!(status & RX_ERROR))  {
 724
 725			/* good frame */
 726			frmlen = (status & RX_FRAME_LEN_MASK);
 727			frmlen -= 4; /* Remove FCS */
 728			skb = netdev_alloc_skb(dev, frmlen + 2);
 729			if (skb == NULL) {
 730				netdev_err(dev, "Memory squeeze, dropping packet.\n");
 731				dev->stats.rx_dropped++;
 732				continue;
 733			}
 734			skb_reserve(skb, 2);	/* 16 byte IP header align */
 735			skb_copy_to_linear_data(skb,
 736				(unsigned char *)pDB->vaddr, frmlen);
 737			skb_put(skb, frmlen);
 738			skb->protocol = eth_type_trans(skb, dev);
 739			netif_rx(skb);	/* pass the packet to upper layers */
 740		} else {
 741			if (au1000_debug > 4) {
 742				pr_err("rx_error(s):");
 743				if (status & RX_MISSED_FRAME)
 744					pr_cont(" miss");
 745				if (status & RX_WDOG_TIMER)
 746					pr_cont(" wdog");
 747				if (status & RX_RUNT)
 748					pr_cont(" runt");
 749				if (status & RX_OVERLEN)
 750					pr_cont(" overlen");
 751				if (status & RX_COLL)
 752					pr_cont(" coll");
 753				if (status & RX_MII_ERROR)
 754					pr_cont(" mii error");
 755				if (status & RX_CRC_ERROR)
 756					pr_cont(" crc error");
 757				if (status & RX_LEN_ERROR)
 758					pr_cont(" len error");
 759				if (status & RX_U_CNTRL_FRAME)
 760					pr_cont(" u control frame");
 761				pr_cont("\n");
 762			}
 763		}
 764		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
 765		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
 766		au_sync();
 767
 768		/* next descriptor */
 769		prxd = aup->rx_dma_ring[aup->rx_head];
 770		buff_stat = prxd->buff_stat;
 771	}
 772	return 0;
 773}
 774
 775static void au1000_update_tx_stats(struct net_device *dev, u32 status)
 776{
 777	struct au1000_private *aup = netdev_priv(dev);
 778	struct net_device_stats *ps = &dev->stats;
 779
 780	if (status & TX_FRAME_ABORTED) {
 781		if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
 782			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
 783				/* any other tx errors are only valid
 784				 * in half duplex mode
 785				 */
 786				ps->tx_errors++;
 787				ps->tx_aborted_errors++;
 788			}
 789		} else {
 790			ps->tx_errors++;
 791			ps->tx_aborted_errors++;
 792			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
 793				ps->tx_carrier_errors++;
 794		}
 795	}
 796}
 797
 798/*
 799 * Called from the interrupt service routine to acknowledge
 800 * the TX DONE bits.  This is a must if the irq is setup as
 801 * edge triggered.
 802 */
 803static void au1000_tx_ack(struct net_device *dev)
 804{
 805	struct au1000_private *aup = netdev_priv(dev);
 806	struct tx_dma *ptxd;
 807
 808	ptxd = aup->tx_dma_ring[aup->tx_tail];
 809
 810	while (ptxd->buff_stat & TX_T_DONE) {
 811		au1000_update_tx_stats(dev, ptxd->status);
 812		ptxd->buff_stat &= ~TX_T_DONE;
 813		ptxd->len = 0;
 814		au_sync();
 815
 816		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
 817		ptxd = aup->tx_dma_ring[aup->tx_tail];
 818
 819		if (aup->tx_full) {
 820			aup->tx_full = 0;
 821			netif_wake_queue(dev);
 822		}
 823	}
 824}
 825
 826/*
 827 * Au1000 interrupt service routine.
 828 */
 829static irqreturn_t au1000_interrupt(int irq, void *dev_id)
 830{
 831	struct net_device *dev = dev_id;
 832
 833	/* Handle RX interrupts first to minimize chance of overrun */
 834
 835	au1000_rx(dev);
 836	au1000_tx_ack(dev);
 837	return IRQ_RETVAL(1);
 838}
 839
 840static int au1000_open(struct net_device *dev)
 841{
 842	int retval;
 843	struct au1000_private *aup = netdev_priv(dev);
 844
 845	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
 846
 847	retval = request_irq(dev->irq, au1000_interrupt, 0,
 848					dev->name, dev);
 849	if (retval) {
 850		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
 851		return retval;
 852	}
 853
 854	retval = au1000_init(dev);
 855	if (retval) {
 856		netdev_err(dev, "error in au1000_init\n");
 857		free_irq(dev->irq, dev);
 858		return retval;
 859	}
 860
 861	if (aup->phy_dev) {
 862		/* cause the PHY state machine to schedule a link state check */
 863		aup->phy_dev->state = PHY_CHANGELINK;
 864		phy_start(aup->phy_dev);
 865	}
 866
 867	netif_start_queue(dev);
 868
 869	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
 870
 871	return 0;
 872}
 873
 874static int au1000_close(struct net_device *dev)
 875{
 876	unsigned long flags;
 877	struct au1000_private *const aup = netdev_priv(dev);
 878
 879	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
 880
 881	if (aup->phy_dev)
 882		phy_stop(aup->phy_dev);
 883
 884	spin_lock_irqsave(&aup->lock, flags);
 885
 886	au1000_reset_mac_unlocked(dev);
 887
 888	/* stop the device */
 889	netif_stop_queue(dev);
 890
 891	/* disable the interrupt */
 892	free_irq(dev->irq, dev);
 893	spin_unlock_irqrestore(&aup->lock, flags);
 894
 895	return 0;
 896}
 897
 898/*
 899 * Au1000 transmit routine.
 900 */
 901static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
 902{
 903	struct au1000_private *aup = netdev_priv(dev);
 904	struct net_device_stats *ps = &dev->stats;
 905	struct tx_dma *ptxd;
 906	u32 buff_stat;
 907	struct db_dest *pDB;
 908	int i;
 909
 910	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
 911				(unsigned)aup, skb->len,
 912				skb->data, aup->tx_head);
 913
 914	ptxd = aup->tx_dma_ring[aup->tx_head];
 915	buff_stat = ptxd->buff_stat;
 916	if (buff_stat & TX_DMA_ENABLE) {
 917		/* We've wrapped around and the transmitter is still busy */
 918		netif_stop_queue(dev);
 919		aup->tx_full = 1;
 920		return NETDEV_TX_BUSY;
 921	} else if (buff_stat & TX_T_DONE) {
 922		au1000_update_tx_stats(dev, ptxd->status);
 923		ptxd->len = 0;
 924	}
 925
 926	if (aup->tx_full) {
 927		aup->tx_full = 0;
 928		netif_wake_queue(dev);
 929	}
 930
 931	pDB = aup->tx_db_inuse[aup->tx_head];
 932	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
 933	if (skb->len < ETH_ZLEN) {
 934		for (i = skb->len; i < ETH_ZLEN; i++)
 935			((char *)pDB->vaddr)[i] = 0;
 936
 937		ptxd->len = ETH_ZLEN;
 938	} else
 939		ptxd->len = skb->len;
 940
 941	ps->tx_packets++;
 942	ps->tx_bytes += ptxd->len;
 943
 944	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
 945	au_sync();
 946	dev_kfree_skb(skb);
 947	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
 948	return NETDEV_TX_OK;
 949}
 950
 951/*
 952 * The Tx ring has been full longer than the watchdog timeout
 953 * value. The transmitter must be hung?
 954 */
 955static void au1000_tx_timeout(struct net_device *dev)
 956{
 957	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
 958	au1000_reset_mac(dev);
 959	au1000_init(dev);
 960	dev->trans_start = jiffies; /* prevent tx timeout */
 961	netif_wake_queue(dev);
 962}
 963
 964static void au1000_multicast_list(struct net_device *dev)
 965{
 966	struct au1000_private *aup = netdev_priv(dev);
 967	u32 reg;
 968
 969	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
 970	reg = readl(&aup->mac->control);
 971	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
 972		reg |= MAC_PROMISCUOUS;
 973	} else if ((dev->flags & IFF_ALLMULTI)  ||
 974			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
 975		reg |= MAC_PASS_ALL_MULTI;
 976		reg &= ~MAC_PROMISCUOUS;
 977		netdev_info(dev, "Pass all multicast\n");
 978	} else {
 979		struct netdev_hw_addr *ha;
 980		u32 mc_filter[2];	/* Multicast hash filter */
 981
 982		mc_filter[1] = mc_filter[0] = 0;
 983		netdev_for_each_mc_addr(ha, dev)
 984			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
 985					(long *)mc_filter);
 986		writel(mc_filter[1], &aup->mac->multi_hash_high);
 987		writel(mc_filter[0], &aup->mac->multi_hash_low);
 988		reg &= ~MAC_PROMISCUOUS;
 989		reg |= MAC_HASH_MODE;
 990	}
 991	writel(reg, &aup->mac->control);
 992}
 993
 994static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 995{
 996	struct au1000_private *aup = netdev_priv(dev);
 997
 998	if (!netif_running(dev))
 999		return -EINVAL;
1000
1001	if (!aup->phy_dev)
1002		return -EINVAL; /* PHY not controllable */
1003
1004	return phy_mii_ioctl(aup->phy_dev, rq, cmd);
1005}
1006
1007static const struct net_device_ops au1000_netdev_ops = {
1008	.ndo_open		= au1000_open,
1009	.ndo_stop		= au1000_close,
1010	.ndo_start_xmit		= au1000_tx,
1011	.ndo_set_rx_mode	= au1000_multicast_list,
1012	.ndo_do_ioctl		= au1000_ioctl,
1013	.ndo_tx_timeout		= au1000_tx_timeout,
1014	.ndo_set_mac_address	= eth_mac_addr,
1015	.ndo_validate_addr	= eth_validate_addr,
1016	.ndo_change_mtu		= eth_change_mtu,
1017};
1018
1019static int __devinit au1000_probe(struct platform_device *pdev)
1020{
1021	static unsigned version_printed;
1022	struct au1000_private *aup = NULL;
1023	struct au1000_eth_platform_data *pd;
1024	struct net_device *dev = NULL;
1025	struct db_dest *pDB, *pDBfree;
1026	int irq, i, err = 0;
1027	struct resource *base, *macen, *macdma;
1028
1029	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1030	if (!base) {
1031		dev_err(&pdev->dev, "failed to retrieve base register\n");
1032		err = -ENODEV;
1033		goto out;
1034	}
1035
1036	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1037	if (!macen) {
1038		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1039		err = -ENODEV;
1040		goto out;
1041	}
1042
1043	irq = platform_get_irq(pdev, 0);
1044	if (irq < 0) {
1045		dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1046		err = -ENODEV;
1047		goto out;
1048	}
1049
1050	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1051	if (!macdma) {
1052		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1053		err = -ENODEV;
1054		goto out;
1055	}
1056
1057	if (!request_mem_region(base->start, resource_size(base),
1058							pdev->name)) {
1059		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1060		err = -ENXIO;
1061		goto out;
1062	}
1063
1064	if (!request_mem_region(macen->start, resource_size(macen),
1065							pdev->name)) {
1066		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1067		err = -ENXIO;
1068		goto err_request;
1069	}
1070
1071	if (!request_mem_region(macdma->start, resource_size(macdma),
1072							pdev->name)) {
1073		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1074		err = -ENXIO;
1075		goto err_macdma;
1076	}
1077
1078	dev = alloc_etherdev(sizeof(struct au1000_private));
1079	if (!dev) {
1080		err = -ENOMEM;
1081		goto err_alloc;
1082	}
1083
1084	SET_NETDEV_DEV(dev, &pdev->dev);
1085	platform_set_drvdata(pdev, dev);
1086	aup = netdev_priv(dev);
1087
1088	spin_lock_init(&aup->lock);
1089	aup->msg_enable = (au1000_debug < 4 ?
1090				AU1000_DEF_MSG_ENABLE : au1000_debug);
1091
1092	/* Allocate the data buffers
1093	 * Snooping works fine with eth on all au1xxx
1094	 */
1095	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1096						(NUM_TX_BUFFS + NUM_RX_BUFFS),
1097						&aup->dma_addr,	0);
1098	if (!aup->vaddr) {
1099		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1100		err = -ENOMEM;
1101		goto err_vaddr;
1102	}
1103
1104	/* aup->mac is the base address of the MAC's registers */
1105	aup->mac = (struct mac_reg *)
1106			ioremap_nocache(base->start, resource_size(base));
1107	if (!aup->mac) {
1108		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1109		err = -ENXIO;
1110		goto err_remap1;
1111	}
1112
1113	/* Setup some variables for quick register address access */
1114	aup->enable = (u32 *)ioremap_nocache(macen->start,
1115						resource_size(macen));
1116	if (!aup->enable) {
1117		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1118		err = -ENXIO;
1119		goto err_remap2;
1120	}
1121	aup->mac_id = pdev->id;
1122
1123	aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1124	if (!aup->macdma) {
1125		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1126		err = -ENXIO;
1127		goto err_remap3;
1128	}
1129
1130	au1000_setup_hw_rings(aup, aup->macdma);
1131
1132	writel(0, aup->enable);
1133	aup->mac_enabled = 0;
1134
1135	pd = pdev->dev.platform_data;
1136	if (!pd) {
1137		dev_info(&pdev->dev, "no platform_data passed,"
1138					" PHY search on MAC0\n");
1139		aup->phy1_search_mac0 = 1;
1140	} else {
1141		if (is_valid_ether_addr(pd->mac)) {
1142			memcpy(dev->dev_addr, pd->mac, 6);
1143		} else {
1144			/* Set a random MAC since no valid provided by platform_data. */
1145			eth_hw_addr_random(dev);
1146		}
1147
1148		aup->phy_static_config = pd->phy_static_config;
1149		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1150		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1151		aup->phy_addr = pd->phy_addr;
1152		aup->phy_busid = pd->phy_busid;
1153		aup->phy_irq = pd->phy_irq;
1154	}
1155
1156	if (aup->phy_busid && aup->phy_busid > 0) {
1157		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1158		err = -ENODEV;
1159		goto err_mdiobus_alloc;
1160	}
1161
1162	aup->mii_bus = mdiobus_alloc();
1163	if (aup->mii_bus == NULL) {
1164		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1165		err = -ENOMEM;
1166		goto err_mdiobus_alloc;
1167	}
1168
1169	aup->mii_bus->priv = dev;
1170	aup->mii_bus->read = au1000_mdiobus_read;
1171	aup->mii_bus->write = au1000_mdiobus_write;
1172	aup->mii_bus->reset = au1000_mdiobus_reset;
1173	aup->mii_bus->name = "au1000_eth_mii";
1174	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1175		pdev->name, aup->mac_id);
1176	aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1177	if (aup->mii_bus->irq == NULL)
1178		goto err_out;
1179
1180	for (i = 0; i < PHY_MAX_ADDR; ++i)
1181		aup->mii_bus->irq[i] = PHY_POLL;
1182	/* if known, set corresponding PHY IRQs */
1183	if (aup->phy_static_config)
1184		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1185			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1186
1187	err = mdiobus_register(aup->mii_bus);
1188	if (err) {
1189		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1190		goto err_mdiobus_reg;
1191	}
1192
1193	if (au1000_mii_probe(dev) != 0)
1194		goto err_out;
1195
1196	pDBfree = NULL;
1197	/* setup the data buffer descriptors and attach a buffer to each one */
1198	pDB = aup->db;
1199	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1200		pDB->pnext = pDBfree;
1201		pDBfree = pDB;
1202		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1203		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1204		pDB++;
1205	}
1206	aup->pDBfree = pDBfree;
1207
1208	for (i = 0; i < NUM_RX_DMA; i++) {
1209		pDB = au1000_GetFreeDB(aup);
1210		if (!pDB)
1211			goto err_out;
1212
1213		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1214		aup->rx_db_inuse[i] = pDB;
1215	}
1216	for (i = 0; i < NUM_TX_DMA; i++) {
1217		pDB = au1000_GetFreeDB(aup);
1218		if (!pDB)
1219			goto err_out;
1220
1221		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1222		aup->tx_dma_ring[i]->len = 0;
1223		aup->tx_db_inuse[i] = pDB;
1224	}
1225
1226	dev->base_addr = base->start;
1227	dev->irq = irq;
1228	dev->netdev_ops = &au1000_netdev_ops;
1229	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1230	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1231
1232	/*
1233	 * The boot code uses the ethernet controller, so reset it to start
1234	 * fresh.  au1000_init() expects that the device is in reset state.
1235	 */
1236	au1000_reset_mac(dev);
1237
1238	err = register_netdev(dev);
1239	if (err) {
1240		netdev_err(dev, "Cannot register net device, aborting.\n");
1241		goto err_out;
1242	}
1243
1244	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1245			(unsigned long)base->start, irq);
1246	if (version_printed++ == 0)
1247		pr_info("%s version %s %s\n",
1248					DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1249
1250	return 0;
1251
1252err_out:
1253	if (aup->mii_bus != NULL)
1254		mdiobus_unregister(aup->mii_bus);
1255
1256	/* here we should have a valid dev plus aup-> register addresses
1257	 * so we can reset the mac properly.
1258	 */
1259	au1000_reset_mac(dev);
1260
1261	for (i = 0; i < NUM_RX_DMA; i++) {
1262		if (aup->rx_db_inuse[i])
1263			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1264	}
1265	for (i = 0; i < NUM_TX_DMA; i++) {
1266		if (aup->tx_db_inuse[i])
1267			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1268	}
1269err_mdiobus_reg:
1270	mdiobus_free(aup->mii_bus);
1271err_mdiobus_alloc:
1272	iounmap(aup->macdma);
1273err_remap3:
1274	iounmap(aup->enable);
1275err_remap2:
1276	iounmap(aup->mac);
1277err_remap1:
1278	dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1279			     (void *)aup->vaddr, aup->dma_addr);
1280err_vaddr:
1281	free_netdev(dev);
1282err_alloc:
1283	release_mem_region(macdma->start, resource_size(macdma));
1284err_macdma:
1285	release_mem_region(macen->start, resource_size(macen));
1286err_request:
1287	release_mem_region(base->start, resource_size(base));
1288out:
1289	return err;
1290}
1291
1292static int __devexit au1000_remove(struct platform_device *pdev)
1293{
1294	struct net_device *dev = platform_get_drvdata(pdev);
1295	struct au1000_private *aup = netdev_priv(dev);
1296	int i;
1297	struct resource *base, *macen;
1298
1299	platform_set_drvdata(pdev, NULL);
1300
1301	unregister_netdev(dev);
1302	mdiobus_unregister(aup->mii_bus);
1303	mdiobus_free(aup->mii_bus);
1304
1305	for (i = 0; i < NUM_RX_DMA; i++)
1306		if (aup->rx_db_inuse[i])
1307			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1308
1309	for (i = 0; i < NUM_TX_DMA; i++)
1310		if (aup->tx_db_inuse[i])
1311			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1312
1313	dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1314			(NUM_TX_BUFFS + NUM_RX_BUFFS),
1315			(void *)aup->vaddr, aup->dma_addr);
1316
1317	iounmap(aup->macdma);
1318	iounmap(aup->mac);
1319	iounmap(aup->enable);
1320
1321	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1322	release_mem_region(base->start, resource_size(base));
1323
1324	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1325	release_mem_region(base->start, resource_size(base));
1326
1327	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1328	release_mem_region(macen->start, resource_size(macen));
1329
1330	free_netdev(dev);
1331
1332	return 0;
1333}
1334
1335static struct platform_driver au1000_eth_driver = {
1336	.probe  = au1000_probe,
1337	.remove = __devexit_p(au1000_remove),
1338	.driver = {
1339		.name   = "au1000-eth",
1340		.owner  = THIS_MODULE,
1341	},
1342};
1343
1344module_platform_driver(au1000_eth_driver);
1345
1346MODULE_ALIAS("platform:au1000-eth");