Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 *      Davicom DM9000 Fast Ethernet driver for Linux.
   3 * 	Copyright (C) 1997  Sten Wang
   4 *
   5 * 	This program is free software; you can redistribute it and/or
   6 * 	modify it under the terms of the GNU General Public License
   7 * 	as published by the Free Software Foundation; either version 2
   8 * 	of the License, or (at your option) any later version.
   9 *
  10 * 	This program is distributed in the hope that it will be useful,
  11 * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * 	GNU General Public License for more details.
  14 *
  15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16 *
  17 * Additional updates, Copyright:
  18 *	Ben Dooks <ben@simtec.co.uk>
  19 *	Sascha Hauer <s.hauer@pengutronix.de>
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/init.h>
  27#include <linux/interrupt.h>
  28#include <linux/skbuff.h>
  29#include <linux/spinlock.h>
  30#include <linux/crc32.h>
  31#include <linux/mii.h>
  32#include <linux/ethtool.h>
  33#include <linux/dm9000.h>
  34#include <linux/delay.h>
  35#include <linux/platform_device.h>
  36#include <linux/irq.h>
  37#include <linux/slab.h>
  38
  39#include <asm/delay.h>
  40#include <asm/irq.h>
  41#include <asm/io.h>
  42
  43#include "dm9000.h"
  44
  45/* Board/System/Debug information/definition ---------------- */
  46
  47#define DM9000_PHY		0x40	/* PHY address 0x01 */
  48
  49#define CARDNAME	"dm9000"
  50#define DRV_VERSION	"1.31"
  51
  52/*
  53 * Transmit timeout, default 5 seconds.
  54 */
  55static int watchdog = 5000;
  56module_param(watchdog, int, 0400);
  57MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  58
  59/* DM9000 register address locking.
  60 *
  61 * The DM9000 uses an address register to control where data written
  62 * to the data register goes. This means that the address register
  63 * must be preserved over interrupts or similar calls.
  64 *
  65 * During interrupt and other critical calls, a spinlock is used to
  66 * protect the system, but the calls themselves save the address
  67 * in the address register in case they are interrupting another
  68 * access to the device.
  69 *
  70 * For general accesses a lock is provided so that calls which are
  71 * allowed to sleep are serialised so that the address register does
  72 * not need to be saved. This lock also serves to serialise access
  73 * to the EEPROM and PHY access registers which are shared between
  74 * these two devices.
  75 */
  76
  77/* The driver supports the original DM9000E, and now the two newer
  78 * devices, DM9000A and DM9000B.
  79 */
  80
  81enum dm9000_type {
  82	TYPE_DM9000E,	/* original DM9000 */
  83	TYPE_DM9000A,
  84	TYPE_DM9000B
  85};
  86
  87/* Structure/enum declaration ------------------------------- */
  88typedef struct board_info {
  89
  90	void __iomem	*io_addr;	/* Register I/O base address */
  91	void __iomem	*io_data;	/* Data I/O address */
  92	u16		 irq;		/* IRQ */
  93
  94	u16		tx_pkt_cnt;
  95	u16		queue_pkt_len;
  96	u16		queue_start_addr;
  97	u16		queue_ip_summed;
  98	u16		dbug_cnt;
  99	u8		io_mode;		/* 0:word, 2:byte */
 100	u8		phy_addr;
 101	u8		imr_all;
 102
 103	unsigned int	flags;
 104	unsigned int	in_suspend :1;
 105	unsigned int	wake_supported :1;
 106	int		debug_level;
 107
 108	enum dm9000_type type;
 109
 110	void (*inblk)(void __iomem *port, void *data, int length);
 111	void (*outblk)(void __iomem *port, void *data, int length);
 112	void (*dumpblk)(void __iomem *port, int length);
 113
 114	struct device	*dev;	     /* parent device */
 115
 116	struct resource	*addr_res;   /* resources found */
 117	struct resource *data_res;
 118	struct resource	*addr_req;   /* resources requested */
 119	struct resource *data_req;
 120	struct resource *irq_res;
 121
 122	int		 irq_wake;
 123
 124	struct mutex	 addr_lock;	/* phy and eeprom access lock */
 125
 126	struct delayed_work phy_poll;
 127	struct net_device  *ndev;
 128
 129	spinlock_t	lock;
 130
 131	struct mii_if_info mii;
 132	u32		msg_enable;
 133	u32		wake_state;
 134
 135	int		ip_summed;
 136} board_info_t;
 137
 138/* debug code */
 139
 140#define dm9000_dbg(db, lev, msg...) do {		\
 141	if ((lev) < CONFIG_DM9000_DEBUGLEVEL &&		\
 142	    (lev) < db->debug_level) {			\
 143		dev_dbg(db->dev, msg);			\
 144	}						\
 145} while (0)
 146
 147static inline board_info_t *to_dm9000_board(struct net_device *dev)
 148{
 149	return netdev_priv(dev);
 150}
 151
 152/* DM9000 network board routine ---------------------------- */
 153
 154static void
 155dm9000_reset(board_info_t * db)
 156{
 157	dev_dbg(db->dev, "resetting device\n");
 158
 159	/* RESET device */
 160	writeb(DM9000_NCR, db->io_addr);
 161	udelay(200);
 162	writeb(NCR_RST, db->io_data);
 163	udelay(200);
 164}
 165
 166/*
 167 *   Read a byte from I/O port
 168 */
 169static u8
 170ior(board_info_t * db, int reg)
 171{
 172	writeb(reg, db->io_addr);
 173	return readb(db->io_data);
 174}
 175
 176/*
 177 *   Write a byte to I/O port
 178 */
 179
 180static void
 181iow(board_info_t * db, int reg, int value)
 182{
 183	writeb(reg, db->io_addr);
 184	writeb(value, db->io_data);
 185}
 186
 187/* routines for sending block to chip */
 188
 189static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
 190{
 191	writesb(reg, data, count);
 192}
 193
 194static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
 195{
 196	writesw(reg, data, (count+1) >> 1);
 197}
 198
 199static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
 200{
 201	writesl(reg, data, (count+3) >> 2);
 202}
 203
 204/* input block from chip to memory */
 205
 206static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
 207{
 208	readsb(reg, data, count);
 209}
 210
 211
 212static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
 213{
 214	readsw(reg, data, (count+1) >> 1);
 215}
 216
 217static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
 218{
 219	readsl(reg, data, (count+3) >> 2);
 220}
 221
 222/* dump block from chip to null */
 223
 224static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
 225{
 226	int i;
 227	int tmp;
 228
 229	for (i = 0; i < count; i++)
 230		tmp = readb(reg);
 231}
 232
 233static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
 234{
 235	int i;
 236	int tmp;
 237
 238	count = (count + 1) >> 1;
 239
 240	for (i = 0; i < count; i++)
 241		tmp = readw(reg);
 242}
 243
 244static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
 245{
 246	int i;
 247	int tmp;
 248
 249	count = (count + 3) >> 2;
 250
 251	for (i = 0; i < count; i++)
 252		tmp = readl(reg);
 253}
 254
 255/* dm9000_set_io
 256 *
 257 * select the specified set of io routines to use with the
 258 * device
 259 */
 260
 261static void dm9000_set_io(struct board_info *db, int byte_width)
 262{
 263	/* use the size of the data resource to work out what IO
 264	 * routines we want to use
 265	 */
 266
 267	switch (byte_width) {
 268	case 1:
 269		db->dumpblk = dm9000_dumpblk_8bit;
 270		db->outblk  = dm9000_outblk_8bit;
 271		db->inblk   = dm9000_inblk_8bit;
 272		break;
 273
 274
 275	case 3:
 276		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
 277	case 2:
 278		db->dumpblk = dm9000_dumpblk_16bit;
 279		db->outblk  = dm9000_outblk_16bit;
 280		db->inblk   = dm9000_inblk_16bit;
 281		break;
 282
 283	case 4:
 284	default:
 285		db->dumpblk = dm9000_dumpblk_32bit;
 286		db->outblk  = dm9000_outblk_32bit;
 287		db->inblk   = dm9000_inblk_32bit;
 288		break;
 289	}
 290}
 291
 292static void dm9000_schedule_poll(board_info_t *db)
 293{
 294	if (db->type == TYPE_DM9000E)
 295		schedule_delayed_work(&db->phy_poll, HZ * 2);
 296}
 297
 298static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 299{
 300	board_info_t *dm = to_dm9000_board(dev);
 301
 302	if (!netif_running(dev))
 303		return -EINVAL;
 304
 305	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
 306}
 307
 308static unsigned int
 309dm9000_read_locked(board_info_t *db, int reg)
 310{
 311	unsigned long flags;
 312	unsigned int ret;
 313
 314	spin_lock_irqsave(&db->lock, flags);
 315	ret = ior(db, reg);
 316	spin_unlock_irqrestore(&db->lock, flags);
 317
 318	return ret;
 319}
 320
 321static int dm9000_wait_eeprom(board_info_t *db)
 322{
 323	unsigned int status;
 324	int timeout = 8;	/* wait max 8msec */
 325
 326	/* The DM9000 data sheets say we should be able to
 327	 * poll the ERRE bit in EPCR to wait for the EEPROM
 328	 * operation. From testing several chips, this bit
 329	 * does not seem to work.
 330	 *
 331	 * We attempt to use the bit, but fall back to the
 332	 * timeout (which is why we do not return an error
 333	 * on expiry) to say that the EEPROM operation has
 334	 * completed.
 335	 */
 336
 337	while (1) {
 338		status = dm9000_read_locked(db, DM9000_EPCR);
 339
 340		if ((status & EPCR_ERRE) == 0)
 341			break;
 342
 343		msleep(1);
 344
 345		if (timeout-- < 0) {
 346			dev_dbg(db->dev, "timeout waiting EEPROM\n");
 347			break;
 348		}
 349	}
 350
 351	return 0;
 352}
 353
 354/*
 355 *  Read a word data from EEPROM
 356 */
 357static void
 358dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
 359{
 360	unsigned long flags;
 361
 362	if (db->flags & DM9000_PLATF_NO_EEPROM) {
 363		to[0] = 0xff;
 364		to[1] = 0xff;
 365		return;
 366	}
 367
 368	mutex_lock(&db->addr_lock);
 369
 370	spin_lock_irqsave(&db->lock, flags);
 371
 372	iow(db, DM9000_EPAR, offset);
 373	iow(db, DM9000_EPCR, EPCR_ERPRR);
 374
 375	spin_unlock_irqrestore(&db->lock, flags);
 376
 377	dm9000_wait_eeprom(db);
 378
 379	/* delay for at-least 150uS */
 380	msleep(1);
 381
 382	spin_lock_irqsave(&db->lock, flags);
 383
 384	iow(db, DM9000_EPCR, 0x0);
 385
 386	to[0] = ior(db, DM9000_EPDRL);
 387	to[1] = ior(db, DM9000_EPDRH);
 388
 389	spin_unlock_irqrestore(&db->lock, flags);
 390
 391	mutex_unlock(&db->addr_lock);
 392}
 393
 394/*
 395 * Write a word data to SROM
 396 */
 397static void
 398dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
 399{
 400	unsigned long flags;
 401
 402	if (db->flags & DM9000_PLATF_NO_EEPROM)
 403		return;
 404
 405	mutex_lock(&db->addr_lock);
 406
 407	spin_lock_irqsave(&db->lock, flags);
 408	iow(db, DM9000_EPAR, offset);
 409	iow(db, DM9000_EPDRH, data[1]);
 410	iow(db, DM9000_EPDRL, data[0]);
 411	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
 412	spin_unlock_irqrestore(&db->lock, flags);
 413
 414	dm9000_wait_eeprom(db);
 415
 416	mdelay(1);	/* wait at least 150uS to clear */
 417
 418	spin_lock_irqsave(&db->lock, flags);
 419	iow(db, DM9000_EPCR, 0);
 420	spin_unlock_irqrestore(&db->lock, flags);
 421
 422	mutex_unlock(&db->addr_lock);
 423}
 424
 425/* ethtool ops */
 426
 427static void dm9000_get_drvinfo(struct net_device *dev,
 428			       struct ethtool_drvinfo *info)
 429{
 430	board_info_t *dm = to_dm9000_board(dev);
 431
 432	strcpy(info->driver, CARDNAME);
 433	strcpy(info->version, DRV_VERSION);
 434	strcpy(info->bus_info, to_platform_device(dm->dev)->name);
 435}
 436
 437static u32 dm9000_get_msglevel(struct net_device *dev)
 438{
 439	board_info_t *dm = to_dm9000_board(dev);
 440
 441	return dm->msg_enable;
 442}
 443
 444static void dm9000_set_msglevel(struct net_device *dev, u32 value)
 445{
 446	board_info_t *dm = to_dm9000_board(dev);
 447
 448	dm->msg_enable = value;
 449}
 450
 451static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 452{
 453	board_info_t *dm = to_dm9000_board(dev);
 454
 455	mii_ethtool_gset(&dm->mii, cmd);
 456	return 0;
 457}
 458
 459static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 460{
 461	board_info_t *dm = to_dm9000_board(dev);
 462
 463	return mii_ethtool_sset(&dm->mii, cmd);
 464}
 465
 466static int dm9000_nway_reset(struct net_device *dev)
 467{
 468	board_info_t *dm = to_dm9000_board(dev);
 469	return mii_nway_restart(&dm->mii);
 470}
 471
 472static int dm9000_set_features(struct net_device *dev, u32 features)
 473{
 474	board_info_t *dm = to_dm9000_board(dev);
 475	u32 changed = dev->features ^ features;
 476	unsigned long flags;
 477
 478	if (!(changed & NETIF_F_RXCSUM))
 479		return 0;
 480
 481	spin_lock_irqsave(&dm->lock, flags);
 482	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 483	spin_unlock_irqrestore(&dm->lock, flags);
 484
 485	return 0;
 486}
 487
 488static u32 dm9000_get_link(struct net_device *dev)
 489{
 490	board_info_t *dm = to_dm9000_board(dev);
 491	u32 ret;
 492
 493	if (dm->flags & DM9000_PLATF_EXT_PHY)
 494		ret = mii_link_ok(&dm->mii);
 495	else
 496		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
 497
 498	return ret;
 499}
 500
 501#define DM_EEPROM_MAGIC		(0x444D394B)
 502
 503static int dm9000_get_eeprom_len(struct net_device *dev)
 504{
 505	return 128;
 506}
 507
 508static int dm9000_get_eeprom(struct net_device *dev,
 509			     struct ethtool_eeprom *ee, u8 *data)
 510{
 511	board_info_t *dm = to_dm9000_board(dev);
 512	int offset = ee->offset;
 513	int len = ee->len;
 514	int i;
 515
 516	/* EEPROM access is aligned to two bytes */
 517
 518	if ((len & 1) != 0 || (offset & 1) != 0)
 519		return -EINVAL;
 520
 521	if (dm->flags & DM9000_PLATF_NO_EEPROM)
 522		return -ENOENT;
 523
 524	ee->magic = DM_EEPROM_MAGIC;
 525
 526	for (i = 0; i < len; i += 2)
 527		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
 528
 529	return 0;
 530}
 531
 532static int dm9000_set_eeprom(struct net_device *dev,
 533			     struct ethtool_eeprom *ee, u8 *data)
 534{
 535	board_info_t *dm = to_dm9000_board(dev);
 536	int offset = ee->offset;
 537	int len = ee->len;
 538	int done;
 539
 540	/* EEPROM access is aligned to two bytes */
 541
 542	if (dm->flags & DM9000_PLATF_NO_EEPROM)
 543		return -ENOENT;
 544
 545	if (ee->magic != DM_EEPROM_MAGIC)
 546		return -EINVAL;
 547
 548	while (len > 0) {
 549		if (len & 1 || offset & 1) {
 550			int which = offset & 1;
 551			u8 tmp[2];
 552
 553			dm9000_read_eeprom(dm, offset / 2, tmp);
 554			tmp[which] = *data;
 555			dm9000_write_eeprom(dm, offset / 2, tmp);
 556
 557			done = 1;
 558		} else {
 559			dm9000_write_eeprom(dm, offset / 2, data);
 560			done = 2;
 561		}
 562
 563		data += done;
 564		offset += done;
 565		len -= done;
 566	}
 567
 568	return 0;
 569}
 570
 571static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 572{
 573	board_info_t *dm = to_dm9000_board(dev);
 574
 575	memset(w, 0, sizeof(struct ethtool_wolinfo));
 576
 577	/* note, we could probably support wake-phy too */
 578	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
 579	w->wolopts = dm->wake_state;
 580}
 581
 582static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 583{
 584	board_info_t *dm = to_dm9000_board(dev);
 585	unsigned long flags;
 586	u32 opts = w->wolopts;
 587	u32 wcr = 0;
 588
 589	if (!dm->wake_supported)
 590		return -EOPNOTSUPP;
 591
 592	if (opts & ~WAKE_MAGIC)
 593		return -EINVAL;
 594
 595	if (opts & WAKE_MAGIC)
 596		wcr |= WCR_MAGICEN;
 597
 598	mutex_lock(&dm->addr_lock);
 599
 600	spin_lock_irqsave(&dm->lock, flags);
 601	iow(dm, DM9000_WCR, wcr);
 602	spin_unlock_irqrestore(&dm->lock, flags);
 603
 604	mutex_unlock(&dm->addr_lock);
 605
 606	if (dm->wake_state != opts) {
 607		/* change in wol state, update IRQ state */
 608
 609		if (!dm->wake_state)
 610			irq_set_irq_wake(dm->irq_wake, 1);
 611		else if (dm->wake_state & !opts)
 612			irq_set_irq_wake(dm->irq_wake, 0);
 613	}
 614
 615	dm->wake_state = opts;
 616	return 0;
 617}
 618
 619static const struct ethtool_ops dm9000_ethtool_ops = {
 620	.get_drvinfo		= dm9000_get_drvinfo,
 621	.get_settings		= dm9000_get_settings,
 622	.set_settings		= dm9000_set_settings,
 623	.get_msglevel		= dm9000_get_msglevel,
 624	.set_msglevel		= dm9000_set_msglevel,
 625	.nway_reset		= dm9000_nway_reset,
 626	.get_link		= dm9000_get_link,
 627	.get_wol		= dm9000_get_wol,
 628	.set_wol		= dm9000_set_wol,
 629 	.get_eeprom_len		= dm9000_get_eeprom_len,
 630 	.get_eeprom		= dm9000_get_eeprom,
 631 	.set_eeprom		= dm9000_set_eeprom,
 632};
 633
 634static void dm9000_show_carrier(board_info_t *db,
 635				unsigned carrier, unsigned nsr)
 636{
 637	struct net_device *ndev = db->ndev;
 638	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
 639
 640	if (carrier)
 641		dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
 642			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
 643			 (ncr & NCR_FDX) ? "full" : "half");
 644	else
 645		dev_info(db->dev, "%s: link down\n", ndev->name);
 646}
 647
 648static void
 649dm9000_poll_work(struct work_struct *w)
 650{
 651	struct delayed_work *dw = to_delayed_work(w);
 652	board_info_t *db = container_of(dw, board_info_t, phy_poll);
 653	struct net_device *ndev = db->ndev;
 654
 655	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
 656	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
 657		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
 658		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
 659		unsigned new_carrier;
 660
 661		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
 662
 663		if (old_carrier != new_carrier) {
 664			if (netif_msg_link(db))
 665				dm9000_show_carrier(db, new_carrier, nsr);
 666
 667			if (!new_carrier)
 668				netif_carrier_off(ndev);
 669			else
 670				netif_carrier_on(ndev);
 671		}
 672	} else
 673		mii_check_media(&db->mii, netif_msg_link(db), 0);
 674	
 675	if (netif_running(ndev))
 676		dm9000_schedule_poll(db);
 677}
 678
 679/* dm9000_release_board
 680 *
 681 * release a board, and any mapped resources
 682 */
 683
 684static void
 685dm9000_release_board(struct platform_device *pdev, struct board_info *db)
 686{
 687	/* unmap our resources */
 688
 689	iounmap(db->io_addr);
 690	iounmap(db->io_data);
 691
 692	/* release the resources */
 693
 694	release_resource(db->data_req);
 695	kfree(db->data_req);
 696
 697	release_resource(db->addr_req);
 698	kfree(db->addr_req);
 699}
 700
 701static unsigned char dm9000_type_to_char(enum dm9000_type type)
 702{
 703	switch (type) {
 704	case TYPE_DM9000E: return 'e';
 705	case TYPE_DM9000A: return 'a';
 706	case TYPE_DM9000B: return 'b';
 707	}
 708
 709	return '?';
 710}
 711
 712/*
 713 *  Set DM9000 multicast address
 714 */
 715static void
 716dm9000_hash_table_unlocked(struct net_device *dev)
 717{
 718	board_info_t *db = netdev_priv(dev);
 719	struct netdev_hw_addr *ha;
 720	int i, oft;
 721	u32 hash_val;
 722	u16 hash_table[4];
 723	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
 724
 725	dm9000_dbg(db, 1, "entering %s\n", __func__);
 726
 727	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
 728		iow(db, oft, dev->dev_addr[i]);
 729
 730	/* Clear Hash Table */
 731	for (i = 0; i < 4; i++)
 732		hash_table[i] = 0x0;
 733
 734	/* broadcast address */
 735	hash_table[3] = 0x8000;
 736
 737	if (dev->flags & IFF_PROMISC)
 738		rcr |= RCR_PRMSC;
 739
 740	if (dev->flags & IFF_ALLMULTI)
 741		rcr |= RCR_ALL;
 742
 743	/* the multicast address in Hash Table : 64 bits */
 744	netdev_for_each_mc_addr(ha, dev) {
 745		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
 746		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
 747	}
 748
 749	/* Write the hash table to MAC MD table */
 750	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
 751		iow(db, oft++, hash_table[i]);
 752		iow(db, oft++, hash_table[i] >> 8);
 753	}
 754
 755	iow(db, DM9000_RCR, rcr);
 756}
 757
 758static void
 759dm9000_hash_table(struct net_device *dev)
 760{
 761	board_info_t *db = netdev_priv(dev);
 762	unsigned long flags;
 763
 764	spin_lock_irqsave(&db->lock, flags);
 765	dm9000_hash_table_unlocked(dev);
 766	spin_unlock_irqrestore(&db->lock, flags);
 767}
 768
 769/*
 770 * Initialize dm9000 board
 771 */
 772static void
 773dm9000_init_dm9000(struct net_device *dev)
 774{
 775	board_info_t *db = netdev_priv(dev);
 776	unsigned int imr;
 777	unsigned int ncr;
 778
 779	dm9000_dbg(db, 1, "entering %s\n", __func__);
 780
 781	/* I/O mode */
 782	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
 783
 784	/* Checksum mode */
 785	if (dev->hw_features & NETIF_F_RXCSUM)
 786		iow(db, DM9000_RCSR,
 787			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 788
 789	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
 790
 791	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
 792
 793	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
 794	 * up dumping the wake events if we disable this. There is already
 795	 * a wake-mask in DM9000_WCR */
 796	if (db->wake_supported)
 797		ncr |= NCR_WAKEEN;
 798
 799	iow(db, DM9000_NCR, ncr);
 800
 801	/* Program operating register */
 802	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
 803	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
 804	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
 805	iow(db, DM9000_SMCR, 0);        /* Special Mode */
 806	/* clear TX status */
 807	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
 808	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
 809
 810	/* Set address filter table */
 811	dm9000_hash_table_unlocked(dev);
 812
 813	imr = IMR_PAR | IMR_PTM | IMR_PRM;
 814	if (db->type != TYPE_DM9000E)
 815		imr |= IMR_LNKCHNG;
 816
 817	db->imr_all = imr;
 818
 819	/* Enable TX/RX interrupt mask */
 820	iow(db, DM9000_IMR, imr);
 821
 822	/* Init Driver variable */
 823	db->tx_pkt_cnt = 0;
 824	db->queue_pkt_len = 0;
 825	dev->trans_start = jiffies;
 826}
 827
 828/* Our watchdog timed out. Called by the networking layer */
 829static void dm9000_timeout(struct net_device *dev)
 830{
 831	board_info_t *db = netdev_priv(dev);
 832	u8 reg_save;
 833	unsigned long flags;
 834
 835	/* Save previous register address */
 836	spin_lock_irqsave(&db->lock, flags);
 837	reg_save = readb(db->io_addr);
 838
 839	netif_stop_queue(dev);
 840	dm9000_reset(db);
 841	dm9000_init_dm9000(dev);
 842	/* We can accept TX packets again */
 843	dev->trans_start = jiffies; /* prevent tx timeout */
 844	netif_wake_queue(dev);
 845
 846	/* Restore previous register address */
 847	writeb(reg_save, db->io_addr);
 848	spin_unlock_irqrestore(&db->lock, flags);
 849}
 850
 851static void dm9000_send_packet(struct net_device *dev,
 852			       int ip_summed,
 853			       u16 pkt_len)
 854{
 855	board_info_t *dm = to_dm9000_board(dev);
 856
 857	/* The DM9000 is not smart enough to leave fragmented packets alone. */
 858	if (dm->ip_summed != ip_summed) {
 859		if (ip_summed == CHECKSUM_NONE)
 860			iow(dm, DM9000_TCCR, 0);
 861		else
 862			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
 863		dm->ip_summed = ip_summed;
 864	}
 865
 866	/* Set TX length to DM9000 */
 867	iow(dm, DM9000_TXPLL, pkt_len);
 868	iow(dm, DM9000_TXPLH, pkt_len >> 8);
 869
 870	/* Issue TX polling command */
 871	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
 872}
 873
 874/*
 875 *  Hardware start transmission.
 876 *  Send a packet to media from the upper layer.
 877 */
 878static int
 879dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
 880{
 881	unsigned long flags;
 882	board_info_t *db = netdev_priv(dev);
 883
 884	dm9000_dbg(db, 3, "%s:\n", __func__);
 885
 886	if (db->tx_pkt_cnt > 1)
 887		return NETDEV_TX_BUSY;
 888
 889	spin_lock_irqsave(&db->lock, flags);
 890
 891	/* Move data to DM9000 TX RAM */
 892	writeb(DM9000_MWCMD, db->io_addr);
 893
 894	(db->outblk)(db->io_data, skb->data, skb->len);
 895	dev->stats.tx_bytes += skb->len;
 896
 897	db->tx_pkt_cnt++;
 898	/* TX control: First packet immediately send, second packet queue */
 899	if (db->tx_pkt_cnt == 1) {
 900		dm9000_send_packet(dev, skb->ip_summed, skb->len);
 901	} else {
 902		/* Second packet */
 903		db->queue_pkt_len = skb->len;
 904		db->queue_ip_summed = skb->ip_summed;
 905		netif_stop_queue(dev);
 906	}
 907
 908	spin_unlock_irqrestore(&db->lock, flags);
 909
 910	/* free this SKB */
 911	dev_kfree_skb(skb);
 912
 913	return NETDEV_TX_OK;
 914}
 915
 916/*
 917 * DM9000 interrupt handler
 918 * receive the packet to upper layer, free the transmitted packet
 919 */
 920
 921static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
 922{
 923	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
 924
 925	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
 926		/* One packet sent complete */
 927		db->tx_pkt_cnt--;
 928		dev->stats.tx_packets++;
 929
 930		if (netif_msg_tx_done(db))
 931			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
 932
 933		/* Queue packet check & send */
 934		if (db->tx_pkt_cnt > 0)
 935			dm9000_send_packet(dev, db->queue_ip_summed,
 936					   db->queue_pkt_len);
 937		netif_wake_queue(dev);
 938	}
 939}
 940
 941struct dm9000_rxhdr {
 942	u8	RxPktReady;
 943	u8	RxStatus;
 944	__le16	RxLen;
 945} __packed;
 946
 947/*
 948 *  Received a packet and pass to upper layer
 949 */
 950static void
 951dm9000_rx(struct net_device *dev)
 952{
 953	board_info_t *db = netdev_priv(dev);
 954	struct dm9000_rxhdr rxhdr;
 955	struct sk_buff *skb;
 956	u8 rxbyte, *rdptr;
 957	bool GoodPacket;
 958	int RxLen;
 959
 960	/* Check packet ready or not */
 961	do {
 962		ior(db, DM9000_MRCMDX);	/* Dummy read */
 963
 964		/* Get most updated data */
 965		rxbyte = readb(db->io_data);
 966
 967		/* Status check: this byte must be 0 or 1 */
 968		if (rxbyte & DM9000_PKT_ERR) {
 969			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
 970			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
 971			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
 972			return;
 973		}
 974
 975		if (!(rxbyte & DM9000_PKT_RDY))
 976			return;
 977
 978		/* A packet ready now  & Get status/length */
 979		GoodPacket = true;
 980		writeb(DM9000_MRCMD, db->io_addr);
 981
 982		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
 983
 984		RxLen = le16_to_cpu(rxhdr.RxLen);
 985
 986		if (netif_msg_rx_status(db))
 987			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
 988				rxhdr.RxStatus, RxLen);
 989
 990		/* Packet Status check */
 991		if (RxLen < 0x40) {
 992			GoodPacket = false;
 993			if (netif_msg_rx_err(db))
 994				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
 995		}
 996
 997		if (RxLen > DM9000_PKT_MAX) {
 998			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
 999		}
1000
1001		/* rxhdr.RxStatus is identical to RSR register. */
1002		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1003				      RSR_PLE | RSR_RWTO |
1004				      RSR_LCS | RSR_RF)) {
1005			GoodPacket = false;
1006			if (rxhdr.RxStatus & RSR_FOE) {
1007				if (netif_msg_rx_err(db))
1008					dev_dbg(db->dev, "fifo error\n");
1009				dev->stats.rx_fifo_errors++;
1010			}
1011			if (rxhdr.RxStatus & RSR_CE) {
1012				if (netif_msg_rx_err(db))
1013					dev_dbg(db->dev, "crc error\n");
1014				dev->stats.rx_crc_errors++;
1015			}
1016			if (rxhdr.RxStatus & RSR_RF) {
1017				if (netif_msg_rx_err(db))
1018					dev_dbg(db->dev, "length error\n");
1019				dev->stats.rx_length_errors++;
1020			}
1021		}
1022
1023		/* Move data from DM9000 */
1024		if (GoodPacket &&
1025		    ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
1026			skb_reserve(skb, 2);
1027			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1028
1029			/* Read received packet from RX SRAM */
1030
1031			(db->inblk)(db->io_data, rdptr, RxLen);
1032			dev->stats.rx_bytes += RxLen;
1033
1034			/* Pass to upper layer */
1035			skb->protocol = eth_type_trans(skb, dev);
1036			if (dev->features & NETIF_F_RXCSUM) {
1037				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1038					skb->ip_summed = CHECKSUM_UNNECESSARY;
1039				else
1040					skb_checksum_none_assert(skb);
1041			}
1042			netif_rx(skb);
1043			dev->stats.rx_packets++;
1044
1045		} else {
1046			/* need to dump the packet's data */
1047
1048			(db->dumpblk)(db->io_data, RxLen);
1049		}
1050	} while (rxbyte & DM9000_PKT_RDY);
1051}
1052
1053static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1054{
1055	struct net_device *dev = dev_id;
1056	board_info_t *db = netdev_priv(dev);
1057	int int_status;
1058	unsigned long flags;
1059	u8 reg_save;
1060
1061	dm9000_dbg(db, 3, "entering %s\n", __func__);
1062
1063	/* A real interrupt coming */
1064
1065	/* holders of db->lock must always block IRQs */
1066	spin_lock_irqsave(&db->lock, flags);
1067
1068	/* Save previous register address */
1069	reg_save = readb(db->io_addr);
1070
1071	/* Disable all interrupts */
1072	iow(db, DM9000_IMR, IMR_PAR);
1073
1074	/* Got DM9000 interrupt status */
1075	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1076	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1077
1078	if (netif_msg_intr(db))
1079		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1080
1081	/* Received the coming packet */
1082	if (int_status & ISR_PRS)
1083		dm9000_rx(dev);
1084
1085	/* Trnasmit Interrupt check */
1086	if (int_status & ISR_PTS)
1087		dm9000_tx_done(dev, db);
1088
1089	if (db->type != TYPE_DM9000E) {
1090		if (int_status & ISR_LNKCHNG) {
1091			/* fire a link-change request */
1092			schedule_delayed_work(&db->phy_poll, 1);
1093		}
1094	}
1095
1096	/* Re-enable interrupt mask */
1097	iow(db, DM9000_IMR, db->imr_all);
1098
1099	/* Restore previous register address */
1100	writeb(reg_save, db->io_addr);
1101
1102	spin_unlock_irqrestore(&db->lock, flags);
1103
1104	return IRQ_HANDLED;
1105}
1106
1107static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1108{
1109	struct net_device *dev = dev_id;
1110	board_info_t *db = netdev_priv(dev);
1111	unsigned long flags;
1112	unsigned nsr, wcr;
1113
1114	spin_lock_irqsave(&db->lock, flags);
1115
1116	nsr = ior(db, DM9000_NSR);
1117	wcr = ior(db, DM9000_WCR);
1118
1119	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1120
1121	if (nsr & NSR_WAKEST) {
1122		/* clear, so we can avoid */
1123		iow(db, DM9000_NSR, NSR_WAKEST);
1124
1125		if (wcr & WCR_LINKST)
1126			dev_info(db->dev, "wake by link status change\n");
1127		if (wcr & WCR_SAMPLEST)
1128			dev_info(db->dev, "wake by sample packet\n");
1129		if (wcr & WCR_MAGICST )
1130			dev_info(db->dev, "wake by magic packet\n");
1131		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1132			dev_err(db->dev, "wake signalled with no reason? "
1133				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1134
1135	}
1136
1137	spin_unlock_irqrestore(&db->lock, flags);
1138
1139	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1140}
1141
1142#ifdef CONFIG_NET_POLL_CONTROLLER
1143/*
1144 *Used by netconsole
1145 */
1146static void dm9000_poll_controller(struct net_device *dev)
1147{
1148	disable_irq(dev->irq);
1149	dm9000_interrupt(dev->irq, dev);
1150	enable_irq(dev->irq);
1151}
1152#endif
1153
1154/*
1155 *  Open the interface.
1156 *  The interface is opened whenever "ifconfig" actives it.
1157 */
1158static int
1159dm9000_open(struct net_device *dev)
1160{
1161	board_info_t *db = netdev_priv(dev);
1162	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1163
1164	if (netif_msg_ifup(db))
1165		dev_dbg(db->dev, "enabling %s\n", dev->name);
1166
1167	/* If there is no IRQ type specified, default to something that
1168	 * may work, and tell the user that this is a problem */
1169
1170	if (irqflags == IRQF_TRIGGER_NONE)
1171		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1172
1173	irqflags |= IRQF_SHARED;
1174
1175	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1176	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1177	mdelay(1); /* delay needs by DM9000B */
1178
1179	/* Initialize DM9000 board */
1180	dm9000_reset(db);
1181	dm9000_init_dm9000(dev);
1182
1183	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1184		return -EAGAIN;
1185
1186	/* Init driver variable */
1187	db->dbug_cnt = 0;
1188
1189	mii_check_media(&db->mii, netif_msg_link(db), 1);
1190	netif_start_queue(dev);
1191	
1192	dm9000_schedule_poll(db);
1193
1194	return 0;
1195}
1196
1197/*
1198 * Sleep, either by using msleep() or if we are suspending, then
1199 * use mdelay() to sleep.
1200 */
1201static void dm9000_msleep(board_info_t *db, unsigned int ms)
1202{
1203	if (db->in_suspend)
1204		mdelay(ms);
1205	else
1206		msleep(ms);
1207}
1208
1209/*
1210 *   Read a word from phyxcer
1211 */
1212static int
1213dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
1214{
1215	board_info_t *db = netdev_priv(dev);
1216	unsigned long flags;
1217	unsigned int reg_save;
1218	int ret;
1219
1220	mutex_lock(&db->addr_lock);
1221
1222	spin_lock_irqsave(&db->lock,flags);
1223
1224	/* Save previous register address */
1225	reg_save = readb(db->io_addr);
1226
1227	/* Fill the phyxcer register into REG_0C */
1228	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1229
1230	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);	/* Issue phyxcer read command */
1231
1232	writeb(reg_save, db->io_addr);
1233	spin_unlock_irqrestore(&db->lock,flags);
1234
1235	dm9000_msleep(db, 1);		/* Wait read complete */
1236
1237	spin_lock_irqsave(&db->lock,flags);
1238	reg_save = readb(db->io_addr);
1239
1240	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
1241
1242	/* The read data keeps on REG_0D & REG_0E */
1243	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
1244
1245	/* restore the previous address */
1246	writeb(reg_save, db->io_addr);
1247	spin_unlock_irqrestore(&db->lock,flags);
1248
1249	mutex_unlock(&db->addr_lock);
1250
1251	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
1252	return ret;
1253}
1254
1255/*
1256 *   Write a word to phyxcer
1257 */
1258static void
1259dm9000_phy_write(struct net_device *dev,
1260		 int phyaddr_unused, int reg, int value)
1261{
1262	board_info_t *db = netdev_priv(dev);
1263	unsigned long flags;
1264	unsigned long reg_save;
1265
1266	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
1267	mutex_lock(&db->addr_lock);
1268
1269	spin_lock_irqsave(&db->lock,flags);
1270
1271	/* Save previous register address */
1272	reg_save = readb(db->io_addr);
1273
1274	/* Fill the phyxcer register into REG_0C */
1275	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1276
1277	/* Fill the written data into REG_0D & REG_0E */
1278	iow(db, DM9000_EPDRL, value);
1279	iow(db, DM9000_EPDRH, value >> 8);
1280
1281	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);	/* Issue phyxcer write command */
1282
1283	writeb(reg_save, db->io_addr);
1284	spin_unlock_irqrestore(&db->lock, flags);
1285
1286	dm9000_msleep(db, 1);		/* Wait write complete */
1287
1288	spin_lock_irqsave(&db->lock,flags);
1289	reg_save = readb(db->io_addr);
1290
1291	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
1292
1293	/* restore the previous address */
1294	writeb(reg_save, db->io_addr);
1295
1296	spin_unlock_irqrestore(&db->lock, flags);
1297	mutex_unlock(&db->addr_lock);
1298}
1299
1300static void
1301dm9000_shutdown(struct net_device *dev)
1302{
1303	board_info_t *db = netdev_priv(dev);
1304
1305	/* RESET device */
1306	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1307	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1308	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
1309	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1310}
1311
1312/*
1313 * Stop the interface.
1314 * The interface is stopped when it is brought.
1315 */
1316static int
1317dm9000_stop(struct net_device *ndev)
1318{
1319	board_info_t *db = netdev_priv(ndev);
1320
1321	if (netif_msg_ifdown(db))
1322		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1323
1324	cancel_delayed_work_sync(&db->phy_poll);
1325
1326	netif_stop_queue(ndev);
1327	netif_carrier_off(ndev);
1328
1329	/* free interrupt */
1330	free_irq(ndev->irq, ndev);
1331
1332	dm9000_shutdown(ndev);
1333
1334	return 0;
1335}
1336
1337static const struct net_device_ops dm9000_netdev_ops = {
1338	.ndo_open		= dm9000_open,
1339	.ndo_stop		= dm9000_stop,
1340	.ndo_start_xmit		= dm9000_start_xmit,
1341	.ndo_tx_timeout		= dm9000_timeout,
1342	.ndo_set_multicast_list	= dm9000_hash_table,
1343	.ndo_do_ioctl		= dm9000_ioctl,
1344	.ndo_change_mtu		= eth_change_mtu,
1345	.ndo_set_features	= dm9000_set_features,
1346	.ndo_validate_addr	= eth_validate_addr,
1347	.ndo_set_mac_address	= eth_mac_addr,
1348#ifdef CONFIG_NET_POLL_CONTROLLER
1349	.ndo_poll_controller	= dm9000_poll_controller,
1350#endif
1351};
1352
1353/*
1354 * Search DM9000 board, allocate space and register it
1355 */
1356static int __devinit
1357dm9000_probe(struct platform_device *pdev)
1358{
1359	struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1360	struct board_info *db;	/* Point a board information structure */
1361	struct net_device *ndev;
1362	const unsigned char *mac_src;
1363	int ret = 0;
1364	int iosize;
1365	int i;
1366	u32 id_val;
1367
1368	/* Init network device */
1369	ndev = alloc_etherdev(sizeof(struct board_info));
1370	if (!ndev) {
1371		dev_err(&pdev->dev, "could not allocate device.\n");
1372		return -ENOMEM;
1373	}
1374
1375	SET_NETDEV_DEV(ndev, &pdev->dev);
1376
1377	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1378
1379	/* setup board info structure */
1380	db = netdev_priv(ndev);
1381
1382	db->dev = &pdev->dev;
1383	db->ndev = ndev;
1384
1385	spin_lock_init(&db->lock);
1386	mutex_init(&db->addr_lock);
1387
1388	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1389
1390	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1391	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1392	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1393
1394	if (db->addr_res == NULL || db->data_res == NULL ||
1395	    db->irq_res == NULL) {
1396		dev_err(db->dev, "insufficient resources\n");
1397		ret = -ENOENT;
1398		goto out;
1399	}
1400
1401	db->irq_wake = platform_get_irq(pdev, 1);
1402	if (db->irq_wake >= 0) {
1403		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1404
1405		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1406				  IRQF_SHARED, dev_name(db->dev), ndev);
1407		if (ret) {
1408			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1409		} else {
1410
1411			/* test to see if irq is really wakeup capable */
1412			ret = irq_set_irq_wake(db->irq_wake, 1);
1413			if (ret) {
1414				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1415					db->irq_wake, ret);
1416				ret = 0;
1417			} else {
1418				irq_set_irq_wake(db->irq_wake, 0);
1419				db->wake_supported = 1;
1420			}
1421		}
1422	}
1423
1424	iosize = resource_size(db->addr_res);
1425	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1426					  pdev->name);
1427
1428	if (db->addr_req == NULL) {
1429		dev_err(db->dev, "cannot claim address reg area\n");
1430		ret = -EIO;
1431		goto out;
1432	}
1433
1434	db->io_addr = ioremap(db->addr_res->start, iosize);
1435
1436	if (db->io_addr == NULL) {
1437		dev_err(db->dev, "failed to ioremap address reg\n");
1438		ret = -EINVAL;
1439		goto out;
1440	}
1441
1442	iosize = resource_size(db->data_res);
1443	db->data_req = request_mem_region(db->data_res->start, iosize,
1444					  pdev->name);
1445
1446	if (db->data_req == NULL) {
1447		dev_err(db->dev, "cannot claim data reg area\n");
1448		ret = -EIO;
1449		goto out;
1450	}
1451
1452	db->io_data = ioremap(db->data_res->start, iosize);
1453
1454	if (db->io_data == NULL) {
1455		dev_err(db->dev, "failed to ioremap data reg\n");
1456		ret = -EINVAL;
1457		goto out;
1458	}
1459
1460	/* fill in parameters for net-dev structure */
1461	ndev->base_addr = (unsigned long)db->io_addr;
1462	ndev->irq	= db->irq_res->start;
1463
1464	/* ensure at least we have a default set of IO routines */
1465	dm9000_set_io(db, iosize);
1466
1467	/* check to see if anything is being over-ridden */
1468	if (pdata != NULL) {
1469		/* check to see if the driver wants to over-ride the
1470		 * default IO width */
1471
1472		if (pdata->flags & DM9000_PLATF_8BITONLY)
1473			dm9000_set_io(db, 1);
1474
1475		if (pdata->flags & DM9000_PLATF_16BITONLY)
1476			dm9000_set_io(db, 2);
1477
1478		if (pdata->flags & DM9000_PLATF_32BITONLY)
1479			dm9000_set_io(db, 4);
1480
1481		/* check to see if there are any IO routine
1482		 * over-rides */
1483
1484		if (pdata->inblk != NULL)
1485			db->inblk = pdata->inblk;
1486
1487		if (pdata->outblk != NULL)
1488			db->outblk = pdata->outblk;
1489
1490		if (pdata->dumpblk != NULL)
1491			db->dumpblk = pdata->dumpblk;
1492
1493		db->flags = pdata->flags;
1494	}
1495
1496#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1497	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1498#endif
1499
1500	dm9000_reset(db);
1501
1502	/* try multiple times, DM9000 sometimes gets the read wrong */
1503	for (i = 0; i < 8; i++) {
1504		id_val  = ior(db, DM9000_VIDL);
1505		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1506		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1507		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1508
1509		if (id_val == DM9000_ID)
1510			break;
1511		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1512	}
1513
1514	if (id_val != DM9000_ID) {
1515		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1516		ret = -ENODEV;
1517		goto out;
1518	}
1519
1520	/* Identify what type of DM9000 we are working on */
1521
1522	id_val = ior(db, DM9000_CHIPR);
1523	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1524
1525	switch (id_val) {
1526	case CHIPR_DM9000A:
1527		db->type = TYPE_DM9000A;
1528		break;
1529	case CHIPR_DM9000B:
1530		db->type = TYPE_DM9000B;
1531		break;
1532	default:
1533		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1534		db->type = TYPE_DM9000E;
1535	}
1536
1537	/* dm9000a/b are capable of hardware checksum offload */
1538	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1539		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1540		ndev->features |= ndev->hw_features;
1541	}
1542
1543	/* from this point we assume that we have found a DM9000 */
1544
1545	/* driver system function */
1546	ether_setup(ndev);
1547
1548	ndev->netdev_ops	= &dm9000_netdev_ops;
1549	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1550	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1551
1552	db->msg_enable       = NETIF_MSG_LINK;
1553	db->mii.phy_id_mask  = 0x1f;
1554	db->mii.reg_num_mask = 0x1f;
1555	db->mii.force_media  = 0;
1556	db->mii.full_duplex  = 0;
1557	db->mii.dev	     = ndev;
1558	db->mii.mdio_read    = dm9000_phy_read;
1559	db->mii.mdio_write   = dm9000_phy_write;
1560
1561	mac_src = "eeprom";
1562
1563	/* try reading the node address from the attached EEPROM */
1564	for (i = 0; i < 6; i += 2)
1565		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1566
1567	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1568		mac_src = "platform data";
1569		memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1570	}
1571
1572	if (!is_valid_ether_addr(ndev->dev_addr)) {
1573		/* try reading from mac */
1574		
1575		mac_src = "chip";
1576		for (i = 0; i < 6; i++)
1577			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1578	}
1579
1580	if (!is_valid_ether_addr(ndev->dev_addr)) {
1581		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1582			 "set using ifconfig\n", ndev->name);
1583
1584		random_ether_addr(ndev->dev_addr);
1585		mac_src = "random";
1586	}
1587
1588
1589	platform_set_drvdata(pdev, ndev);
1590	ret = register_netdev(ndev);
1591
1592	if (ret == 0)
1593		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1594		       ndev->name, dm9000_type_to_char(db->type),
1595		       db->io_addr, db->io_data, ndev->irq,
1596		       ndev->dev_addr, mac_src);
1597	return 0;
1598
1599out:
1600	dev_err(db->dev, "not found (%d).\n", ret);
1601
1602	dm9000_release_board(pdev, db);
1603	free_netdev(ndev);
1604
1605	return ret;
1606}
1607
1608static int
1609dm9000_drv_suspend(struct device *dev)
1610{
1611	struct platform_device *pdev = to_platform_device(dev);
1612	struct net_device *ndev = platform_get_drvdata(pdev);
1613	board_info_t *db;
1614
1615	if (ndev) {
1616		db = netdev_priv(ndev);
1617		db->in_suspend = 1;
1618
1619		if (!netif_running(ndev))
1620			return 0;
1621
1622		netif_device_detach(ndev);
1623
1624		/* only shutdown if not using WoL */
1625		if (!db->wake_state)
1626			dm9000_shutdown(ndev);
1627	}
1628	return 0;
1629}
1630
1631static int
1632dm9000_drv_resume(struct device *dev)
1633{
1634	struct platform_device *pdev = to_platform_device(dev);
1635	struct net_device *ndev = platform_get_drvdata(pdev);
1636	board_info_t *db = netdev_priv(ndev);
1637
1638	if (ndev) {
1639		if (netif_running(ndev)) {
1640			/* reset if we were not in wake mode to ensure if
1641			 * the device was powered off it is in a known state */
1642			if (!db->wake_state) {
1643				dm9000_reset(db);
1644				dm9000_init_dm9000(ndev);
1645			}
1646
1647			netif_device_attach(ndev);
1648		}
1649
1650		db->in_suspend = 0;
1651	}
1652	return 0;
1653}
1654
1655static const struct dev_pm_ops dm9000_drv_pm_ops = {
1656	.suspend	= dm9000_drv_suspend,
1657	.resume		= dm9000_drv_resume,
1658};
1659
1660static int __devexit
1661dm9000_drv_remove(struct platform_device *pdev)
1662{
1663	struct net_device *ndev = platform_get_drvdata(pdev);
1664
1665	platform_set_drvdata(pdev, NULL);
1666
1667	unregister_netdev(ndev);
1668	dm9000_release_board(pdev, netdev_priv(ndev));
1669	free_netdev(ndev);		/* free device structure */
1670
1671	dev_dbg(&pdev->dev, "released and freed device\n");
1672	return 0;
1673}
1674
1675static struct platform_driver dm9000_driver = {
1676	.driver	= {
1677		.name    = "dm9000",
1678		.owner	 = THIS_MODULE,
1679		.pm	 = &dm9000_drv_pm_ops,
1680	},
1681	.probe   = dm9000_probe,
1682	.remove  = __devexit_p(dm9000_drv_remove),
1683};
1684
1685static int __init
1686dm9000_init(void)
1687{
1688	printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
1689
1690	return platform_driver_register(&dm9000_driver);
1691}
1692
1693static void __exit
1694dm9000_cleanup(void)
1695{
1696	platform_driver_unregister(&dm9000_driver);
1697}
1698
1699module_init(dm9000_init);
1700module_exit(dm9000_cleanup);
1701
1702MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1703MODULE_DESCRIPTION("Davicom DM9000 network driver");
1704MODULE_LICENSE("GPL");
1705MODULE_ALIAS("platform:dm9000");