Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   2/*
   3    Copyright (c) 2001, 2002 by D-Link Corporation
   4    Written by Edward Peng.<edward_peng@dlink.com.tw>
   5    Created 03-May-2001, base on Linux' sundance.c.
   6
   7    This program is free software; you can redistribute it and/or modify
   8    it under the terms of the GNU General Public License as published by
   9    the Free Software Foundation; either version 2 of the License, or
  10    (at your option) any later version.
  11*/
  12
  13#define DRV_NAME	"DL2000/TC902x-based linux driver"
  14#define DRV_VERSION	"v1.19"
  15#define DRV_RELDATE	"2007/08/12"
  16#include "dl2k.h"
  17#include <linux/dma-mapping.h>
  18
  19static char version[] __devinitdata =
  20      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
  21#define MAX_UNITS 8
  22static int mtu[MAX_UNITS];
  23static int vlan[MAX_UNITS];
  24static int jumbo[MAX_UNITS];
  25static char *media[MAX_UNITS];
  26static int tx_flow=-1;
  27static int rx_flow=-1;
  28static int copy_thresh;
  29static int rx_coalesce=10;	/* Rx frame count each interrupt */
  30static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
  31static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
  32
  33
  34MODULE_AUTHOR ("Edward Peng");
  35MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  36MODULE_LICENSE("GPL");
  37module_param_array(mtu, int, NULL, 0);
  38module_param_array(media, charp, NULL, 0);
  39module_param_array(vlan, int, NULL, 0);
  40module_param_array(jumbo, int, NULL, 0);
  41module_param(tx_flow, int, 0);
  42module_param(rx_flow, int, 0);
  43module_param(copy_thresh, int, 0);
  44module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
  45module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
  46module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  47
  48
  49/* Enable the default interrupts */
  50#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  51       UpdateStats | LinkEvent)
  52#define EnableInt() \
  53writew(DEFAULT_INTR, ioaddr + IntEnable)
  54
  55static const int max_intrloop = 50;
  56static const int multicast_filter_limit = 0x40;
  57
  58static int rio_open (struct net_device *dev);
  59static void rio_timer (unsigned long data);
  60static void rio_tx_timeout (struct net_device *dev);
  61static void alloc_list (struct net_device *dev);
  62static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  63static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  64static void rio_free_tx (struct net_device *dev, int irq);
  65static void tx_error (struct net_device *dev, int tx_status);
  66static int receive_packet (struct net_device *dev);
  67static void rio_error (struct net_device *dev, int int_status);
  68static int change_mtu (struct net_device *dev, int new_mtu);
  69static void set_multicast (struct net_device *dev);
  70static struct net_device_stats *get_stats (struct net_device *dev);
  71static int clear_stats (struct net_device *dev);
  72static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  73static int rio_close (struct net_device *dev);
  74static int find_miiphy (struct net_device *dev);
  75static int parse_eeprom (struct net_device *dev);
  76static int read_eeprom (long ioaddr, int eep_addr);
  77static int mii_wait_link (struct net_device *dev, int wait);
  78static int mii_set_media (struct net_device *dev);
  79static int mii_get_media (struct net_device *dev);
  80static int mii_set_media_pcs (struct net_device *dev);
  81static int mii_get_media_pcs (struct net_device *dev);
  82static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  83static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  84		      u16 data);
  85
  86static const struct ethtool_ops ethtool_ops;
  87
  88static const struct net_device_ops netdev_ops = {
  89	.ndo_open		= rio_open,
  90	.ndo_start_xmit	= start_xmit,
  91	.ndo_stop		= rio_close,
  92	.ndo_get_stats		= get_stats,
  93	.ndo_validate_addr	= eth_validate_addr,
  94	.ndo_set_mac_address 	= eth_mac_addr,
  95	.ndo_set_multicast_list = set_multicast,
  96	.ndo_do_ioctl		= rio_ioctl,
  97	.ndo_tx_timeout		= rio_tx_timeout,
  98	.ndo_change_mtu		= change_mtu,
  99};
 100
 101static int __devinit
 102rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 103{
 104	struct net_device *dev;
 105	struct netdev_private *np;
 106	static int card_idx;
 107	int chip_idx = ent->driver_data;
 108	int err, irq;
 109	long ioaddr;
 110	static int version_printed;
 111	void *ring_space;
 112	dma_addr_t ring_dma;
 113
 114	if (!version_printed++)
 115		printk ("%s", version);
 116
 117	err = pci_enable_device (pdev);
 118	if (err)
 119		return err;
 120
 121	irq = pdev->irq;
 122	err = pci_request_regions (pdev, "dl2k");
 123	if (err)
 124		goto err_out_disable;
 125
 126	pci_set_master (pdev);
 127	dev = alloc_etherdev (sizeof (*np));
 128	if (!dev) {
 129		err = -ENOMEM;
 130		goto err_out_res;
 131	}
 132	SET_NETDEV_DEV(dev, &pdev->dev);
 133
 134#ifdef MEM_MAPPING
 135	ioaddr = pci_resource_start (pdev, 1);
 136	ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
 137	if (!ioaddr) {
 138		err = -ENOMEM;
 139		goto err_out_dev;
 140	}
 141#else
 142	ioaddr = pci_resource_start (pdev, 0);
 143#endif
 144	dev->base_addr = ioaddr;
 145	dev->irq = irq;
 146	np = netdev_priv(dev);
 147	np->chip_id = chip_idx;
 148	np->pdev = pdev;
 149	spin_lock_init (&np->tx_lock);
 150	spin_lock_init (&np->rx_lock);
 151
 152	/* Parse manual configuration */
 153	np->an_enable = 1;
 154	np->tx_coalesce = 1;
 155	if (card_idx < MAX_UNITS) {
 156		if (media[card_idx] != NULL) {
 157			np->an_enable = 0;
 158			if (strcmp (media[card_idx], "auto") == 0 ||
 159			    strcmp (media[card_idx], "autosense") == 0 ||
 160			    strcmp (media[card_idx], "0") == 0 ) {
 161				np->an_enable = 2;
 162			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 163			    strcmp (media[card_idx], "4") == 0) {
 164				np->speed = 100;
 165				np->full_duplex = 1;
 166			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 167				   strcmp (media[card_idx], "3") == 0) {
 168				np->speed = 100;
 169				np->full_duplex = 0;
 170			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 171				   strcmp (media[card_idx], "2") == 0) {
 172				np->speed = 10;
 173				np->full_duplex = 1;
 174			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 175				   strcmp (media[card_idx], "1") == 0) {
 176				np->speed = 10;
 177				np->full_duplex = 0;
 178			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 179				 strcmp (media[card_idx], "6") == 0) {
 180				np->speed=1000;
 181				np->full_duplex=1;
 182			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 183				 strcmp (media[card_idx], "5") == 0) {
 184				np->speed = 1000;
 185				np->full_duplex = 0;
 186			} else {
 187				np->an_enable = 1;
 188			}
 189		}
 190		if (jumbo[card_idx] != 0) {
 191			np->jumbo = 1;
 192			dev->mtu = MAX_JUMBO;
 193		} else {
 194			np->jumbo = 0;
 195			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 196				dev->mtu = mtu[card_idx];
 197		}
 198		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 199		    vlan[card_idx] : 0;
 200		if (rx_coalesce > 0 && rx_timeout > 0) {
 201			np->rx_coalesce = rx_coalesce;
 202			np->rx_timeout = rx_timeout;
 203			np->coalesce = 1;
 204		}
 205		np->tx_flow = (tx_flow == 0) ? 0 : 1;
 206		np->rx_flow = (rx_flow == 0) ? 0 : 1;
 207
 208		if (tx_coalesce < 1)
 209			tx_coalesce = 1;
 210		else if (tx_coalesce > TX_RING_SIZE-1)
 211			tx_coalesce = TX_RING_SIZE - 1;
 212	}
 213	dev->netdev_ops = &netdev_ops;
 214	dev->watchdog_timeo = TX_TIMEOUT;
 215	SET_ETHTOOL_OPS(dev, &ethtool_ops);
 216#if 0
 217	dev->features = NETIF_F_IP_CSUM;
 218#endif
 219	pci_set_drvdata (pdev, dev);
 220
 221	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
 222	if (!ring_space)
 223		goto err_out_iounmap;
 224	np->tx_ring = ring_space;
 225	np->tx_ring_dma = ring_dma;
 226
 227	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
 228	if (!ring_space)
 229		goto err_out_unmap_tx;
 230	np->rx_ring = ring_space;
 231	np->rx_ring_dma = ring_dma;
 232
 233	/* Parse eeprom data */
 234	parse_eeprom (dev);
 235
 236	/* Find PHY address */
 237	err = find_miiphy (dev);
 238	if (err)
 239		goto err_out_unmap_rx;
 240
 241	/* Fiber device? */
 242	np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
 243	np->link_status = 0;
 244	/* Set media and reset PHY */
 245	if (np->phy_media) {
 246		/* default Auto-Negotiation for fiber deivices */
 247	 	if (np->an_enable == 2) {
 248			np->an_enable = 1;
 249		}
 250		mii_set_media_pcs (dev);
 251	} else {
 252		/* Auto-Negotiation is mandatory for 1000BASE-T,
 253		   IEEE 802.3ab Annex 28D page 14 */
 254		if (np->speed == 1000)
 255			np->an_enable = 1;
 256		mii_set_media (dev);
 257	}
 258
 259	err = register_netdev (dev);
 260	if (err)
 261		goto err_out_unmap_rx;
 262
 263	card_idx++;
 264
 265	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 266		dev->name, np->name, dev->dev_addr, irq);
 267	if (tx_coalesce > 1)
 268		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 269				tx_coalesce);
 270	if (np->coalesce)
 271		printk(KERN_INFO
 272		       "rx_coalesce:\t%d packets\n"
 273		       "rx_timeout: \t%d ns\n",
 274				np->rx_coalesce, np->rx_timeout*640);
 275	if (np->vlan)
 276		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 277	return 0;
 278
 279      err_out_unmap_rx:
 280	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 281      err_out_unmap_tx:
 282	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 283      err_out_iounmap:
 284#ifdef MEM_MAPPING
 285	iounmap ((void *) ioaddr);
 286
 287      err_out_dev:
 288#endif
 289	free_netdev (dev);
 290
 291      err_out_res:
 292	pci_release_regions (pdev);
 293
 294      err_out_disable:
 295	pci_disable_device (pdev);
 296	return err;
 297}
 298
 299static int
 300find_miiphy (struct net_device *dev)
 301{
 302	int i, phy_found = 0;
 303	struct netdev_private *np;
 304	long ioaddr;
 305	np = netdev_priv(dev);
 306	ioaddr = dev->base_addr;
 307	np->phy_addr = 1;
 308
 309	for (i = 31; i >= 0; i--) {
 310		int mii_status = mii_read (dev, i, 1);
 311		if (mii_status != 0xffff && mii_status != 0x0000) {
 312			np->phy_addr = i;
 313			phy_found++;
 314		}
 315	}
 316	if (!phy_found) {
 317		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 318		return -ENODEV;
 319	}
 320	return 0;
 321}
 322
 323static int
 324parse_eeprom (struct net_device *dev)
 325{
 326	int i, j;
 327	long ioaddr = dev->base_addr;
 328	u8 sromdata[256];
 329	u8 *psib;
 330	u32 crc;
 331	PSROM_t psrom = (PSROM_t) sromdata;
 332	struct netdev_private *np = netdev_priv(dev);
 333
 334	int cid, next;
 335
 336#ifdef	MEM_MAPPING
 337	ioaddr = pci_resource_start (np->pdev, 0);
 338#endif
 339	/* Read eeprom */
 340	for (i = 0; i < 128; i++) {
 341		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
 342	}
 343#ifdef	MEM_MAPPING
 344	ioaddr = dev->base_addr;
 345#endif
 346	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
 347		/* Check CRC */
 348		crc = ~ether_crc_le (256 - 4, sromdata);
 349		if (psrom->crc != cpu_to_le32(crc)) {
 350			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 351					dev->name);
 352			return -1;
 353		}
 354	}
 355
 356	/* Set MAC address */
 357	for (i = 0; i < 6; i++)
 358		dev->dev_addr[i] = psrom->mac_addr[i];
 359
 360	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 361		return 0;
 362	}
 363
 364	/* Parse Software Information Block */
 365	i = 0x30;
 366	psib = (u8 *) sromdata;
 367	do {
 368		cid = psib[i++];
 369		next = psib[i++];
 370		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 371			printk (KERN_ERR "Cell data error\n");
 372			return -1;
 373		}
 374		switch (cid) {
 375		case 0:	/* Format version */
 376			break;
 377		case 1:	/* End of cell */
 378			return 0;
 379		case 2:	/* Duplex Polarity */
 380			np->duplex_polarity = psib[i];
 381			writeb (readb (ioaddr + PhyCtrl) | psib[i],
 382				ioaddr + PhyCtrl);
 383			break;
 384		case 3:	/* Wake Polarity */
 385			np->wake_polarity = psib[i];
 386			break;
 387		case 9:	/* Adapter description */
 388			j = (next - i > 255) ? 255 : next - i;
 389			memcpy (np->name, &(psib[i]), j);
 390			break;
 391		case 4:
 392		case 5:
 393		case 6:
 394		case 7:
 395		case 8:	/* Reversed */
 396			break;
 397		default:	/* Unknown cell */
 398			return -1;
 399		}
 400		i = next;
 401	} while (1);
 402
 403	return 0;
 404}
 405
 406static int
 407rio_open (struct net_device *dev)
 408{
 409	struct netdev_private *np = netdev_priv(dev);
 410	long ioaddr = dev->base_addr;
 411	int i;
 412	u16 macctrl;
 413
 414	i = request_irq (dev->irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 415	if (i)
 416		return i;
 417
 418	/* Reset all logic functions */
 419	writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
 420		ioaddr + ASICCtrl + 2);
 421	mdelay(10);
 422
 423	/* DebugCtrl bit 4, 5, 9 must set */
 424	writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
 425
 426	/* Jumbo frame */
 427	if (np->jumbo != 0)
 428		writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
 429
 430	alloc_list (dev);
 431
 432	/* Get station address */
 433	for (i = 0; i < 6; i++)
 434		writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
 435
 436	set_multicast (dev);
 437	if (np->coalesce) {
 438		writel (np->rx_coalesce | np->rx_timeout << 16,
 439			ioaddr + RxDMAIntCtrl);
 440	}
 441	/* Set RIO to poll every N*320nsec. */
 442	writeb (0x20, ioaddr + RxDMAPollPeriod);
 443	writeb (0xff, ioaddr + TxDMAPollPeriod);
 444	writeb (0x30, ioaddr + RxDMABurstThresh);
 445	writeb (0x30, ioaddr + RxDMAUrgentThresh);
 446	writel (0x0007ffff, ioaddr + RmonStatMask);
 447	/* clear statistics */
 448	clear_stats (dev);
 449
 450	/* VLAN supported */
 451	if (np->vlan) {
 452		/* priority field in RxDMAIntCtrl  */
 453		writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
 454			ioaddr + RxDMAIntCtrl);
 455		/* VLANId */
 456		writew (np->vlan, ioaddr + VLANId);
 457		/* Length/Type should be 0x8100 */
 458		writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
 459		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 460		   VLAN information tagged by TFC' VID, CFI fields. */
 461		writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
 462			ioaddr + MACCtrl);
 463	}
 464
 465	init_timer (&np->timer);
 466	np->timer.expires = jiffies + 1*HZ;
 467	np->timer.data = (unsigned long) dev;
 468	np->timer.function = rio_timer;
 469	add_timer (&np->timer);
 470
 471	/* Start Tx/Rx */
 472	writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
 473			ioaddr + MACCtrl);
 474
 475	macctrl = 0;
 476	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 477	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 478	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 479	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 480	writew(macctrl,	ioaddr + MACCtrl);
 481
 482	netif_start_queue (dev);
 483
 484	/* Enable default interrupts */
 485	EnableInt ();
 486	return 0;
 487}
 488
 489static void
 490rio_timer (unsigned long data)
 491{
 492	struct net_device *dev = (struct net_device *)data;
 493	struct netdev_private *np = netdev_priv(dev);
 494	unsigned int entry;
 495	int next_tick = 1*HZ;
 496	unsigned long flags;
 497
 498	spin_lock_irqsave(&np->rx_lock, flags);
 499	/* Recover rx ring exhausted error */
 500	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 501		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 502		/* Re-allocate skbuffs to fill the descriptor ring */
 503		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 504			struct sk_buff *skb;
 505			entry = np->old_rx % RX_RING_SIZE;
 506			/* Dropped packets don't need to re-allocate */
 507			if (np->rx_skbuff[entry] == NULL) {
 508				skb = netdev_alloc_skb_ip_align(dev,
 509								np->rx_buf_sz);
 510				if (skb == NULL) {
 511					np->rx_ring[entry].fraginfo = 0;
 512					printk (KERN_INFO
 513						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
 514						dev->name, entry);
 515					break;
 516				}
 517				np->rx_skbuff[entry] = skb;
 518				np->rx_ring[entry].fraginfo =
 519				    cpu_to_le64 (pci_map_single
 520					 (np->pdev, skb->data, np->rx_buf_sz,
 521					  PCI_DMA_FROMDEVICE));
 522			}
 523			np->rx_ring[entry].fraginfo |=
 524			    cpu_to_le64((u64)np->rx_buf_sz << 48);
 525			np->rx_ring[entry].status = 0;
 526		} /* end for */
 527	} /* end if */
 528	spin_unlock_irqrestore (&np->rx_lock, flags);
 529	np->timer.expires = jiffies + next_tick;
 530	add_timer(&np->timer);
 531}
 532
 533static void
 534rio_tx_timeout (struct net_device *dev)
 535{
 536	long ioaddr = dev->base_addr;
 537
 538	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 539		dev->name, readl (ioaddr + TxStatus));
 540	rio_free_tx(dev, 0);
 541	dev->if_port = 0;
 542	dev->trans_start = jiffies; /* prevent tx timeout */
 543}
 544
 545 /* allocate and initialize Tx and Rx descriptors */
 546static void
 547alloc_list (struct net_device *dev)
 548{
 549	struct netdev_private *np = netdev_priv(dev);
 550	int i;
 551
 552	np->cur_rx = np->cur_tx = 0;
 553	np->old_rx = np->old_tx = 0;
 554	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 555
 556	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 557	for (i = 0; i < TX_RING_SIZE; i++) {
 558		np->tx_skbuff[i] = NULL;
 559		np->tx_ring[i].status = cpu_to_le64 (TFDDone);
 560		np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
 561					      ((i+1)%TX_RING_SIZE) *
 562					      sizeof (struct netdev_desc));
 563	}
 564
 565	/* Initialize Rx descriptors */
 566	for (i = 0; i < RX_RING_SIZE; i++) {
 567		np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
 568						((i + 1) % RX_RING_SIZE) *
 569						sizeof (struct netdev_desc));
 570		np->rx_ring[i].status = 0;
 571		np->rx_ring[i].fraginfo = 0;
 572		np->rx_skbuff[i] = NULL;
 573	}
 574
 575	/* Allocate the rx buffers */
 576	for (i = 0; i < RX_RING_SIZE; i++) {
 577		/* Allocated fixed size of skbuff */
 578		struct sk_buff *skb;
 579
 580		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 581		np->rx_skbuff[i] = skb;
 582		if (skb == NULL) {
 583			printk (KERN_ERR
 584				"%s: alloc_list: allocate Rx buffer error! ",
 585				dev->name);
 586			break;
 587		}
 588		/* Rubicon now supports 40 bits of addressing space. */
 589		np->rx_ring[i].fraginfo =
 590		    cpu_to_le64 ( pci_map_single (
 591			 	  np->pdev, skb->data, np->rx_buf_sz,
 592				  PCI_DMA_FROMDEVICE));
 593		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 594	}
 595
 596	/* Set RFDListPtr */
 597	writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
 598	writel (0, dev->base_addr + RFDListPtr1);
 599}
 600
 601static netdev_tx_t
 602start_xmit (struct sk_buff *skb, struct net_device *dev)
 603{
 604	struct netdev_private *np = netdev_priv(dev);
 605	struct netdev_desc *txdesc;
 606	unsigned entry;
 607	u32 ioaddr;
 608	u64 tfc_vlan_tag = 0;
 609
 610	if (np->link_status == 0) {	/* Link Down */
 611		dev_kfree_skb(skb);
 612		return NETDEV_TX_OK;
 613	}
 614	ioaddr = dev->base_addr;
 615	entry = np->cur_tx % TX_RING_SIZE;
 616	np->tx_skbuff[entry] = skb;
 617	txdesc = &np->tx_ring[entry];
 618
 619#if 0
 620	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 621		txdesc->status |=
 622		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 623				 IPChecksumEnable);
 624	}
 625#endif
 626	if (np->vlan) {
 627		tfc_vlan_tag = VLANTagInsert |
 628		    ((u64)np->vlan << 32) |
 629		    ((u64)skb->priority << 45);
 630	}
 631	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
 632							skb->len,
 633							PCI_DMA_TODEVICE));
 634	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 635
 636	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 637	 * Work around: Always use 1 descriptor in 10Mbps mode */
 638	if (entry % np->tx_coalesce == 0 || np->speed == 10)
 639		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 640					      WordAlignDisable |
 641					      TxDMAIndicate |
 642					      (1 << FragCountShift));
 643	else
 644		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 645					      WordAlignDisable |
 646					      (1 << FragCountShift));
 647
 648	/* TxDMAPollNow */
 649	writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
 650	/* Schedule ISR */
 651	writel(10000, ioaddr + CountDown);
 652	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 653	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 654			< TX_QUEUE_LEN - 1 && np->speed != 10) {
 655		/* do nothing */
 656	} else if (!netif_queue_stopped(dev)) {
 657		netif_stop_queue (dev);
 658	}
 659
 660	/* The first TFDListPtr */
 661	if (readl (dev->base_addr + TFDListPtr0) == 0) {
 662		writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
 663			dev->base_addr + TFDListPtr0);
 664		writel (0, dev->base_addr + TFDListPtr1);
 665	}
 666
 667	return NETDEV_TX_OK;
 668}
 669
 670static irqreturn_t
 671rio_interrupt (int irq, void *dev_instance)
 672{
 673	struct net_device *dev = dev_instance;
 674	struct netdev_private *np;
 675	unsigned int_status;
 676	long ioaddr;
 677	int cnt = max_intrloop;
 678	int handled = 0;
 679
 680	ioaddr = dev->base_addr;
 681	np = netdev_priv(dev);
 682	while (1) {
 683		int_status = readw (ioaddr + IntStatus);
 684		writew (int_status, ioaddr + IntStatus);
 685		int_status &= DEFAULT_INTR;
 686		if (int_status == 0 || --cnt < 0)
 687			break;
 688		handled = 1;
 689		/* Processing received packets */
 690		if (int_status & RxDMAComplete)
 691			receive_packet (dev);
 692		/* TxDMAComplete interrupt */
 693		if ((int_status & (TxDMAComplete|IntRequested))) {
 694			int tx_status;
 695			tx_status = readl (ioaddr + TxStatus);
 696			if (tx_status & 0x01)
 697				tx_error (dev, tx_status);
 698			/* Free used tx skbuffs */
 699			rio_free_tx (dev, 1);
 700		}
 701
 702		/* Handle uncommon events */
 703		if (int_status &
 704		    (HostError | LinkEvent | UpdateStats))
 705			rio_error (dev, int_status);
 706	}
 707	if (np->cur_tx != np->old_tx)
 708		writel (100, ioaddr + CountDown);
 709	return IRQ_RETVAL(handled);
 710}
 711
 712static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 713{
 714	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 715}
 716
 717static void
 718rio_free_tx (struct net_device *dev, int irq)
 719{
 720	struct netdev_private *np = netdev_priv(dev);
 721	int entry = np->old_tx % TX_RING_SIZE;
 722	int tx_use = 0;
 723	unsigned long flag = 0;
 724
 725	if (irq)
 726		spin_lock(&np->tx_lock);
 727	else
 728		spin_lock_irqsave(&np->tx_lock, flag);
 729
 730	/* Free used tx skbuffs */
 731	while (entry != np->cur_tx) {
 732		struct sk_buff *skb;
 733
 734		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 735			break;
 736		skb = np->tx_skbuff[entry];
 737		pci_unmap_single (np->pdev,
 738				  desc_to_dma(&np->tx_ring[entry]),
 739				  skb->len, PCI_DMA_TODEVICE);
 740		if (irq)
 741			dev_kfree_skb_irq (skb);
 742		else
 743			dev_kfree_skb (skb);
 744
 745		np->tx_skbuff[entry] = NULL;
 746		entry = (entry + 1) % TX_RING_SIZE;
 747		tx_use++;
 748	}
 749	if (irq)
 750		spin_unlock(&np->tx_lock);
 751	else
 752		spin_unlock_irqrestore(&np->tx_lock, flag);
 753	np->old_tx = entry;
 754
 755	/* If the ring is no longer full, clear tx_full and
 756	   call netif_wake_queue() */
 757
 758	if (netif_queue_stopped(dev) &&
 759	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 760	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 761		netif_wake_queue (dev);
 762	}
 763}
 764
 765static void
 766tx_error (struct net_device *dev, int tx_status)
 767{
 768	struct netdev_private *np;
 769	long ioaddr = dev->base_addr;
 770	int frame_id;
 771	int i;
 772
 773	np = netdev_priv(dev);
 774
 775	frame_id = (tx_status & 0xffff0000);
 776	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 777		dev->name, tx_status, frame_id);
 778	np->stats.tx_errors++;
 779	/* Ttransmit Underrun */
 780	if (tx_status & 0x10) {
 781		np->stats.tx_fifo_errors++;
 782		writew (readw (ioaddr + TxStartThresh) + 0x10,
 783			ioaddr + TxStartThresh);
 784		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 785		writew (TxReset | DMAReset | FIFOReset | NetworkReset,
 786			ioaddr + ASICCtrl + 2);
 787		/* Wait for ResetBusy bit clear */
 788		for (i = 50; i > 0; i--) {
 789			if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
 790				break;
 791			mdelay (1);
 792		}
 793		rio_free_tx (dev, 1);
 794		/* Reset TFDListPtr */
 795		writel (np->tx_ring_dma +
 796			np->old_tx * sizeof (struct netdev_desc),
 797			dev->base_addr + TFDListPtr0);
 798		writel (0, dev->base_addr + TFDListPtr1);
 799
 800		/* Let TxStartThresh stay default value */
 801	}
 802	/* Late Collision */
 803	if (tx_status & 0x04) {
 804		np->stats.tx_fifo_errors++;
 805		/* TxReset and clear FIFO */
 806		writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
 807		/* Wait reset done */
 808		for (i = 50; i > 0; i--) {
 809			if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
 810				break;
 811			mdelay (1);
 812		}
 813		/* Let TxStartThresh stay default value */
 814	}
 815	/* Maximum Collisions */
 816#ifdef ETHER_STATS
 817	if (tx_status & 0x08)
 818		np->stats.collisions16++;
 819#else
 820	if (tx_status & 0x08)
 821		np->stats.collisions++;
 822#endif
 823	/* Restart the Tx */
 824	writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
 825}
 826
 827static int
 828receive_packet (struct net_device *dev)
 829{
 830	struct netdev_private *np = netdev_priv(dev);
 831	int entry = np->cur_rx % RX_RING_SIZE;
 832	int cnt = 30;
 833
 834	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 835	while (1) {
 836		struct netdev_desc *desc = &np->rx_ring[entry];
 837		int pkt_len;
 838		u64 frame_status;
 839
 840		if (!(desc->status & cpu_to_le64(RFDDone)) ||
 841		    !(desc->status & cpu_to_le64(FrameStart)) ||
 842		    !(desc->status & cpu_to_le64(FrameEnd)))
 843			break;
 844
 845		/* Chip omits the CRC. */
 846		frame_status = le64_to_cpu(desc->status);
 847		pkt_len = frame_status & 0xffff;
 848		if (--cnt < 0)
 849			break;
 850		/* Update rx error statistics, drop packet. */
 851		if (frame_status & RFS_Errors) {
 852			np->stats.rx_errors++;
 853			if (frame_status & (RxRuntFrame | RxLengthError))
 854				np->stats.rx_length_errors++;
 855			if (frame_status & RxFCSError)
 856				np->stats.rx_crc_errors++;
 857			if (frame_status & RxAlignmentError && np->speed != 1000)
 858				np->stats.rx_frame_errors++;
 859			if (frame_status & RxFIFOOverrun)
 860	 			np->stats.rx_fifo_errors++;
 861		} else {
 862			struct sk_buff *skb;
 863
 864			/* Small skbuffs for short packets */
 865			if (pkt_len > copy_thresh) {
 866				pci_unmap_single (np->pdev,
 867						  desc_to_dma(desc),
 868						  np->rx_buf_sz,
 869						  PCI_DMA_FROMDEVICE);
 870				skb_put (skb = np->rx_skbuff[entry], pkt_len);
 871				np->rx_skbuff[entry] = NULL;
 872			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 873				pci_dma_sync_single_for_cpu(np->pdev,
 874							    desc_to_dma(desc),
 875							    np->rx_buf_sz,
 876							    PCI_DMA_FROMDEVICE);
 877				skb_copy_to_linear_data (skb,
 878						  np->rx_skbuff[entry]->data,
 879						  pkt_len);
 880				skb_put (skb, pkt_len);
 881				pci_dma_sync_single_for_device(np->pdev,
 882							       desc_to_dma(desc),
 883							       np->rx_buf_sz,
 884							       PCI_DMA_FROMDEVICE);
 885			}
 886			skb->protocol = eth_type_trans (skb, dev);
 887#if 0
 888			/* Checksum done by hw, but csum value unavailable. */
 889			if (np->pdev->pci_rev_id >= 0x0c &&
 890				!(frame_status & (TCPError | UDPError | IPError))) {
 891				skb->ip_summed = CHECKSUM_UNNECESSARY;
 892			}
 893#endif
 894			netif_rx (skb);
 895		}
 896		entry = (entry + 1) % RX_RING_SIZE;
 897	}
 898	spin_lock(&np->rx_lock);
 899	np->cur_rx = entry;
 900	/* Re-allocate skbuffs to fill the descriptor ring */
 901	entry = np->old_rx;
 902	while (entry != np->cur_rx) {
 903		struct sk_buff *skb;
 904		/* Dropped packets don't need to re-allocate */
 905		if (np->rx_skbuff[entry] == NULL) {
 906			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 907			if (skb == NULL) {
 908				np->rx_ring[entry].fraginfo = 0;
 909				printk (KERN_INFO
 910					"%s: receive_packet: "
 911					"Unable to re-allocate Rx skbuff.#%d\n",
 912					dev->name, entry);
 913				break;
 914			}
 915			np->rx_skbuff[entry] = skb;
 916			np->rx_ring[entry].fraginfo =
 917			    cpu_to_le64 (pci_map_single
 918					 (np->pdev, skb->data, np->rx_buf_sz,
 919					  PCI_DMA_FROMDEVICE));
 920		}
 921		np->rx_ring[entry].fraginfo |=
 922		    cpu_to_le64((u64)np->rx_buf_sz << 48);
 923		np->rx_ring[entry].status = 0;
 924		entry = (entry + 1) % RX_RING_SIZE;
 925	}
 926	np->old_rx = entry;
 927	spin_unlock(&np->rx_lock);
 928	return 0;
 929}
 930
 931static void
 932rio_error (struct net_device *dev, int int_status)
 933{
 934	long ioaddr = dev->base_addr;
 935	struct netdev_private *np = netdev_priv(dev);
 936	u16 macctrl;
 937
 938	/* Link change event */
 939	if (int_status & LinkEvent) {
 940		if (mii_wait_link (dev, 10) == 0) {
 941			printk (KERN_INFO "%s: Link up\n", dev->name);
 942			if (np->phy_media)
 943				mii_get_media_pcs (dev);
 944			else
 945				mii_get_media (dev);
 946			if (np->speed == 1000)
 947				np->tx_coalesce = tx_coalesce;
 948			else
 949				np->tx_coalesce = 1;
 950			macctrl = 0;
 951			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 952			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 953			macctrl |= (np->tx_flow) ?
 954				TxFlowControlEnable : 0;
 955			macctrl |= (np->rx_flow) ?
 956				RxFlowControlEnable : 0;
 957			writew(macctrl,	ioaddr + MACCtrl);
 958			np->link_status = 1;
 959			netif_carrier_on(dev);
 960		} else {
 961			printk (KERN_INFO "%s: Link off\n", dev->name);
 962			np->link_status = 0;
 963			netif_carrier_off(dev);
 964		}
 965	}
 966
 967	/* UpdateStats statistics registers */
 968	if (int_status & UpdateStats) {
 969		get_stats (dev);
 970	}
 971
 972	/* PCI Error, a catastronphic error related to the bus interface
 973	   occurs, set GlobalReset and HostReset to reset. */
 974	if (int_status & HostError) {
 975		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
 976			dev->name, int_status);
 977		writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
 978		mdelay (500);
 979	}
 980}
 981
 982static struct net_device_stats *
 983get_stats (struct net_device *dev)
 984{
 985	long ioaddr = dev->base_addr;
 986	struct netdev_private *np = netdev_priv(dev);
 987#ifdef MEM_MAPPING
 988	int i;
 989#endif
 990	unsigned int stat_reg;
 991
 992	/* All statistics registers need to be acknowledged,
 993	   else statistic overflow could cause problems */
 994
 995	np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
 996	np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
 997	np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
 998	np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
 999
1000	np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1001	np->stats.collisions += readl (ioaddr + SingleColFrames)
1002			     +  readl (ioaddr + MultiColFrames);
1003
1004	/* detailed tx errors */
1005	stat_reg = readw (ioaddr + FramesAbortXSColls);
1006	np->stats.tx_aborted_errors += stat_reg;
1007	np->stats.tx_errors += stat_reg;
1008
1009	stat_reg = readw (ioaddr + CarrierSenseErrors);
1010	np->stats.tx_carrier_errors += stat_reg;
1011	np->stats.tx_errors += stat_reg;
1012
1013	/* Clear all other statistic register. */
1014	readl (ioaddr + McstOctetXmtOk);
1015	readw (ioaddr + BcstFramesXmtdOk);
1016	readl (ioaddr + McstFramesXmtdOk);
1017	readw (ioaddr + BcstFramesRcvdOk);
1018	readw (ioaddr + MacControlFramesRcvd);
1019	readw (ioaddr + FrameTooLongErrors);
1020	readw (ioaddr + InRangeLengthErrors);
1021	readw (ioaddr + FramesCheckSeqErrors);
1022	readw (ioaddr + FramesLostRxErrors);
1023	readl (ioaddr + McstOctetXmtOk);
1024	readl (ioaddr + BcstOctetXmtOk);
1025	readl (ioaddr + McstFramesXmtdOk);
1026	readl (ioaddr + FramesWDeferredXmt);
1027	readl (ioaddr + LateCollisions);
1028	readw (ioaddr + BcstFramesXmtdOk);
1029	readw (ioaddr + MacControlFramesXmtd);
1030	readw (ioaddr + FramesWEXDeferal);
1031
1032#ifdef MEM_MAPPING
1033	for (i = 0x100; i <= 0x150; i += 4)
1034		readl (ioaddr + i);
1035#endif
1036	readw (ioaddr + TxJumboFrames);
1037	readw (ioaddr + RxJumboFrames);
1038	readw (ioaddr + TCPCheckSumErrors);
1039	readw (ioaddr + UDPCheckSumErrors);
1040	readw (ioaddr + IPCheckSumErrors);
1041	return &np->stats;
1042}
1043
1044static int
1045clear_stats (struct net_device *dev)
1046{
1047	long ioaddr = dev->base_addr;
1048#ifdef MEM_MAPPING
1049	int i;
1050#endif
1051
1052	/* All statistics registers need to be acknowledged,
1053	   else statistic overflow could cause problems */
1054	readl (ioaddr + FramesRcvOk);
1055	readl (ioaddr + FramesXmtOk);
1056	readl (ioaddr + OctetRcvOk);
1057	readl (ioaddr + OctetXmtOk);
1058
1059	readl (ioaddr + McstFramesRcvdOk);
1060	readl (ioaddr + SingleColFrames);
1061	readl (ioaddr + MultiColFrames);
1062	readl (ioaddr + LateCollisions);
1063	/* detailed rx errors */
1064	readw (ioaddr + FrameTooLongErrors);
1065	readw (ioaddr + InRangeLengthErrors);
1066	readw (ioaddr + FramesCheckSeqErrors);
1067	readw (ioaddr + FramesLostRxErrors);
1068
1069	/* detailed tx errors */
1070	readw (ioaddr + FramesAbortXSColls);
1071	readw (ioaddr + CarrierSenseErrors);
1072
1073	/* Clear all other statistic register. */
1074	readl (ioaddr + McstOctetXmtOk);
1075	readw (ioaddr + BcstFramesXmtdOk);
1076	readl (ioaddr + McstFramesXmtdOk);
1077	readw (ioaddr + BcstFramesRcvdOk);
1078	readw (ioaddr + MacControlFramesRcvd);
1079	readl (ioaddr + McstOctetXmtOk);
1080	readl (ioaddr + BcstOctetXmtOk);
1081	readl (ioaddr + McstFramesXmtdOk);
1082	readl (ioaddr + FramesWDeferredXmt);
1083	readw (ioaddr + BcstFramesXmtdOk);
1084	readw (ioaddr + MacControlFramesXmtd);
1085	readw (ioaddr + FramesWEXDeferal);
1086#ifdef MEM_MAPPING
1087	for (i = 0x100; i <= 0x150; i += 4)
1088		readl (ioaddr + i);
1089#endif
1090	readw (ioaddr + TxJumboFrames);
1091	readw (ioaddr + RxJumboFrames);
1092	readw (ioaddr + TCPCheckSumErrors);
1093	readw (ioaddr + UDPCheckSumErrors);
1094	readw (ioaddr + IPCheckSumErrors);
1095	return 0;
1096}
1097
1098
1099static int
1100change_mtu (struct net_device *dev, int new_mtu)
1101{
1102	struct netdev_private *np = netdev_priv(dev);
1103	int max = (np->jumbo) ? MAX_JUMBO : 1536;
1104
1105	if ((new_mtu < 68) || (new_mtu > max)) {
1106		return -EINVAL;
1107	}
1108
1109	dev->mtu = new_mtu;
1110
1111	return 0;
1112}
1113
1114static void
1115set_multicast (struct net_device *dev)
1116{
1117	long ioaddr = dev->base_addr;
1118	u32 hash_table[2];
1119	u16 rx_mode = 0;
1120	struct netdev_private *np = netdev_priv(dev);
1121
1122	hash_table[0] = hash_table[1] = 0;
1123	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1124	hash_table[1] |= 0x02000000;
1125	if (dev->flags & IFF_PROMISC) {
1126		/* Receive all frames promiscuously. */
1127		rx_mode = ReceiveAllFrames;
1128	} else if ((dev->flags & IFF_ALLMULTI) ||
1129			(netdev_mc_count(dev) > multicast_filter_limit)) {
1130		/* Receive broadcast and multicast frames */
1131		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1132	} else if (!netdev_mc_empty(dev)) {
1133		struct netdev_hw_addr *ha;
1134		/* Receive broadcast frames and multicast frames filtering
1135		   by Hashtable */
1136		rx_mode =
1137		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1138		netdev_for_each_mc_addr(ha, dev) {
1139			int bit, index = 0;
1140			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1141			/* The inverted high significant 6 bits of CRC are
1142			   used as an index to hashtable */
1143			for (bit = 0; bit < 6; bit++)
1144				if (crc & (1 << (31 - bit)))
1145					index |= (1 << bit);
1146			hash_table[index / 32] |= (1 << (index % 32));
1147		}
1148	} else {
1149		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1150	}
1151	if (np->vlan) {
1152		/* ReceiveVLANMatch field in ReceiveMode */
1153		rx_mode |= ReceiveVLANMatch;
1154	}
1155
1156	writel (hash_table[0], ioaddr + HashTable0);
1157	writel (hash_table[1], ioaddr + HashTable1);
1158	writew (rx_mode, ioaddr + ReceiveMode);
1159}
1160
1161static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1162{
1163	struct netdev_private *np = netdev_priv(dev);
1164	strcpy(info->driver, "dl2k");
1165	strcpy(info->version, DRV_VERSION);
1166	strcpy(info->bus_info, pci_name(np->pdev));
1167}
1168
1169static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1170{
1171	struct netdev_private *np = netdev_priv(dev);
1172	if (np->phy_media) {
1173		/* fiber device */
1174		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1175		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1176		cmd->port = PORT_FIBRE;
1177		cmd->transceiver = XCVR_INTERNAL;
1178	} else {
1179		/* copper device */
1180		cmd->supported = SUPPORTED_10baseT_Half |
1181			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1182			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1183			SUPPORTED_Autoneg | SUPPORTED_MII;
1184		cmd->advertising = ADVERTISED_10baseT_Half |
1185			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1186			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1187			ADVERTISED_Autoneg | ADVERTISED_MII;
1188		cmd->port = PORT_MII;
1189		cmd->transceiver = XCVR_INTERNAL;
1190	}
1191	if ( np->link_status ) {
1192		ethtool_cmd_speed_set(cmd, np->speed);
1193		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1194	} else {
1195		ethtool_cmd_speed_set(cmd, -1);
1196		cmd->duplex = -1;
1197	}
1198	if ( np->an_enable)
1199		cmd->autoneg = AUTONEG_ENABLE;
1200	else
1201		cmd->autoneg = AUTONEG_DISABLE;
1202
1203	cmd->phy_address = np->phy_addr;
1204	return 0;
1205}
1206
1207static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1208{
1209	struct netdev_private *np = netdev_priv(dev);
1210	netif_carrier_off(dev);
1211	if (cmd->autoneg == AUTONEG_ENABLE) {
1212		if (np->an_enable)
1213			return 0;
1214		else {
1215			np->an_enable = 1;
1216			mii_set_media(dev);
1217			return 0;
1218		}
1219	} else {
1220		np->an_enable = 0;
1221		if (np->speed == 1000) {
1222			ethtool_cmd_speed_set(cmd, SPEED_100);
1223			cmd->duplex = DUPLEX_FULL;
1224			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1225		}
1226		switch (ethtool_cmd_speed(cmd)) {
1227		case SPEED_10:
1228			np->speed = 10;
1229			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1230			break;
1231		case SPEED_100:
1232			np->speed = 100;
1233			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1234			break;
1235		case SPEED_1000: /* not supported */
1236		default:
1237			return -EINVAL;
1238		}
1239		mii_set_media(dev);
1240	}
1241	return 0;
1242}
1243
1244static u32 rio_get_link(struct net_device *dev)
1245{
1246	struct netdev_private *np = netdev_priv(dev);
1247	return np->link_status;
1248}
1249
1250static const struct ethtool_ops ethtool_ops = {
1251	.get_drvinfo = rio_get_drvinfo,
1252	.get_settings = rio_get_settings,
1253	.set_settings = rio_set_settings,
1254	.get_link = rio_get_link,
1255};
1256
1257static int
1258rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1259{
1260	int phy_addr;
1261	struct netdev_private *np = netdev_priv(dev);
1262	struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1263
1264	struct netdev_desc *desc;
1265	int i;
1266
1267	phy_addr = np->phy_addr;
1268	switch (cmd) {
1269	case SIOCDEVPRIVATE:
1270		break;
1271
1272	case SIOCDEVPRIVATE + 1:
1273		miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1274		break;
1275	case SIOCDEVPRIVATE + 2:
1276		mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1277		break;
1278	case SIOCDEVPRIVATE + 3:
1279		break;
1280	case SIOCDEVPRIVATE + 4:
1281		break;
1282	case SIOCDEVPRIVATE + 5:
1283		netif_stop_queue (dev);
1284		break;
1285	case SIOCDEVPRIVATE + 6:
1286		netif_wake_queue (dev);
1287		break;
1288	case SIOCDEVPRIVATE + 7:
1289		printk
1290		    ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1291		     netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1292		     np->old_rx);
1293		break;
1294	case SIOCDEVPRIVATE + 8:
1295		printk("TX ring:\n");
1296		for (i = 0; i < TX_RING_SIZE; i++) {
1297			desc = &np->tx_ring[i];
1298			printk
1299			    ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1300			     i,
1301			     (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1302			     (u32)le64_to_cpu(desc->next_desc),
1303			     (u32)le64_to_cpu(desc->status),
1304			     (u32)(le64_to_cpu(desc->fraginfo) >> 32),
1305			     (u32)le64_to_cpu(desc->fraginfo));
1306			printk ("\n");
1307		}
1308		printk ("\n");
1309		break;
1310
1311	default:
1312		return -EOPNOTSUPP;
1313	}
1314	return 0;
1315}
1316
1317#define EEP_READ 0x0200
1318#define EEP_BUSY 0x8000
1319/* Read the EEPROM word */
1320/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1321static int
1322read_eeprom (long ioaddr, int eep_addr)
1323{
1324	int i = 1000;
1325	outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1326	while (i-- > 0) {
1327		if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1328			return inw (ioaddr + EepromData);
1329		}
1330	}
1331	return 0;
1332}
1333
1334enum phy_ctrl_bits {
1335	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1336	MII_DUPLEX = 0x08,
1337};
1338
1339#define mii_delay() readb(ioaddr)
1340static void
1341mii_sendbit (struct net_device *dev, u32 data)
1342{
1343	long ioaddr = dev->base_addr + PhyCtrl;
1344	data = (data) ? MII_DATA1 : 0;
1345	data |= MII_WRITE;
1346	data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1347	writeb (data, ioaddr);
1348	mii_delay ();
1349	writeb (data | MII_CLK, ioaddr);
1350	mii_delay ();
1351}
1352
1353static int
1354mii_getbit (struct net_device *dev)
1355{
1356	long ioaddr = dev->base_addr + PhyCtrl;
1357	u8 data;
1358
1359	data = (readb (ioaddr) & 0xf8) | MII_READ;
1360	writeb (data, ioaddr);
1361	mii_delay ();
1362	writeb (data | MII_CLK, ioaddr);
1363	mii_delay ();
1364	return ((readb (ioaddr) >> 1) & 1);
1365}
1366
1367static void
1368mii_send_bits (struct net_device *dev, u32 data, int len)
1369{
1370	int i;
1371	for (i = len - 1; i >= 0; i--) {
1372		mii_sendbit (dev, data & (1 << i));
1373	}
1374}
1375
1376static int
1377mii_read (struct net_device *dev, int phy_addr, int reg_num)
1378{
1379	u32 cmd;
1380	int i;
1381	u32 retval = 0;
1382
1383	/* Preamble */
1384	mii_send_bits (dev, 0xffffffff, 32);
1385	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1386	/* ST,OP = 0110'b for read operation */
1387	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1388	mii_send_bits (dev, cmd, 14);
1389	/* Turnaround */
1390	if (mii_getbit (dev))
1391		goto err_out;
1392	/* Read data */
1393	for (i = 0; i < 16; i++) {
1394		retval |= mii_getbit (dev);
1395		retval <<= 1;
1396	}
1397	/* End cycle */
1398	mii_getbit (dev);
1399	return (retval >> 1) & 0xffff;
1400
1401      err_out:
1402	return 0;
1403}
1404static int
1405mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1406{
1407	u32 cmd;
1408
1409	/* Preamble */
1410	mii_send_bits (dev, 0xffffffff, 32);
1411	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1412	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1413	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1414	mii_send_bits (dev, cmd, 32);
1415	/* End cycle */
1416	mii_getbit (dev);
1417	return 0;
1418}
1419static int
1420mii_wait_link (struct net_device *dev, int wait)
1421{
1422	__u16 bmsr;
1423	int phy_addr;
1424	struct netdev_private *np;
1425
1426	np = netdev_priv(dev);
1427	phy_addr = np->phy_addr;
1428
1429	do {
1430		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1431		if (bmsr & MII_BMSR_LINK_STATUS)
1432			return 0;
1433		mdelay (1);
1434	} while (--wait > 0);
1435	return -1;
1436}
1437static int
1438mii_get_media (struct net_device *dev)
1439{
1440	__u16 negotiate;
1441	__u16 bmsr;
1442	__u16 mscr;
1443	__u16 mssr;
1444	int phy_addr;
1445	struct netdev_private *np;
1446
1447	np = netdev_priv(dev);
1448	phy_addr = np->phy_addr;
1449
1450	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1451	if (np->an_enable) {
1452		if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1453			/* Auto-Negotiation not completed */
1454			return -1;
1455		}
1456		negotiate = mii_read (dev, phy_addr, MII_ANAR) &
1457			mii_read (dev, phy_addr, MII_ANLPAR);
1458		mscr = mii_read (dev, phy_addr, MII_MSCR);
1459		mssr = mii_read (dev, phy_addr, MII_MSSR);
1460		if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
1461			np->speed = 1000;
1462			np->full_duplex = 1;
1463			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1464		} else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
1465			np->speed = 1000;
1466			np->full_duplex = 0;
1467			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1468		} else if (negotiate & MII_ANAR_100BX_FD) {
1469			np->speed = 100;
1470			np->full_duplex = 1;
1471			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1472		} else if (negotiate & MII_ANAR_100BX_HD) {
1473			np->speed = 100;
1474			np->full_duplex = 0;
1475			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1476		} else if (negotiate & MII_ANAR_10BT_FD) {
1477			np->speed = 10;
1478			np->full_duplex = 1;
1479			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1480		} else if (negotiate & MII_ANAR_10BT_HD) {
1481			np->speed = 10;
1482			np->full_duplex = 0;
1483			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1484		}
1485		if (negotiate & MII_ANAR_PAUSE) {
1486			np->tx_flow &= 1;
1487			np->rx_flow &= 1;
1488		} else if (negotiate & MII_ANAR_ASYMMETRIC) {
1489			np->tx_flow = 0;
1490			np->rx_flow &= 1;
1491		}
1492		/* else tx_flow, rx_flow = user select  */
1493	} else {
1494		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1495		switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
1496		case MII_BMCR_SPEED_1000:
1497			printk (KERN_INFO "Operating at 1000 Mbps, ");
1498			break;
1499		case MII_BMCR_SPEED_100:
1500			printk (KERN_INFO "Operating at 100 Mbps, ");
1501			break;
1502		case 0:
1503			printk (KERN_INFO "Operating at 10 Mbps, ");
1504		}
1505		if (bmcr & MII_BMCR_DUPLEX_MODE) {
1506			printk (KERN_CONT "Full duplex\n");
1507		} else {
1508			printk (KERN_CONT "Half duplex\n");
1509		}
1510	}
1511	if (np->tx_flow)
1512		printk(KERN_INFO "Enable Tx Flow Control\n");
1513	else
1514		printk(KERN_INFO "Disable Tx Flow Control\n");
1515	if (np->rx_flow)
1516		printk(KERN_INFO "Enable Rx Flow Control\n");
1517	else
1518		printk(KERN_INFO "Disable Rx Flow Control\n");
1519
1520	return 0;
1521}
1522
1523static int
1524mii_set_media (struct net_device *dev)
1525{
1526	__u16 pscr;
1527	__u16 bmcr;
1528	__u16 bmsr;
1529	__u16 anar;
1530	int phy_addr;
1531	struct netdev_private *np;
1532	np = netdev_priv(dev);
1533	phy_addr = np->phy_addr;
1534
1535	/* Does user set speed? */
1536	if (np->an_enable) {
1537		/* Advertise capabilities */
1538		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1539		anar = mii_read (dev, phy_addr, MII_ANAR) &
1540			     ~MII_ANAR_100BX_FD &
1541			     ~MII_ANAR_100BX_HD &
1542			     ~MII_ANAR_100BT4 &
1543			     ~MII_ANAR_10BT_FD &
1544			     ~MII_ANAR_10BT_HD;
1545		if (bmsr & MII_BMSR_100BX_FD)
1546			anar |= MII_ANAR_100BX_FD;
1547		if (bmsr & MII_BMSR_100BX_HD)
1548			anar |= MII_ANAR_100BX_HD;
1549		if (bmsr & MII_BMSR_100BT4)
1550			anar |= MII_ANAR_100BT4;
1551		if (bmsr & MII_BMSR_10BT_FD)
1552			anar |= MII_ANAR_10BT_FD;
1553		if (bmsr & MII_BMSR_10BT_HD)
1554			anar |= MII_ANAR_10BT_HD;
1555		anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
1556		mii_write (dev, phy_addr, MII_ANAR, anar);
1557
1558		/* Enable Auto crossover */
1559		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1560		pscr |= 3 << 5;	/* 11'b */
1561		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1562
1563		/* Soft reset PHY */
1564		mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1565		bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
1566		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1567		mdelay(1);
1568	} else {
1569		/* Force speed setting */
1570		/* 1) Disable Auto crossover */
1571		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1572		pscr &= ~(3 << 5);
1573		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1574
1575		/* 2) PHY Reset */
1576		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1577		bmcr |= MII_BMCR_RESET;
1578		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1579
1580		/* 3) Power Down */
1581		bmcr = 0x1940;	/* must be 0x1940 */
1582		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1583		mdelay (100);	/* wait a certain time */
1584
1585		/* 4) Advertise nothing */
1586		mii_write (dev, phy_addr, MII_ANAR, 0);
1587
1588		/* 5) Set media and Power Up */
1589		bmcr = MII_BMCR_POWER_DOWN;
1590		if (np->speed == 100) {
1591			bmcr |= MII_BMCR_SPEED_100;
1592			printk (KERN_INFO "Manual 100 Mbps, ");
1593		} else if (np->speed == 10) {
1594			printk (KERN_INFO "Manual 10 Mbps, ");
1595		}
1596		if (np->full_duplex) {
1597			bmcr |= MII_BMCR_DUPLEX_MODE;
1598			printk (KERN_CONT "Full duplex\n");
1599		} else {
1600			printk (KERN_CONT "Half duplex\n");
1601		}
1602#if 0
1603		/* Set 1000BaseT Master/Slave setting */
1604		mscr = mii_read (dev, phy_addr, MII_MSCR);
1605		mscr |= MII_MSCR_CFG_ENABLE;
1606		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1607#endif
1608		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1609		mdelay(10);
1610	}
1611	return 0;
1612}
1613
1614static int
1615mii_get_media_pcs (struct net_device *dev)
1616{
1617	__u16 negotiate;
1618	__u16 bmsr;
1619	int phy_addr;
1620	struct netdev_private *np;
1621
1622	np = netdev_priv(dev);
1623	phy_addr = np->phy_addr;
1624
1625	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1626	if (np->an_enable) {
1627		if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1628			/* Auto-Negotiation not completed */
1629			return -1;
1630		}
1631		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1632			mii_read (dev, phy_addr, PCS_ANLPAR);
1633		np->speed = 1000;
1634		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1635			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1636			np->full_duplex = 1;
1637		} else {
1638			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1639			np->full_duplex = 0;
1640		}
1641		if (negotiate & PCS_ANAR_PAUSE) {
1642			np->tx_flow &= 1;
1643			np->rx_flow &= 1;
1644		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1645			np->tx_flow = 0;
1646			np->rx_flow &= 1;
1647		}
1648		/* else tx_flow, rx_flow = user select  */
1649	} else {
1650		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1651		printk (KERN_INFO "Operating at 1000 Mbps, ");
1652		if (bmcr & MII_BMCR_DUPLEX_MODE) {
1653			printk (KERN_CONT "Full duplex\n");
1654		} else {
1655			printk (KERN_CONT "Half duplex\n");
1656		}
1657	}
1658	if (np->tx_flow)
1659		printk(KERN_INFO "Enable Tx Flow Control\n");
1660	else
1661		printk(KERN_INFO "Disable Tx Flow Control\n");
1662	if (np->rx_flow)
1663		printk(KERN_INFO "Enable Rx Flow Control\n");
1664	else
1665		printk(KERN_INFO "Disable Rx Flow Control\n");
1666
1667	return 0;
1668}
1669
1670static int
1671mii_set_media_pcs (struct net_device *dev)
1672{
1673	__u16 bmcr;
1674	__u16 esr;
1675	__u16 anar;
1676	int phy_addr;
1677	struct netdev_private *np;
1678	np = netdev_priv(dev);
1679	phy_addr = np->phy_addr;
1680
1681	/* Auto-Negotiation? */
1682	if (np->an_enable) {
1683		/* Advertise capabilities */
1684		esr = mii_read (dev, phy_addr, PCS_ESR);
1685		anar = mii_read (dev, phy_addr, MII_ANAR) &
1686			~PCS_ANAR_HALF_DUPLEX &
1687			~PCS_ANAR_FULL_DUPLEX;
1688		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1689			anar |= PCS_ANAR_HALF_DUPLEX;
1690		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1691			anar |= PCS_ANAR_FULL_DUPLEX;
1692		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1693		mii_write (dev, phy_addr, MII_ANAR, anar);
1694
1695		/* Soft reset PHY */
1696		mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1697		bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
1698		       MII_BMCR_RESET;
1699		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1700		mdelay(1);
1701	} else {
1702		/* Force speed setting */
1703		/* PHY Reset */
1704		bmcr = MII_BMCR_RESET;
1705		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1706		mdelay(10);
1707		if (np->full_duplex) {
1708			bmcr = MII_BMCR_DUPLEX_MODE;
1709			printk (KERN_INFO "Manual full duplex\n");
1710		} else {
1711			bmcr = 0;
1712			printk (KERN_INFO "Manual half duplex\n");
1713		}
1714		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1715		mdelay(10);
1716
1717		/*  Advertise nothing */
1718		mii_write (dev, phy_addr, MII_ANAR, 0);
1719	}
1720	return 0;
1721}
1722
1723
1724static int
1725rio_close (struct net_device *dev)
1726{
1727	long ioaddr = dev->base_addr;
1728	struct netdev_private *np = netdev_priv(dev);
1729	struct sk_buff *skb;
1730	int i;
1731
1732	netif_stop_queue (dev);
1733
1734	/* Disable interrupts */
1735	writew (0, ioaddr + IntEnable);
1736
1737	/* Stop Tx and Rx logics */
1738	writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1739
1740	free_irq (dev->irq, dev);
1741	del_timer_sync (&np->timer);
1742
1743	/* Free all the skbuffs in the queue. */
1744	for (i = 0; i < RX_RING_SIZE; i++) {
1745		skb = np->rx_skbuff[i];
1746		if (skb) {
1747			pci_unmap_single(np->pdev,
1748					 desc_to_dma(&np->rx_ring[i]),
1749					 skb->len, PCI_DMA_FROMDEVICE);
1750			dev_kfree_skb (skb);
1751			np->rx_skbuff[i] = NULL;
1752		}
1753		np->rx_ring[i].status = 0;
1754		np->rx_ring[i].fraginfo = 0;
1755	}
1756	for (i = 0; i < TX_RING_SIZE; i++) {
1757		skb = np->tx_skbuff[i];
1758		if (skb) {
1759			pci_unmap_single(np->pdev,
1760					 desc_to_dma(&np->tx_ring[i]),
1761					 skb->len, PCI_DMA_TODEVICE);
1762			dev_kfree_skb (skb);
1763			np->tx_skbuff[i] = NULL;
1764		}
1765	}
1766
1767	return 0;
1768}
1769
1770static void __devexit
1771rio_remove1 (struct pci_dev *pdev)
1772{
1773	struct net_device *dev = pci_get_drvdata (pdev);
1774
1775	if (dev) {
1776		struct netdev_private *np = netdev_priv(dev);
1777
1778		unregister_netdev (dev);
1779		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1780				     np->rx_ring_dma);
1781		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1782				     np->tx_ring_dma);
1783#ifdef MEM_MAPPING
1784		iounmap ((char *) (dev->base_addr));
1785#endif
1786		free_netdev (dev);
1787		pci_release_regions (pdev);
1788		pci_disable_device (pdev);
1789	}
1790	pci_set_drvdata (pdev, NULL);
1791}
1792
1793static struct pci_driver rio_driver = {
1794	.name		= "dl2k",
1795	.id_table	= rio_pci_tbl,
1796	.probe		= rio_probe1,
1797	.remove		= __devexit_p(rio_remove1),
1798};
1799
1800static int __init
1801rio_init (void)
1802{
1803	return pci_register_driver(&rio_driver);
1804}
1805
1806static void __exit
1807rio_exit (void)
1808{
1809	pci_unregister_driver (&rio_driver);
1810}
1811
1812module_init (rio_init);
1813module_exit (rio_exit);
1814
1815/*
1816
1817Compile command:
1818
1819gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1820
1821Read Documentation/networking/dl2k.txt for details.
1822
1823*/
1824