Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
  32#include <linux/skbuff.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/if_vlan.h>
  36#include <linux/ip.h>
  37#include <linux/tcp.h>
  38#include <linux/dma-mapping.h>
  39#include <linux/slab.h>
  40#include <linux/prefetch.h>
  41#include <net/arp.h>
  42#include "common.h"
  43#include "regs.h"
  44#include "sge_defs.h"
  45#include "t3_cpl.h"
  46#include "firmware_exports.h"
  47#include "cxgb3_offload.h"
  48
  49#define USE_GTS 0
  50
  51#define SGE_RX_SM_BUF_SIZE 1536
  52
  53#define SGE_RX_COPY_THRES  256
  54#define SGE_RX_PULL_LEN    128
  55
  56#define SGE_PG_RSVD SMP_CACHE_BYTES
  57/*
  58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
  59 * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
  60 * directly.
  61 */
  62#define FL0_PG_CHUNK_SIZE  2048
  63#define FL0_PG_ORDER 0
  64#define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
  65#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
  66#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
  67#define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
  68
  69#define SGE_RX_DROP_THRES 16
  70#define RX_RECLAIM_PERIOD (HZ/4)
  71
  72/*
  73 * Max number of Rx buffers we replenish at a time.
  74 */
  75#define MAX_RX_REFILL 16U
  76/*
  77 * Period of the Tx buffer reclaim timer.  This timer does not need to run
  78 * frequently as Tx buffers are usually reclaimed by new Tx packets.
  79 */
  80#define TX_RECLAIM_PERIOD (HZ / 4)
  81#define TX_RECLAIM_TIMER_CHUNK 64U
  82#define TX_RECLAIM_CHUNK 16U
  83
  84/* WR size in bytes */
  85#define WR_LEN (WR_FLITS * 8)
  86
  87/*
  88 * Types of Tx queues in each queue set.  Order here matters, do not change.
  89 */
  90enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
  91
  92/* Values for sge_txq.flags */
  93enum {
  94	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */
  95	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */
  96};
  97
  98struct tx_desc {
  99	__be64 flit[TX_DESC_FLITS];
 100};
 101
 102struct rx_desc {
 103	__be32 addr_lo;
 104	__be32 len_gen;
 105	__be32 gen2;
 106	__be32 addr_hi;
 107};
 108
 109struct tx_sw_desc {		/* SW state per Tx descriptor */
 110	struct sk_buff *skb;
 111	u8 eop;       /* set if last descriptor for packet */
 112	u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
 113	u8 fragidx;   /* first page fragment associated with descriptor */
 114	s8 sflit;     /* start flit of first SGL entry in descriptor */
 115};
 116
 117struct rx_sw_desc {                /* SW state per Rx descriptor */
 118	union {
 119		struct sk_buff *skb;
 120		struct fl_pg_chunk pg_chunk;
 121	};
 122	DEFINE_DMA_UNMAP_ADDR(dma_addr);
 123};
 124
 125struct rsp_desc {		/* response queue descriptor */
 126	struct rss_header rss_hdr;
 127	__be32 flags;
 128	__be32 len_cq;
 129	u8 imm_data[47];
 130	u8 intr_gen;
 131};
 132
 133/*
 134 * Holds unmapping information for Tx packets that need deferred unmapping.
 135 * This structure lives at skb->head and must be allocated by callers.
 136 */
 137struct deferred_unmap_info {
 138	struct pci_dev *pdev;
 139	dma_addr_t addr[MAX_SKB_FRAGS + 1];
 140};
 141
 142/*
 143 * Maps a number of flits to the number of Tx descriptors that can hold them.
 144 * The formula is
 145 *
 146 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
 147 *
 148 * HW allows up to 4 descriptors to be combined into a WR.
 149 */
 150static u8 flit_desc_map[] = {
 151	0,
 152#if SGE_NUM_GENBITS == 1
 153	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 154	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 155	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 156	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
 157#elif SGE_NUM_GENBITS == 2
 158	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 159	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 160	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 161	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 162#else
 163# error "SGE_NUM_GENBITS must be 1 or 2"
 164#endif
 165};
 166
 167static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
 168{
 169	return container_of(q, struct sge_qset, fl[qidx]);
 170}
 171
 172static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
 173{
 174	return container_of(q, struct sge_qset, rspq);
 175}
 176
 177static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
 178{
 179	return container_of(q, struct sge_qset, txq[qidx]);
 180}
 181
 182/**
 183 *	refill_rspq - replenish an SGE response queue
 184 *	@adapter: the adapter
 185 *	@q: the response queue to replenish
 186 *	@credits: how many new responses to make available
 187 *
 188 *	Replenishes a response queue by making the supplied number of responses
 189 *	available to HW.
 190 */
 191static inline void refill_rspq(struct adapter *adapter,
 192			       const struct sge_rspq *q, unsigned int credits)
 193{
 194	rmb();
 195	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
 196		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
 197}
 198
 199/**
 200 *	need_skb_unmap - does the platform need unmapping of sk_buffs?
 201 *
 202 *	Returns true if the platform needs sk_buff unmapping.  The compiler
 203 *	optimizes away unnecessary code if this returns true.
 204 */
 205static inline int need_skb_unmap(void)
 206{
 207#ifdef CONFIG_NEED_DMA_MAP_STATE
 208	return 1;
 209#else
 210	return 0;
 211#endif
 212}
 213
 214/**
 215 *	unmap_skb - unmap a packet main body and its page fragments
 216 *	@skb: the packet
 217 *	@q: the Tx queue containing Tx descriptors for the packet
 218 *	@cidx: index of Tx descriptor
 219 *	@pdev: the PCI device
 220 *
 221 *	Unmap the main body of an sk_buff and its page fragments, if any.
 222 *	Because of the fairly complicated structure of our SGLs and the desire
 223 *	to conserve space for metadata, the information necessary to unmap an
 224 *	sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
 225 *	descriptors (the physical addresses of the various data buffers), and
 226 *	the SW descriptor state (assorted indices).  The send functions
 227 *	initialize the indices for the first packet descriptor so we can unmap
 228 *	the buffers held in the first Tx descriptor here, and we have enough
 229 *	information at this point to set the state for the next Tx descriptor.
 230 *
 231 *	Note that it is possible to clean up the first descriptor of a packet
 232 *	before the send routines have written the next descriptors, but this
 233 *	race does not cause any problem.  We just end up writing the unmapping
 234 *	info for the descriptor first.
 235 */
 236static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
 237			     unsigned int cidx, struct pci_dev *pdev)
 238{
 239	const struct sg_ent *sgp;
 240	struct tx_sw_desc *d = &q->sdesc[cidx];
 241	int nfrags, frag_idx, curflit, j = d->addr_idx;
 242
 243	sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
 244	frag_idx = d->fragidx;
 245
 246	if (frag_idx == 0 && skb_headlen(skb)) {
 247		pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
 248				 skb_headlen(skb), PCI_DMA_TODEVICE);
 249		j = 1;
 250	}
 251
 252	curflit = d->sflit + 1 + j;
 253	nfrags = skb_shinfo(skb)->nr_frags;
 254
 255	while (frag_idx < nfrags && curflit < WR_FLITS) {
 256		pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
 257			       skb_shinfo(skb)->frags[frag_idx].size,
 258			       PCI_DMA_TODEVICE);
 259		j ^= 1;
 260		if (j == 0) {
 261			sgp++;
 262			curflit++;
 263		}
 264		curflit++;
 265		frag_idx++;
 266	}
 267
 268	if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
 269		d = cidx + 1 == q->size ? q->sdesc : d + 1;
 270		d->fragidx = frag_idx;
 271		d->addr_idx = j;
 272		d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
 273	}
 274}
 275
 276/**
 277 *	free_tx_desc - reclaims Tx descriptors and their buffers
 278 *	@adapter: the adapter
 279 *	@q: the Tx queue to reclaim descriptors from
 280 *	@n: the number of descriptors to reclaim
 281 *
 282 *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 283 *	Tx buffers.  Called with the Tx queue lock held.
 284 */
 285static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
 286			 unsigned int n)
 287{
 288	struct tx_sw_desc *d;
 289	struct pci_dev *pdev = adapter->pdev;
 290	unsigned int cidx = q->cidx;
 291
 292	const int need_unmap = need_skb_unmap() &&
 293			       q->cntxt_id >= FW_TUNNEL_SGEEC_START;
 294
 295	d = &q->sdesc[cidx];
 296	while (n--) {
 297		if (d->skb) {	/* an SGL is present */
 298			if (need_unmap)
 299				unmap_skb(d->skb, q, cidx, pdev);
 300			if (d->eop) {
 301				kfree_skb(d->skb);
 302				d->skb = NULL;
 303			}
 304		}
 305		++d;
 306		if (++cidx == q->size) {
 307			cidx = 0;
 308			d = q->sdesc;
 309		}
 310	}
 311	q->cidx = cidx;
 312}
 313
 314/**
 315 *	reclaim_completed_tx - reclaims completed Tx descriptors
 316 *	@adapter: the adapter
 317 *	@q: the Tx queue to reclaim completed descriptors from
 318 *	@chunk: maximum number of descriptors to reclaim
 319 *
 320 *	Reclaims Tx descriptors that the SGE has indicated it has processed,
 321 *	and frees the associated buffers if possible.  Called with the Tx
 322 *	queue's lock held.
 323 */
 324static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
 325						struct sge_txq *q,
 326						unsigned int chunk)
 327{
 328	unsigned int reclaim = q->processed - q->cleaned;
 329
 330	reclaim = min(chunk, reclaim);
 331	if (reclaim) {
 332		free_tx_desc(adapter, q, reclaim);
 333		q->cleaned += reclaim;
 334		q->in_use -= reclaim;
 335	}
 336	return q->processed - q->cleaned;
 337}
 338
 339/**
 340 *	should_restart_tx - are there enough resources to restart a Tx queue?
 341 *	@q: the Tx queue
 342 *
 343 *	Checks if there are enough descriptors to restart a suspended Tx queue.
 344 */
 345static inline int should_restart_tx(const struct sge_txq *q)
 346{
 347	unsigned int r = q->processed - q->cleaned;
 348
 349	return q->in_use - r < (q->size >> 1);
 350}
 351
 352static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
 353			  struct rx_sw_desc *d)
 354{
 355	if (q->use_pages && d->pg_chunk.page) {
 356		(*d->pg_chunk.p_cnt)--;
 357		if (!*d->pg_chunk.p_cnt)
 358			pci_unmap_page(pdev,
 359				       d->pg_chunk.mapping,
 360				       q->alloc_size, PCI_DMA_FROMDEVICE);
 361
 362		put_page(d->pg_chunk.page);
 363		d->pg_chunk.page = NULL;
 364	} else {
 365		pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
 366				 q->buf_size, PCI_DMA_FROMDEVICE);
 367		kfree_skb(d->skb);
 368		d->skb = NULL;
 369	}
 370}
 371
 372/**
 373 *	free_rx_bufs - free the Rx buffers on an SGE free list
 374 *	@pdev: the PCI device associated with the adapter
 375 *	@rxq: the SGE free list to clean up
 376 *
 377 *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
 378 *	this queue should be stopped before calling this function.
 379 */
 380static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
 381{
 382	unsigned int cidx = q->cidx;
 383
 384	while (q->credits--) {
 385		struct rx_sw_desc *d = &q->sdesc[cidx];
 386
 387
 388		clear_rx_desc(pdev, q, d);
 389		if (++cidx == q->size)
 390			cidx = 0;
 391	}
 392
 393	if (q->pg_chunk.page) {
 394		__free_pages(q->pg_chunk.page, q->order);
 395		q->pg_chunk.page = NULL;
 396	}
 397}
 398
 399/**
 400 *	add_one_rx_buf - add a packet buffer to a free-buffer list
 401 *	@va:  buffer start VA
 402 *	@len: the buffer length
 403 *	@d: the HW Rx descriptor to write
 404 *	@sd: the SW Rx descriptor to write
 405 *	@gen: the generation bit value
 406 *	@pdev: the PCI device associated with the adapter
 407 *
 408 *	Add a buffer of the given length to the supplied HW and SW Rx
 409 *	descriptors.
 410 */
 411static inline int add_one_rx_buf(void *va, unsigned int len,
 412				 struct rx_desc *d, struct rx_sw_desc *sd,
 413				 unsigned int gen, struct pci_dev *pdev)
 414{
 415	dma_addr_t mapping;
 416
 417	mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
 418	if (unlikely(pci_dma_mapping_error(pdev, mapping)))
 419		return -ENOMEM;
 420
 421	dma_unmap_addr_set(sd, dma_addr, mapping);
 422
 423	d->addr_lo = cpu_to_be32(mapping);
 424	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
 425	wmb();
 426	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
 427	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
 428	return 0;
 429}
 430
 431static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
 432				   unsigned int gen)
 433{
 434	d->addr_lo = cpu_to_be32(mapping);
 435	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
 436	wmb();
 437	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
 438	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
 439	return 0;
 440}
 441
 442static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
 443			  struct rx_sw_desc *sd, gfp_t gfp,
 444			  unsigned int order)
 445{
 446	if (!q->pg_chunk.page) {
 447		dma_addr_t mapping;
 448
 449		q->pg_chunk.page = alloc_pages(gfp, order);
 450		if (unlikely(!q->pg_chunk.page))
 451			return -ENOMEM;
 452		q->pg_chunk.va = page_address(q->pg_chunk.page);
 453		q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
 454				    SGE_PG_RSVD;
 455		q->pg_chunk.offset = 0;
 456		mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
 457				       0, q->alloc_size, PCI_DMA_FROMDEVICE);
 458		q->pg_chunk.mapping = mapping;
 459	}
 460	sd->pg_chunk = q->pg_chunk;
 461
 462	prefetch(sd->pg_chunk.p_cnt);
 463
 464	q->pg_chunk.offset += q->buf_size;
 465	if (q->pg_chunk.offset == (PAGE_SIZE << order))
 466		q->pg_chunk.page = NULL;
 467	else {
 468		q->pg_chunk.va += q->buf_size;
 469		get_page(q->pg_chunk.page);
 470	}
 471
 472	if (sd->pg_chunk.offset == 0)
 473		*sd->pg_chunk.p_cnt = 1;
 474	else
 475		*sd->pg_chunk.p_cnt += 1;
 476
 477	return 0;
 478}
 479
 480static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
 481{
 482	if (q->pend_cred >= q->credits / 4) {
 483		q->pend_cred = 0;
 484		wmb();
 485		t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
 486	}
 487}
 488
 489/**
 490 *	refill_fl - refill an SGE free-buffer list
 491 *	@adapter: the adapter
 492 *	@q: the free-list to refill
 493 *	@n: the number of new buffers to allocate
 494 *	@gfp: the gfp flags for allocating new buffers
 495 *
 496 *	(Re)populate an SGE free-buffer list with up to @n new packet buffers,
 497 *	allocated with the supplied gfp flags.  The caller must assure that
 498 *	@n does not exceed the queue's capacity.
 499 */
 500static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
 501{
 502	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
 503	struct rx_desc *d = &q->desc[q->pidx];
 504	unsigned int count = 0;
 505
 506	while (n--) {
 507		dma_addr_t mapping;
 508		int err;
 509
 510		if (q->use_pages) {
 511			if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
 512						    q->order))) {
 513nomem:				q->alloc_failed++;
 514				break;
 515			}
 516			mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
 517			dma_unmap_addr_set(sd, dma_addr, mapping);
 518
 519			add_one_rx_chunk(mapping, d, q->gen);
 520			pci_dma_sync_single_for_device(adap->pdev, mapping,
 521						q->buf_size - SGE_PG_RSVD,
 522						PCI_DMA_FROMDEVICE);
 523		} else {
 524			void *buf_start;
 525
 526			struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
 527			if (!skb)
 528				goto nomem;
 529
 530			sd->skb = skb;
 531			buf_start = skb->data;
 532			err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
 533					     q->gen, adap->pdev);
 534			if (unlikely(err)) {
 535				clear_rx_desc(adap->pdev, q, sd);
 536				break;
 537			}
 538		}
 539
 540		d++;
 541		sd++;
 542		if (++q->pidx == q->size) {
 543			q->pidx = 0;
 544			q->gen ^= 1;
 545			sd = q->sdesc;
 546			d = q->desc;
 547		}
 548		count++;
 549	}
 550
 551	q->credits += count;
 552	q->pend_cred += count;
 553	ring_fl_db(adap, q);
 554
 555	return count;
 556}
 557
 558static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
 559{
 560	refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
 561		  GFP_ATOMIC | __GFP_COMP);
 562}
 563
 564/**
 565 *	recycle_rx_buf - recycle a receive buffer
 566 *	@adapter: the adapter
 567 *	@q: the SGE free list
 568 *	@idx: index of buffer to recycle
 569 *
 570 *	Recycles the specified buffer on the given free list by adding it at
 571 *	the next available slot on the list.
 572 */
 573static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
 574			   unsigned int idx)
 575{
 576	struct rx_desc *from = &q->desc[idx];
 577	struct rx_desc *to = &q->desc[q->pidx];
 578
 579	q->sdesc[q->pidx] = q->sdesc[idx];
 580	to->addr_lo = from->addr_lo;	/* already big endian */
 581	to->addr_hi = from->addr_hi;	/* likewise */
 582	wmb();
 583	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
 584	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
 585
 586	if (++q->pidx == q->size) {
 587		q->pidx = 0;
 588		q->gen ^= 1;
 589	}
 590
 591	q->credits++;
 592	q->pend_cred++;
 593	ring_fl_db(adap, q);
 594}
 595
 596/**
 597 *	alloc_ring - allocate resources for an SGE descriptor ring
 598 *	@pdev: the PCI device
 599 *	@nelem: the number of descriptors
 600 *	@elem_size: the size of each descriptor
 601 *	@sw_size: the size of the SW state associated with each ring element
 602 *	@phys: the physical address of the allocated ring
 603 *	@metadata: address of the array holding the SW state for the ring
 604 *
 605 *	Allocates resources for an SGE descriptor ring, such as Tx queues,
 606 *	free buffer lists, or response queues.  Each SGE ring requires
 607 *	space for its HW descriptors plus, optionally, space for the SW state
 608 *	associated with each HW entry (the metadata).  The function returns
 609 *	three values: the virtual address for the HW ring (the return value
 610 *	of the function), the physical address of the HW ring, and the address
 611 *	of the SW ring.
 612 */
 613static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
 614			size_t sw_size, dma_addr_t * phys, void *metadata)
 615{
 616	size_t len = nelem * elem_size;
 617	void *s = NULL;
 618	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
 619
 620	if (!p)
 621		return NULL;
 622	if (sw_size && metadata) {
 623		s = kcalloc(nelem, sw_size, GFP_KERNEL);
 624
 625		if (!s) {
 626			dma_free_coherent(&pdev->dev, len, p, *phys);
 627			return NULL;
 628		}
 629		*(void **)metadata = s;
 630	}
 631	memset(p, 0, len);
 632	return p;
 633}
 634
 635/**
 636 *	t3_reset_qset - reset a sge qset
 637 *	@q: the queue set
 638 *
 639 *	Reset the qset structure.
 640 *	the NAPI structure is preserved in the event of
 641 *	the qset's reincarnation, for example during EEH recovery.
 642 */
 643static void t3_reset_qset(struct sge_qset *q)
 644{
 645	if (q->adap &&
 646	    !(q->adap->flags & NAPI_INIT)) {
 647		memset(q, 0, sizeof(*q));
 648		return;
 649	}
 650
 651	q->adap = NULL;
 652	memset(&q->rspq, 0, sizeof(q->rspq));
 653	memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
 654	memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
 655	q->txq_stopped = 0;
 656	q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
 657	q->rx_reclaim_timer.function = NULL;
 658	q->nomem = 0;
 659	napi_free_frags(&q->napi);
 660}
 661
 662
 663/**
 664 *	free_qset - free the resources of an SGE queue set
 665 *	@adapter: the adapter owning the queue set
 666 *	@q: the queue set
 667 *
 668 *	Release the HW and SW resources associated with an SGE queue set, such
 669 *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
 670 *	queue set must be quiesced prior to calling this.
 671 */
 672static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
 673{
 674	int i;
 675	struct pci_dev *pdev = adapter->pdev;
 676
 677	for (i = 0; i < SGE_RXQ_PER_SET; ++i)
 678		if (q->fl[i].desc) {
 679			spin_lock_irq(&adapter->sge.reg_lock);
 680			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
 681			spin_unlock_irq(&adapter->sge.reg_lock);
 682			free_rx_bufs(pdev, &q->fl[i]);
 683			kfree(q->fl[i].sdesc);
 684			dma_free_coherent(&pdev->dev,
 685					  q->fl[i].size *
 686					  sizeof(struct rx_desc), q->fl[i].desc,
 687					  q->fl[i].phys_addr);
 688		}
 689
 690	for (i = 0; i < SGE_TXQ_PER_SET; ++i)
 691		if (q->txq[i].desc) {
 692			spin_lock_irq(&adapter->sge.reg_lock);
 693			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
 694			spin_unlock_irq(&adapter->sge.reg_lock);
 695			if (q->txq[i].sdesc) {
 696				free_tx_desc(adapter, &q->txq[i],
 697					     q->txq[i].in_use);
 698				kfree(q->txq[i].sdesc);
 699			}
 700			dma_free_coherent(&pdev->dev,
 701					  q->txq[i].size *
 702					  sizeof(struct tx_desc),
 703					  q->txq[i].desc, q->txq[i].phys_addr);
 704			__skb_queue_purge(&q->txq[i].sendq);
 705		}
 706
 707	if (q->rspq.desc) {
 708		spin_lock_irq(&adapter->sge.reg_lock);
 709		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
 710		spin_unlock_irq(&adapter->sge.reg_lock);
 711		dma_free_coherent(&pdev->dev,
 712				  q->rspq.size * sizeof(struct rsp_desc),
 713				  q->rspq.desc, q->rspq.phys_addr);
 714	}
 715
 716	t3_reset_qset(q);
 717}
 718
 719/**
 720 *	init_qset_cntxt - initialize an SGE queue set context info
 721 *	@qs: the queue set
 722 *	@id: the queue set id
 723 *
 724 *	Initializes the TIDs and context ids for the queues of a queue set.
 725 */
 726static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
 727{
 728	qs->rspq.cntxt_id = id;
 729	qs->fl[0].cntxt_id = 2 * id;
 730	qs->fl[1].cntxt_id = 2 * id + 1;
 731	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
 732	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
 733	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
 734	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
 735	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
 736}
 737
 738/**
 739 *	sgl_len - calculates the size of an SGL of the given capacity
 740 *	@n: the number of SGL entries
 741 *
 742 *	Calculates the number of flits needed for a scatter/gather list that
 743 *	can hold the given number of entries.
 744 */
 745static inline unsigned int sgl_len(unsigned int n)
 746{
 747	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */
 748	return (3 * n) / 2 + (n & 1);
 749}
 750
 751/**
 752 *	flits_to_desc - returns the num of Tx descriptors for the given flits
 753 *	@n: the number of flits
 754 *
 755 *	Calculates the number of Tx descriptors needed for the supplied number
 756 *	of flits.
 757 */
 758static inline unsigned int flits_to_desc(unsigned int n)
 759{
 760	BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
 761	return flit_desc_map[n];
 762}
 763
 764/**
 765 *	get_packet - return the next ingress packet buffer from a free list
 766 *	@adap: the adapter that received the packet
 767 *	@fl: the SGE free list holding the packet
 768 *	@len: the packet length including any SGE padding
 769 *	@drop_thres: # of remaining buffers before we start dropping packets
 770 *
 771 *	Get the next packet from a free list and complete setup of the
 772 *	sk_buff.  If the packet is small we make a copy and recycle the
 773 *	original buffer, otherwise we use the original buffer itself.  If a
 774 *	positive drop threshold is supplied packets are dropped and their
 775 *	buffers recycled if (a) the number of remaining buffers is under the
 776 *	threshold and the packet is too big to copy, or (b) the packet should
 777 *	be copied but there is no memory for the copy.
 778 */
 779static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
 780				  unsigned int len, unsigned int drop_thres)
 781{
 782	struct sk_buff *skb = NULL;
 783	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
 784
 785	prefetch(sd->skb->data);
 786	fl->credits--;
 787
 788	if (len <= SGE_RX_COPY_THRES) {
 789		skb = alloc_skb(len, GFP_ATOMIC);
 790		if (likely(skb != NULL)) {
 791			__skb_put(skb, len);
 792			pci_dma_sync_single_for_cpu(adap->pdev,
 793					    dma_unmap_addr(sd, dma_addr), len,
 794					    PCI_DMA_FROMDEVICE);
 795			memcpy(skb->data, sd->skb->data, len);
 796			pci_dma_sync_single_for_device(adap->pdev,
 797					    dma_unmap_addr(sd, dma_addr), len,
 798					    PCI_DMA_FROMDEVICE);
 799		} else if (!drop_thres)
 800			goto use_orig_buf;
 801recycle:
 802		recycle_rx_buf(adap, fl, fl->cidx);
 803		return skb;
 804	}
 805
 806	if (unlikely(fl->credits < drop_thres) &&
 807	    refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
 808		      GFP_ATOMIC | __GFP_COMP) == 0)
 809		goto recycle;
 810
 811use_orig_buf:
 812	pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
 813			 fl->buf_size, PCI_DMA_FROMDEVICE);
 814	skb = sd->skb;
 815	skb_put(skb, len);
 816	__refill_fl(adap, fl);
 817	return skb;
 818}
 819
 820/**
 821 *	get_packet_pg - return the next ingress packet buffer from a free list
 822 *	@adap: the adapter that received the packet
 823 *	@fl: the SGE free list holding the packet
 824 *	@len: the packet length including any SGE padding
 825 *	@drop_thres: # of remaining buffers before we start dropping packets
 826 *
 827 *	Get the next packet from a free list populated with page chunks.
 828 *	If the packet is small we make a copy and recycle the original buffer,
 829 *	otherwise we attach the original buffer as a page fragment to a fresh
 830 *	sk_buff.  If a positive drop threshold is supplied packets are dropped
 831 *	and their buffers recycled if (a) the number of remaining buffers is
 832 *	under the threshold and the packet is too big to copy, or (b) there's
 833 *	no system memory.
 834 *
 835 * 	Note: this function is similar to @get_packet but deals with Rx buffers
 836 * 	that are page chunks rather than sk_buffs.
 837 */
 838static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
 839				     struct sge_rspq *q, unsigned int len,
 840				     unsigned int drop_thres)
 841{
 842	struct sk_buff *newskb, *skb;
 843	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
 844
 845	dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
 846
 847	newskb = skb = q->pg_skb;
 848	if (!skb && (len <= SGE_RX_COPY_THRES)) {
 849		newskb = alloc_skb(len, GFP_ATOMIC);
 850		if (likely(newskb != NULL)) {
 851			__skb_put(newskb, len);
 852			pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
 853					    PCI_DMA_FROMDEVICE);
 854			memcpy(newskb->data, sd->pg_chunk.va, len);
 855			pci_dma_sync_single_for_device(adap->pdev, dma_addr,
 856						       len,
 857						       PCI_DMA_FROMDEVICE);
 858		} else if (!drop_thres)
 859			return NULL;
 860recycle:
 861		fl->credits--;
 862		recycle_rx_buf(adap, fl, fl->cidx);
 863		q->rx_recycle_buf++;
 864		return newskb;
 865	}
 866
 867	if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
 868		goto recycle;
 869
 870	prefetch(sd->pg_chunk.p_cnt);
 871
 872	if (!skb)
 873		newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
 874
 875	if (unlikely(!newskb)) {
 876		if (!drop_thres)
 877			return NULL;
 878		goto recycle;
 879	}
 880
 881	pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
 882				    PCI_DMA_FROMDEVICE);
 883	(*sd->pg_chunk.p_cnt)--;
 884	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
 885		pci_unmap_page(adap->pdev,
 886			       sd->pg_chunk.mapping,
 887			       fl->alloc_size,
 888			       PCI_DMA_FROMDEVICE);
 889	if (!skb) {
 890		__skb_put(newskb, SGE_RX_PULL_LEN);
 891		memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
 892		skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
 893				   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
 894				   len - SGE_RX_PULL_LEN);
 895		newskb->len = len;
 896		newskb->data_len = len - SGE_RX_PULL_LEN;
 897		newskb->truesize += newskb->data_len;
 898	} else {
 899		skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
 900				   sd->pg_chunk.page,
 901				   sd->pg_chunk.offset, len);
 902		newskb->len += len;
 903		newskb->data_len += len;
 904		newskb->truesize += len;
 905	}
 906
 907	fl->credits--;
 908	/*
 909	 * We do not refill FLs here, we let the caller do it to overlap a
 910	 * prefetch.
 911	 */
 912	return newskb;
 913}
 914
 915/**
 916 *	get_imm_packet - return the next ingress packet buffer from a response
 917 *	@resp: the response descriptor containing the packet data
 918 *
 919 *	Return a packet containing the immediate data of the given response.
 920 */
 921static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
 922{
 923	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
 924
 925	if (skb) {
 926		__skb_put(skb, IMMED_PKT_SIZE);
 927		skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
 928	}
 929	return skb;
 930}
 931
 932/**
 933 *	calc_tx_descs - calculate the number of Tx descriptors for a packet
 934 *	@skb: the packet
 935 *
 936 * 	Returns the number of Tx descriptors needed for the given Ethernet
 937 * 	packet.  Ethernet packets require addition of WR and CPL headers.
 938 */
 939static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
 940{
 941	unsigned int flits;
 942
 943	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
 944		return 1;
 945
 946	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
 947	if (skb_shinfo(skb)->gso_size)
 948		flits++;
 949	return flits_to_desc(flits);
 950}
 951
 952/**
 953 *	make_sgl - populate a scatter/gather list for a packet
 954 *	@skb: the packet
 955 *	@sgp: the SGL to populate
 956 *	@start: start address of skb main body data to include in the SGL
 957 *	@len: length of skb main body data to include in the SGL
 958 *	@pdev: the PCI device
 959 *
 960 *	Generates a scatter/gather list for the buffers that make up a packet
 961 *	and returns the SGL size in 8-byte words.  The caller must size the SGL
 962 *	appropriately.
 963 */
 964static inline unsigned int make_sgl(const struct sk_buff *skb,
 965				    struct sg_ent *sgp, unsigned char *start,
 966				    unsigned int len, struct pci_dev *pdev)
 967{
 968	dma_addr_t mapping;
 969	unsigned int i, j = 0, nfrags;
 970
 971	if (len) {
 972		mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
 973		sgp->len[0] = cpu_to_be32(len);
 974		sgp->addr[0] = cpu_to_be64(mapping);
 975		j = 1;
 976	}
 977
 978	nfrags = skb_shinfo(skb)->nr_frags;
 979	for (i = 0; i < nfrags; i++) {
 980		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 981
 982		mapping = pci_map_page(pdev, frag->page, frag->page_offset,
 983				       frag->size, PCI_DMA_TODEVICE);
 984		sgp->len[j] = cpu_to_be32(frag->size);
 985		sgp->addr[j] = cpu_to_be64(mapping);
 986		j ^= 1;
 987		if (j == 0)
 988			++sgp;
 989	}
 990	if (j)
 991		sgp->len[j] = 0;
 992	return ((nfrags + (len != 0)) * 3) / 2 + j;
 993}
 994
 995/**
 996 *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
 997 *	@adap: the adapter
 998 *	@q: the Tx queue
 999 *
1000 *	Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1001 *	where the HW is going to sleep just after we checked, however,
1002 *	then the interrupt handler will detect the outstanding TX packet
1003 *	and ring the doorbell for us.
1004 *
1005 *	When GTS is disabled we unconditionally ring the doorbell.
1006 */
1007static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1008{
1009#if USE_GTS
1010	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1011	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1012		set_bit(TXQ_LAST_PKT_DB, &q->flags);
1013		t3_write_reg(adap, A_SG_KDOORBELL,
1014			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1015	}
1016#else
1017	wmb();			/* write descriptors before telling HW */
1018	t3_write_reg(adap, A_SG_KDOORBELL,
1019		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1020#endif
1021}
1022
1023static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1024{
1025#if SGE_NUM_GENBITS == 2
1026	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1027#endif
1028}
1029
1030/**
1031 *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
1032 *	@ndesc: number of Tx descriptors spanned by the SGL
1033 *	@skb: the packet corresponding to the WR
1034 *	@d: first Tx descriptor to be written
1035 *	@pidx: index of above descriptors
1036 *	@q: the SGE Tx queue
1037 *	@sgl: the SGL
1038 *	@flits: number of flits to the start of the SGL in the first descriptor
1039 *	@sgl_flits: the SGL size in flits
1040 *	@gen: the Tx descriptor generation
1041 *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
1042 *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
1043 *
1044 *	Write a work request header and an associated SGL.  If the SGL is
1045 *	small enough to fit into one Tx descriptor it has already been written
1046 *	and we just need to write the WR header.  Otherwise we distribute the
1047 *	SGL across the number of descriptors it spans.
1048 */
1049static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1050			     struct tx_desc *d, unsigned int pidx,
1051			     const struct sge_txq *q,
1052			     const struct sg_ent *sgl,
1053			     unsigned int flits, unsigned int sgl_flits,
1054			     unsigned int gen, __be32 wr_hi,
1055			     __be32 wr_lo)
1056{
1057	struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1058	struct tx_sw_desc *sd = &q->sdesc[pidx];
1059
1060	sd->skb = skb;
1061	if (need_skb_unmap()) {
1062		sd->fragidx = 0;
1063		sd->addr_idx = 0;
1064		sd->sflit = flits;
1065	}
1066
1067	if (likely(ndesc == 1)) {
1068		sd->eop = 1;
1069		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1070				   V_WR_SGLSFLT(flits)) | wr_hi;
1071		wmb();
1072		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1073				   V_WR_GEN(gen)) | wr_lo;
1074		wr_gen2(d, gen);
1075	} else {
1076		unsigned int ogen = gen;
1077		const u64 *fp = (const u64 *)sgl;
1078		struct work_request_hdr *wp = wrp;
1079
1080		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1081				   V_WR_SGLSFLT(flits)) | wr_hi;
1082
1083		while (sgl_flits) {
1084			unsigned int avail = WR_FLITS - flits;
1085
1086			if (avail > sgl_flits)
1087				avail = sgl_flits;
1088			memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1089			sgl_flits -= avail;
1090			ndesc--;
1091			if (!sgl_flits)
1092				break;
1093
1094			fp += avail;
1095			d++;
1096			sd->eop = 0;
1097			sd++;
1098			if (++pidx == q->size) {
1099				pidx = 0;
1100				gen ^= 1;
1101				d = q->desc;
1102				sd = q->sdesc;
1103			}
1104
1105			sd->skb = skb;
1106			wrp = (struct work_request_hdr *)d;
1107			wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1108					   V_WR_SGLSFLT(1)) | wr_hi;
1109			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1110							sgl_flits + 1)) |
1111					   V_WR_GEN(gen)) | wr_lo;
1112			wr_gen2(d, gen);
1113			flits = 1;
1114		}
1115		sd->eop = 1;
1116		wrp->wr_hi |= htonl(F_WR_EOP);
1117		wmb();
1118		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1119		wr_gen2((struct tx_desc *)wp, ogen);
1120		WARN_ON(ndesc != 0);
1121	}
1122}
1123
1124/**
1125 *	write_tx_pkt_wr - write a TX_PKT work request
1126 *	@adap: the adapter
1127 *	@skb: the packet to send
1128 *	@pi: the egress interface
1129 *	@pidx: index of the first Tx descriptor to write
1130 *	@gen: the generation value to use
1131 *	@q: the Tx queue
1132 *	@ndesc: number of descriptors the packet will occupy
1133 *	@compl: the value of the COMPL bit to use
1134 *
1135 *	Generate a TX_PKT work request to send the supplied packet.
1136 */
1137static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1138			    const struct port_info *pi,
1139			    unsigned int pidx, unsigned int gen,
1140			    struct sge_txq *q, unsigned int ndesc,
1141			    unsigned int compl)
1142{
1143	unsigned int flits, sgl_flits, cntrl, tso_info;
1144	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1145	struct tx_desc *d = &q->desc[pidx];
1146	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1147
1148	cpl->len = htonl(skb->len);
1149	cntrl = V_TXPKT_INTF(pi->port_id);
1150
1151	if (vlan_tx_tag_present(skb))
1152		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1153
1154	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1155	if (tso_info) {
1156		int eth_type;
1157		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1158
1159		d->flit[2] = 0;
1160		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1161		hdr->cntrl = htonl(cntrl);
1162		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1163		    CPL_ETH_II : CPL_ETH_II_VLAN;
1164		tso_info |= V_LSO_ETH_TYPE(eth_type) |
1165		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1166		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1167		hdr->lso_info = htonl(tso_info);
1168		flits = 3;
1169	} else {
1170		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1171		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */
1172		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1173		cpl->cntrl = htonl(cntrl);
1174
1175		if (skb->len <= WR_LEN - sizeof(*cpl)) {
1176			q->sdesc[pidx].skb = NULL;
1177			if (!skb->data_len)
1178				skb_copy_from_linear_data(skb, &d->flit[2],
1179							  skb->len);
1180			else
1181				skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1182
1183			flits = (skb->len + 7) / 8 + 2;
1184			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1185					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1186					      | F_WR_SOP | F_WR_EOP | compl);
1187			wmb();
1188			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1189					      V_WR_TID(q->token));
1190			wr_gen2(d, gen);
1191			kfree_skb(skb);
1192			return;
1193		}
1194
1195		flits = 2;
1196	}
1197
1198	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1199	sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1200
1201	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1202			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1203			 htonl(V_WR_TID(q->token)));
1204}
1205
1206static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1207				    struct sge_qset *qs, struct sge_txq *q)
1208{
1209	netif_tx_stop_queue(txq);
1210	set_bit(TXQ_ETH, &qs->txq_stopped);
1211	q->stops++;
1212}
1213
1214/**
1215 *	eth_xmit - add a packet to the Ethernet Tx queue
1216 *	@skb: the packet
1217 *	@dev: the egress net device
1218 *
1219 *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1220 */
1221netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1222{
1223	int qidx;
1224	unsigned int ndesc, pidx, credits, gen, compl;
1225	const struct port_info *pi = netdev_priv(dev);
1226	struct adapter *adap = pi->adapter;
1227	struct netdev_queue *txq;
1228	struct sge_qset *qs;
1229	struct sge_txq *q;
1230
1231	/*
1232	 * The chip min packet length is 9 octets but play safe and reject
1233	 * anything shorter than an Ethernet header.
1234	 */
1235	if (unlikely(skb->len < ETH_HLEN)) {
1236		dev_kfree_skb(skb);
1237		return NETDEV_TX_OK;
1238	}
1239
1240	qidx = skb_get_queue_mapping(skb);
1241	qs = &pi->qs[qidx];
1242	q = &qs->txq[TXQ_ETH];
1243	txq = netdev_get_tx_queue(dev, qidx);
1244
1245	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1246
1247	credits = q->size - q->in_use;
1248	ndesc = calc_tx_descs(skb);
1249
1250	if (unlikely(credits < ndesc)) {
1251		t3_stop_tx_queue(txq, qs, q);
1252		dev_err(&adap->pdev->dev,
1253			"%s: Tx ring %u full while queue awake!\n",
1254			dev->name, q->cntxt_id & 7);
1255		return NETDEV_TX_BUSY;
1256	}
1257
1258	q->in_use += ndesc;
1259	if (unlikely(credits - ndesc < q->stop_thres)) {
1260		t3_stop_tx_queue(txq, qs, q);
1261
1262		if (should_restart_tx(q) &&
1263		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1264			q->restarts++;
1265			netif_tx_start_queue(txq);
1266		}
1267	}
1268
1269	gen = q->gen;
1270	q->unacked += ndesc;
1271	compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1272	q->unacked &= 7;
1273	pidx = q->pidx;
1274	q->pidx += ndesc;
1275	if (q->pidx >= q->size) {
1276		q->pidx -= q->size;
1277		q->gen ^= 1;
1278	}
1279
1280	/* update port statistics */
1281	if (skb->ip_summed == CHECKSUM_COMPLETE)
1282		qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1283	if (skb_shinfo(skb)->gso_size)
1284		qs->port_stats[SGE_PSTAT_TSO]++;
1285	if (vlan_tx_tag_present(skb))
1286		qs->port_stats[SGE_PSTAT_VLANINS]++;
1287
1288	/*
1289	 * We do not use Tx completion interrupts to free DMAd Tx packets.
1290	 * This is good for performance but means that we rely on new Tx
1291	 * packets arriving to run the destructors of completed packets,
1292	 * which open up space in their sockets' send queues.  Sometimes
1293	 * we do not get such new packets causing Tx to stall.  A single
1294	 * UDP transmitter is a good example of this situation.  We have
1295	 * a clean up timer that periodically reclaims completed packets
1296	 * but it doesn't run often enough (nor do we want it to) to prevent
1297	 * lengthy stalls.  A solution to this problem is to run the
1298	 * destructor early, after the packet is queued but before it's DMAd.
1299	 * A cons is that we lie to socket memory accounting, but the amount
1300	 * of extra memory is reasonable (limited by the number of Tx
1301	 * descriptors), the packets do actually get freed quickly by new
1302	 * packets almost always, and for protocols like TCP that wait for
1303	 * acks to really free up the data the extra memory is even less.
1304	 * On the positive side we run the destructors on the sending CPU
1305	 * rather than on a potentially different completing CPU, usually a
1306	 * good thing.  We also run them without holding our Tx queue lock,
1307	 * unlike what reclaim_completed_tx() would otherwise do.
1308	 *
1309	 * Run the destructor before telling the DMA engine about the packet
1310	 * to make sure it doesn't complete and get freed prematurely.
1311	 */
1312	if (likely(!skb_shared(skb)))
1313		skb_orphan(skb);
1314
1315	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1316	check_ring_tx_db(adap, q);
1317	return NETDEV_TX_OK;
1318}
1319
1320/**
1321 *	write_imm - write a packet into a Tx descriptor as immediate data
1322 *	@d: the Tx descriptor to write
1323 *	@skb: the packet
1324 *	@len: the length of packet data to write as immediate data
1325 *	@gen: the generation bit value to write
1326 *
1327 *	Writes a packet as immediate data into a Tx descriptor.  The packet
1328 *	contains a work request at its beginning.  We must write the packet
1329 *	carefully so the SGE doesn't read it accidentally before it's written
1330 *	in its entirety.
1331 */
1332static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1333			     unsigned int len, unsigned int gen)
1334{
1335	struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1336	struct work_request_hdr *to = (struct work_request_hdr *)d;
1337
1338	if (likely(!skb->data_len))
1339		memcpy(&to[1], &from[1], len - sizeof(*from));
1340	else
1341		skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1342
1343	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1344					V_WR_BCNTLFLT(len & 7));
1345	wmb();
1346	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1347					V_WR_LEN((len + 7) / 8));
1348	wr_gen2(d, gen);
1349	kfree_skb(skb);
1350}
1351
1352/**
1353 *	check_desc_avail - check descriptor availability on a send queue
1354 *	@adap: the adapter
1355 *	@q: the send queue
1356 *	@skb: the packet needing the descriptors
1357 *	@ndesc: the number of Tx descriptors needed
1358 *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1359 *
1360 *	Checks if the requested number of Tx descriptors is available on an
1361 *	SGE send queue.  If the queue is already suspended or not enough
1362 *	descriptors are available the packet is queued for later transmission.
1363 *	Must be called with the Tx queue locked.
1364 *
1365 *	Returns 0 if enough descriptors are available, 1 if there aren't
1366 *	enough descriptors and the packet has been queued, and 2 if the caller
1367 *	needs to retry because there weren't enough descriptors at the
1368 *	beginning of the call but some freed up in the mean time.
1369 */
1370static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1371				   struct sk_buff *skb, unsigned int ndesc,
1372				   unsigned int qid)
1373{
1374	if (unlikely(!skb_queue_empty(&q->sendq))) {
1375	      addq_exit:__skb_queue_tail(&q->sendq, skb);
1376		return 1;
1377	}
1378	if (unlikely(q->size - q->in_use < ndesc)) {
1379		struct sge_qset *qs = txq_to_qset(q, qid);
1380
1381		set_bit(qid, &qs->txq_stopped);
1382		smp_mb__after_clear_bit();
1383
1384		if (should_restart_tx(q) &&
1385		    test_and_clear_bit(qid, &qs->txq_stopped))
1386			return 2;
1387
1388		q->stops++;
1389		goto addq_exit;
1390	}
1391	return 0;
1392}
1393
1394/**
1395 *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1396 *	@q: the SGE control Tx queue
1397 *
1398 *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1399 *	that send only immediate data (presently just the control queues) and
1400 *	thus do not have any sk_buffs to release.
1401 */
1402static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1403{
1404	unsigned int reclaim = q->processed - q->cleaned;
1405
1406	q->in_use -= reclaim;
1407	q->cleaned += reclaim;
1408}
1409
1410static inline int immediate(const struct sk_buff *skb)
1411{
1412	return skb->len <= WR_LEN;
1413}
1414
1415/**
1416 *	ctrl_xmit - send a packet through an SGE control Tx queue
1417 *	@adap: the adapter
1418 *	@q: the control queue
1419 *	@skb: the packet
1420 *
1421 *	Send a packet through an SGE control Tx queue.  Packets sent through
1422 *	a control queue must fit entirely as immediate data in a single Tx
1423 *	descriptor and have no page fragments.
1424 */
1425static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1426		     struct sk_buff *skb)
1427{
1428	int ret;
1429	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1430
1431	if (unlikely(!immediate(skb))) {
1432		WARN_ON(1);
1433		dev_kfree_skb(skb);
1434		return NET_XMIT_SUCCESS;
1435	}
1436
1437	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1438	wrp->wr_lo = htonl(V_WR_TID(q->token));
1439
1440	spin_lock(&q->lock);
1441      again:reclaim_completed_tx_imm(q);
1442
1443	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1444	if (unlikely(ret)) {
1445		if (ret == 1) {
1446			spin_unlock(&q->lock);
1447			return NET_XMIT_CN;
1448		}
1449		goto again;
1450	}
1451
1452	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1453
1454	q->in_use++;
1455	if (++q->pidx >= q->size) {
1456		q->pidx = 0;
1457		q->gen ^= 1;
1458	}
1459	spin_unlock(&q->lock);
1460	wmb();
1461	t3_write_reg(adap, A_SG_KDOORBELL,
1462		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1463	return NET_XMIT_SUCCESS;
1464}
1465
1466/**
1467 *	restart_ctrlq - restart a suspended control queue
1468 *	@qs: the queue set cotaining the control queue
1469 *
1470 *	Resumes transmission on a suspended Tx control queue.
1471 */
1472static void restart_ctrlq(unsigned long data)
1473{
1474	struct sk_buff *skb;
1475	struct sge_qset *qs = (struct sge_qset *)data;
1476	struct sge_txq *q = &qs->txq[TXQ_CTRL];
1477
1478	spin_lock(&q->lock);
1479      again:reclaim_completed_tx_imm(q);
1480
1481	while (q->in_use < q->size &&
1482	       (skb = __skb_dequeue(&q->sendq)) != NULL) {
1483
1484		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1485
1486		if (++q->pidx >= q->size) {
1487			q->pidx = 0;
1488			q->gen ^= 1;
1489		}
1490		q->in_use++;
1491	}
1492
1493	if (!skb_queue_empty(&q->sendq)) {
1494		set_bit(TXQ_CTRL, &qs->txq_stopped);
1495		smp_mb__after_clear_bit();
1496
1497		if (should_restart_tx(q) &&
1498		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1499			goto again;
1500		q->stops++;
1501	}
1502
1503	spin_unlock(&q->lock);
1504	wmb();
1505	t3_write_reg(qs->adap, A_SG_KDOORBELL,
1506		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1507}
1508
1509/*
1510 * Send a management message through control queue 0
1511 */
1512int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1513{
1514	int ret;
1515	local_bh_disable();
1516	ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1517	local_bh_enable();
1518
1519	return ret;
1520}
1521
1522/**
1523 *	deferred_unmap_destructor - unmap a packet when it is freed
1524 *	@skb: the packet
1525 *
1526 *	This is the packet destructor used for Tx packets that need to remain
1527 *	mapped until they are freed rather than until their Tx descriptors are
1528 *	freed.
1529 */
1530static void deferred_unmap_destructor(struct sk_buff *skb)
1531{
1532	int i;
1533	const dma_addr_t *p;
1534	const struct skb_shared_info *si;
1535	const struct deferred_unmap_info *dui;
1536
1537	dui = (struct deferred_unmap_info *)skb->head;
1538	p = dui->addr;
1539
1540	if (skb->tail - skb->transport_header)
1541		pci_unmap_single(dui->pdev, *p++,
1542				 skb->tail - skb->transport_header,
1543				 PCI_DMA_TODEVICE);
1544
1545	si = skb_shinfo(skb);
1546	for (i = 0; i < si->nr_frags; i++)
1547		pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1548			       PCI_DMA_TODEVICE);
1549}
1550
1551static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1552				     const struct sg_ent *sgl, int sgl_flits)
1553{
1554	dma_addr_t *p;
1555	struct deferred_unmap_info *dui;
1556
1557	dui = (struct deferred_unmap_info *)skb->head;
1558	dui->pdev = pdev;
1559	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1560		*p++ = be64_to_cpu(sgl->addr[0]);
1561		*p++ = be64_to_cpu(sgl->addr[1]);
1562	}
1563	if (sgl_flits)
1564		*p = be64_to_cpu(sgl->addr[0]);
1565}
1566
1567/**
1568 *	write_ofld_wr - write an offload work request
1569 *	@adap: the adapter
1570 *	@skb: the packet to send
1571 *	@q: the Tx queue
1572 *	@pidx: index of the first Tx descriptor to write
1573 *	@gen: the generation value to use
1574 *	@ndesc: number of descriptors the packet will occupy
1575 *
1576 *	Write an offload work request to send the supplied packet.  The packet
1577 *	data already carry the work request with most fields populated.
1578 */
1579static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1580			  struct sge_txq *q, unsigned int pidx,
1581			  unsigned int gen, unsigned int ndesc)
1582{
1583	unsigned int sgl_flits, flits;
1584	struct work_request_hdr *from;
1585	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1586	struct tx_desc *d = &q->desc[pidx];
1587
1588	if (immediate(skb)) {
1589		q->sdesc[pidx].skb = NULL;
1590		write_imm(d, skb, skb->len, gen);
1591		return;
1592	}
1593
1594	/* Only TX_DATA builds SGLs */
1595
1596	from = (struct work_request_hdr *)skb->data;
1597	memcpy(&d->flit[1], &from[1],
1598	       skb_transport_offset(skb) - sizeof(*from));
1599
1600	flits = skb_transport_offset(skb) / 8;
1601	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1602	sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1603			     skb->tail - skb->transport_header,
1604			     adap->pdev);
1605	if (need_skb_unmap()) {
1606		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1607		skb->destructor = deferred_unmap_destructor;
1608	}
1609
1610	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1611			 gen, from->wr_hi, from->wr_lo);
1612}
1613
1614/**
1615 *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1616 *	@skb: the packet
1617 *
1618 * 	Returns the number of Tx descriptors needed for the given offload
1619 * 	packet.  These packets are already fully constructed.
1620 */
1621static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1622{
1623	unsigned int flits, cnt;
1624
1625	if (skb->len <= WR_LEN)
1626		return 1;	/* packet fits as immediate data */
1627
1628	flits = skb_transport_offset(skb) / 8;	/* headers */
1629	cnt = skb_shinfo(skb)->nr_frags;
1630	if (skb->tail != skb->transport_header)
1631		cnt++;
1632	return flits_to_desc(flits + sgl_len(cnt));
1633}
1634
1635/**
1636 *	ofld_xmit - send a packet through an offload queue
1637 *	@adap: the adapter
1638 *	@q: the Tx offload queue
1639 *	@skb: the packet
1640 *
1641 *	Send an offload packet through an SGE offload queue.
1642 */
1643static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1644		     struct sk_buff *skb)
1645{
1646	int ret;
1647	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1648
1649	spin_lock(&q->lock);
1650again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1651
1652	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1653	if (unlikely(ret)) {
1654		if (ret == 1) {
1655			skb->priority = ndesc;	/* save for restart */
1656			spin_unlock(&q->lock);
1657			return NET_XMIT_CN;
1658		}
1659		goto again;
1660	}
1661
1662	gen = q->gen;
1663	q->in_use += ndesc;
1664	pidx = q->pidx;
1665	q->pidx += ndesc;
1666	if (q->pidx >= q->size) {
1667		q->pidx -= q->size;
1668		q->gen ^= 1;
1669	}
1670	spin_unlock(&q->lock);
1671
1672	write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1673	check_ring_tx_db(adap, q);
1674	return NET_XMIT_SUCCESS;
1675}
1676
1677/**
1678 *	restart_offloadq - restart a suspended offload queue
1679 *	@qs: the queue set cotaining the offload queue
1680 *
1681 *	Resumes transmission on a suspended Tx offload queue.
1682 */
1683static void restart_offloadq(unsigned long data)
1684{
1685	struct sk_buff *skb;
1686	struct sge_qset *qs = (struct sge_qset *)data;
1687	struct sge_txq *q = &qs->txq[TXQ_OFLD];
1688	const struct port_info *pi = netdev_priv(qs->netdev);
1689	struct adapter *adap = pi->adapter;
1690
1691	spin_lock(&q->lock);
1692again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1693
1694	while ((skb = skb_peek(&q->sendq)) != NULL) {
1695		unsigned int gen, pidx;
1696		unsigned int ndesc = skb->priority;
1697
1698		if (unlikely(q->size - q->in_use < ndesc)) {
1699			set_bit(TXQ_OFLD, &qs->txq_stopped);
1700			smp_mb__after_clear_bit();
1701
1702			if (should_restart_tx(q) &&
1703			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1704				goto again;
1705			q->stops++;
1706			break;
1707		}
1708
1709		gen = q->gen;
1710		q->in_use += ndesc;
1711		pidx = q->pidx;
1712		q->pidx += ndesc;
1713		if (q->pidx >= q->size) {
1714			q->pidx -= q->size;
1715			q->gen ^= 1;
1716		}
1717		__skb_unlink(skb, &q->sendq);
1718		spin_unlock(&q->lock);
1719
1720		write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1721		spin_lock(&q->lock);
1722	}
1723	spin_unlock(&q->lock);
1724
1725#if USE_GTS
1726	set_bit(TXQ_RUNNING, &q->flags);
1727	set_bit(TXQ_LAST_PKT_DB, &q->flags);
1728#endif
1729	wmb();
1730	t3_write_reg(adap, A_SG_KDOORBELL,
1731		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1732}
1733
1734/**
1735 *	queue_set - return the queue set a packet should use
1736 *	@skb: the packet
1737 *
1738 *	Maps a packet to the SGE queue set it should use.  The desired queue
1739 *	set is carried in bits 1-3 in the packet's priority.
1740 */
1741static inline int queue_set(const struct sk_buff *skb)
1742{
1743	return skb->priority >> 1;
1744}
1745
1746/**
1747 *	is_ctrl_pkt - return whether an offload packet is a control packet
1748 *	@skb: the packet
1749 *
1750 *	Determines whether an offload packet should use an OFLD or a CTRL
1751 *	Tx queue.  This is indicated by bit 0 in the packet's priority.
1752 */
1753static inline int is_ctrl_pkt(const struct sk_buff *skb)
1754{
1755	return skb->priority & 1;
1756}
1757
1758/**
1759 *	t3_offload_tx - send an offload packet
1760 *	@tdev: the offload device to send to
1761 *	@skb: the packet
1762 *
1763 *	Sends an offload packet.  We use the packet priority to select the
1764 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1765 *	should be sent as regular or control, bits 1-3 select the queue set.
1766 */
1767int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1768{
1769	struct adapter *adap = tdev2adap(tdev);
1770	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1771
1772	if (unlikely(is_ctrl_pkt(skb)))
1773		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1774
1775	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1776}
1777
1778/**
1779 *	offload_enqueue - add an offload packet to an SGE offload receive queue
1780 *	@q: the SGE response queue
1781 *	@skb: the packet
1782 *
1783 *	Add a new offload packet to an SGE response queue's offload packet
1784 *	queue.  If the packet is the first on the queue it schedules the RX
1785 *	softirq to process the queue.
1786 */
1787static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1788{
1789	int was_empty = skb_queue_empty(&q->rx_queue);
1790
1791	__skb_queue_tail(&q->rx_queue, skb);
1792
1793	if (was_empty) {
1794		struct sge_qset *qs = rspq_to_qset(q);
1795
1796		napi_schedule(&qs->napi);
1797	}
1798}
1799
1800/**
1801 *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1802 *	@tdev: the offload device that will be receiving the packets
1803 *	@q: the SGE response queue that assembled the bundle
1804 *	@skbs: the partial bundle
1805 *	@n: the number of packets in the bundle
1806 *
1807 *	Delivers a (partial) bundle of Rx offload packets to an offload device.
1808 */
1809static inline void deliver_partial_bundle(struct t3cdev *tdev,
1810					  struct sge_rspq *q,
1811					  struct sk_buff *skbs[], int n)
1812{
1813	if (n) {
1814		q->offload_bundles++;
1815		tdev->recv(tdev, skbs, n);
1816	}
1817}
1818
1819/**
1820 *	ofld_poll - NAPI handler for offload packets in interrupt mode
1821 *	@dev: the network device doing the polling
1822 *	@budget: polling budget
1823 *
1824 *	The NAPI handler for offload packets when a response queue is serviced
1825 *	by the hard interrupt handler, i.e., when it's operating in non-polling
1826 *	mode.  Creates small packet batches and sends them through the offload
1827 *	receive handler.  Batches need to be of modest size as we do prefetches
1828 *	on the packets in each.
1829 */
1830static int ofld_poll(struct napi_struct *napi, int budget)
1831{
1832	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1833	struct sge_rspq *q = &qs->rspq;
1834	struct adapter *adapter = qs->adap;
1835	int work_done = 0;
1836
1837	while (work_done < budget) {
1838		struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1839		struct sk_buff_head queue;
1840		int ngathered;
1841
1842		spin_lock_irq(&q->lock);
1843		__skb_queue_head_init(&queue);
1844		skb_queue_splice_init(&q->rx_queue, &queue);
1845		if (skb_queue_empty(&queue)) {
1846			napi_complete(napi);
1847			spin_unlock_irq(&q->lock);
1848			return work_done;
1849		}
1850		spin_unlock_irq(&q->lock);
1851
1852		ngathered = 0;
1853		skb_queue_walk_safe(&queue, skb, tmp) {
1854			if (work_done >= budget)
1855				break;
1856			work_done++;
1857
1858			__skb_unlink(skb, &queue);
1859			prefetch(skb->data);
1860			skbs[ngathered] = skb;
1861			if (++ngathered == RX_BUNDLE_SIZE) {
1862				q->offload_bundles++;
1863				adapter->tdev.recv(&adapter->tdev, skbs,
1864						   ngathered);
1865				ngathered = 0;
1866			}
1867		}
1868		if (!skb_queue_empty(&queue)) {
1869			/* splice remaining packets back onto Rx queue */
1870			spin_lock_irq(&q->lock);
1871			skb_queue_splice(&queue, &q->rx_queue);
1872			spin_unlock_irq(&q->lock);
1873		}
1874		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1875	}
1876
1877	return work_done;
1878}
1879
1880/**
1881 *	rx_offload - process a received offload packet
1882 *	@tdev: the offload device receiving the packet
1883 *	@rq: the response queue that received the packet
1884 *	@skb: the packet
1885 *	@rx_gather: a gather list of packets if we are building a bundle
1886 *	@gather_idx: index of the next available slot in the bundle
1887 *
1888 *	Process an ingress offload pakcet and add it to the offload ingress
1889 *	queue. 	Returns the index of the next available slot in the bundle.
1890 */
1891static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1892			     struct sk_buff *skb, struct sk_buff *rx_gather[],
1893			     unsigned int gather_idx)
1894{
1895	skb_reset_mac_header(skb);
1896	skb_reset_network_header(skb);
1897	skb_reset_transport_header(skb);
1898
1899	if (rq->polling) {
1900		rx_gather[gather_idx++] = skb;
1901		if (gather_idx == RX_BUNDLE_SIZE) {
1902			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1903			gather_idx = 0;
1904			rq->offload_bundles++;
1905		}
1906	} else
1907		offload_enqueue(rq, skb);
1908
1909	return gather_idx;
1910}
1911
1912/**
1913 *	restart_tx - check whether to restart suspended Tx queues
1914 *	@qs: the queue set to resume
1915 *
1916 *	Restarts suspended Tx queues of an SGE queue set if they have enough
1917 *	free resources to resume operation.
1918 */
1919static void restart_tx(struct sge_qset *qs)
1920{
1921	if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1922	    should_restart_tx(&qs->txq[TXQ_ETH]) &&
1923	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1924		qs->txq[TXQ_ETH].restarts++;
1925		if (netif_running(qs->netdev))
1926			netif_tx_wake_queue(qs->tx_q);
1927	}
1928
1929	if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1930	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1931	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1932		qs->txq[TXQ_OFLD].restarts++;
1933		tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1934	}
1935	if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1936	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1937	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1938		qs->txq[TXQ_CTRL].restarts++;
1939		tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1940	}
1941}
1942
1943/**
1944 *	cxgb3_arp_process - process an ARP request probing a private IP address
1945 *	@adapter: the adapter
1946 *	@skb: the skbuff containing the ARP request
1947 *
1948 *	Check if the ARP request is probing the private IP address
1949 *	dedicated to iSCSI, generate an ARP reply if so.
1950 */
1951static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
1952{
1953	struct net_device *dev = skb->dev;
1954	struct arphdr *arp;
1955	unsigned char *arp_ptr;
1956	unsigned char *sha;
1957	__be32 sip, tip;
1958
1959	if (!dev)
1960		return;
1961
1962	skb_reset_network_header(skb);
1963	arp = arp_hdr(skb);
1964
1965	if (arp->ar_op != htons(ARPOP_REQUEST))
1966		return;
1967
1968	arp_ptr = (unsigned char *)(arp + 1);
1969	sha = arp_ptr;
1970	arp_ptr += dev->addr_len;
1971	memcpy(&sip, arp_ptr, sizeof(sip));
1972	arp_ptr += sizeof(sip);
1973	arp_ptr += dev->addr_len;
1974	memcpy(&tip, arp_ptr, sizeof(tip));
1975
1976	if (tip != pi->iscsi_ipv4addr)
1977		return;
1978
1979	arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1980		 pi->iscsic.mac_addr, sha);
1981
1982}
1983
1984static inline int is_arp(struct sk_buff *skb)
1985{
1986	return skb->protocol == htons(ETH_P_ARP);
1987}
1988
1989static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1990					struct sk_buff *skb)
1991{
1992	if (is_arp(skb)) {
1993		cxgb3_arp_process(pi, skb);
1994		return;
1995	}
1996
1997	if (pi->iscsic.recv)
1998		pi->iscsic.recv(pi, skb);
1999
2000}
2001
2002/**
2003 *	rx_eth - process an ingress ethernet packet
2004 *	@adap: the adapter
2005 *	@rq: the response queue that received the packet
2006 *	@skb: the packet
2007 *	@pad: amount of padding at the start of the buffer
2008 *
2009 *	Process an ingress ethernet pakcet and deliver it to the stack.
2010 *	The padding is 2 if the packet was delivered in an Rx buffer and 0
2011 *	if it was immediate data in a response.
2012 */
2013static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2014		   struct sk_buff *skb, int pad, int lro)
2015{
2016	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2017	struct sge_qset *qs = rspq_to_qset(rq);
2018	struct port_info *pi;
2019
2020	skb_pull(skb, sizeof(*p) + pad);
2021	skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2022	pi = netdev_priv(skb->dev);
2023	if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2024	    p->csum == htons(0xffff) && !p->fragment) {
2025		qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2026		skb->ip_summed = CHECKSUM_UNNECESSARY;
2027	} else
2028		skb_checksum_none_assert(skb);
2029	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2030
2031	if (p->vlan_valid) {
2032		qs->port_stats[SGE_PSTAT_VLANEX]++;
2033		__vlan_hwaccel_put_tag(skb, ntohs(p->vlan));
2034	}
2035	if (rq->polling) {
2036		if (lro)
2037			napi_gro_receive(&qs->napi, skb);
2038		else {
2039			if (unlikely(pi->iscsic.flags))
2040				cxgb3_process_iscsi_prov_pack(pi, skb);
2041			netif_receive_skb(skb);
2042		}
2043	} else
2044		netif_rx(skb);
2045}
2046
2047static inline int is_eth_tcp(u32 rss)
2048{
2049	return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2050}
2051
2052/**
2053 *	lro_add_page - add a page chunk to an LRO session
2054 *	@adap: the adapter
2055 *	@qs: the associated queue set
2056 *	@fl: the free list containing the page chunk to add
2057 *	@len: packet length
2058 *	@complete: Indicates the last fragment of a frame
2059 *
2060 *	Add a received packet contained in a page chunk to an existing LRO
2061 *	session.
2062 */
2063static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2064			 struct sge_fl *fl, int len, int complete)
2065{
2066	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2067	struct port_info *pi = netdev_priv(qs->netdev);
2068	struct sk_buff *skb = NULL;
2069	struct cpl_rx_pkt *cpl;
2070	struct skb_frag_struct *rx_frag;
2071	int nr_frags;
2072	int offset = 0;
2073
2074	if (!qs->nomem) {
2075		skb = napi_get_frags(&qs->napi);
2076		qs->nomem = !skb;
2077	}
2078
2079	fl->credits--;
2080
2081	pci_dma_sync_single_for_cpu(adap->pdev,
2082				    dma_unmap_addr(sd, dma_addr),
2083				    fl->buf_size - SGE_PG_RSVD,
2084				    PCI_DMA_FROMDEVICE);
2085
2086	(*sd->pg_chunk.p_cnt)--;
2087	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2088		pci_unmap_page(adap->pdev,
2089			       sd->pg_chunk.mapping,
2090			       fl->alloc_size,
2091			       PCI_DMA_FROMDEVICE);
2092
2093	if (!skb) {
2094		put_page(sd->pg_chunk.page);
2095		if (complete)
2096			qs->nomem = 0;
2097		return;
2098	}
2099
2100	rx_frag = skb_shinfo(skb)->frags;
2101	nr_frags = skb_shinfo(skb)->nr_frags;
2102
2103	if (!nr_frags) {
2104		offset = 2 + sizeof(struct cpl_rx_pkt);
2105		cpl = qs->lro_va = sd->pg_chunk.va + 2;
2106
2107		if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2108		     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2109			skb->ip_summed = CHECKSUM_UNNECESSARY;
2110			qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2111		} else
2112			skb->ip_summed = CHECKSUM_NONE;
2113	} else
2114		cpl = qs->lro_va;
2115
2116	len -= offset;
2117
2118	rx_frag += nr_frags;
2119	rx_frag->page = sd->pg_chunk.page;
2120	rx_frag->page_offset = sd->pg_chunk.offset + offset;
2121	rx_frag->size = len;
2122
2123	skb->len += len;
2124	skb->data_len += len;
2125	skb->truesize += len;
2126	skb_shinfo(skb)->nr_frags++;
2127
2128	if (!complete)
2129		return;
2130
2131	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2132
2133	if (cpl->vlan_valid)
2134		__vlan_hwaccel_put_tag(skb, ntohs(cpl->vlan));
2135	napi_gro_frags(&qs->napi);
2136}
2137
2138/**
2139 *	handle_rsp_cntrl_info - handles control information in a response
2140 *	@qs: the queue set corresponding to the response
2141 *	@flags: the response control flags
2142 *
2143 *	Handles the control information of an SGE response, such as GTS
2144 *	indications and completion credits for the queue set's Tx queues.
2145 *	HW coalesces credits, we don't do any extra SW coalescing.
2146 */
2147static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2148{
2149	unsigned int credits;
2150
2151#if USE_GTS
2152	if (flags & F_RSPD_TXQ0_GTS)
2153		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2154#endif
2155
2156	credits = G_RSPD_TXQ0_CR(flags);
2157	if (credits)
2158		qs->txq[TXQ_ETH].processed += credits;
2159
2160	credits = G_RSPD_TXQ2_CR(flags);
2161	if (credits)
2162		qs->txq[TXQ_CTRL].processed += credits;
2163
2164# if USE_GTS
2165	if (flags & F_RSPD_TXQ1_GTS)
2166		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2167# endif
2168	credits = G_RSPD_TXQ1_CR(flags);
2169	if (credits)
2170		qs->txq[TXQ_OFLD].processed += credits;
2171}
2172
2173/**
2174 *	check_ring_db - check if we need to ring any doorbells
2175 *	@adapter: the adapter
2176 *	@qs: the queue set whose Tx queues are to be examined
2177 *	@sleeping: indicates which Tx queue sent GTS
2178 *
2179 *	Checks if some of a queue set's Tx queues need to ring their doorbells
2180 *	to resume transmission after idling while they still have unprocessed
2181 *	descriptors.
2182 */
2183static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2184			  unsigned int sleeping)
2185{
2186	if (sleeping & F_RSPD_TXQ0_GTS) {
2187		struct sge_txq *txq = &qs->txq[TXQ_ETH];
2188
2189		if (txq->cleaned + txq->in_use != txq->processed &&
2190		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2191			set_bit(TXQ_RUNNING, &txq->flags);
2192			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2193				     V_EGRCNTX(txq->cntxt_id));
2194		}
2195	}
2196
2197	if (sleeping & F_RSPD_TXQ1_GTS) {
2198		struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2199
2200		if (txq->cleaned + txq->in_use != txq->processed &&
2201		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2202			set_bit(TXQ_RUNNING, &txq->flags);
2203			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2204				     V_EGRCNTX(txq->cntxt_id));
2205		}
2206	}
2207}
2208
2209/**
2210 *	is_new_response - check if a response is newly written
2211 *	@r: the response descriptor
2212 *	@q: the response queue
2213 *
2214 *	Returns true if a response descriptor contains a yet unprocessed
2215 *	response.
2216 */
2217static inline int is_new_response(const struct rsp_desc *r,
2218				  const struct sge_rspq *q)
2219{
2220	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2221}
2222
2223static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2224{
2225	q->pg_skb = NULL;
2226	q->rx_recycle_buf = 0;
2227}
2228
2229#define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2230#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2231			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2232			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2233			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2234
2235/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2236#define NOMEM_INTR_DELAY 2500
2237
2238/**
2239 *	process_responses - process responses from an SGE response queue
2240 *	@adap: the adapter
2241 *	@qs: the queue set to which the response queue belongs
2242 *	@budget: how many responses can be processed in this round
2243 *
2244 *	Process responses from an SGE response queue up to the supplied budget.
2245 *	Responses include received packets as well as credits and other events
2246 *	for the queues that belong to the response queue's queue set.
2247 *	A negative budget is effectively unlimited.
2248 *
2249 *	Additionally choose the interrupt holdoff time for the next interrupt
2250 *	on this queue.  If the system is under memory shortage use a fairly
2251 *	long delay to help recovery.
2252 */
2253static int process_responses(struct adapter *adap, struct sge_qset *qs,
2254			     int budget)
2255{
2256	struct sge_rspq *q = &qs->rspq;
2257	struct rsp_desc *r = &q->desc[q->cidx];
2258	int budget_left = budget;
2259	unsigned int sleeping = 0;
2260	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2261	int ngathered = 0;
2262
2263	q->next_holdoff = q->holdoff_tmr;
2264
2265	while (likely(budget_left && is_new_response(r, q))) {
2266		int packet_complete, eth, ethpad = 2;
2267		int lro = !!(qs->netdev->features & NETIF_F_GRO);
2268		struct sk_buff *skb = NULL;
2269		u32 len, flags;
2270		__be32 rss_hi, rss_lo;
2271
2272		rmb();
2273		eth = r->rss_hdr.opcode == CPL_RX_PKT;
2274		rss_hi = *(const __be32 *)r;
2275		rss_lo = r->rss_hdr.rss_hash_val;
2276		flags = ntohl(r->flags);
2277
2278		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2279			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2280			if (!skb)
2281				goto no_mem;
2282
2283			memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2284			skb->data[0] = CPL_ASYNC_NOTIF;
2285			rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2286			q->async_notif++;
2287		} else if (flags & F_RSPD_IMM_DATA_VALID) {
2288			skb = get_imm_packet(r);
2289			if (unlikely(!skb)) {
2290no_mem:
2291				q->next_holdoff = NOMEM_INTR_DELAY;
2292				q->nomem++;
2293				/* consume one credit since we tried */
2294				budget_left--;
2295				break;
2296			}
2297			q->imm_data++;
2298			ethpad = 0;
2299		} else if ((len = ntohl(r->len_cq)) != 0) {
2300			struct sge_fl *fl;
2301
2302			lro &= eth && is_eth_tcp(rss_hi);
2303
2304			fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2305			if (fl->use_pages) {
2306				void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2307
2308				prefetch(addr);
2309#if L1_CACHE_BYTES < 128
2310				prefetch(addr + L1_CACHE_BYTES);
2311#endif
2312				__refill_fl(adap, fl);
2313				if (lro > 0) {
2314					lro_add_page(adap, qs, fl,
2315						     G_RSPD_LEN(len),
2316						     flags & F_RSPD_EOP);
2317					 goto next_fl;
2318				}
2319
2320				skb = get_packet_pg(adap, fl, q,
2321						    G_RSPD_LEN(len),
2322						    eth ?
2323						    SGE_RX_DROP_THRES : 0);
2324				q->pg_skb = skb;
2325			} else
2326				skb = get_packet(adap, fl, G_RSPD_LEN(len),
2327						 eth ? SGE_RX_DROP_THRES : 0);
2328			if (unlikely(!skb)) {
2329				if (!eth)
2330					goto no_mem;
2331				q->rx_drops++;
2332			} else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2333				__skb_pull(skb, 2);
2334next_fl:
2335			if (++fl->cidx == fl->size)
2336				fl->cidx = 0;
2337		} else
2338			q->pure_rsps++;
2339
2340		if (flags & RSPD_CTRL_MASK) {
2341			sleeping |= flags & RSPD_GTS_MASK;
2342			handle_rsp_cntrl_info(qs, flags);
2343		}
2344
2345		r++;
2346		if (unlikely(++q->cidx == q->size)) {
2347			q->cidx = 0;
2348			q->gen ^= 1;
2349			r = q->desc;
2350		}
2351		prefetch(r);
2352
2353		if (++q->credits >= (q->size / 4)) {
2354			refill_rspq(adap, q, q->credits);
2355			q->credits = 0;
2356		}
2357
2358		packet_complete = flags &
2359				  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2360				   F_RSPD_ASYNC_NOTIF);
2361
2362		if (skb != NULL && packet_complete) {
2363			if (eth)
2364				rx_eth(adap, q, skb, ethpad, lro);
2365			else {
2366				q->offload_pkts++;
2367				/* Preserve the RSS info in csum & priority */
2368				skb->csum = rss_hi;
2369				skb->priority = rss_lo;
2370				ngathered = rx_offload(&adap->tdev, q, skb,
2371						       offload_skbs,
2372						       ngathered);
2373			}
2374
2375			if (flags & F_RSPD_EOP)
2376				clear_rspq_bufstate(q);
2377		}
2378		--budget_left;
2379	}
2380
2381	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2382
2383	if (sleeping)
2384		check_ring_db(adap, qs, sleeping);
2385
2386	smp_mb();		/* commit Tx queue .processed updates */
2387	if (unlikely(qs->txq_stopped != 0))
2388		restart_tx(qs);
2389
2390	budget -= budget_left;
2391	return budget;
2392}
2393
2394static inline int is_pure_response(const struct rsp_desc *r)
2395{
2396	__be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2397
2398	return (n | r->len_cq) == 0;
2399}
2400
2401/**
2402 *	napi_rx_handler - the NAPI handler for Rx processing
2403 *	@napi: the napi instance
2404 *	@budget: how many packets we can process in this round
2405 *
2406 *	Handler for new data events when using NAPI.
2407 */
2408static int napi_rx_handler(struct napi_struct *napi, int budget)
2409{
2410	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2411	struct adapter *adap = qs->adap;
2412	int work_done = process_responses(adap, qs, budget);
2413
2414	if (likely(work_done < budget)) {
2415		napi_complete(napi);
2416
2417		/*
2418		 * Because we don't atomically flush the following
2419		 * write it is possible that in very rare cases it can
2420		 * reach the device in a way that races with a new
2421		 * response being written plus an error interrupt
2422		 * causing the NAPI interrupt handler below to return
2423		 * unhandled status to the OS.  To protect against
2424		 * this would require flushing the write and doing
2425		 * both the write and the flush with interrupts off.
2426		 * Way too expensive and unjustifiable given the
2427		 * rarity of the race.
2428		 *
2429		 * The race cannot happen at all with MSI-X.
2430		 */
2431		t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2432			     V_NEWTIMER(qs->rspq.next_holdoff) |
2433			     V_NEWINDEX(qs->rspq.cidx));
2434	}
2435	return work_done;
2436}
2437
2438/*
2439 * Returns true if the device is already scheduled for polling.
2440 */
2441static inline int napi_is_scheduled(struct napi_struct *napi)
2442{
2443	return test_bit(NAPI_STATE_SCHED, &napi->state);
2444}
2445
2446/**
2447 *	process_pure_responses - process pure responses from a response queue
2448 *	@adap: the adapter
2449 *	@qs: the queue set owning the response queue
2450 *	@r: the first pure response to process
2451 *
2452 *	A simpler version of process_responses() that handles only pure (i.e.,
2453 *	non data-carrying) responses.  Such respones are too light-weight to
2454 *	justify calling a softirq under NAPI, so we handle them specially in
2455 *	the interrupt handler.  The function is called with a pointer to a
2456 *	response, which the caller must ensure is a valid pure response.
2457 *
2458 *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2459 */
2460static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2461				  struct rsp_desc *r)
2462{
2463	struct sge_rspq *q = &qs->rspq;
2464	unsigned int sleeping = 0;
2465
2466	do {
2467		u32 flags = ntohl(r->flags);
2468
2469		r++;
2470		if (unlikely(++q->cidx == q->size)) {
2471			q->cidx = 0;
2472			q->gen ^= 1;
2473			r = q->desc;
2474		}
2475		prefetch(r);
2476
2477		if (flags & RSPD_CTRL_MASK) {
2478			sleeping |= flags & RSPD_GTS_MASK;
2479			handle_rsp_cntrl_info(qs, flags);
2480		}
2481
2482		q->pure_rsps++;
2483		if (++q->credits >= (q->size / 4)) {
2484			refill_rspq(adap, q, q->credits);
2485			q->credits = 0;
2486		}
2487		if (!is_new_response(r, q))
2488			break;
2489		rmb();
2490	} while (is_pure_response(r));
2491
2492	if (sleeping)
2493		check_ring_db(adap, qs, sleeping);
2494
2495	smp_mb();		/* commit Tx queue .processed updates */
2496	if (unlikely(qs->txq_stopped != 0))
2497		restart_tx(qs);
2498
2499	return is_new_response(r, q);
2500}
2501
2502/**
2503 *	handle_responses - decide what to do with new responses in NAPI mode
2504 *	@adap: the adapter
2505 *	@q: the response queue
2506 *
2507 *	This is used by the NAPI interrupt handlers to decide what to do with
2508 *	new SGE responses.  If there are no new responses it returns -1.  If
2509 *	there are new responses and they are pure (i.e., non-data carrying)
2510 *	it handles them straight in hard interrupt context as they are very
2511 *	cheap and don't deliver any packets.  Finally, if there are any data
2512 *	signaling responses it schedules the NAPI handler.  Returns 1 if it
2513 *	schedules NAPI, 0 if all new responses were pure.
2514 *
2515 *	The caller must ascertain NAPI is not already running.
2516 */
2517static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2518{
2519	struct sge_qset *qs = rspq_to_qset(q);
2520	struct rsp_desc *r = &q->desc[q->cidx];
2521
2522	if (!is_new_response(r, q))
2523		return -1;
2524	rmb();
2525	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2526		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2527			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2528		return 0;
2529	}
2530	napi_schedule(&qs->napi);
2531	return 1;
2532}
2533
2534/*
2535 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2536 * (i.e., response queue serviced in hard interrupt).
2537 */
2538static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2539{
2540	struct sge_qset *qs = cookie;
2541	struct adapter *adap = qs->adap;
2542	struct sge_rspq *q = &qs->rspq;
2543
2544	spin_lock(&q->lock);
2545	if (process_responses(adap, qs, -1) == 0)
2546		q->unhandled_irqs++;
2547	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2548		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2549	spin_unlock(&q->lock);
2550	return IRQ_HANDLED;
2551}
2552
2553/*
2554 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2555 * (i.e., response queue serviced by NAPI polling).
2556 */
2557static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2558{
2559	struct sge_qset *qs = cookie;
2560	struct sge_rspq *q = &qs->rspq;
2561
2562	spin_lock(&q->lock);
2563
2564	if (handle_responses(qs->adap, q) < 0)
2565		q->unhandled_irqs++;
2566	spin_unlock(&q->lock);
2567	return IRQ_HANDLED;
2568}
2569
2570/*
2571 * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2572 * SGE response queues as well as error and other async events as they all use
2573 * the same MSI vector.  We use one SGE response queue per port in this mode
2574 * and protect all response queues with queue 0's lock.
2575 */
2576static irqreturn_t t3_intr_msi(int irq, void *cookie)
2577{
2578	int new_packets = 0;
2579	struct adapter *adap = cookie;
2580	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2581
2582	spin_lock(&q->lock);
2583
2584	if (process_responses(adap, &adap->sge.qs[0], -1)) {
2585		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2586			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2587		new_packets = 1;
2588	}
2589
2590	if (adap->params.nports == 2 &&
2591	    process_responses(adap, &adap->sge.qs[1], -1)) {
2592		struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2593
2594		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2595			     V_NEWTIMER(q1->next_holdoff) |
2596			     V_NEWINDEX(q1->cidx));
2597		new_packets = 1;
2598	}
2599
2600	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2601		q->unhandled_irqs++;
2602
2603	spin_unlock(&q->lock);
2604	return IRQ_HANDLED;
2605}
2606
2607static int rspq_check_napi(struct sge_qset *qs)
2608{
2609	struct sge_rspq *q = &qs->rspq;
2610
2611	if (!napi_is_scheduled(&qs->napi) &&
2612	    is_new_response(&q->desc[q->cidx], q)) {
2613		napi_schedule(&qs->napi);
2614		return 1;
2615	}
2616	return 0;
2617}
2618
2619/*
2620 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2621 * by NAPI polling).  Handles data events from SGE response queues as well as
2622 * error and other async events as they all use the same MSI vector.  We use
2623 * one SGE response queue per port in this mode and protect all response
2624 * queues with queue 0's lock.
2625 */
2626static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2627{
2628	int new_packets;
2629	struct adapter *adap = cookie;
2630	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2631
2632	spin_lock(&q->lock);
2633
2634	new_packets = rspq_check_napi(&adap->sge.qs[0]);
2635	if (adap->params.nports == 2)
2636		new_packets += rspq_check_napi(&adap->sge.qs[1]);
2637	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2638		q->unhandled_irqs++;
2639
2640	spin_unlock(&q->lock);
2641	return IRQ_HANDLED;
2642}
2643
2644/*
2645 * A helper function that processes responses and issues GTS.
2646 */
2647static inline int process_responses_gts(struct adapter *adap,
2648					struct sge_rspq *rq)
2649{
2650	int work;
2651
2652	work = process_responses(adap, rspq_to_qset(rq), -1);
2653	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2654		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2655	return work;
2656}
2657
2658/*
2659 * The legacy INTx interrupt handler.  This needs to handle data events from
2660 * SGE response queues as well as error and other async events as they all use
2661 * the same interrupt pin.  We use one SGE response queue per port in this mode
2662 * and protect all response queues with queue 0's lock.
2663 */
2664static irqreturn_t t3_intr(int irq, void *cookie)
2665{
2666	int work_done, w0, w1;
2667	struct adapter *adap = cookie;
2668	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2669	struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2670
2671	spin_lock(&q0->lock);
2672
2673	w0 = is_new_response(&q0->desc[q0->cidx], q0);
2674	w1 = adap->params.nports == 2 &&
2675	    is_new_response(&q1->desc[q1->cidx], q1);
2676
2677	if (likely(w0 | w1)) {
2678		t3_write_reg(adap, A_PL_CLI, 0);
2679		t3_read_reg(adap, A_PL_CLI);	/* flush */
2680
2681		if (likely(w0))
2682			process_responses_gts(adap, q0);
2683
2684		if (w1)
2685			process_responses_gts(adap, q1);
2686
2687		work_done = w0 | w1;
2688	} else
2689		work_done = t3_slow_intr_handler(adap);
2690
2691	spin_unlock(&q0->lock);
2692	return IRQ_RETVAL(work_done != 0);
2693}
2694
2695/*
2696 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2697 * Handles data events from SGE response queues as well as error and other
2698 * async events as they all use the same interrupt pin.  We use one SGE
2699 * response queue per port in this mode and protect all response queues with
2700 * queue 0's lock.
2701 */
2702static irqreturn_t t3b_intr(int irq, void *cookie)
2703{
2704	u32 map;
2705	struct adapter *adap = cookie;
2706	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2707
2708	t3_write_reg(adap, A_PL_CLI, 0);
2709	map = t3_read_reg(adap, A_SG_DATA_INTR);
2710
2711	if (unlikely(!map))	/* shared interrupt, most likely */
2712		return IRQ_NONE;
2713
2714	spin_lock(&q0->lock);
2715
2716	if (unlikely(map & F_ERRINTR))
2717		t3_slow_intr_handler(adap);
2718
2719	if (likely(map & 1))
2720		process_responses_gts(adap, q0);
2721
2722	if (map & 2)
2723		process_responses_gts(adap, &adap->sge.qs[1].rspq);
2724
2725	spin_unlock(&q0->lock);
2726	return IRQ_HANDLED;
2727}
2728
2729/*
2730 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2731 * Handles data events from SGE response queues as well as error and other
2732 * async events as they all use the same interrupt pin.  We use one SGE
2733 * response queue per port in this mode and protect all response queues with
2734 * queue 0's lock.
2735 */
2736static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2737{
2738	u32 map;
2739	struct adapter *adap = cookie;
2740	struct sge_qset *qs0 = &adap->sge.qs[0];
2741	struct sge_rspq *q0 = &qs0->rspq;
2742
2743	t3_write_reg(adap, A_PL_CLI, 0);
2744	map = t3_read_reg(adap, A_SG_DATA_INTR);
2745
2746	if (unlikely(!map))	/* shared interrupt, most likely */
2747		return IRQ_NONE;
2748
2749	spin_lock(&q0->lock);
2750
2751	if (unlikely(map & F_ERRINTR))
2752		t3_slow_intr_handler(adap);
2753
2754	if (likely(map & 1))
2755		napi_schedule(&qs0->napi);
2756
2757	if (map & 2)
2758		napi_schedule(&adap->sge.qs[1].napi);
2759
2760	spin_unlock(&q0->lock);
2761	return IRQ_HANDLED;
2762}
2763
2764/**
2765 *	t3_intr_handler - select the top-level interrupt handler
2766 *	@adap: the adapter
2767 *	@polling: whether using NAPI to service response queues
2768 *
2769 *	Selects the top-level interrupt handler based on the type of interrupts
2770 *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2771 *	response queues.
2772 */
2773irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2774{
2775	if (adap->flags & USING_MSIX)
2776		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2777	if (adap->flags & USING_MSI)
2778		return polling ? t3_intr_msi_napi : t3_intr_msi;
2779	if (adap->params.rev > 0)
2780		return polling ? t3b_intr_napi : t3b_intr;
2781	return t3_intr;
2782}
2783
2784#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2785		    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2786		    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2787		    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2788		    F_HIRCQPARITYERROR)
2789#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2790#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2791		      F_RSPQDISABLED)
2792
2793/**
2794 *	t3_sge_err_intr_handler - SGE async event interrupt handler
2795 *	@adapter: the adapter
2796 *
2797 *	Interrupt handler for SGE asynchronous (non-data) events.
2798 */
2799void t3_sge_err_intr_handler(struct adapter *adapter)
2800{
2801	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2802				 ~F_FLEMPTY;
2803
2804	if (status & SGE_PARERR)
2805		CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2806			 status & SGE_PARERR);
2807	if (status & SGE_FRAMINGERR)
2808		CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2809			 status & SGE_FRAMINGERR);
2810
2811	if (status & F_RSPQCREDITOVERFOW)
2812		CH_ALERT(adapter, "SGE response queue credit overflow\n");
2813
2814	if (status & F_RSPQDISABLED) {
2815		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2816
2817		CH_ALERT(adapter,
2818			 "packet delivered to disabled response queue "
2819			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2820	}
2821
2822	if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2823		queue_work(cxgb3_wq, &adapter->db_drop_task);
2824
2825	if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2826		queue_work(cxgb3_wq, &adapter->db_full_task);
2827
2828	if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2829		queue_work(cxgb3_wq, &adapter->db_empty_task);
2830
2831	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2832	if (status &  SGE_FATALERR)
2833		t3_fatal_err(adapter);
2834}
2835
2836/**
2837 *	sge_timer_tx - perform periodic maintenance of an SGE qset
2838 *	@data: the SGE queue set to maintain
2839 *
2840 *	Runs periodically from a timer to perform maintenance of an SGE queue
2841 *	set.  It performs two tasks:
2842 *
2843 *	Cleans up any completed Tx descriptors that may still be pending.
2844 *	Normal descriptor cleanup happens when new packets are added to a Tx
2845 *	queue so this timer is relatively infrequent and does any cleanup only
2846 *	if the Tx queue has not seen any new packets in a while.  We make a
2847 *	best effort attempt to reclaim descriptors, in that we don't wait
2848 *	around if we cannot get a queue's lock (which most likely is because
2849 *	someone else is queueing new packets and so will also handle the clean
2850 *	up).  Since control queues use immediate data exclusively we don't
2851 *	bother cleaning them up here.
2852 *
2853 */
2854static void sge_timer_tx(unsigned long data)
2855{
2856	struct sge_qset *qs = (struct sge_qset *)data;
2857	struct port_info *pi = netdev_priv(qs->netdev);
2858	struct adapter *adap = pi->adapter;
2859	unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2860	unsigned long next_period;
2861
2862	if (__netif_tx_trylock(qs->tx_q)) {
2863                tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2864                                                     TX_RECLAIM_TIMER_CHUNK);
2865		__netif_tx_unlock(qs->tx_q);
2866	}
2867
2868	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2869		tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2870						     TX_RECLAIM_TIMER_CHUNK);
2871		spin_unlock(&qs->txq[TXQ_OFLD].lock);
2872	}
2873
2874	next_period = TX_RECLAIM_PERIOD >>
2875                      (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2876                      TX_RECLAIM_TIMER_CHUNK);
2877	mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2878}
2879
2880/*
2881 *	sge_timer_rx - perform periodic maintenance of an SGE qset
2882 *	@data: the SGE queue set to maintain
2883 *
2884 *	a) Replenishes Rx queues that have run out due to memory shortage.
2885 *	Normally new Rx buffers are added when existing ones are consumed but
2886 *	when out of memory a queue can become empty.  We try to add only a few
2887 *	buffers here, the queue will be replenished fully as these new buffers
2888 *	are used up if memory shortage has subsided.
2889 *
2890 *	b) Return coalesced response queue credits in case a response queue is
2891 *	starved.
2892 *
2893 */
2894static void sge_timer_rx(unsigned long data)
2895{
2896	spinlock_t *lock;
2897	struct sge_qset *qs = (struct sge_qset *)data;
2898	struct port_info *pi = netdev_priv(qs->netdev);
2899	struct adapter *adap = pi->adapter;
2900	u32 status;
2901
2902	lock = adap->params.rev > 0 ?
2903	       &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2904
2905	if (!spin_trylock_irq(lock))
2906		goto out;
2907
2908	if (napi_is_scheduled(&qs->napi))
2909		goto unlock;
2910
2911	if (adap->params.rev < 4) {
2912		status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2913
2914		if (status & (1 << qs->rspq.cntxt_id)) {
2915			qs->rspq.starved++;
2916			if (qs->rspq.credits) {
2917				qs->rspq.credits--;
2918				refill_rspq(adap, &qs->rspq, 1);
2919				qs->rspq.restarted++;
2920				t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2921					     1 << qs->rspq.cntxt_id);
2922			}
2923		}
2924	}
2925
2926	if (qs->fl[0].credits < qs->fl[0].size)
2927		__refill_fl(adap, &qs->fl[0]);
2928	if (qs->fl[1].credits < qs->fl[1].size)
2929		__refill_fl(adap, &qs->fl[1]);
2930
2931unlock:
2932	spin_unlock_irq(lock);
2933out:
2934	mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2935}
2936
2937/**
2938 *	t3_update_qset_coalesce - update coalescing settings for a queue set
2939 *	@qs: the SGE queue set
2940 *	@p: new queue set parameters
2941 *
2942 *	Update the coalescing settings for an SGE queue set.  Nothing is done
2943 *	if the queue set is not initialized yet.
2944 */
2945void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2946{
2947	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2948	qs->rspq.polling = p->polling;
2949	qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2950}
2951
2952/**
2953 *	t3_sge_alloc_qset - initialize an SGE queue set
2954 *	@adapter: the adapter
2955 *	@id: the queue set id
2956 *	@nports: how many Ethernet ports will be using this queue set
2957 *	@irq_vec_idx: the IRQ vector index for response queue interrupts
2958 *	@p: configuration parameters for this queue set
2959 *	@ntxq: number of Tx queues for the queue set
2960 *	@netdev: net device associated with this queue set
2961 *	@netdevq: net device TX queue associated with this queue set
2962 *
2963 *	Allocate resources and initialize an SGE queue set.  A queue set
2964 *	comprises a response queue, two Rx free-buffer queues, and up to 3
2965 *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
2966 *	queue, offload queue, and control queue.
2967 */
2968int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2969		      int irq_vec_idx, const struct qset_params *p,
2970		      int ntxq, struct net_device *dev,
2971		      struct netdev_queue *netdevq)
2972{
2973	int i, avail, ret = -ENOMEM;
2974	struct sge_qset *q = &adapter->sge.qs[id];
2975
2976	init_qset_cntxt(q, id);
2977	setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2978	setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
2979
2980	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2981				   sizeof(struct rx_desc),
2982				   sizeof(struct rx_sw_desc),
2983				   &q->fl[0].phys_addr, &q->fl[0].sdesc);
2984	if (!q->fl[0].desc)
2985		goto err;
2986
2987	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2988				   sizeof(struct rx_desc),
2989				   sizeof(struct rx_sw_desc),
2990				   &q->fl[1].phys_addr, &q->fl[1].sdesc);
2991	if (!q->fl[1].desc)
2992		goto err;
2993
2994	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2995				  sizeof(struct rsp_desc), 0,
2996				  &q->rspq.phys_addr, NULL);
2997	if (!q->rspq.desc)
2998		goto err;
2999
3000	for (i = 0; i < ntxq; ++i) {
3001		/*
3002		 * The control queue always uses immediate data so does not
3003		 * need to keep track of any sk_buffs.
3004		 */
3005		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3006
3007		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3008					    sizeof(struct tx_desc), sz,
3009					    &q->txq[i].phys_addr,
3010					    &q->txq[i].sdesc);
3011		if (!q->txq[i].desc)
3012			goto err;
3013
3014		q->txq[i].gen = 1;
3015		q->txq[i].size = p->txq_size[i];
3016		spin_lock_init(&q->txq[i].lock);
3017		skb_queue_head_init(&q->txq[i].sendq);
3018	}
3019
3020	tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3021		     (unsigned long)q);
3022	tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3023		     (unsigned long)q);
3024
3025	q->fl[0].gen = q->fl[1].gen = 1;
3026	q->fl[0].size = p->fl_size;
3027	q->fl[1].size = p->jumbo_size;
3028
3029	q->rspq.gen = 1;
3030	q->rspq.size = p->rspq_size;
3031	spin_lock_init(&q->rspq.lock);
3032	skb_queue_head_init(&q->rspq.rx_queue);
3033
3034	q->txq[TXQ_ETH].stop_thres = nports *
3035	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3036
3037#if FL0_PG_CHUNK_SIZE > 0
3038	q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3039#else
3040	q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3041#endif
3042#if FL1_PG_CHUNK_SIZE > 0
3043	q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3044#else
3045	q->fl[1].buf_size = is_offload(adapter) ?
3046		(16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3047		MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3048#endif
3049
3050	q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3051	q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3052	q->fl[0].order = FL0_PG_ORDER;
3053	q->fl[1].order = FL1_PG_ORDER;
3054	q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3055	q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3056
3057	spin_lock_irq(&adapter->sge.reg_lock);
3058
3059	/* FL threshold comparison uses < */
3060	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3061				   q->rspq.phys_addr, q->rspq.size,
3062				   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3063	if (ret)
3064		goto err_unlock;
3065
3066	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3067		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3068					  q->fl[i].phys_addr, q->fl[i].size,
3069					  q->fl[i].buf_size - SGE_PG_RSVD,
3070					  p->cong_thres, 1, 0);
3071		if (ret)
3072			goto err_unlock;
3073	}
3074
3075	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3076				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3077				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3078				 1, 0);
3079	if (ret)
3080		goto err_unlock;
3081
3082	if (ntxq > 1) {
3083		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3084					 USE_GTS, SGE_CNTXT_OFLD, id,
3085					 q->txq[TXQ_OFLD].phys_addr,
3086					 q->txq[TXQ_OFLD].size, 0, 1, 0);
3087		if (ret)
3088			goto err_unlock;
3089	}
3090
3091	if (ntxq > 2) {
3092		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3093					 SGE_CNTXT_CTRL, id,
3094					 q->txq[TXQ_CTRL].phys_addr,
3095					 q->txq[TXQ_CTRL].size,
3096					 q->txq[TXQ_CTRL].token, 1, 0);
3097		if (ret)
3098			goto err_unlock;
3099	}
3100
3101	spin_unlock_irq(&adapter->sge.reg_lock);
3102
3103	q->adap = adapter;
3104	q->netdev = dev;
3105	q->tx_q = netdevq;
3106	t3_update_qset_coalesce(q, p);
3107
3108	avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3109			  GFP_KERNEL | __GFP_COMP);
3110	if (!avail) {
3111		CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3112		goto err;
3113	}
3114	if (avail < q->fl[0].size)
3115		CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3116			avail);
3117
3118	avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3119			  GFP_KERNEL | __GFP_COMP);
3120	if (avail < q->fl[1].size)
3121		CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3122			avail);
3123	refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3124
3125	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3126		     V_NEWTIMER(q->rspq.holdoff_tmr));
3127
3128	return 0;
3129
3130err_unlock:
3131	spin_unlock_irq(&adapter->sge.reg_lock);
3132err:
3133	t3_free_qset(adapter, q);
3134	return ret;
3135}
3136
3137/**
3138 *      t3_start_sge_timers - start SGE timer call backs
3139 *      @adap: the adapter
3140 *
3141 *      Starts each SGE queue set's timer call back
3142 */
3143void t3_start_sge_timers(struct adapter *adap)
3144{
3145	int i;
3146
3147	for (i = 0; i < SGE_QSETS; ++i) {
3148		struct sge_qset *q = &adap->sge.qs[i];
3149
3150	if (q->tx_reclaim_timer.function)
3151		mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3152
3153	if (q->rx_reclaim_timer.function)
3154		mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3155	}
3156}
3157
3158/**
3159 *	t3_stop_sge_timers - stop SGE timer call backs
3160 *	@adap: the adapter
3161 *
3162 *	Stops each SGE queue set's timer call back
3163 */
3164void t3_stop_sge_timers(struct adapter *adap)
3165{
3166	int i;
3167
3168	for (i = 0; i < SGE_QSETS; ++i) {
3169		struct sge_qset *q = &adap->sge.qs[i];
3170
3171		if (q->tx_reclaim_timer.function)
3172			del_timer_sync(&q->tx_reclaim_timer);
3173		if (q->rx_reclaim_timer.function)
3174			del_timer_sync(&q->rx_reclaim_timer);
3175	}
3176}
3177
3178/**
3179 *	t3_free_sge_resources - free SGE resources
3180 *	@adap: the adapter
3181 *
3182 *	Frees resources used by the SGE queue sets.
3183 */
3184void t3_free_sge_resources(struct adapter *adap)
3185{
3186	int i;
3187
3188	for (i = 0; i < SGE_QSETS; ++i)
3189		t3_free_qset(adap, &adap->sge.qs[i]);
3190}
3191
3192/**
3193 *	t3_sge_start - enable SGE
3194 *	@adap: the adapter
3195 *
3196 *	Enables the SGE for DMAs.  This is the last step in starting packet
3197 *	transfers.
3198 */
3199void t3_sge_start(struct adapter *adap)
3200{
3201	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3202}
3203
3204/**
3205 *	t3_sge_stop - disable SGE operation
3206 *	@adap: the adapter
3207 *
3208 *	Disables the DMA engine.  This can be called in emeregencies (e.g.,
3209 *	from error interrupts) or from normal process context.  In the latter
3210 *	case it also disables any pending queue restart tasklets.  Note that
3211 *	if it is called in interrupt context it cannot disable the restart
3212 *	tasklets as it cannot wait, however the tasklets will have no effect
3213 *	since the doorbells are disabled and the driver will call this again
3214 *	later from process context, at which time the tasklets will be stopped
3215 *	if they are still running.
3216 */
3217void t3_sge_stop(struct adapter *adap)
3218{
3219	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3220	if (!in_interrupt()) {
3221		int i;
3222
3223		for (i = 0; i < SGE_QSETS; ++i) {
3224			struct sge_qset *qs = &adap->sge.qs[i];
3225
3226			tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3227			tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3228		}
3229	}
3230}
3231
3232/**
3233 *	t3_sge_init - initialize SGE
3234 *	@adap: the adapter
3235 *	@p: the SGE parameters
3236 *
3237 *	Performs SGE initialization needed every time after a chip reset.
3238 *	We do not initialize any of the queue sets here, instead the driver
3239 *	top-level must request those individually.  We also do not enable DMA
3240 *	here, that should be done after the queues have been set up.
3241 */
3242void t3_sge_init(struct adapter *adap, struct sge_params *p)
3243{
3244	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3245
3246	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3247	    F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3248	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3249	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3250#if SGE_NUM_GENBITS == 1
3251	ctrl |= F_EGRGENCTRL;
3252#endif
3253	if (adap->params.rev > 0) {
3254		if (!(adap->flags & (USING_MSIX | USING_MSI)))
3255			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3256	}
3257	t3_write_reg(adap, A_SG_CONTROL, ctrl);
3258	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3259		     V_LORCQDRBTHRSH(512));
3260	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3261	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3262		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3263	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3264		     adap->params.rev < T3_REV_C ? 1000 : 500);
3265	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3266	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3267	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3268	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3269	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3270}
3271
3272/**
3273 *	t3_sge_prep - one-time SGE initialization
3274 *	@adap: the associated adapter
3275 *	@p: SGE parameters
3276 *
3277 *	Performs one-time initialization of SGE SW state.  Includes determining
3278 *	defaults for the assorted SGE parameters, which admins can change until
3279 *	they are used to initialize the SGE.
3280 */
3281void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3282{
3283	int i;
3284
3285	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3286	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3287
3288	for (i = 0; i < SGE_QSETS; ++i) {
3289		struct qset_params *q = p->qset + i;
3290
3291		q->polling = adap->params.rev > 0;
3292		q->coalesce_usecs = 5;
3293		q->rspq_size = 1024;
3294		q->fl_size = 1024;
3295 		q->jumbo_size = 512;
3296		q->txq_size[TXQ_ETH] = 1024;
3297		q->txq_size[TXQ_OFLD] = 1024;
3298		q->txq_size[TXQ_CTRL] = 256;
3299		q->cong_thres = 0;
3300	}
3301
3302	spin_lock_init(&adap->sge.reg_lock);
3303}