Loading...
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23/*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 *
31 * At the moment we only attach UBI devices by scanning, which will become a
32 * bottleneck when flashes reach certain large size. Then one may improve UBI
33 * and add other methods, although it does not seem to be easy to do.
34 */
35
36#include <linux/err.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/stringify.h>
40#include <linux/namei.h>
41#include <linux/stat.h>
42#include <linux/miscdevice.h>
43#include <linux/log2.h>
44#include <linux/kthread.h>
45#include <linux/kernel.h>
46#include <linux/slab.h>
47#include "ubi.h"
48
49/* Maximum length of the 'mtd=' parameter */
50#define MTD_PARAM_LEN_MAX 64
51
52#ifdef CONFIG_MTD_UBI_MODULE
53#define ubi_is_module() 1
54#else
55#define ubi_is_module() 0
56#endif
57
58/**
59 * struct mtd_dev_param - MTD device parameter description data structure.
60 * @name: MTD character device node path, MTD device name, or MTD device number
61 * string
62 * @vid_hdr_offs: VID header offset
63 */
64struct mtd_dev_param {
65 char name[MTD_PARAM_LEN_MAX];
66 int vid_hdr_offs;
67};
68
69/* Numbers of elements set in the @mtd_dev_param array */
70static int __initdata mtd_devs;
71
72/* MTD devices specification parameters */
73static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
74
75/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
76struct class *ubi_class;
77
78/* Slab cache for wear-leveling entries */
79struct kmem_cache *ubi_wl_entry_slab;
80
81/* UBI control character device */
82static struct miscdevice ubi_ctrl_cdev = {
83 .minor = MISC_DYNAMIC_MINOR,
84 .name = "ubi_ctrl",
85 .fops = &ubi_ctrl_cdev_operations,
86};
87
88/* All UBI devices in system */
89static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
90
91/* Serializes UBI devices creations and removals */
92DEFINE_MUTEX(ubi_devices_mutex);
93
94/* Protects @ubi_devices and @ubi->ref_count */
95static DEFINE_SPINLOCK(ubi_devices_lock);
96
97/* "Show" method for files in '/<sysfs>/class/ubi/' */
98static ssize_t ubi_version_show(struct class *class,
99 struct class_attribute *attr, char *buf)
100{
101 return sprintf(buf, "%d\n", UBI_VERSION);
102}
103
104/* UBI version attribute ('/<sysfs>/class/ubi/version') */
105static struct class_attribute ubi_version =
106 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
107
108static ssize_t dev_attribute_show(struct device *dev,
109 struct device_attribute *attr, char *buf);
110
111/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
112static struct device_attribute dev_eraseblock_size =
113 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
114static struct device_attribute dev_avail_eraseblocks =
115 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
116static struct device_attribute dev_total_eraseblocks =
117 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
118static struct device_attribute dev_volumes_count =
119 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
120static struct device_attribute dev_max_ec =
121 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
122static struct device_attribute dev_reserved_for_bad =
123 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
124static struct device_attribute dev_bad_peb_count =
125 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
126static struct device_attribute dev_max_vol_count =
127 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
128static struct device_attribute dev_min_io_size =
129 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
130static struct device_attribute dev_bgt_enabled =
131 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
132static struct device_attribute dev_mtd_num =
133 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
134
135/**
136 * ubi_volume_notify - send a volume change notification.
137 * @ubi: UBI device description object
138 * @vol: volume description object of the changed volume
139 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
140 *
141 * This is a helper function which notifies all subscribers about a volume
142 * change event (creation, removal, re-sizing, re-naming, updating). Returns
143 * zero in case of success and a negative error code in case of failure.
144 */
145int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
146{
147 struct ubi_notification nt;
148
149 ubi_do_get_device_info(ubi, &nt.di);
150 ubi_do_get_volume_info(ubi, vol, &nt.vi);
151 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
152}
153
154/**
155 * ubi_notify_all - send a notification to all volumes.
156 * @ubi: UBI device description object
157 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
158 * @nb: the notifier to call
159 *
160 * This function walks all volumes of UBI device @ubi and sends the @ntype
161 * notification for each volume. If @nb is %NULL, then all registered notifiers
162 * are called, otherwise only the @nb notifier is called. Returns the number of
163 * sent notifications.
164 */
165int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
166{
167 struct ubi_notification nt;
168 int i, count = 0;
169
170 ubi_do_get_device_info(ubi, &nt.di);
171
172 mutex_lock(&ubi->device_mutex);
173 for (i = 0; i < ubi->vtbl_slots; i++) {
174 /*
175 * Since the @ubi->device is locked, and we are not going to
176 * change @ubi->volumes, we do not have to lock
177 * @ubi->volumes_lock.
178 */
179 if (!ubi->volumes[i])
180 continue;
181
182 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
183 if (nb)
184 nb->notifier_call(nb, ntype, &nt);
185 else
186 blocking_notifier_call_chain(&ubi_notifiers, ntype,
187 &nt);
188 count += 1;
189 }
190 mutex_unlock(&ubi->device_mutex);
191
192 return count;
193}
194
195/**
196 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
197 * @nb: the notifier to call
198 *
199 * This function walks all UBI devices and volumes and sends the
200 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
201 * registered notifiers are called, otherwise only the @nb notifier is called.
202 * Returns the number of sent notifications.
203 */
204int ubi_enumerate_volumes(struct notifier_block *nb)
205{
206 int i, count = 0;
207
208 /*
209 * Since the @ubi_devices_mutex is locked, and we are not going to
210 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
211 */
212 for (i = 0; i < UBI_MAX_DEVICES; i++) {
213 struct ubi_device *ubi = ubi_devices[i];
214
215 if (!ubi)
216 continue;
217 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
218 }
219
220 return count;
221}
222
223/**
224 * ubi_get_device - get UBI device.
225 * @ubi_num: UBI device number
226 *
227 * This function returns UBI device description object for UBI device number
228 * @ubi_num, or %NULL if the device does not exist. This function increases the
229 * device reference count to prevent removal of the device. In other words, the
230 * device cannot be removed if its reference count is not zero.
231 */
232struct ubi_device *ubi_get_device(int ubi_num)
233{
234 struct ubi_device *ubi;
235
236 spin_lock(&ubi_devices_lock);
237 ubi = ubi_devices[ubi_num];
238 if (ubi) {
239 ubi_assert(ubi->ref_count >= 0);
240 ubi->ref_count += 1;
241 get_device(&ubi->dev);
242 }
243 spin_unlock(&ubi_devices_lock);
244
245 return ubi;
246}
247
248/**
249 * ubi_put_device - drop an UBI device reference.
250 * @ubi: UBI device description object
251 */
252void ubi_put_device(struct ubi_device *ubi)
253{
254 spin_lock(&ubi_devices_lock);
255 ubi->ref_count -= 1;
256 put_device(&ubi->dev);
257 spin_unlock(&ubi_devices_lock);
258}
259
260/**
261 * ubi_get_by_major - get UBI device by character device major number.
262 * @major: major number
263 *
264 * This function is similar to 'ubi_get_device()', but it searches the device
265 * by its major number.
266 */
267struct ubi_device *ubi_get_by_major(int major)
268{
269 int i;
270 struct ubi_device *ubi;
271
272 spin_lock(&ubi_devices_lock);
273 for (i = 0; i < UBI_MAX_DEVICES; i++) {
274 ubi = ubi_devices[i];
275 if (ubi && MAJOR(ubi->cdev.dev) == major) {
276 ubi_assert(ubi->ref_count >= 0);
277 ubi->ref_count += 1;
278 get_device(&ubi->dev);
279 spin_unlock(&ubi_devices_lock);
280 return ubi;
281 }
282 }
283 spin_unlock(&ubi_devices_lock);
284
285 return NULL;
286}
287
288/**
289 * ubi_major2num - get UBI device number by character device major number.
290 * @major: major number
291 *
292 * This function searches UBI device number object by its major number. If UBI
293 * device was not found, this function returns -ENODEV, otherwise the UBI device
294 * number is returned.
295 */
296int ubi_major2num(int major)
297{
298 int i, ubi_num = -ENODEV;
299
300 spin_lock(&ubi_devices_lock);
301 for (i = 0; i < UBI_MAX_DEVICES; i++) {
302 struct ubi_device *ubi = ubi_devices[i];
303
304 if (ubi && MAJOR(ubi->cdev.dev) == major) {
305 ubi_num = ubi->ubi_num;
306 break;
307 }
308 }
309 spin_unlock(&ubi_devices_lock);
310
311 return ubi_num;
312}
313
314/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
315static ssize_t dev_attribute_show(struct device *dev,
316 struct device_attribute *attr, char *buf)
317{
318 ssize_t ret;
319 struct ubi_device *ubi;
320
321 /*
322 * The below code looks weird, but it actually makes sense. We get the
323 * UBI device reference from the contained 'struct ubi_device'. But it
324 * is unclear if the device was removed or not yet. Indeed, if the
325 * device was removed before we increased its reference count,
326 * 'ubi_get_device()' will return -ENODEV and we fail.
327 *
328 * Remember, 'struct ubi_device' is freed in the release function, so
329 * we still can use 'ubi->ubi_num'.
330 */
331 ubi = container_of(dev, struct ubi_device, dev);
332 ubi = ubi_get_device(ubi->ubi_num);
333 if (!ubi)
334 return -ENODEV;
335
336 if (attr == &dev_eraseblock_size)
337 ret = sprintf(buf, "%d\n", ubi->leb_size);
338 else if (attr == &dev_avail_eraseblocks)
339 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
340 else if (attr == &dev_total_eraseblocks)
341 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
342 else if (attr == &dev_volumes_count)
343 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
344 else if (attr == &dev_max_ec)
345 ret = sprintf(buf, "%d\n", ubi->max_ec);
346 else if (attr == &dev_reserved_for_bad)
347 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
348 else if (attr == &dev_bad_peb_count)
349 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
350 else if (attr == &dev_max_vol_count)
351 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
352 else if (attr == &dev_min_io_size)
353 ret = sprintf(buf, "%d\n", ubi->min_io_size);
354 else if (attr == &dev_bgt_enabled)
355 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
356 else if (attr == &dev_mtd_num)
357 ret = sprintf(buf, "%d\n", ubi->mtd->index);
358 else
359 ret = -EINVAL;
360
361 ubi_put_device(ubi);
362 return ret;
363}
364
365static void dev_release(struct device *dev)
366{
367 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
368
369 kfree(ubi);
370}
371
372/**
373 * ubi_sysfs_init - initialize sysfs for an UBI device.
374 * @ubi: UBI device description object
375 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
376 * taken
377 *
378 * This function returns zero in case of success and a negative error code in
379 * case of failure.
380 */
381static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
382{
383 int err;
384
385 ubi->dev.release = dev_release;
386 ubi->dev.devt = ubi->cdev.dev;
387 ubi->dev.class = ubi_class;
388 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
389 err = device_register(&ubi->dev);
390 if (err)
391 return err;
392
393 *ref = 1;
394 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
395 if (err)
396 return err;
397 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
398 if (err)
399 return err;
400 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
401 if (err)
402 return err;
403 err = device_create_file(&ubi->dev, &dev_volumes_count);
404 if (err)
405 return err;
406 err = device_create_file(&ubi->dev, &dev_max_ec);
407 if (err)
408 return err;
409 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
410 if (err)
411 return err;
412 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
413 if (err)
414 return err;
415 err = device_create_file(&ubi->dev, &dev_max_vol_count);
416 if (err)
417 return err;
418 err = device_create_file(&ubi->dev, &dev_min_io_size);
419 if (err)
420 return err;
421 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
422 if (err)
423 return err;
424 err = device_create_file(&ubi->dev, &dev_mtd_num);
425 return err;
426}
427
428/**
429 * ubi_sysfs_close - close sysfs for an UBI device.
430 * @ubi: UBI device description object
431 */
432static void ubi_sysfs_close(struct ubi_device *ubi)
433{
434 device_remove_file(&ubi->dev, &dev_mtd_num);
435 device_remove_file(&ubi->dev, &dev_bgt_enabled);
436 device_remove_file(&ubi->dev, &dev_min_io_size);
437 device_remove_file(&ubi->dev, &dev_max_vol_count);
438 device_remove_file(&ubi->dev, &dev_bad_peb_count);
439 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
440 device_remove_file(&ubi->dev, &dev_max_ec);
441 device_remove_file(&ubi->dev, &dev_volumes_count);
442 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
443 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
444 device_remove_file(&ubi->dev, &dev_eraseblock_size);
445 device_unregister(&ubi->dev);
446}
447
448/**
449 * kill_volumes - destroy all user volumes.
450 * @ubi: UBI device description object
451 */
452static void kill_volumes(struct ubi_device *ubi)
453{
454 int i;
455
456 for (i = 0; i < ubi->vtbl_slots; i++)
457 if (ubi->volumes[i])
458 ubi_free_volume(ubi, ubi->volumes[i]);
459}
460
461/**
462 * uif_init - initialize user interfaces for an UBI device.
463 * @ubi: UBI device description object
464 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
465 * taken, otherwise set to %0
466 *
467 * This function initializes various user interfaces for an UBI device. If the
468 * initialization fails at an early stage, this function frees all the
469 * resources it allocated, returns an error, and @ref is set to %0. However,
470 * if the initialization fails after the UBI device was registered in the
471 * driver core subsystem, this function takes a reference to @ubi->dev, because
472 * otherwise the release function ('dev_release()') would free whole @ubi
473 * object. The @ref argument is set to %1 in this case. The caller has to put
474 * this reference.
475 *
476 * This function returns zero in case of success and a negative error code in
477 * case of failure.
478 */
479static int uif_init(struct ubi_device *ubi, int *ref)
480{
481 int i, err;
482 dev_t dev;
483
484 *ref = 0;
485 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
486
487 /*
488 * Major numbers for the UBI character devices are allocated
489 * dynamically. Major numbers of volume character devices are
490 * equivalent to ones of the corresponding UBI character device. Minor
491 * numbers of UBI character devices are 0, while minor numbers of
492 * volume character devices start from 1. Thus, we allocate one major
493 * number and ubi->vtbl_slots + 1 minor numbers.
494 */
495 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
496 if (err) {
497 ubi_err("cannot register UBI character devices");
498 return err;
499 }
500
501 ubi_assert(MINOR(dev) == 0);
502 cdev_init(&ubi->cdev, &ubi_cdev_operations);
503 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
504 ubi->cdev.owner = THIS_MODULE;
505
506 err = cdev_add(&ubi->cdev, dev, 1);
507 if (err) {
508 ubi_err("cannot add character device");
509 goto out_unreg;
510 }
511
512 err = ubi_sysfs_init(ubi, ref);
513 if (err)
514 goto out_sysfs;
515
516 for (i = 0; i < ubi->vtbl_slots; i++)
517 if (ubi->volumes[i]) {
518 err = ubi_add_volume(ubi, ubi->volumes[i]);
519 if (err) {
520 ubi_err("cannot add volume %d", i);
521 goto out_volumes;
522 }
523 }
524
525 return 0;
526
527out_volumes:
528 kill_volumes(ubi);
529out_sysfs:
530 if (*ref)
531 get_device(&ubi->dev);
532 ubi_sysfs_close(ubi);
533 cdev_del(&ubi->cdev);
534out_unreg:
535 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
536 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
537 return err;
538}
539
540/**
541 * uif_close - close user interfaces for an UBI device.
542 * @ubi: UBI device description object
543 *
544 * Note, since this function un-registers UBI volume device objects (@vol->dev),
545 * the memory allocated voe the volumes is freed as well (in the release
546 * function).
547 */
548static void uif_close(struct ubi_device *ubi)
549{
550 kill_volumes(ubi);
551 ubi_sysfs_close(ubi);
552 cdev_del(&ubi->cdev);
553 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
554}
555
556/**
557 * free_internal_volumes - free internal volumes.
558 * @ubi: UBI device description object
559 */
560static void free_internal_volumes(struct ubi_device *ubi)
561{
562 int i;
563
564 for (i = ubi->vtbl_slots;
565 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
566 kfree(ubi->volumes[i]->eba_tbl);
567 kfree(ubi->volumes[i]);
568 }
569}
570
571/**
572 * attach_by_scanning - attach an MTD device using scanning method.
573 * @ubi: UBI device descriptor
574 *
575 * This function returns zero in case of success and a negative error code in
576 * case of failure.
577 *
578 * Note, currently this is the only method to attach UBI devices. Hopefully in
579 * the future we'll have more scalable attaching methods and avoid full media
580 * scanning. But even in this case scanning will be needed as a fall-back
581 * attaching method if there are some on-flash table corruptions.
582 */
583static int attach_by_scanning(struct ubi_device *ubi)
584{
585 int err;
586 struct ubi_scan_info *si;
587
588 si = ubi_scan(ubi);
589 if (IS_ERR(si))
590 return PTR_ERR(si);
591
592 ubi->bad_peb_count = si->bad_peb_count;
593 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
594 ubi->corr_peb_count = si->corr_peb_count;
595 ubi->max_ec = si->max_ec;
596 ubi->mean_ec = si->mean_ec;
597 ubi_msg("max. sequence number: %llu", si->max_sqnum);
598
599 err = ubi_read_volume_table(ubi, si);
600 if (err)
601 goto out_si;
602
603 err = ubi_wl_init_scan(ubi, si);
604 if (err)
605 goto out_vtbl;
606
607 err = ubi_eba_init_scan(ubi, si);
608 if (err)
609 goto out_wl;
610
611 ubi_scan_destroy_si(si);
612 return 0;
613
614out_wl:
615 ubi_wl_close(ubi);
616out_vtbl:
617 free_internal_volumes(ubi);
618 vfree(ubi->vtbl);
619out_si:
620 ubi_scan_destroy_si(si);
621 return err;
622}
623
624/**
625 * io_init - initialize I/O sub-system for a given UBI device.
626 * @ubi: UBI device description object
627 *
628 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
629 * assumed:
630 * o EC header is always at offset zero - this cannot be changed;
631 * o VID header starts just after the EC header at the closest address
632 * aligned to @io->hdrs_min_io_size;
633 * o data starts just after the VID header at the closest address aligned to
634 * @io->min_io_size
635 *
636 * This function returns zero in case of success and a negative error code in
637 * case of failure.
638 */
639static int io_init(struct ubi_device *ubi)
640{
641 if (ubi->mtd->numeraseregions != 0) {
642 /*
643 * Some flashes have several erase regions. Different regions
644 * may have different eraseblock size and other
645 * characteristics. It looks like mostly multi-region flashes
646 * have one "main" region and one or more small regions to
647 * store boot loader code or boot parameters or whatever. I
648 * guess we should just pick the largest region. But this is
649 * not implemented.
650 */
651 ubi_err("multiple regions, not implemented");
652 return -EINVAL;
653 }
654
655 if (ubi->vid_hdr_offset < 0)
656 return -EINVAL;
657
658 /*
659 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
660 * physical eraseblocks maximum.
661 */
662
663 ubi->peb_size = ubi->mtd->erasesize;
664 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
665 ubi->flash_size = ubi->mtd->size;
666
667 if (ubi->mtd->block_isbad && ubi->mtd->block_markbad)
668 ubi->bad_allowed = 1;
669
670 if (ubi->mtd->type == MTD_NORFLASH) {
671 ubi_assert(ubi->mtd->writesize == 1);
672 ubi->nor_flash = 1;
673 }
674
675 ubi->min_io_size = ubi->mtd->writesize;
676 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
677
678 /*
679 * Make sure minimal I/O unit is power of 2. Note, there is no
680 * fundamental reason for this assumption. It is just an optimization
681 * which allows us to avoid costly division operations.
682 */
683 if (!is_power_of_2(ubi->min_io_size)) {
684 ubi_err("min. I/O unit (%d) is not power of 2",
685 ubi->min_io_size);
686 return -EINVAL;
687 }
688
689 ubi_assert(ubi->hdrs_min_io_size > 0);
690 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
691 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
692
693 ubi->max_write_size = ubi->mtd->writebufsize;
694 /*
695 * Maximum write size has to be greater or equivalent to min. I/O
696 * size, and be multiple of min. I/O size.
697 */
698 if (ubi->max_write_size < ubi->min_io_size ||
699 ubi->max_write_size % ubi->min_io_size ||
700 !is_power_of_2(ubi->max_write_size)) {
701 ubi_err("bad write buffer size %d for %d min. I/O unit",
702 ubi->max_write_size, ubi->min_io_size);
703 return -EINVAL;
704 }
705
706 /* Calculate default aligned sizes of EC and VID headers */
707 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
708 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
709
710 dbg_msg("min_io_size %d", ubi->min_io_size);
711 dbg_msg("max_write_size %d", ubi->max_write_size);
712 dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
713 dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
714 dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
715
716 if (ubi->vid_hdr_offset == 0)
717 /* Default offset */
718 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
719 ubi->ec_hdr_alsize;
720 else {
721 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
722 ~(ubi->hdrs_min_io_size - 1);
723 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
724 ubi->vid_hdr_aloffset;
725 }
726
727 /* Similar for the data offset */
728 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
729 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
730
731 dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset);
732 dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
733 dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift);
734 dbg_msg("leb_start %d", ubi->leb_start);
735
736 /* The shift must be aligned to 32-bit boundary */
737 if (ubi->vid_hdr_shift % 4) {
738 ubi_err("unaligned VID header shift %d",
739 ubi->vid_hdr_shift);
740 return -EINVAL;
741 }
742
743 /* Check sanity */
744 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
745 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
746 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
747 ubi->leb_start & (ubi->min_io_size - 1)) {
748 ubi_err("bad VID header (%d) or data offsets (%d)",
749 ubi->vid_hdr_offset, ubi->leb_start);
750 return -EINVAL;
751 }
752
753 /*
754 * Set maximum amount of physical erroneous eraseblocks to be 10%.
755 * Erroneous PEB are those which have read errors.
756 */
757 ubi->max_erroneous = ubi->peb_count / 10;
758 if (ubi->max_erroneous < 16)
759 ubi->max_erroneous = 16;
760 dbg_msg("max_erroneous %d", ubi->max_erroneous);
761
762 /*
763 * It may happen that EC and VID headers are situated in one minimal
764 * I/O unit. In this case we can only accept this UBI image in
765 * read-only mode.
766 */
767 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
768 ubi_warn("EC and VID headers are in the same minimal I/O unit, "
769 "switch to read-only mode");
770 ubi->ro_mode = 1;
771 }
772
773 ubi->leb_size = ubi->peb_size - ubi->leb_start;
774
775 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
776 ubi_msg("MTD device %d is write-protected, attach in "
777 "read-only mode", ubi->mtd->index);
778 ubi->ro_mode = 1;
779 }
780
781 ubi_msg("physical eraseblock size: %d bytes (%d KiB)",
782 ubi->peb_size, ubi->peb_size >> 10);
783 ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size);
784 ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size);
785 if (ubi->hdrs_min_io_size != ubi->min_io_size)
786 ubi_msg("sub-page size: %d",
787 ubi->hdrs_min_io_size);
788 ubi_msg("VID header offset: %d (aligned %d)",
789 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
790 ubi_msg("data offset: %d", ubi->leb_start);
791
792 /*
793 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
794 * unfortunately, MTD does not provide this information. We should loop
795 * over all physical eraseblocks and invoke mtd->block_is_bad() for
796 * each physical eraseblock. So, we skip ubi->bad_peb_count
797 * uninitialized and initialize it after scanning.
798 */
799
800 return 0;
801}
802
803/**
804 * autoresize - re-size the volume which has the "auto-resize" flag set.
805 * @ubi: UBI device description object
806 * @vol_id: ID of the volume to re-size
807 *
808 * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
809 * the volume table to the largest possible size. See comments in ubi-header.h
810 * for more description of the flag. Returns zero in case of success and a
811 * negative error code in case of failure.
812 */
813static int autoresize(struct ubi_device *ubi, int vol_id)
814{
815 struct ubi_volume_desc desc;
816 struct ubi_volume *vol = ubi->volumes[vol_id];
817 int err, old_reserved_pebs = vol->reserved_pebs;
818
819 /*
820 * Clear the auto-resize flag in the volume in-memory copy of the
821 * volume table, and 'ubi_resize_volume()' will propagate this change
822 * to the flash.
823 */
824 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
825
826 if (ubi->avail_pebs == 0) {
827 struct ubi_vtbl_record vtbl_rec;
828
829 /*
830 * No available PEBs to re-size the volume, clear the flag on
831 * flash and exit.
832 */
833 memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
834 sizeof(struct ubi_vtbl_record));
835 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
836 if (err)
837 ubi_err("cannot clean auto-resize flag for volume %d",
838 vol_id);
839 } else {
840 desc.vol = vol;
841 err = ubi_resize_volume(&desc,
842 old_reserved_pebs + ubi->avail_pebs);
843 if (err)
844 ubi_err("cannot auto-resize volume %d", vol_id);
845 }
846
847 if (err)
848 return err;
849
850 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
851 vol->name, old_reserved_pebs, vol->reserved_pebs);
852 return 0;
853}
854
855/**
856 * ubi_attach_mtd_dev - attach an MTD device.
857 * @mtd: MTD device description object
858 * @ubi_num: number to assign to the new UBI device
859 * @vid_hdr_offset: VID header offset
860 *
861 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
862 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
863 * which case this function finds a vacant device number and assigns it
864 * automatically. Returns the new UBI device number in case of success and a
865 * negative error code in case of failure.
866 *
867 * Note, the invocations of this function has to be serialized by the
868 * @ubi_devices_mutex.
869 */
870int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
871{
872 struct ubi_device *ubi;
873 int i, err, ref = 0;
874
875 /*
876 * Check if we already have the same MTD device attached.
877 *
878 * Note, this function assumes that UBI devices creations and deletions
879 * are serialized, so it does not take the &ubi_devices_lock.
880 */
881 for (i = 0; i < UBI_MAX_DEVICES; i++) {
882 ubi = ubi_devices[i];
883 if (ubi && mtd->index == ubi->mtd->index) {
884 dbg_err("mtd%d is already attached to ubi%d",
885 mtd->index, i);
886 return -EEXIST;
887 }
888 }
889
890 /*
891 * Make sure this MTD device is not emulated on top of an UBI volume
892 * already. Well, generally this recursion works fine, but there are
893 * different problems like the UBI module takes a reference to itself
894 * by attaching (and thus, opening) the emulated MTD device. This
895 * results in inability to unload the module. And in general it makes
896 * no sense to attach emulated MTD devices, so we prohibit this.
897 */
898 if (mtd->type == MTD_UBIVOLUME) {
899 ubi_err("refuse attaching mtd%d - it is already emulated on "
900 "top of UBI", mtd->index);
901 return -EINVAL;
902 }
903
904 if (ubi_num == UBI_DEV_NUM_AUTO) {
905 /* Search for an empty slot in the @ubi_devices array */
906 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
907 if (!ubi_devices[ubi_num])
908 break;
909 if (ubi_num == UBI_MAX_DEVICES) {
910 dbg_err("only %d UBI devices may be created",
911 UBI_MAX_DEVICES);
912 return -ENFILE;
913 }
914 } else {
915 if (ubi_num >= UBI_MAX_DEVICES)
916 return -EINVAL;
917
918 /* Make sure ubi_num is not busy */
919 if (ubi_devices[ubi_num]) {
920 dbg_err("ubi%d already exists", ubi_num);
921 return -EEXIST;
922 }
923 }
924
925 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
926 if (!ubi)
927 return -ENOMEM;
928
929 ubi->mtd = mtd;
930 ubi->ubi_num = ubi_num;
931 ubi->vid_hdr_offset = vid_hdr_offset;
932 ubi->autoresize_vol_id = -1;
933
934 mutex_init(&ubi->buf_mutex);
935 mutex_init(&ubi->ckvol_mutex);
936 mutex_init(&ubi->device_mutex);
937 spin_lock_init(&ubi->volumes_lock);
938
939 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
940 dbg_msg("sizeof(struct ubi_scan_leb) %zu", sizeof(struct ubi_scan_leb));
941 dbg_msg("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
942
943 err = io_init(ubi);
944 if (err)
945 goto out_free;
946
947 err = -ENOMEM;
948 ubi->peb_buf1 = vmalloc(ubi->peb_size);
949 if (!ubi->peb_buf1)
950 goto out_free;
951
952 ubi->peb_buf2 = vmalloc(ubi->peb_size);
953 if (!ubi->peb_buf2)
954 goto out_free;
955
956 err = ubi_debugging_init_dev(ubi);
957 if (err)
958 goto out_free;
959
960 err = attach_by_scanning(ubi);
961 if (err) {
962 dbg_err("failed to attach by scanning, error %d", err);
963 goto out_debugging;
964 }
965
966 if (ubi->autoresize_vol_id != -1) {
967 err = autoresize(ubi, ubi->autoresize_vol_id);
968 if (err)
969 goto out_detach;
970 }
971
972 err = uif_init(ubi, &ref);
973 if (err)
974 goto out_detach;
975
976 err = ubi_debugfs_init_dev(ubi);
977 if (err)
978 goto out_uif;
979
980 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
981 if (IS_ERR(ubi->bgt_thread)) {
982 err = PTR_ERR(ubi->bgt_thread);
983 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
984 err);
985 goto out_debugfs;
986 }
987
988 ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
989 ubi_msg("MTD device name: \"%s\"", mtd->name);
990 ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20);
991 ubi_msg("number of good PEBs: %d", ubi->good_peb_count);
992 ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count);
993 ubi_msg("number of corrupted PEBs: %d", ubi->corr_peb_count);
994 ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots);
995 ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD);
996 ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
997 ubi_msg("number of user volumes: %d",
998 ubi->vol_count - UBI_INT_VOL_COUNT);
999 ubi_msg("available PEBs: %d", ubi->avail_pebs);
1000 ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
1001 ubi_msg("number of PEBs reserved for bad PEB handling: %d",
1002 ubi->beb_rsvd_pebs);
1003 ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
1004 ubi_msg("image sequence number: %d", ubi->image_seq);
1005
1006 /*
1007 * The below lock makes sure we do not race with 'ubi_thread()' which
1008 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1009 */
1010 spin_lock(&ubi->wl_lock);
1011 ubi->thread_enabled = 1;
1012 wake_up_process(ubi->bgt_thread);
1013 spin_unlock(&ubi->wl_lock);
1014
1015 ubi_devices[ubi_num] = ubi;
1016 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1017 return ubi_num;
1018
1019out_debugfs:
1020 ubi_debugfs_exit_dev(ubi);
1021out_uif:
1022 get_device(&ubi->dev);
1023 ubi_assert(ref);
1024 uif_close(ubi);
1025out_detach:
1026 ubi_wl_close(ubi);
1027 free_internal_volumes(ubi);
1028 vfree(ubi->vtbl);
1029out_debugging:
1030 ubi_debugging_exit_dev(ubi);
1031out_free:
1032 vfree(ubi->peb_buf1);
1033 vfree(ubi->peb_buf2);
1034 if (ref)
1035 put_device(&ubi->dev);
1036 else
1037 kfree(ubi);
1038 return err;
1039}
1040
1041/**
1042 * ubi_detach_mtd_dev - detach an MTD device.
1043 * @ubi_num: UBI device number to detach from
1044 * @anyway: detach MTD even if device reference count is not zero
1045 *
1046 * This function destroys an UBI device number @ubi_num and detaches the
1047 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1048 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1049 * exist.
1050 *
1051 * Note, the invocations of this function has to be serialized by the
1052 * @ubi_devices_mutex.
1053 */
1054int ubi_detach_mtd_dev(int ubi_num, int anyway)
1055{
1056 struct ubi_device *ubi;
1057
1058 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1059 return -EINVAL;
1060
1061 ubi = ubi_get_device(ubi_num);
1062 if (!ubi)
1063 return -EINVAL;
1064
1065 spin_lock(&ubi_devices_lock);
1066 put_device(&ubi->dev);
1067 ubi->ref_count -= 1;
1068 if (ubi->ref_count) {
1069 if (!anyway) {
1070 spin_unlock(&ubi_devices_lock);
1071 return -EBUSY;
1072 }
1073 /* This may only happen if there is a bug */
1074 ubi_err("%s reference count %d, destroy anyway",
1075 ubi->ubi_name, ubi->ref_count);
1076 }
1077 ubi_devices[ubi_num] = NULL;
1078 spin_unlock(&ubi_devices_lock);
1079
1080 ubi_assert(ubi_num == ubi->ubi_num);
1081 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1082 dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1083
1084 /*
1085 * Before freeing anything, we have to stop the background thread to
1086 * prevent it from doing anything on this device while we are freeing.
1087 */
1088 if (ubi->bgt_thread)
1089 kthread_stop(ubi->bgt_thread);
1090
1091 /*
1092 * Get a reference to the device in order to prevent 'dev_release()'
1093 * from freeing the @ubi object.
1094 */
1095 get_device(&ubi->dev);
1096
1097 ubi_debugfs_exit_dev(ubi);
1098 uif_close(ubi);
1099 ubi_wl_close(ubi);
1100 free_internal_volumes(ubi);
1101 vfree(ubi->vtbl);
1102 put_mtd_device(ubi->mtd);
1103 ubi_debugging_exit_dev(ubi);
1104 vfree(ubi->peb_buf1);
1105 vfree(ubi->peb_buf2);
1106 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1107 put_device(&ubi->dev);
1108 return 0;
1109}
1110
1111/**
1112 * open_mtd_by_chdev - open an MTD device by its character device node path.
1113 * @mtd_dev: MTD character device node path
1114 *
1115 * This helper function opens an MTD device by its character node device path.
1116 * Returns MTD device description object in case of success and a negative
1117 * error code in case of failure.
1118 */
1119static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1120{
1121 int err, major, minor, mode;
1122 struct path path;
1123
1124 /* Probably this is an MTD character device node path */
1125 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1126 if (err)
1127 return ERR_PTR(err);
1128
1129 /* MTD device number is defined by the major / minor numbers */
1130 major = imajor(path.dentry->d_inode);
1131 minor = iminor(path.dentry->d_inode);
1132 mode = path.dentry->d_inode->i_mode;
1133 path_put(&path);
1134 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1135 return ERR_PTR(-EINVAL);
1136
1137 if (minor & 1)
1138 /*
1139 * Just do not think the "/dev/mtdrX" devices support is need,
1140 * so do not support them to avoid doing extra work.
1141 */
1142 return ERR_PTR(-EINVAL);
1143
1144 return get_mtd_device(NULL, minor / 2);
1145}
1146
1147/**
1148 * open_mtd_device - open MTD device by name, character device path, or number.
1149 * @mtd_dev: name, character device node path, or MTD device device number
1150 *
1151 * This function tries to open and MTD device described by @mtd_dev string,
1152 * which is first treated as ASCII MTD device number, and if it is not true, it
1153 * is treated as MTD device name, and if that is also not true, it is treated
1154 * as MTD character device node path. Returns MTD device description object in
1155 * case of success and a negative error code in case of failure.
1156 */
1157static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1158{
1159 struct mtd_info *mtd;
1160 int mtd_num;
1161 char *endp;
1162
1163 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1164 if (*endp != '\0' || mtd_dev == endp) {
1165 /*
1166 * This does not look like an ASCII integer, probably this is
1167 * MTD device name.
1168 */
1169 mtd = get_mtd_device_nm(mtd_dev);
1170 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1171 /* Probably this is an MTD character device node path */
1172 mtd = open_mtd_by_chdev(mtd_dev);
1173 } else
1174 mtd = get_mtd_device(NULL, mtd_num);
1175
1176 return mtd;
1177}
1178
1179static int __init ubi_init(void)
1180{
1181 int err, i, k;
1182
1183 /* Ensure that EC and VID headers have correct size */
1184 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1185 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1186
1187 if (mtd_devs > UBI_MAX_DEVICES) {
1188 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1189 return -EINVAL;
1190 }
1191
1192 /* Create base sysfs directory and sysfs files */
1193 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1194 if (IS_ERR(ubi_class)) {
1195 err = PTR_ERR(ubi_class);
1196 ubi_err("cannot create UBI class");
1197 goto out;
1198 }
1199
1200 err = class_create_file(ubi_class, &ubi_version);
1201 if (err) {
1202 ubi_err("cannot create sysfs file");
1203 goto out_class;
1204 }
1205
1206 err = misc_register(&ubi_ctrl_cdev);
1207 if (err) {
1208 ubi_err("cannot register device");
1209 goto out_version;
1210 }
1211
1212 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1213 sizeof(struct ubi_wl_entry),
1214 0, 0, NULL);
1215 if (!ubi_wl_entry_slab)
1216 goto out_dev_unreg;
1217
1218 err = ubi_debugfs_init();
1219 if (err)
1220 goto out_slab;
1221
1222
1223 /* Attach MTD devices */
1224 for (i = 0; i < mtd_devs; i++) {
1225 struct mtd_dev_param *p = &mtd_dev_param[i];
1226 struct mtd_info *mtd;
1227
1228 cond_resched();
1229
1230 mtd = open_mtd_device(p->name);
1231 if (IS_ERR(mtd)) {
1232 err = PTR_ERR(mtd);
1233 goto out_detach;
1234 }
1235
1236 mutex_lock(&ubi_devices_mutex);
1237 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1238 p->vid_hdr_offs);
1239 mutex_unlock(&ubi_devices_mutex);
1240 if (err < 0) {
1241 ubi_err("cannot attach mtd%d", mtd->index);
1242 put_mtd_device(mtd);
1243
1244 /*
1245 * Originally UBI stopped initializing on any error.
1246 * However, later on it was found out that this
1247 * behavior is not very good when UBI is compiled into
1248 * the kernel and the MTD devices to attach are passed
1249 * through the command line. Indeed, UBI failure
1250 * stopped whole boot sequence.
1251 *
1252 * To fix this, we changed the behavior for the
1253 * non-module case, but preserved the old behavior for
1254 * the module case, just for compatibility. This is a
1255 * little inconsistent, though.
1256 */
1257 if (ubi_is_module())
1258 goto out_detach;
1259 }
1260 }
1261
1262 return 0;
1263
1264out_detach:
1265 for (k = 0; k < i; k++)
1266 if (ubi_devices[k]) {
1267 mutex_lock(&ubi_devices_mutex);
1268 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1269 mutex_unlock(&ubi_devices_mutex);
1270 }
1271 ubi_debugfs_exit();
1272out_slab:
1273 kmem_cache_destroy(ubi_wl_entry_slab);
1274out_dev_unreg:
1275 misc_deregister(&ubi_ctrl_cdev);
1276out_version:
1277 class_remove_file(ubi_class, &ubi_version);
1278out_class:
1279 class_destroy(ubi_class);
1280out:
1281 ubi_err("UBI error: cannot initialize UBI, error %d", err);
1282 return err;
1283}
1284module_init(ubi_init);
1285
1286static void __exit ubi_exit(void)
1287{
1288 int i;
1289
1290 for (i = 0; i < UBI_MAX_DEVICES; i++)
1291 if (ubi_devices[i]) {
1292 mutex_lock(&ubi_devices_mutex);
1293 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1294 mutex_unlock(&ubi_devices_mutex);
1295 }
1296 ubi_debugfs_exit();
1297 kmem_cache_destroy(ubi_wl_entry_slab);
1298 misc_deregister(&ubi_ctrl_cdev);
1299 class_remove_file(ubi_class, &ubi_version);
1300 class_destroy(ubi_class);
1301}
1302module_exit(ubi_exit);
1303
1304/**
1305 * bytes_str_to_int - convert a number of bytes string into an integer.
1306 * @str: the string to convert
1307 *
1308 * This function returns positive resulting integer in case of success and a
1309 * negative error code in case of failure.
1310 */
1311static int __init bytes_str_to_int(const char *str)
1312{
1313 char *endp;
1314 unsigned long result;
1315
1316 result = simple_strtoul(str, &endp, 0);
1317 if (str == endp || result >= INT_MAX) {
1318 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1319 str);
1320 return -EINVAL;
1321 }
1322
1323 switch (*endp) {
1324 case 'G':
1325 result *= 1024;
1326 case 'M':
1327 result *= 1024;
1328 case 'K':
1329 result *= 1024;
1330 if (endp[1] == 'i' && endp[2] == 'B')
1331 endp += 2;
1332 case '\0':
1333 break;
1334 default:
1335 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1336 str);
1337 return -EINVAL;
1338 }
1339
1340 return result;
1341}
1342
1343/**
1344 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1345 * @val: the parameter value to parse
1346 * @kp: not used
1347 *
1348 * This function returns zero in case of success and a negative error code in
1349 * case of error.
1350 */
1351static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1352{
1353 int i, len;
1354 struct mtd_dev_param *p;
1355 char buf[MTD_PARAM_LEN_MAX];
1356 char *pbuf = &buf[0];
1357 char *tokens[2] = {NULL, NULL};
1358
1359 if (!val)
1360 return -EINVAL;
1361
1362 if (mtd_devs == UBI_MAX_DEVICES) {
1363 printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1364 UBI_MAX_DEVICES);
1365 return -EINVAL;
1366 }
1367
1368 len = strnlen(val, MTD_PARAM_LEN_MAX);
1369 if (len == MTD_PARAM_LEN_MAX) {
1370 printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1371 "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1372 return -EINVAL;
1373 }
1374
1375 if (len == 0) {
1376 printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1377 "ignored\n");
1378 return 0;
1379 }
1380
1381 strcpy(buf, val);
1382
1383 /* Get rid of the final newline */
1384 if (buf[len - 1] == '\n')
1385 buf[len - 1] = '\0';
1386
1387 for (i = 0; i < 2; i++)
1388 tokens[i] = strsep(&pbuf, ",");
1389
1390 if (pbuf) {
1391 printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1392 val);
1393 return -EINVAL;
1394 }
1395
1396 p = &mtd_dev_param[mtd_devs];
1397 strcpy(&p->name[0], tokens[0]);
1398
1399 if (tokens[1])
1400 p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1401
1402 if (p->vid_hdr_offs < 0)
1403 return p->vid_hdr_offs;
1404
1405 mtd_devs += 1;
1406 return 0;
1407}
1408
1409module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1410MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1411 "mtd=<name|num|path>[,<vid_hdr_offs>].\n"
1412 "Multiple \"mtd\" parameters may be specified.\n"
1413 "MTD devices may be specified by their number, name, or "
1414 "path to the MTD character device node.\n"
1415 "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1416 "header position to be used by UBI.\n"
1417 "Example 1: mtd=/dev/mtd0 - attach MTD device "
1418 "/dev/mtd0.\n"
1419 "Example 2: mtd=content,1984 mtd=4 - attach MTD device "
1420 "with name \"content\" using VID header offset 1984, and "
1421 "MTD device number 4 with default VID header offset.");
1422
1423MODULE_VERSION(__stringify(UBI_VERSION));
1424MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1425MODULE_AUTHOR("Artem Bityutskiy");
1426MODULE_LICENSE("GPL");
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23/*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32#include <linux/err.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/stringify.h>
36#include <linux/namei.h>
37#include <linux/stat.h>
38#include <linux/miscdevice.h>
39#include <linux/log2.h>
40#include <linux/kthread.h>
41#include <linux/kernel.h>
42#include <linux/slab.h>
43#include "ubi.h"
44
45/* Maximum length of the 'mtd=' parameter */
46#define MTD_PARAM_LEN_MAX 64
47
48#ifdef CONFIG_MTD_UBI_MODULE
49#define ubi_is_module() 1
50#else
51#define ubi_is_module() 0
52#endif
53
54/**
55 * struct mtd_dev_param - MTD device parameter description data structure.
56 * @name: MTD character device node path, MTD device name, or MTD device number
57 * string
58 * @vid_hdr_offs: VID header offset
59 */
60struct mtd_dev_param {
61 char name[MTD_PARAM_LEN_MAX];
62 int vid_hdr_offs;
63};
64
65/* Numbers of elements set in the @mtd_dev_param array */
66static int __initdata mtd_devs;
67
68/* MTD devices specification parameters */
69static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
70
71/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
72struct class *ubi_class;
73
74/* Slab cache for wear-leveling entries */
75struct kmem_cache *ubi_wl_entry_slab;
76
77/* UBI control character device */
78static struct miscdevice ubi_ctrl_cdev = {
79 .minor = MISC_DYNAMIC_MINOR,
80 .name = "ubi_ctrl",
81 .fops = &ubi_ctrl_cdev_operations,
82};
83
84/* All UBI devices in system */
85static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
86
87/* Serializes UBI devices creations and removals */
88DEFINE_MUTEX(ubi_devices_mutex);
89
90/* Protects @ubi_devices and @ubi->ref_count */
91static DEFINE_SPINLOCK(ubi_devices_lock);
92
93/* "Show" method for files in '/<sysfs>/class/ubi/' */
94static ssize_t ubi_version_show(struct class *class,
95 struct class_attribute *attr, char *buf)
96{
97 return sprintf(buf, "%d\n", UBI_VERSION);
98}
99
100/* UBI version attribute ('/<sysfs>/class/ubi/version') */
101static struct class_attribute ubi_version =
102 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
103
104static ssize_t dev_attribute_show(struct device *dev,
105 struct device_attribute *attr, char *buf);
106
107/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
108static struct device_attribute dev_eraseblock_size =
109 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
110static struct device_attribute dev_avail_eraseblocks =
111 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
112static struct device_attribute dev_total_eraseblocks =
113 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
114static struct device_attribute dev_volumes_count =
115 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
116static struct device_attribute dev_max_ec =
117 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
118static struct device_attribute dev_reserved_for_bad =
119 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
120static struct device_attribute dev_bad_peb_count =
121 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
122static struct device_attribute dev_max_vol_count =
123 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
124static struct device_attribute dev_min_io_size =
125 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
126static struct device_attribute dev_bgt_enabled =
127 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
128static struct device_attribute dev_mtd_num =
129 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
130
131/**
132 * ubi_volume_notify - send a volume change notification.
133 * @ubi: UBI device description object
134 * @vol: volume description object of the changed volume
135 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
136 *
137 * This is a helper function which notifies all subscribers about a volume
138 * change event (creation, removal, re-sizing, re-naming, updating). Returns
139 * zero in case of success and a negative error code in case of failure.
140 */
141int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
142{
143 struct ubi_notification nt;
144
145 ubi_do_get_device_info(ubi, &nt.di);
146 ubi_do_get_volume_info(ubi, vol, &nt.vi);
147 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
148}
149
150/**
151 * ubi_notify_all - send a notification to all volumes.
152 * @ubi: UBI device description object
153 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
154 * @nb: the notifier to call
155 *
156 * This function walks all volumes of UBI device @ubi and sends the @ntype
157 * notification for each volume. If @nb is %NULL, then all registered notifiers
158 * are called, otherwise only the @nb notifier is called. Returns the number of
159 * sent notifications.
160 */
161int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
162{
163 struct ubi_notification nt;
164 int i, count = 0;
165
166 ubi_do_get_device_info(ubi, &nt.di);
167
168 mutex_lock(&ubi->device_mutex);
169 for (i = 0; i < ubi->vtbl_slots; i++) {
170 /*
171 * Since the @ubi->device is locked, and we are not going to
172 * change @ubi->volumes, we do not have to lock
173 * @ubi->volumes_lock.
174 */
175 if (!ubi->volumes[i])
176 continue;
177
178 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
179 if (nb)
180 nb->notifier_call(nb, ntype, &nt);
181 else
182 blocking_notifier_call_chain(&ubi_notifiers, ntype,
183 &nt);
184 count += 1;
185 }
186 mutex_unlock(&ubi->device_mutex);
187
188 return count;
189}
190
191/**
192 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
193 * @nb: the notifier to call
194 *
195 * This function walks all UBI devices and volumes and sends the
196 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
197 * registered notifiers are called, otherwise only the @nb notifier is called.
198 * Returns the number of sent notifications.
199 */
200int ubi_enumerate_volumes(struct notifier_block *nb)
201{
202 int i, count = 0;
203
204 /*
205 * Since the @ubi_devices_mutex is locked, and we are not going to
206 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
207 */
208 for (i = 0; i < UBI_MAX_DEVICES; i++) {
209 struct ubi_device *ubi = ubi_devices[i];
210
211 if (!ubi)
212 continue;
213 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
214 }
215
216 return count;
217}
218
219/**
220 * ubi_get_device - get UBI device.
221 * @ubi_num: UBI device number
222 *
223 * This function returns UBI device description object for UBI device number
224 * @ubi_num, or %NULL if the device does not exist. This function increases the
225 * device reference count to prevent removal of the device. In other words, the
226 * device cannot be removed if its reference count is not zero.
227 */
228struct ubi_device *ubi_get_device(int ubi_num)
229{
230 struct ubi_device *ubi;
231
232 spin_lock(&ubi_devices_lock);
233 ubi = ubi_devices[ubi_num];
234 if (ubi) {
235 ubi_assert(ubi->ref_count >= 0);
236 ubi->ref_count += 1;
237 get_device(&ubi->dev);
238 }
239 spin_unlock(&ubi_devices_lock);
240
241 return ubi;
242}
243
244/**
245 * ubi_put_device - drop an UBI device reference.
246 * @ubi: UBI device description object
247 */
248void ubi_put_device(struct ubi_device *ubi)
249{
250 spin_lock(&ubi_devices_lock);
251 ubi->ref_count -= 1;
252 put_device(&ubi->dev);
253 spin_unlock(&ubi_devices_lock);
254}
255
256/**
257 * ubi_get_by_major - get UBI device by character device major number.
258 * @major: major number
259 *
260 * This function is similar to 'ubi_get_device()', but it searches the device
261 * by its major number.
262 */
263struct ubi_device *ubi_get_by_major(int major)
264{
265 int i;
266 struct ubi_device *ubi;
267
268 spin_lock(&ubi_devices_lock);
269 for (i = 0; i < UBI_MAX_DEVICES; i++) {
270 ubi = ubi_devices[i];
271 if (ubi && MAJOR(ubi->cdev.dev) == major) {
272 ubi_assert(ubi->ref_count >= 0);
273 ubi->ref_count += 1;
274 get_device(&ubi->dev);
275 spin_unlock(&ubi_devices_lock);
276 return ubi;
277 }
278 }
279 spin_unlock(&ubi_devices_lock);
280
281 return NULL;
282}
283
284/**
285 * ubi_major2num - get UBI device number by character device major number.
286 * @major: major number
287 *
288 * This function searches UBI device number object by its major number. If UBI
289 * device was not found, this function returns -ENODEV, otherwise the UBI device
290 * number is returned.
291 */
292int ubi_major2num(int major)
293{
294 int i, ubi_num = -ENODEV;
295
296 spin_lock(&ubi_devices_lock);
297 for (i = 0; i < UBI_MAX_DEVICES; i++) {
298 struct ubi_device *ubi = ubi_devices[i];
299
300 if (ubi && MAJOR(ubi->cdev.dev) == major) {
301 ubi_num = ubi->ubi_num;
302 break;
303 }
304 }
305 spin_unlock(&ubi_devices_lock);
306
307 return ubi_num;
308}
309
310/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
311static ssize_t dev_attribute_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313{
314 ssize_t ret;
315 struct ubi_device *ubi;
316
317 /*
318 * The below code looks weird, but it actually makes sense. We get the
319 * UBI device reference from the contained 'struct ubi_device'. But it
320 * is unclear if the device was removed or not yet. Indeed, if the
321 * device was removed before we increased its reference count,
322 * 'ubi_get_device()' will return -ENODEV and we fail.
323 *
324 * Remember, 'struct ubi_device' is freed in the release function, so
325 * we still can use 'ubi->ubi_num'.
326 */
327 ubi = container_of(dev, struct ubi_device, dev);
328 ubi = ubi_get_device(ubi->ubi_num);
329 if (!ubi)
330 return -ENODEV;
331
332 if (attr == &dev_eraseblock_size)
333 ret = sprintf(buf, "%d\n", ubi->leb_size);
334 else if (attr == &dev_avail_eraseblocks)
335 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
336 else if (attr == &dev_total_eraseblocks)
337 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
338 else if (attr == &dev_volumes_count)
339 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
340 else if (attr == &dev_max_ec)
341 ret = sprintf(buf, "%d\n", ubi->max_ec);
342 else if (attr == &dev_reserved_for_bad)
343 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
344 else if (attr == &dev_bad_peb_count)
345 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
346 else if (attr == &dev_max_vol_count)
347 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
348 else if (attr == &dev_min_io_size)
349 ret = sprintf(buf, "%d\n", ubi->min_io_size);
350 else if (attr == &dev_bgt_enabled)
351 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
352 else if (attr == &dev_mtd_num)
353 ret = sprintf(buf, "%d\n", ubi->mtd->index);
354 else
355 ret = -EINVAL;
356
357 ubi_put_device(ubi);
358 return ret;
359}
360
361static void dev_release(struct device *dev)
362{
363 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
364
365 kfree(ubi);
366}
367
368/**
369 * ubi_sysfs_init - initialize sysfs for an UBI device.
370 * @ubi: UBI device description object
371 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
372 * taken
373 *
374 * This function returns zero in case of success and a negative error code in
375 * case of failure.
376 */
377static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
378{
379 int err;
380
381 ubi->dev.release = dev_release;
382 ubi->dev.devt = ubi->cdev.dev;
383 ubi->dev.class = ubi_class;
384 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
385 err = device_register(&ubi->dev);
386 if (err)
387 return err;
388
389 *ref = 1;
390 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
391 if (err)
392 return err;
393 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
394 if (err)
395 return err;
396 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
397 if (err)
398 return err;
399 err = device_create_file(&ubi->dev, &dev_volumes_count);
400 if (err)
401 return err;
402 err = device_create_file(&ubi->dev, &dev_max_ec);
403 if (err)
404 return err;
405 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
406 if (err)
407 return err;
408 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
409 if (err)
410 return err;
411 err = device_create_file(&ubi->dev, &dev_max_vol_count);
412 if (err)
413 return err;
414 err = device_create_file(&ubi->dev, &dev_min_io_size);
415 if (err)
416 return err;
417 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
418 if (err)
419 return err;
420 err = device_create_file(&ubi->dev, &dev_mtd_num);
421 return err;
422}
423
424/**
425 * ubi_sysfs_close - close sysfs for an UBI device.
426 * @ubi: UBI device description object
427 */
428static void ubi_sysfs_close(struct ubi_device *ubi)
429{
430 device_remove_file(&ubi->dev, &dev_mtd_num);
431 device_remove_file(&ubi->dev, &dev_bgt_enabled);
432 device_remove_file(&ubi->dev, &dev_min_io_size);
433 device_remove_file(&ubi->dev, &dev_max_vol_count);
434 device_remove_file(&ubi->dev, &dev_bad_peb_count);
435 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
436 device_remove_file(&ubi->dev, &dev_max_ec);
437 device_remove_file(&ubi->dev, &dev_volumes_count);
438 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
439 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
440 device_remove_file(&ubi->dev, &dev_eraseblock_size);
441 device_unregister(&ubi->dev);
442}
443
444/**
445 * kill_volumes - destroy all user volumes.
446 * @ubi: UBI device description object
447 */
448static void kill_volumes(struct ubi_device *ubi)
449{
450 int i;
451
452 for (i = 0; i < ubi->vtbl_slots; i++)
453 if (ubi->volumes[i])
454 ubi_free_volume(ubi, ubi->volumes[i]);
455}
456
457/**
458 * uif_init - initialize user interfaces for an UBI device.
459 * @ubi: UBI device description object
460 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
461 * taken, otherwise set to %0
462 *
463 * This function initializes various user interfaces for an UBI device. If the
464 * initialization fails at an early stage, this function frees all the
465 * resources it allocated, returns an error, and @ref is set to %0. However,
466 * if the initialization fails after the UBI device was registered in the
467 * driver core subsystem, this function takes a reference to @ubi->dev, because
468 * otherwise the release function ('dev_release()') would free whole @ubi
469 * object. The @ref argument is set to %1 in this case. The caller has to put
470 * this reference.
471 *
472 * This function returns zero in case of success and a negative error code in
473 * case of failure.
474 */
475static int uif_init(struct ubi_device *ubi, int *ref)
476{
477 int i, err;
478 dev_t dev;
479
480 *ref = 0;
481 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
482
483 /*
484 * Major numbers for the UBI character devices are allocated
485 * dynamically. Major numbers of volume character devices are
486 * equivalent to ones of the corresponding UBI character device. Minor
487 * numbers of UBI character devices are 0, while minor numbers of
488 * volume character devices start from 1. Thus, we allocate one major
489 * number and ubi->vtbl_slots + 1 minor numbers.
490 */
491 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
492 if (err) {
493 ubi_err("cannot register UBI character devices");
494 return err;
495 }
496
497 ubi_assert(MINOR(dev) == 0);
498 cdev_init(&ubi->cdev, &ubi_cdev_operations);
499 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
500 ubi->cdev.owner = THIS_MODULE;
501
502 err = cdev_add(&ubi->cdev, dev, 1);
503 if (err) {
504 ubi_err("cannot add character device");
505 goto out_unreg;
506 }
507
508 err = ubi_sysfs_init(ubi, ref);
509 if (err)
510 goto out_sysfs;
511
512 for (i = 0; i < ubi->vtbl_slots; i++)
513 if (ubi->volumes[i]) {
514 err = ubi_add_volume(ubi, ubi->volumes[i]);
515 if (err) {
516 ubi_err("cannot add volume %d", i);
517 goto out_volumes;
518 }
519 }
520
521 return 0;
522
523out_volumes:
524 kill_volumes(ubi);
525out_sysfs:
526 if (*ref)
527 get_device(&ubi->dev);
528 ubi_sysfs_close(ubi);
529 cdev_del(&ubi->cdev);
530out_unreg:
531 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
532 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
533 return err;
534}
535
536/**
537 * uif_close - close user interfaces for an UBI device.
538 * @ubi: UBI device description object
539 *
540 * Note, since this function un-registers UBI volume device objects (@vol->dev),
541 * the memory allocated voe the volumes is freed as well (in the release
542 * function).
543 */
544static void uif_close(struct ubi_device *ubi)
545{
546 kill_volumes(ubi);
547 ubi_sysfs_close(ubi);
548 cdev_del(&ubi->cdev);
549 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
550}
551
552/**
553 * ubi_free_internal_volumes - free internal volumes.
554 * @ubi: UBI device description object
555 */
556void ubi_free_internal_volumes(struct ubi_device *ubi)
557{
558 int i;
559
560 for (i = ubi->vtbl_slots;
561 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
562 kfree(ubi->volumes[i]->eba_tbl);
563 kfree(ubi->volumes[i]);
564 }
565}
566
567/**
568 * io_init - initialize I/O sub-system for a given UBI device.
569 * @ubi: UBI device description object
570 *
571 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
572 * assumed:
573 * o EC header is always at offset zero - this cannot be changed;
574 * o VID header starts just after the EC header at the closest address
575 * aligned to @io->hdrs_min_io_size;
576 * o data starts just after the VID header at the closest address aligned to
577 * @io->min_io_size
578 *
579 * This function returns zero in case of success and a negative error code in
580 * case of failure.
581 */
582static int io_init(struct ubi_device *ubi)
583{
584 if (ubi->mtd->numeraseregions != 0) {
585 /*
586 * Some flashes have several erase regions. Different regions
587 * may have different eraseblock size and other
588 * characteristics. It looks like mostly multi-region flashes
589 * have one "main" region and one or more small regions to
590 * store boot loader code or boot parameters or whatever. I
591 * guess we should just pick the largest region. But this is
592 * not implemented.
593 */
594 ubi_err("multiple regions, not implemented");
595 return -EINVAL;
596 }
597
598 if (ubi->vid_hdr_offset < 0)
599 return -EINVAL;
600
601 /*
602 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
603 * physical eraseblocks maximum.
604 */
605
606 ubi->peb_size = ubi->mtd->erasesize;
607 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
608 ubi->flash_size = ubi->mtd->size;
609
610 if (mtd_can_have_bb(ubi->mtd))
611 ubi->bad_allowed = 1;
612
613 if (ubi->mtd->type == MTD_NORFLASH) {
614 ubi_assert(ubi->mtd->writesize == 1);
615 ubi->nor_flash = 1;
616 }
617
618 ubi->min_io_size = ubi->mtd->writesize;
619 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
620
621 /*
622 * Make sure minimal I/O unit is power of 2. Note, there is no
623 * fundamental reason for this assumption. It is just an optimization
624 * which allows us to avoid costly division operations.
625 */
626 if (!is_power_of_2(ubi->min_io_size)) {
627 ubi_err("min. I/O unit (%d) is not power of 2",
628 ubi->min_io_size);
629 return -EINVAL;
630 }
631
632 ubi_assert(ubi->hdrs_min_io_size > 0);
633 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
634 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
635
636 ubi->max_write_size = ubi->mtd->writebufsize;
637 /*
638 * Maximum write size has to be greater or equivalent to min. I/O
639 * size, and be multiple of min. I/O size.
640 */
641 if (ubi->max_write_size < ubi->min_io_size ||
642 ubi->max_write_size % ubi->min_io_size ||
643 !is_power_of_2(ubi->max_write_size)) {
644 ubi_err("bad write buffer size %d for %d min. I/O unit",
645 ubi->max_write_size, ubi->min_io_size);
646 return -EINVAL;
647 }
648
649 /* Calculate default aligned sizes of EC and VID headers */
650 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
651 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
652
653 dbg_msg("min_io_size %d", ubi->min_io_size);
654 dbg_msg("max_write_size %d", ubi->max_write_size);
655 dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
656 dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
657 dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
658
659 if (ubi->vid_hdr_offset == 0)
660 /* Default offset */
661 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
662 ubi->ec_hdr_alsize;
663 else {
664 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
665 ~(ubi->hdrs_min_io_size - 1);
666 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
667 ubi->vid_hdr_aloffset;
668 }
669
670 /* Similar for the data offset */
671 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
672 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
673
674 dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset);
675 dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
676 dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift);
677 dbg_msg("leb_start %d", ubi->leb_start);
678
679 /* The shift must be aligned to 32-bit boundary */
680 if (ubi->vid_hdr_shift % 4) {
681 ubi_err("unaligned VID header shift %d",
682 ubi->vid_hdr_shift);
683 return -EINVAL;
684 }
685
686 /* Check sanity */
687 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
688 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
689 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
690 ubi->leb_start & (ubi->min_io_size - 1)) {
691 ubi_err("bad VID header (%d) or data offsets (%d)",
692 ubi->vid_hdr_offset, ubi->leb_start);
693 return -EINVAL;
694 }
695
696 /*
697 * Set maximum amount of physical erroneous eraseblocks to be 10%.
698 * Erroneous PEB are those which have read errors.
699 */
700 ubi->max_erroneous = ubi->peb_count / 10;
701 if (ubi->max_erroneous < 16)
702 ubi->max_erroneous = 16;
703 dbg_msg("max_erroneous %d", ubi->max_erroneous);
704
705 /*
706 * It may happen that EC and VID headers are situated in one minimal
707 * I/O unit. In this case we can only accept this UBI image in
708 * read-only mode.
709 */
710 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
711 ubi_warn("EC and VID headers are in the same minimal I/O unit, "
712 "switch to read-only mode");
713 ubi->ro_mode = 1;
714 }
715
716 ubi->leb_size = ubi->peb_size - ubi->leb_start;
717
718 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
719 ubi_msg("MTD device %d is write-protected, attach in "
720 "read-only mode", ubi->mtd->index);
721 ubi->ro_mode = 1;
722 }
723
724 ubi_msg("physical eraseblock size: %d bytes (%d KiB)",
725 ubi->peb_size, ubi->peb_size >> 10);
726 ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size);
727 ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size);
728 if (ubi->hdrs_min_io_size != ubi->min_io_size)
729 ubi_msg("sub-page size: %d",
730 ubi->hdrs_min_io_size);
731 ubi_msg("VID header offset: %d (aligned %d)",
732 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
733 ubi_msg("data offset: %d", ubi->leb_start);
734
735 /*
736 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
737 * unfortunately, MTD does not provide this information. We should loop
738 * over all physical eraseblocks and invoke mtd->block_is_bad() for
739 * each physical eraseblock. So, we leave @ubi->bad_peb_count
740 * uninitialized so far.
741 */
742
743 return 0;
744}
745
746/**
747 * autoresize - re-size the volume which has the "auto-resize" flag set.
748 * @ubi: UBI device description object
749 * @vol_id: ID of the volume to re-size
750 *
751 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
752 * the volume table to the largest possible size. See comments in ubi-header.h
753 * for more description of the flag. Returns zero in case of success and a
754 * negative error code in case of failure.
755 */
756static int autoresize(struct ubi_device *ubi, int vol_id)
757{
758 struct ubi_volume_desc desc;
759 struct ubi_volume *vol = ubi->volumes[vol_id];
760 int err, old_reserved_pebs = vol->reserved_pebs;
761
762 if (ubi->ro_mode) {
763 ubi_warn("skip auto-resize because of R/O mode");
764 return 0;
765 }
766
767 /*
768 * Clear the auto-resize flag in the volume in-memory copy of the
769 * volume table, and 'ubi_resize_volume()' will propagate this change
770 * to the flash.
771 */
772 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
773
774 if (ubi->avail_pebs == 0) {
775 struct ubi_vtbl_record vtbl_rec;
776
777 /*
778 * No available PEBs to re-size the volume, clear the flag on
779 * flash and exit.
780 */
781 memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
782 sizeof(struct ubi_vtbl_record));
783 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
784 if (err)
785 ubi_err("cannot clean auto-resize flag for volume %d",
786 vol_id);
787 } else {
788 desc.vol = vol;
789 err = ubi_resize_volume(&desc,
790 old_reserved_pebs + ubi->avail_pebs);
791 if (err)
792 ubi_err("cannot auto-resize volume %d", vol_id);
793 }
794
795 if (err)
796 return err;
797
798 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
799 vol->name, old_reserved_pebs, vol->reserved_pebs);
800 return 0;
801}
802
803/**
804 * ubi_attach_mtd_dev - attach an MTD device.
805 * @mtd: MTD device description object
806 * @ubi_num: number to assign to the new UBI device
807 * @vid_hdr_offset: VID header offset
808 *
809 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
810 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
811 * which case this function finds a vacant device number and assigns it
812 * automatically. Returns the new UBI device number in case of success and a
813 * negative error code in case of failure.
814 *
815 * Note, the invocations of this function has to be serialized by the
816 * @ubi_devices_mutex.
817 */
818int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
819{
820 struct ubi_device *ubi;
821 int i, err, ref = 0;
822
823 /*
824 * Check if we already have the same MTD device attached.
825 *
826 * Note, this function assumes that UBI devices creations and deletions
827 * are serialized, so it does not take the &ubi_devices_lock.
828 */
829 for (i = 0; i < UBI_MAX_DEVICES; i++) {
830 ubi = ubi_devices[i];
831 if (ubi && mtd->index == ubi->mtd->index) {
832 ubi_err("mtd%d is already attached to ubi%d",
833 mtd->index, i);
834 return -EEXIST;
835 }
836 }
837
838 /*
839 * Make sure this MTD device is not emulated on top of an UBI volume
840 * already. Well, generally this recursion works fine, but there are
841 * different problems like the UBI module takes a reference to itself
842 * by attaching (and thus, opening) the emulated MTD device. This
843 * results in inability to unload the module. And in general it makes
844 * no sense to attach emulated MTD devices, so we prohibit this.
845 */
846 if (mtd->type == MTD_UBIVOLUME) {
847 ubi_err("refuse attaching mtd%d - it is already emulated on "
848 "top of UBI", mtd->index);
849 return -EINVAL;
850 }
851
852 if (ubi_num == UBI_DEV_NUM_AUTO) {
853 /* Search for an empty slot in the @ubi_devices array */
854 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
855 if (!ubi_devices[ubi_num])
856 break;
857 if (ubi_num == UBI_MAX_DEVICES) {
858 ubi_err("only %d UBI devices may be created",
859 UBI_MAX_DEVICES);
860 return -ENFILE;
861 }
862 } else {
863 if (ubi_num >= UBI_MAX_DEVICES)
864 return -EINVAL;
865
866 /* Make sure ubi_num is not busy */
867 if (ubi_devices[ubi_num]) {
868 ubi_err("ubi%d already exists", ubi_num);
869 return -EEXIST;
870 }
871 }
872
873 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
874 if (!ubi)
875 return -ENOMEM;
876
877 ubi->mtd = mtd;
878 ubi->ubi_num = ubi_num;
879 ubi->vid_hdr_offset = vid_hdr_offset;
880 ubi->autoresize_vol_id = -1;
881
882 mutex_init(&ubi->buf_mutex);
883 mutex_init(&ubi->ckvol_mutex);
884 mutex_init(&ubi->device_mutex);
885 spin_lock_init(&ubi->volumes_lock);
886
887 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
888 dbg_msg("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
889 dbg_msg("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
890
891 err = io_init(ubi);
892 if (err)
893 goto out_free;
894
895 err = -ENOMEM;
896 ubi->peb_buf = vmalloc(ubi->peb_size);
897 if (!ubi->peb_buf)
898 goto out_free;
899
900 err = ubi_debugging_init_dev(ubi);
901 if (err)
902 goto out_free;
903
904 err = ubi_attach(ubi);
905 if (err) {
906 ubi_err("failed to attach mtd%d, error %d", mtd->index, err);
907 goto out_debugging;
908 }
909
910 if (ubi->autoresize_vol_id != -1) {
911 err = autoresize(ubi, ubi->autoresize_vol_id);
912 if (err)
913 goto out_detach;
914 }
915
916 err = uif_init(ubi, &ref);
917 if (err)
918 goto out_detach;
919
920 err = ubi_debugfs_init_dev(ubi);
921 if (err)
922 goto out_uif;
923
924 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
925 if (IS_ERR(ubi->bgt_thread)) {
926 err = PTR_ERR(ubi->bgt_thread);
927 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
928 err);
929 goto out_debugfs;
930 }
931
932 ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
933 ubi_msg("MTD device name: \"%s\"", mtd->name);
934 ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20);
935 ubi_msg("number of good PEBs: %d", ubi->good_peb_count);
936 ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count);
937 ubi_msg("number of corrupted PEBs: %d", ubi->corr_peb_count);
938 ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots);
939 ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD);
940 ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
941 ubi_msg("number of user volumes: %d",
942 ubi->vol_count - UBI_INT_VOL_COUNT);
943 ubi_msg("available PEBs: %d", ubi->avail_pebs);
944 ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
945 ubi_msg("number of PEBs reserved for bad PEB handling: %d",
946 ubi->beb_rsvd_pebs);
947 ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
948 ubi_msg("image sequence number: %d", ubi->image_seq);
949
950 /*
951 * The below lock makes sure we do not race with 'ubi_thread()' which
952 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
953 */
954 spin_lock(&ubi->wl_lock);
955 ubi->thread_enabled = 1;
956 wake_up_process(ubi->bgt_thread);
957 spin_unlock(&ubi->wl_lock);
958
959 ubi_devices[ubi_num] = ubi;
960 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
961 return ubi_num;
962
963out_debugfs:
964 ubi_debugfs_exit_dev(ubi);
965out_uif:
966 get_device(&ubi->dev);
967 ubi_assert(ref);
968 uif_close(ubi);
969out_detach:
970 ubi_wl_close(ubi);
971 ubi_free_internal_volumes(ubi);
972 vfree(ubi->vtbl);
973out_debugging:
974 ubi_debugging_exit_dev(ubi);
975out_free:
976 vfree(ubi->peb_buf);
977 if (ref)
978 put_device(&ubi->dev);
979 else
980 kfree(ubi);
981 return err;
982}
983
984/**
985 * ubi_detach_mtd_dev - detach an MTD device.
986 * @ubi_num: UBI device number to detach from
987 * @anyway: detach MTD even if device reference count is not zero
988 *
989 * This function destroys an UBI device number @ubi_num and detaches the
990 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
991 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
992 * exist.
993 *
994 * Note, the invocations of this function has to be serialized by the
995 * @ubi_devices_mutex.
996 */
997int ubi_detach_mtd_dev(int ubi_num, int anyway)
998{
999 struct ubi_device *ubi;
1000
1001 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1002 return -EINVAL;
1003
1004 ubi = ubi_get_device(ubi_num);
1005 if (!ubi)
1006 return -EINVAL;
1007
1008 spin_lock(&ubi_devices_lock);
1009 put_device(&ubi->dev);
1010 ubi->ref_count -= 1;
1011 if (ubi->ref_count) {
1012 if (!anyway) {
1013 spin_unlock(&ubi_devices_lock);
1014 return -EBUSY;
1015 }
1016 /* This may only happen if there is a bug */
1017 ubi_err("%s reference count %d, destroy anyway",
1018 ubi->ubi_name, ubi->ref_count);
1019 }
1020 ubi_devices[ubi_num] = NULL;
1021 spin_unlock(&ubi_devices_lock);
1022
1023 ubi_assert(ubi_num == ubi->ubi_num);
1024 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1025 dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1026
1027 /*
1028 * Before freeing anything, we have to stop the background thread to
1029 * prevent it from doing anything on this device while we are freeing.
1030 */
1031 if (ubi->bgt_thread)
1032 kthread_stop(ubi->bgt_thread);
1033
1034 /*
1035 * Get a reference to the device in order to prevent 'dev_release()'
1036 * from freeing the @ubi object.
1037 */
1038 get_device(&ubi->dev);
1039
1040 ubi_debugfs_exit_dev(ubi);
1041 uif_close(ubi);
1042 ubi_wl_close(ubi);
1043 ubi_free_internal_volumes(ubi);
1044 vfree(ubi->vtbl);
1045 put_mtd_device(ubi->mtd);
1046 ubi_debugging_exit_dev(ubi);
1047 vfree(ubi->peb_buf);
1048 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1049 put_device(&ubi->dev);
1050 return 0;
1051}
1052
1053/**
1054 * open_mtd_by_chdev - open an MTD device by its character device node path.
1055 * @mtd_dev: MTD character device node path
1056 *
1057 * This helper function opens an MTD device by its character node device path.
1058 * Returns MTD device description object in case of success and a negative
1059 * error code in case of failure.
1060 */
1061static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1062{
1063 int err, major, minor, mode;
1064 struct path path;
1065
1066 /* Probably this is an MTD character device node path */
1067 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1068 if (err)
1069 return ERR_PTR(err);
1070
1071 /* MTD device number is defined by the major / minor numbers */
1072 major = imajor(path.dentry->d_inode);
1073 minor = iminor(path.dentry->d_inode);
1074 mode = path.dentry->d_inode->i_mode;
1075 path_put(&path);
1076 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1077 return ERR_PTR(-EINVAL);
1078
1079 if (minor & 1)
1080 /*
1081 * Just do not think the "/dev/mtdrX" devices support is need,
1082 * so do not support them to avoid doing extra work.
1083 */
1084 return ERR_PTR(-EINVAL);
1085
1086 return get_mtd_device(NULL, minor / 2);
1087}
1088
1089/**
1090 * open_mtd_device - open MTD device by name, character device path, or number.
1091 * @mtd_dev: name, character device node path, or MTD device device number
1092 *
1093 * This function tries to open and MTD device described by @mtd_dev string,
1094 * which is first treated as ASCII MTD device number, and if it is not true, it
1095 * is treated as MTD device name, and if that is also not true, it is treated
1096 * as MTD character device node path. Returns MTD device description object in
1097 * case of success and a negative error code in case of failure.
1098 */
1099static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1100{
1101 struct mtd_info *mtd;
1102 int mtd_num;
1103 char *endp;
1104
1105 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1106 if (*endp != '\0' || mtd_dev == endp) {
1107 /*
1108 * This does not look like an ASCII integer, probably this is
1109 * MTD device name.
1110 */
1111 mtd = get_mtd_device_nm(mtd_dev);
1112 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1113 /* Probably this is an MTD character device node path */
1114 mtd = open_mtd_by_chdev(mtd_dev);
1115 } else
1116 mtd = get_mtd_device(NULL, mtd_num);
1117
1118 return mtd;
1119}
1120
1121static int __init ubi_init(void)
1122{
1123 int err, i, k;
1124
1125 /* Ensure that EC and VID headers have correct size */
1126 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1127 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1128
1129 if (mtd_devs > UBI_MAX_DEVICES) {
1130 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1131 return -EINVAL;
1132 }
1133
1134 /* Create base sysfs directory and sysfs files */
1135 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1136 if (IS_ERR(ubi_class)) {
1137 err = PTR_ERR(ubi_class);
1138 ubi_err("cannot create UBI class");
1139 goto out;
1140 }
1141
1142 err = class_create_file(ubi_class, &ubi_version);
1143 if (err) {
1144 ubi_err("cannot create sysfs file");
1145 goto out_class;
1146 }
1147
1148 err = misc_register(&ubi_ctrl_cdev);
1149 if (err) {
1150 ubi_err("cannot register device");
1151 goto out_version;
1152 }
1153
1154 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1155 sizeof(struct ubi_wl_entry),
1156 0, 0, NULL);
1157 if (!ubi_wl_entry_slab)
1158 goto out_dev_unreg;
1159
1160 err = ubi_debugfs_init();
1161 if (err)
1162 goto out_slab;
1163
1164
1165 /* Attach MTD devices */
1166 for (i = 0; i < mtd_devs; i++) {
1167 struct mtd_dev_param *p = &mtd_dev_param[i];
1168 struct mtd_info *mtd;
1169
1170 cond_resched();
1171
1172 mtd = open_mtd_device(p->name);
1173 if (IS_ERR(mtd)) {
1174 err = PTR_ERR(mtd);
1175 goto out_detach;
1176 }
1177
1178 mutex_lock(&ubi_devices_mutex);
1179 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1180 p->vid_hdr_offs);
1181 mutex_unlock(&ubi_devices_mutex);
1182 if (err < 0) {
1183 ubi_err("cannot attach mtd%d", mtd->index);
1184 put_mtd_device(mtd);
1185
1186 /*
1187 * Originally UBI stopped initializing on any error.
1188 * However, later on it was found out that this
1189 * behavior is not very good when UBI is compiled into
1190 * the kernel and the MTD devices to attach are passed
1191 * through the command line. Indeed, UBI failure
1192 * stopped whole boot sequence.
1193 *
1194 * To fix this, we changed the behavior for the
1195 * non-module case, but preserved the old behavior for
1196 * the module case, just for compatibility. This is a
1197 * little inconsistent, though.
1198 */
1199 if (ubi_is_module())
1200 goto out_detach;
1201 }
1202 }
1203
1204 return 0;
1205
1206out_detach:
1207 for (k = 0; k < i; k++)
1208 if (ubi_devices[k]) {
1209 mutex_lock(&ubi_devices_mutex);
1210 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1211 mutex_unlock(&ubi_devices_mutex);
1212 }
1213 ubi_debugfs_exit();
1214out_slab:
1215 kmem_cache_destroy(ubi_wl_entry_slab);
1216out_dev_unreg:
1217 misc_deregister(&ubi_ctrl_cdev);
1218out_version:
1219 class_remove_file(ubi_class, &ubi_version);
1220out_class:
1221 class_destroy(ubi_class);
1222out:
1223 ubi_err("UBI error: cannot initialize UBI, error %d", err);
1224 return err;
1225}
1226module_init(ubi_init);
1227
1228static void __exit ubi_exit(void)
1229{
1230 int i;
1231
1232 for (i = 0; i < UBI_MAX_DEVICES; i++)
1233 if (ubi_devices[i]) {
1234 mutex_lock(&ubi_devices_mutex);
1235 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1236 mutex_unlock(&ubi_devices_mutex);
1237 }
1238 ubi_debugfs_exit();
1239 kmem_cache_destroy(ubi_wl_entry_slab);
1240 misc_deregister(&ubi_ctrl_cdev);
1241 class_remove_file(ubi_class, &ubi_version);
1242 class_destroy(ubi_class);
1243}
1244module_exit(ubi_exit);
1245
1246/**
1247 * bytes_str_to_int - convert a number of bytes string into an integer.
1248 * @str: the string to convert
1249 *
1250 * This function returns positive resulting integer in case of success and a
1251 * negative error code in case of failure.
1252 */
1253static int __init bytes_str_to_int(const char *str)
1254{
1255 char *endp;
1256 unsigned long result;
1257
1258 result = simple_strtoul(str, &endp, 0);
1259 if (str == endp || result >= INT_MAX) {
1260 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1261 str);
1262 return -EINVAL;
1263 }
1264
1265 switch (*endp) {
1266 case 'G':
1267 result *= 1024;
1268 case 'M':
1269 result *= 1024;
1270 case 'K':
1271 result *= 1024;
1272 if (endp[1] == 'i' && endp[2] == 'B')
1273 endp += 2;
1274 case '\0':
1275 break;
1276 default:
1277 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1278 str);
1279 return -EINVAL;
1280 }
1281
1282 return result;
1283}
1284
1285/**
1286 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1287 * @val: the parameter value to parse
1288 * @kp: not used
1289 *
1290 * This function returns zero in case of success and a negative error code in
1291 * case of error.
1292 */
1293static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1294{
1295 int i, len;
1296 struct mtd_dev_param *p;
1297 char buf[MTD_PARAM_LEN_MAX];
1298 char *pbuf = &buf[0];
1299 char *tokens[2] = {NULL, NULL};
1300
1301 if (!val)
1302 return -EINVAL;
1303
1304 if (mtd_devs == UBI_MAX_DEVICES) {
1305 printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1306 UBI_MAX_DEVICES);
1307 return -EINVAL;
1308 }
1309
1310 len = strnlen(val, MTD_PARAM_LEN_MAX);
1311 if (len == MTD_PARAM_LEN_MAX) {
1312 printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1313 "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1314 return -EINVAL;
1315 }
1316
1317 if (len == 0) {
1318 printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1319 "ignored\n");
1320 return 0;
1321 }
1322
1323 strcpy(buf, val);
1324
1325 /* Get rid of the final newline */
1326 if (buf[len - 1] == '\n')
1327 buf[len - 1] = '\0';
1328
1329 for (i = 0; i < 2; i++)
1330 tokens[i] = strsep(&pbuf, ",");
1331
1332 if (pbuf) {
1333 printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1334 val);
1335 return -EINVAL;
1336 }
1337
1338 p = &mtd_dev_param[mtd_devs];
1339 strcpy(&p->name[0], tokens[0]);
1340
1341 if (tokens[1])
1342 p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1343
1344 if (p->vid_hdr_offs < 0)
1345 return p->vid_hdr_offs;
1346
1347 mtd_devs += 1;
1348 return 0;
1349}
1350
1351module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1352MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1353 "mtd=<name|num|path>[,<vid_hdr_offs>].\n"
1354 "Multiple \"mtd\" parameters may be specified.\n"
1355 "MTD devices may be specified by their number, name, or "
1356 "path to the MTD character device node.\n"
1357 "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1358 "header position to be used by UBI.\n"
1359 "Example 1: mtd=/dev/mtd0 - attach MTD device "
1360 "/dev/mtd0.\n"
1361 "Example 2: mtd=content,1984 mtd=4 - attach MTD device "
1362 "with name \"content\" using VID header offset 1984, and "
1363 "MTD device number 4 with default VID header offset.");
1364
1365MODULE_VERSION(__stringify(UBI_VERSION));
1366MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1367MODULE_AUTHOR("Artem Bityutskiy");
1368MODULE_LICENSE("GPL");